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10-plectic formulation of gravity and Cartan connections

One of the guiding ideas rooted in this paper is that the physical laws (in particular General Relativity) are independent of the point of the space-time manifold and the pseudo-orthonormal (or reference frame) in which they are expressed. This viewpoint is adopted in the approach to field theory based on the space of reference frames, which is developed by Toller [START_REF] Toller | An operational analysis of the space-time structure[END_REF][START_REF] Toller | Classical field theory in the space of reference frames[END_REF][START_REF] Toller | Free quantum fields on the Poincaré group[END_REF]. This standpoint echoed the work initiated by Lurçat [START_REF] Lurçat | Quantum field theory and the dynamical role of Spin[END_REF] towards a Quantum Field Theory on the Poincaré group (see also [START_REF] Grandpeix | Particle Description of Zero Energy Vacuum, I. Virtual particles[END_REF][START_REF] Varlamov | Relativistic wavefunctions on the Poincaré group[END_REF]). The original motivation of Lurçat was to put the dynamical role of spin in the foreground. Accordingly, in gauge theories of gravitation the local model of Minkowski space is replaced by the Poincaré group [START_REF] Blagojevic | Gauge theories of gravitation: a reader with commentaries[END_REF][START_REF] Sardanashvily | Lecture on Gauge Gravitation Theory. Gravity as a Higgs Field, contribution talk at 20th International Summer School on Global Analysis and its Applications, General Relativity: 100 years after Hilbert[END_REF]. We present a Hamiltonian formulation of first order gravity which is covariant from the viewpoint of the geometry of the principal fiber bundle, i.e. which does not depend on choices of space-time coordinates nor on the trivialization of the principal bundle 1 . We work with the multisymplectic approach, which goes back to the discovery of generalizations of the Hamilton equations for variational problems with several variables by Volterra [START_REF] Volterra | Sulle equazioni differenziali che provengono da questiono di calcolo delle variazioni[END_REF][START_REF] Volterra | Sopra una estensione della teoria Jacobi-Hamilton del calcolo delle variazioni[END_REF]. These ideas were first developped in the thirties [START_REF] Carathéodory | Variationsrechnung und partielle Differentialgleichungen erster Ordnung[END_REF][START_REF] Donder | Théorie Invariante du Calcul des Variations[END_REF][START_REF] Lepage | Sur les champs géodésiques du calcul des variations[END_REF][START_REF] Weyl | Geodesic fields in the calculus of variations[END_REF] and later in the seventies of the last century [START_REF] García | Geometría simplética en la teoria de campos[END_REF][START_REF] García | The Poincaré-Cartan invariant in the calculus of variations[END_REF][START_REF] Goldschmidt | The Hamilton-Cartan formalism in the calculus of variations[END_REF][START_REF] Kijowski | Multiphase spaces and gauge in the calculus of variations[END_REF][START_REF] Kijowski | A canonical structure for classical field theories[END_REF][START_REF] Kijowski | A symplectic framework for field theories[END_REF][START_REF] Roman-Roy | Multisymplectic Lagrangian and Hamiltonian formalisms of classical field theories[END_REF]. The multisymplectic theory has many recent developments (see e.g. [START_REF] Cantrijn | On the geometry of multisymplectic manifolds[END_REF][START_REF] Forger | Multisymplectic and polysymplectic structures on fiber bundles[END_REF][START_REF] Gotay | A multisymplectic framework for classical field theory and the calculus of variations I[END_REF][START_REF] Hélein | Multisymplectic formalism and the covariant phase space[END_REF][START_REF] Hélein | Covariant Hamiltonian formalism for the calculus of variations with several variables: Lepage-Dedecker versus De Donder-Weyl[END_REF]) The basic concept is the notion of a multisymplectic (m+1)-form ω ω ω on a smooth manifold N , where m corresponds to the number of independent variables. The form ω ω ω is always closed and one often assumes that it is non degenerate: ∀ξ ∈ Γ(N , T N ), ξ ω ω ω = 0 ⇒ ξ = 0. The solutions of the Hamilton-Volterra-De Donder-Weyl (HVDW) equations are given by oriented m-dimensional submanifolds γ γ γ of N which satisfy the condition that, at any point m ∈ N , there exists a basis (X 1 , • • • , X m ) of T m γ γ γ such that X 1 ∧• • •∧X m ω ω ω = (-1) m dH, where H : N -→ R is a Hamiltonian function. Analogously one can replace ω ω ω by its restriction to the level set H -1 (0) and describe the solutions as the submanifolds γ γ γ of H -1 (0) such that X 1 ∧ • • • ∧ X m ω ω ω = 0 everywhere and β (m) (X 1 ∧ • • • ∧ X m ) = 0, where β (m) is some volume m-form, see [START_REF] Hélein | Multisymplectic formalism and the covariant phase space[END_REF].

Organization of the paper -In Section 1.1 we describe the space-time dynamical fields (e, A) for Weyl-Einstein-Cartan (WEC) gravity. The multisymplectic formulation of the WEC functional S WEC [e, A] is delicate because the dynamical fields (e, A) are the components of a Cartan connection (see [START_REF] Cartan | Sur les variétés connexion affine et la théorie de la relativité généralisée (première partie)[END_REF][START_REF] Cartan | Sur les variétés connexion affine et la théorie de la relativité généralisée (suite)[END_REF][START_REF] Ehresmann | Sur la théorie des espaces fibrés[END_REF][START_REF] Marle | The works of Charles Ehresmann on connections: from Cartan connections to connections on fibre bundles[END_REF]) and subject to gauge invariance. In Section 1.2 we lift the connection defined on some manifold X representing the space-time to the principal bundle P over X with structure group the Lorentz group. The connection is represented by a 1-form (α, ω) on P with value in the Poincaré algebra p = g ⊕ t, which satisfies normalization and equivariance hypotheses, see Equations [START_REF] Carathéodory | Variationsrechnung und partielle Differentialgleichungen erster Ordnung[END_REF]. Although a priori mandatory the equivariance condition has the shortcoming of being a non holonomic constraint, i.e. on the first order derivatives of the field.

The geometrical background for the 10-plectic formulation of WEC gravity is presented in Section 2. The covariant configuration space is Z := p ⊗ T * P, the space of p-valued 1-forms over P. Section 2.1 is dedicated to present the WEC 10-form, the first order jet bundle J 1 Z and the De Donder-Weyl (DW) bundle Λ 10 1 T * Z. In the following, we compute the Legendre transform for the WEC action by treating connections as normalized and equivariant p-valued 1-forms on P (see Section 2.2). We find that the natural multisymplectic manifold can be built from the vector bundles p ⊗ T * P and p * ⊗ Λ 8 T * P over P, where 10 is the dimension of P, p is the structure Lie algebra and p * its dual vector space. These vector bundles are endowed with a canonical p-valued 1-form η and a canonical p * -valued 8-form ψ respectively (see also [START_REF] Hélein | Curved space-times by crystallization of liquid fiber bundles[END_REF]). Then the multisymplectic manifold corresponds to the total space of the vector bundle M := R ⊕ P (p ⊗ n T * P) ⊕ P (p * ⊗ Λ 8 T * P), equipped with the 10-form θ (10) = ςβ (4) ∧ γ (6) + ψ ∧ (dη + η ∧ η), where ς is a coordinate on R, β (4) ∧ γ (6) is the volume form on P and p ⊗ n T * P ⊂ p ⊗ T * P is the subbundle of normalized forms.

Finally, the DW formulation of the Hamilton equations is given in Section 3. Any solution of the Hamilton equations is given by a 10-dimensional submanifold of N , more precisely a section φ of N over P. In Section 3.1, we compute the 11-plectic form ω ω ω := dθ (10) . In Section 3.2, we finally discover that the dynamical equations constrain the p-valued 1-forms to be equivariant, see Proposition 3.1. In addition, the formalism yields Einstein-Cartan type equations:

G b a = 1 2 ρ j • p a bj T a cd = -h de δ a a δ c c + 1 2 δ c a (δ a d h ce -δ a c h de ) ρ j • p c ea j ,
where G b a is the Einstein tensor and T a cd is the torsion tensor, see Section 4.3 in the Annex. In addition, ρ j is a left invariant vector field acting on the multimomenta coordinates p a bj and p a bcj which are given in Proposition 3.2. The approach of curved space-time by crystallization of liquid fiber bundles, which is developed elsewhere (see [START_REF] Hélein | Curved space-times by crystallization of liquid fiber bundles[END_REF]), is more fundamental and includes the one given in this paper as a peculiar case. Hence, Proposition 3.2 reproduces partially the results obtained in the broader context of liquid fiber bundles, where the Hamilton equations contain in addition non homogeneous Maxwell type equations (see Equations (88) in [START_REF] Hélein | Curved space-times by crystallization of liquid fiber bundles[END_REF]). In the former, no a priori hypotheses are given to settle the structure of the principal fiber bundle.

Aknowledgements -I am indebted to F. Hélein for being a co-architect and co-explorer of this work, both at its origins and developments; I thank him for comments and corrections on preliminary variations of the paper.

Weyl-Einstein-Cartan

Let M be the Minkowski vector space endowed with the Minkowski metric h. We fix a pseudo-orthonormal basis (E a ) 0≤a≤3 of ( M, h). In addition, T is the Abelian Lie group of translations on M, t its trivial Lie algebra, with basis (t a ) 0≤a≤3 and t * the dual of t with basis (t a ) 0≤a≤3 . We denote by G the Lorentz group SO(3, 1), g its Lie algebra, i.e. g := so(3, 1) and g * the dual of g. We denote by (l j ) 1≤j≤6 a basis of g and (l j ) 1≤j≤6 a basis of and g * , respectively. Finally, G T is the Poincaré group ISO(3, 1) := SO(3, 1) T, p := g ⊕ t its Lie algebra and p * is the dual of p. We fix some basis (l

A ) 0≤A≤9 = (t 0 , • • • , t 3 , l 1 , • • • , l 6 ) and (l A ) 0≤A≤9 = (t 0 , • • • , t 3 , l 1 , • • • , l 6
) of p and p * , respectively.

Space-time dynamics

In WEC formulation of gravity, dynamical fields can be defined locally as being pairs (e, A), where e = (e 0 , e 1 , e 2 , e 3 ) is a moving coframe on X and A is a g-valued connection 1-form on X . We set a volume 4-form e (4) := e 0 ∧ e 1 ∧ e 2 ∧ e 3 and e

(2) 4) . The WEC action reads

ab := ( ∂ ∂e a ∧ ∂ ∂e b ) e ( 
S WEC [e, A] = X e (2) 
ab ∧ F ab = X u ab i e

(2)

ab ∧ F i , (1) 
where F := dA + A ∧ A is the curvature form and F cd := h dd F c d . Elsewhere, this action is termed the Palatini action functional, which is inexact [START_REF] Ferraris | Variational Formulation of General Relativity from 1915 to 1925 Palatini's Method Discovered by Einstein in 1925[END_REF].

Torsion and curvature -The torsion and curvature 2-forms, which are denoted by T a and F ab , are related to the dynamical field (e, A) by the Cartan structure equations: T a = de a + A a b ∧ e b and F a b = dA a b + A a c ∧ A c b , respectively. We introduce the torsion tensor T a cd such that T a = 1 2 T a cd e cd = 1 2 T a µν β µν , where the components T a µν = T a cd e c µ e d ν are given by T a µν = ∂ µ e a ν -∂ ν e a µ + A a µc e c ν -e c µ A a νc . In addition, the curvature tensor F a bcd is such that F a b = 1 2 F a bcd e cd = F ab cd e c µ e d ν , where the components are written as

F ab µν = ∂ µ A ab ν -∂ ν A ab µ + A a µc A cb ν -A a νc A cb µ .
Ricci and Einstein tensors -We denote by Ric ab := F a aa b = h ab F a b a b the Ricci tensor. Then, G ab = Ric ab -1 2 h ab S is the Einstein tensor, where S is the scalar curvature, which is given by S = h ab Ric ab = h ab h ab F a b a b = F a b a b .

Bundle dynamics

In addition, the WEC functional is invariant by gauge transformations of the form (e, A) -→ (g -1 e, g -1 dg+g -1 Ag), which are written in indices as e a -→ (g -1 ) a a e a and A a b -→ (g -1 ) a a dg a b + (g -1 ) a a A a b g b b , where g : X -→ G. In order to fully consider the gauge invariance, we now lift the theory to the total space of the principal fiber bundle (P, X , π, G), where X is the base space, P is the total space, G is the Lorentz structure group and π X : P → X is the fibration map. We assume that G is acting on the right on P:

R g : P × G -→ P (z, g) -→ z • g = R g (z)
This induces an infinitesimal action of g, to any ξ ∈ g, we associate the vector field ρ ξ (z) = z • ξ on P defined by: ∀ z ∈ P, ∀ξ ∈ g, ρ ξ (z) := d/dt(z • e tξ )| t=0 . For any z ∈ P the orbit of the G action containing z is the fiber P x , where x = π P (z). The tangent vector subspace to P x at z is the vertical subspace V z P := kerd(π X ) z and is isomorphic to the Lie algebra g of G. By choosing a section σ :

X → P which induces a trivialization z = σ(x) • g (x, g), we set ∂ µ (z) := d(R g • σ) x (∂ µ (x)) ∂ µ (x) • g, for µ = 0, • • • , 3
, where (∂ µ ) 0≤µ≤3 is a moving frame on X . We consider also the family of independent tangent vector fields (ρ i ) 1≤i≤6 on P induced by the right action of u i on P, which, at every point z ∈ P, spans the vertical subspace V z P. Then (∂ µ , ρ i ) 0≤µ≤3,4≤i≤9 is a moving frame on P. The dual frame (dx µ , γ i ) 0≤µ≤3,4≤i≤9 is the family of sections of T * P such that dx µ (∂ ν ) = δ µ ν and γ i (ρ j ) = δ i j . To picture geometrically the gauge invariance we lift the variational problem on the total space P of the principal bundle of orthonormal frames. We represent each pair (e, A) by a pair of 1-forms (α, ω) on P with values in p, i.e. α takes values in t and ω takes values in g. However, (α, ω) needs to satisfy the following normalization and equivariance hypotheses:

ρ i α = 0 ρ i ω = u i , L ρ i α + u i • α = 0 L ρ i ω + [u i , ω] = 0, (2) 
where L ρ i is the Lie derivative with respect to a vector field ρ i . We can lift the action S WEC [e, A] to a functional on the space of p-valued 1-forms (α, ω) by setting:

S WEC [α, ω] = P α (2) ab ∧ Ω ab ∧ γ (6) = P u ab i α (2) 
ab ∧ Ω i ∧ γ (6) .

(

) 3 
where α ab = α a ∧ α b . By setting α

(2) 4) , Ω := dω + ω ∧ ω, Ω ab := Ω a b h bb and γ (6) 

ab := ∂ ∂α a ∧ ∂ ∂α b α ( 
:= γ 1 ∧• • •∧γ 6 . Then critical points of S WEC [e, A] correspond to critical points of S WEC [α, ω] under the constraints (2).
For any p-valued 1-form (α, ω) on P which satisfies (2) and for any local section σ : X -→ P, we obtain a pair (e, A) on X simply by setting e = σ * α and A = σ * ω. Conversely, given a pair (e, A) on X and a local section σ : X -→ P, this provides us with a local trivialization τ : P -→ X × G : z -→ (x, g), where (x, g) is such that z = σ(x) • g. We associate to (e, A) a p-valued 1-form (α, ω) on P which satisfies (2), given by α = τ * (g -1 e) and ω = τ * (g -1 Ag + g -1 dg).

(α, ω) = (g -1 e, g -1 dg + g -1 Ag) ⇐⇒ (α, ω) = (0, g -1 dg) + Ad g -1 (e, A), (4) 
where (e, A) is a p-valued 1-form whose coefficients depend only on the x variables.

In particular, by using the representation ω = g -1 dg + g -1 Ag and α = g -1 e, then we obtain dω

+ ω ∧ ω = g -1 (dA + A ∧ A)g and dα + ω ∧ α = g -1 (de + A ∧ e).
2 Towards the 10-plectic formulation

Geometrical background

The covariant configuration space is the 110-dimensional vector bundle p ⊗ T * P over P, whose fiber at point z ∈ P is the tensor product p ⊗ T * z P. Note that dim(P) = 10 and dim(p

⊗ T * z P) = dim(p) • dim(T * z P) = 100.
A point in p ⊗ T * P will be denoted by (z, y), where z ∈ P and y ∈ p ⊗ T * z P.

Weyl-Einstein-Cartan 10-form

We consider the canonical p-valued 1-form η (a section of p⊗T * (p⊗T * P)) defined by:

∀(z, y) ∈ p ⊗ T * P, ∀v ∈ T (z,y) (p ⊗ T * P), η (z,y) (v) = y(dπ (z,y) (v)),
where π : p ⊗ T * P -→ P is the canonical projection map. This p-valued 1-form can be decomposed as η = l A η A , where each η A is a 1-form on P. Any pair (α, ω) as considered in previously is a section of p ⊗ T * P over P. In the following we identify such a pair with a map ϕ from P to the total space of p ⊗ T * P such that π • ϕ(z) = z, ∀z ∈ P, by letting

(α, ω) = ϕ * η. (5) 
We introduce the following coordinates on p ⊗ T * P. (z I ) 1≤I≤10 are local coordinates on P; thus they provide us with locally defined functions z I z I • π on p ⊗ T * P. In a given trivialization τ : P -→ X × G : z -→ (x, g), we denote by (x µ , g) the coordinates functions for a point z ∈ P. We denote by (η A I ) 0≤A≤9;1≤I≤10 the local coordinates on the space p ⊗ T * z P in the basis (l A ⊗ dz I ) 0≤A≤9;1≤I≤10 . Furthermore, by using the splitting η = 0 η + 1 η and the standard representation (see Section 4.1 in the Annex) we write equivalently (

0 η c dµ , 0 η c dj , 1 η c µ , 1 η c j ) for the coordinates on p ⊗ T * z P in the basis (u d c ⊗ dx µ , u d c ⊗ γ j , t c ⊗ dx µ , t c ⊗ γ j ). The bundle p ⊗ T * P is endowed with local coordinates (x µ , g, 0 η c dµ , 0 η c dj , 1 η c µ , 1 η c j ). In these coordinates η reads ( 0 η, 1 η) = ( 0 η c dµ u d c ⊗ dx µ + 0 η c dj u d c ⊗ γ j , 1 η c µ t c ⊗ dx µ + 1 η c j t c ⊗ γ j ) ∈ p ⊗ T * z P.
We define the following 10-form on p ⊗ T * P (a section of Λ 10 T * (p ⊗ T * P)):

λ λ λ := u ab i 1 η (2) ab ∧ (d 0 η + 0 η ∧ 0 η) i ∧ 0 η (6) , (6) where 1 η 
(2)

ab := ( ∂ ∂ 1 η a ∧ ∂ ∂ 1 η b ) 1 η (4) = 1 2 abcd η c ∧ η d .
Then, the WEC action (3) is written as S WEC [α, ω] = P ϕ * λ λ λ, where ϕ is such that (5) holds.

First jet bundle

We introduce the first jet bundle J 1 Z := J 1 (P, p ⊗ T * P). A section ϕ of the fiber bundle p⊗T * P can be seen as a map ϕ : P -→ p⊗T * P such that π p⊗T * P •ϕ = Id P . The first jet space J 1 Z is the manifold of triplets (z, y, ẏ), where (z, y) ∈ p ⊗ T * P and ẏ is the equivalence class of local sections ϕ of p ⊗ T * P over a neighborhood of z such that ϕ(z) = y, for the equivalence relation:

ϕ 1 ϕ 2 iff d(η A I • ϕ 1 ) z = d(η A I • ϕ 2 ) z , ∀I, A.
We then write [ϕ] z,y the class of ϕ. Local coordinates on J 1 (P, p ⊗ T * P) are (z I , η A I , η A I;J ), where

η A I;J (ẏ) = ∂(η A I • ϕ) ∂z J (z) where ẏ = [ϕ] z,y ,
Equivalently, the first jet space J 1 Z is identified (see [START_REF] Hélein | Multisymplectic formulation of Yang-Mills equations and Ehresmann connections[END_REF]) with T * P ⊗ p⊗T * P (T (p⊗ T * P)/T P), the bundle whose fiber at (z, y) ∈ p ⊗ T * P is the space of linear maps : T z P -→ T (z,y) (p ⊗ T * P) such that d(π P ) (z,y) • = Id TzP , which is canonically identified with T * P z ⊗ (T (z,y) (p ⊗ n T * P)/T z P)).

De Donder-Weyl bundle

Consider the fiber bundle Λ 10 T * Z of 10-forms over Z := p ⊗ T * P. By using the fibration π Z : Λ 10 T * Z -→ Z we define a canonical 10-form θ (10) 

on Λ 10 T * Z by ∀(z, y) ∈ Z, ∀p ∈ Λ 10 T * (z,y) Z, ∀X 1 , • • • , X 10 ∈ T (z,y,p) (Λ 10 T * Z), θ (10) 
(z,y,p) (X 1 , • • • , X 10 ) := p((π Z ) * X 1 , • • • , (π Z ) * X 10 ). (7) 
The 46 897 636 624 091-dimensional universal Lepage-Dedecker manifold Λ 10 T * Z is far too big. We define the subbundle of 9-horizontal forms (following the terminology used in [START_REF] Cantrijn | On the geometry of multisymplectic manifolds[END_REF][START_REF] Forger | Multisymplectic and polysymplectic structures on fiber bundles[END_REF])

Λ 10 1 T * Z := (z, y, p) ∈ Λ 10 T * Z; ∀v 1 , v 2 ∈ V (z,y) Z, v 1 ∧ v 2 p = 0 .
where the projection map π Z : Z -→ P defines in each tangent space T Z Z a vertical subspace V (z,y) Z := ker(π Z * ). We denote by N DW := Λ 10 1 T * Z the DW bundle, the multimomentum phase space of the DW theory. Local coordinates on

N DW are (x µ , g, η A µ , η A j , ς, ψ µν A , ψ jν A , ψ µj A , ψ jk A )
, where (ς, ψ µν A , ψ jν A , ψ µj A , ψ jk A ) are the components of ψ ∈ Λ 10 1 T * (z,y) (p⊗T * P) in the basis (β (4) ∧γ (6) , dη A µ ∧β

ν ∧γ (6) , dη A j ∧ β

(3) ν ∧ γ (6) , dη A µ ∧ β (4) ∧ γ (5) j , dη A j ∧ β (4) ∧ γ (5) 
k ). The canonical 10-form [START_REF] Dedecker | Calcul des variations, formes différentielles et champs géodésiques[END_REF] restricted to N DW is denoted by θ (10) ∈ Ω 10 (Λ 10 1 T * Z) and reads θ (10) = ςβ (4) ∧ γ (6) 

+ ψ µν A dη A µ ∧ β (3) ν ∧ γ (6) + ψ jν A dη A j ∧ β (3) ν ∧ γ (6) + ψ µj A dη A µ ∧ β (4) ∧ γ (5) j + ψ jk A dη A j ∧ β (4) ∧ γ (5) 
k .

(

) 8 
Since we are interested in normalized sections of p ⊗ T * P, we actually work on the bundle Λ 10 1 T * (p ⊗ n T * P) over p ⊗ n T * P, which is constructed through a reduction of Λ 10 1 T * (p⊗T * P) (see [START_REF] Hélein | Multisymplectic formulation of Yang-Mills equations and Ehresmann connections[END_REF]). This amounts to impose η A j = δ i j if A = i and η A j = 0 otherwise. We note that, when these constraints are assumed, the terms with ψ jν A and ψ jk A vanish and actually don't play any role in the following, so that we may forget about coordinates (ψ jν A , ψ jk A ). Denoting simply by θ (10) the restriction to Λ 10 1 T * (g ⊗ n T * P) of θ (10) given in [START_REF] Donder | Théorie Invariante du Calcul des Variations[END_REF], this leads to the simplification:

θ (10) = ςβ (4) ∧ γ (6) + ψ µν A dη A µ ∧ β (3) ν ∧ γ (6) + ψ µj A dη A µ ∧ β (4) ∧ γ (5) j . (9) 

Legendre transform

Let (z, y, ẏ) ∈ J 1 (P, p ⊗ T * P) and let ϕ be a section such that [ϕ] z,y = ẏ. In order to compute the Legendre transform at (z, y, ẏ, p) we need to determine the value of the quantity W (z, y, ẏ, p) which is defined by ϕ * (θ (10) -λ λ λ) = W (z, y, ẏ, p)β (4) ∧γ (6) , where we denote β (4) ∧ γ (6) := ϕ * (β (4) ∧ γ (6) ) (see [START_REF] Hélein | Covariant Hamiltonian formalism for the calculus of variations with several variables: Lepage-Dedecker versus De Donder-Weyl[END_REF] for details). Using the standard representation of p = g ⊕ t, the canonical form ( 9) is then given by: θ (10) = ςβ (4) ∧ γ (6) 

+ 0 ψ d c µν d 0 η c dµ ∧ β (3) 
ν ∧ γ (6) 

+ 0 ψ d c µj d 0 η c dµ ∧ β (4) ∧ γ (5) j + 1 ψ c µν d 1 η c µ ∧ β (3) ν ∧ γ (6) + 1 ψ c µj d 1 η c µ ∧ β (4) ∧ γ (5) 
j .

(

) 10 
The problem we start with concerns gauge fields on the space-time manifold X which are not only normalized but also equivariant sections, i.e. such that:

0 η c d µ;j + [l j , 0 η µ ] c d = 0, 1 η c µ;j + l i • 1 η c µ = 0, (11) 
To simplify the computation we choose the right coframe, as we learned from Cartan. Here given some (z, y, ẏ, p), we replace the arbitrary coframe (dx µ , γ i , dη A µ ) by (dx µ , γ i , δη A µ ) in the expression of θ

(z,y,p) , where δη A µ is given by

δη A µ = dη A µ -ϕ * (dη A µ ) = dη A µ -η A µ;ν dx ν -η A µ;j γ j , ( 12 
) since η A I;J (ẏ)dz J = d(η A I • ϕ) z = (ϕ * dη A I ) z . Then, ∀v ∈ T z P, δη A µ ( (v)) = 0. (13) 
We compute the Legendre correspondence along equivariant sections, i.e. which satisfy the condition [START_REF] García | Geometría simplética en la teoria de campos[END_REF]. Therefore, the change of coframe ( 12) is given by

δ 0 η c dµ = d 0 η c dµ - 0 η c d µ;ν dx ν + [l j , 0 η µ ] c d γ j , δ 1 η c µ = d 1 η c µ - 1 η c µ;ν dx ν + l j 1 η c µ γ j ,
Note that, by using the standard representation of the WEC form (6) (and since

1 η dµν c + 1 η dνµ c = 0), we obtain ϕ * λ λ λ = - 1 η d c µν 0 η c d µ;ν - 1 2 [ 0 η µ , 0 η ν ] c d β (4) ∧ γ (6) . (14) 
It follows that:

W (z, y, ẏ, p) = (ς • ϕ) + 1 ψ c µν • ϕ 1 η c µ;ν + 0 ψ d c µν • ϕ - 1 η dµν c 0 η c d µ;ν - 0 ψ d c µj • ϕ [l j , 0 η µ ] c d - 1 ψ c µj • ϕ l j 1 η c µ - 1 2 1 η dµν c [ 0 η µ , 0 η ν ] c d . (15) 
The Legendre correspondence holds on the points with coordinates (z, y, ẏ, p) which are critical points of W with respect to infinitesimal variations of ẏ which respect the constraints, i.e., such that ∂W /∂ 0 η c d µ;ν = 0 and ∂W /∂ 1 η c µ;ν = 0. The Legendre condition yields:

1 ψ µν a • ϕ = 0 and 0 ψ d c µν • ϕ = 1 η dµν c . ( 16 
)
The image of the Legendre transform is denoted by

N := {(z, y, p) ∈ Λ 10 1 T * (p ⊗ n T * P)/ 0 ψ d c µν = 1 η dµν c , 1 ψ µν a = 0} (17) 
Thus, the value of the Hamiltonian function is then the restriction of W at the points where ( 16) holds, i.e. simply:

H(z, y, p) = ς - 1 2 1 η dµν c [ 0 η µ , 0 η ν ] c d - 0 ψ d c µj [l j , 0 η µ ] c d + 1 ψ c µj l j 1 η c µ .
We change the coordinates on N in order to simplify the Hamiltonian function and in such a way that θ (10) depends on η uniquely through the quantity dη +η ∧η.

We set κ := ς -

1 2 1 η dµν c [ 0 η µ , 0 η ν ] c d -( 0 ψ d c µj [l j , 0 η µ ] c d + 1 ψ c µj l j 1 η c µ )
, so that H(z, y, p) = κ. The canonical 10-form θ (10) on N then reads θ (10) = κβ (4) ∧ γ (6) + 1 2

1 ψ c µν β (2) µν ∧ γ (6) + 1 ψ c µj β (3) µ ∧ γ (5) j ∧ (d 1 η + 0 η ∧ 1 η) c + 1 2 0 ψ d c µν β (2) µν ∧ γ (6) + 0 ψ d c µj β (3) µ ∧ γ (5) j ∧ (d 0 η + 0 η ∧ 0 η) c d .
The multisymplectic manifold (N , ω ω ω) has another construction (see also [START_REF] Hélein | Multisymplectic formulation of Yang-Mills equations and Ehresmann connections[END_REF][START_REF] Hélein | Curved space-times by crystallization of liquid fiber bundles[END_REF]). We choose, as suitable submanifold of Λ 10 T * (p ⊗ T * P), the total space of the fiber bundle M := R ⊕ P (p * ⊗ Λ 8 T * P) ⊕ P (p ⊗ n T * P) over P. The base P is equipped with the volume form β (4) ∧ γ (6) and ς is a coordinate on R. Denote by (ψ µν , ψ µj , ψ jk ) the p * -valued coordinates on the fibers of p * ⊗ Λ 8 T * P in the basis (β

µν ∧ γ (6) , β

µ ∧ γ (5) j , β (4) ∧ γ (4) (3) 
jk ). The bundle p * ⊗ Λ 8 T * P is endowed with the canonical p * -valued 8-form ψ defined by (see [START_REF] Hélein | Curved space-times by crystallization of liquid fiber bundles[END_REF]):

∀(z, p) ∈ p * ⊗ Λ 8 T * P, ∀w 1 , • • • , w 8 ∈ T (z,p) (p * ⊗ Λ 8 T * P), ψ (z,p) (w 1 , • • • , w 8 ) = p(dπ (z,p) (w 1 ), • • • , dπ (z,p) (w 8 )),
where π = π p * ⊗Λ 8 T * P : p * ⊗ Λ 8 T * P -→ P is the canonical projection map. This p * -valued 8-form decomposes as ψ = ψ A l A where ψ A is written as:

ψ A := 1 2 ψ µν A β (2) µν ∧ γ (6) + ψ µj A β (3) µ ∧ γ (5) j + 1 2 ψ ij A β (4) ∧ γ (4) ij . ( 18 
)
The final multisymplectic space under consideration is the submanifold N • := N ∩ H -1 (0) of M which is the intersection of the image of the Legendre correspondence, defined by the constraints ( 16), with the level set H -1 (0). Thus, the canonical 10-form on N • has the simple structure: θ (10) 

:= ψ A ∧ (dη + η ∧ η) A .

The Hamilton equations

We consider a point (z, m, ṁ) ∈ J 1 (P, (p ⊗ n T * P) ⊕ P (p * ⊗ Λ 8 T * P)), where z ∈ P, m ∈ (p ⊗ n T * z P) ⊕ (p * ⊗ n Λ 8 T * z P) and ṁ represent the tangent space to a section of the first jet bundle J 1 (P, (p⊗ n T * P)⊕ P (p * ⊗ n Λ 8 T * P)) at (z, m). Local coordinates on (p ⊗ n T * P) ⊕ P (p * ⊗ n Λ 8 T * P) are (z I , η A µ , ψ µν A , ψ µj A ), where η A = η A I dz I . We identify ṁ with the equivalence class of sections φ of (p ⊗ n T * P) ⊕ P (p * ⊗ n Λ 8 T * P) over P such that φ(z) = m, for the equivalence relation:

φ 1 ∼ φ 2 iff    d(η A I • φ 1 )(z) = d(η A I • φ 2 )(z), d(ψ A µν • φ 1 )(z) = d(ψ A µν • φ 2 )(z), d(ψ A µj • φ 1 )(z) = d(ψ A µj • φ 2 )(z).
The HVDW equations in (N • , ω ω ω) consists in a condition on a 10-dimensional oriented submanifold γ γ γ of (p ⊗ T * P) ⊕ P (p * ⊗ Λ 8 T * P) which says that, for any point m of coordinates (z

I , η A µ , ψ µν A , ψ µj A ) of γ γ γ, if (X 1 , • • • , X 10
) is a basis of the tangent space to γ γ γ at m such that β (4) ∧ γ (6) 

(X 1 , • • • , X 10 ) = 1, then X 1 ∧ • • • ∧ X 10 dθ (10) = 0, (19) 
(see [START_REF] Hélein | Covariant Hamiltonian formalism for the calculus of variations with several variables: Lepage-Dedecker versus De Donder-Weyl[END_REF]). The independence condition β (4) ∧ γ (6) (X 1 , • • • , X 10 ) = 0 means that such sub-manifolds are locally the graph of some section φ of the fiber (p ⊗ n T * P)⊕ P (p * ⊗Λ 8 T * P) over P. For any section φ, we denote by φ dθ (10) the 10-form on P, such that the fiber at z ∈ P is T * φ(z) [(p ⊗ n T * P) ⊕ P (p * ⊗ Λ 8 T * P)], which is defined by: ∀Z 1 , • • • , Z 10 ∈ T z P, ∀v ∈ T φ(z) [(p ⊗ n T * P) ⊕ P (p * ⊗ Λ 8 T * P)],

(dθ (10) (10) 

) φ(z) (φ * Z 1 , • • • , φ * Z 10 , v) = (φ dθ
) z (Z 1 , • • • , Z 10 ), v ,
or equivalently ((φ dθ (10) ) z , v) = (-1) 10 ψ * (v dθ (10) ). The HVDW equations then read φ dθ (10) = 0. The 11-plectic form ω ω ω = dθ (10) 

on N • is ω ω ω = dψ A ∧ (dη + η ∧ η) A + [dη ∧ η] A ∧ ψ A . ( 20 
)
where we denote [dη ∧ η] := dη ∧ η -η ∧ dη. Following the same steps as in [START_REF] Hélein | Multisymplectic formulation of Yang-Mills equations and Ehresmann connections[END_REF], we evaluate separately the terms in [START_REF] Kijowski | Multiphase spaces and gauge in the calculus of variations[END_REF] in view of finding the Hamilton equations.

Given some point m of γ γ γ of coordinates (z I , η A µ , ψ µν A , ψ µj A ), we replace the coframe (dz I , dη A µ , dψ µν A , dψ µj A ) at m by the coframe (dz I , δη A µ , δψ µν A , δψ µj A ), where:

   δη A µ := dη A µ -φ * dη A µ δψ µν A := dψ µν A -φ * dψ µν A δψ µj A := dψ µj A -φ * dψ µj A (21) 
which is equivalently written as:

   dη A µ = δη A µ + η A ν;µ dx ν + η A µ;j γ j dψ µν A = δψ µν A + ψ µν A;ρ dx ρ + ψ µν A;j γ j dψ µj A = δψ µj A + ψ µj A;ρ dx ρ + ψ µj A;k γ k (22) 
Since

ψ A I;J (ẏ)dz J = d(η A I • φ) z = (φ * dη A I ) z and ψ IJ A;K (ẏ)dz K = d(ψ IJ K • φ) z = (φ * dψ IJ A;K ) z .
Note that in the following, we abuse notations

η A µ := φ * η A µ , ψ µν A := φ * ψ µν A and ψ µj A = φ * ψ µj A .

Computation of the 11-plectic form ω ω ω

Let us denote by ω ω ω

1 := dψ A ∧ (dη + η ∧ η) A and ω ω ω 2 := [dη ∧ η] A ∧ ψ A such that ω ω ω := ω ω ω 1 + ω ω ω 2 .

The computation of ω ω ω 1

Recall that we work on normalized sections i.e. on the space (p ⊗ n T * P) ⊕ P (p * ⊗ n Λ 8 T * P) over P. Then using the change of coframe ( 21), we have

(dη + η ∧ η) A = δη A µ ∧ dx µ + 1 2 η A ν;µ -η A µ;ν + [η µ , η ν ] A β µν -η A µ;j -[η µ , l j ] A dx µ ∧ γ j , which in the standard representation is written as:                (dη + η ∧ η) a = δ 1 η d µ ∧ dx µ + 1 2 1 η a ν;µ - 1 η a µ;ν + [ 0 η µ , 1 η ν ] a β µν - 1 η a µ;j -[ 0 η µ , l j ] a dx µ ∧ γ j , (dη + η ∧ η) d c = δ 0 η d c µ ∧ dx µ + 1 2 0 η d c ν;µ - 0 η d c µ;ν + [ 0 η µ , 0 η ν ] d c β µν - 0 η d c µ;j -[ 0 η µ , l j ] d c dx µ ∧ γ j .

Note also that dψ

A = 1 2 dψ µν A ∧ β (2) 
µν ∧ γ (6) 

+ dψ µj A ∧ β (3) µ ∧ γ (5) 
j . Then, we apply the change of coframe [START_REF] Kijowski | A canonical structure for classical field theories[END_REF] and algebraic relations which are given in Section 4.2 of the Annex:

dψ A = 1 2 δψ µν A ∧ β (2) µν ∧ γ (6) + 1 2 ψ µν A;ρ δ ρ ν β (3) µ -δ ρ µ β (3) ν ∧ γ (6) + δψ µj A ∧ β (3) µ ∧ γ (5) j + ψ µj A;µ β (4) ∧ γ (5) j -ψ µj A;j β (3) 
µ ∧ γ (6) . We translate this expression by using the standard representation and imposing the constraints [START_REF] Hélein | Multisymplectic formalism and the covariant phase space[END_REF]:

       d 1 ψ a = δ 1 ψ a µj ∧ β (3) µ ∧ γ (5) j + 1 ψ a µj ;µ β (4) ∧ γ (5) j - 1 ψ a µj ;k γ k ∧ β (3) µ ∧ γ (5) j , d 0 ψ d c = ε abc d δ 1 η a µ ∧ dx µ ∧ 1 η b ∧ γ (6) + ε abc d 1 η a µ;ν β νµ ∧ 1 η b ∧ γ (6) + δ 0 ψ d c µj ∧ β (3) µ ∧ γ (3) 
j + 0 ψ d c µj ;µ β (4) ∧ γ (5) j - 0 ψ d c µj ;j β (3)
µ ∧ γ (6) .

Finally, the expression of ω ω ω 1 := dψ ∧ (dη + η ∧ η), is given by: 4) ∧ γ (6) . ( 23)

ω ω ω 1 = abc d δ 1 η a µ ∧ 1 η b ∧ δ 0 η c d σ ∧ β µσ ∧ γ (6) + δ 0 ψ d c µj ∧ δ 0 η c d µ + δ 1 ψ a µj ∧ δ 0 η a µ ∧ β (4) ∧ γ (5) j + δ 1 η a µ ∧ 1 2 abc d 0 η c d τ ;σ - 0 η c d σ;τ + [ 0 η σ , 0 η τ ] c d β στ µ ∧ 1 η b - 1 ψ a µj ;j β (4) ∧ γ (6) + δ 0 η c d σ ∧ 1 2 abc d 1 η a µ;ν - 1 η a ν;µ β νµσ ∧ 1 η b - 0 ψ d c µj ;j β (4) ∧ γ (6) + δ 0 ψ d c µj ∧ 0 η c d τ ;k -[ 0 η τ , l k ] c d β (4) ∧ γ (6) + δ 1 ψ µj a ∧ 0 η a τ ;k -[ 0 η τ , l k ] a β (
3.1.2 The computation of ω ω ω 2 Let us compute ω ω ω 2 := [dη ∧ η] A ∧ ψ A . First, note that [dη ∧ η] A = [dη, η µ ] A ∧ dx µ + [dη, l j ] A ∧ γ j , then
Working on the submanifold of constraints N , see [START_REF] Hélein | Multisymplectic formalism and the covariant phase space[END_REF], and using Lemma 4.10 (see Section 4.3), Equation ( 27) yields: 4) ∧ γ (6) .

ω ω ω 2 = δ 0 η c d µ ∧ dx µ ∧ abc d 0 η a a ∧ 1 η a ∧ 1 η b + [ 0 ψ µj , l j ] d c β (4) ∧ γ (6) + δ 1 η a µ ∧ ( 1 ψ µj l j ) a β ( 
(28)

HVDW-WEC equations

Collecting ( 23) and ( 28), the 11-plectic form ω ω ω := dθ (10) is then written as:

ω ω ω = non linear terms in δη A µ and δψ µj 6) .

A + δ 1 η a σ ∧ 2Υ a ∧ dx µ - 1 ψ a σj ;j - 1 ψ b σj l j b a β (4) ∧ γ (6) + δ 0 η c d σ ∧ 2Σ c d ∧ dx µ - 0 ψ d c σj ;j -[ 0 ψ σj , l j ] d c β (4) ∧ γ (6) + δ 0 ψ d c µj ∧ 0 η c d µ;k + [l k , 0 η µ ] c d β (4) ∧ γ (6) + δ 1 ψ c µj ∧ 1 η c µ;k + 1 η c µ l k β (4) ∧ γ (
(

) 29 
We have recognized the Einstein 3-forms Υ a := 

η c d µ;k + [l k , 0 η µ ] c d + δ 1 ψ c µj 0 η c µ;k + [l k , 0 η µ ] c , (30) 
where the first line in the right hand side of (29) do not contribute because of terms quadratic in δ(•).

Proposition 3.1. The HVDW-WEC equations φ dθ (10) = 0 (see [START_REF] Hélein | Curved space-times by crystallization of liquid fiber bundles[END_REF]) yields the following system of equations: The Hamilton equations are composed of the Einstein-Cartan system of equations together with the equivariance condition for the for the 1-form η. Note that the latter is not assumed a priori but is obtained by unfolding the dynamics: the fields ψ a µj (g -1 ) a a . The HVDW-WEC equations φ dθ (10) = 0 yields the following Einstein-Cartan system of equations:

2 3! σλµν Σ a b λµν = 0 Ξ a bσ 2 3! σλµν Υ aλµν = 1 Ξ a σ 0 η µ;k + [l k , 0 η µ ] = 0 1 η µ;k + l k 1 η µ = 0
G b a = 1 2 ρ j • p a bj T a cd = -h de δ a a δ c c + 1 2 δ c a (δ a d h ce -δ a c h de ) ρ j • p c ea j , (31) 
where p a bcj := Proof. The equivariance condition found in Proposition 3.1 is equivalent to say that there exists g-valued functions A µ (x) and t-valued functions e µ (x), which depends only on x ∈ X such that (see Equation ( 4)

) ∀x ∈ X , ∀g ∈ G, 0 η a b µ (x, g) = (g -1 ) a b A b µa (x)g a b , 1 η a µ (x, g) = (g -1 )
a a e a µ (x).

Using Lemmata 4.2 and 4.5 of the Annex, Υ a := G a g a a and Σ c d := H c d g c c (g -1 ) d d , respectively.

1 3! σλµν G aλµν = 1 2 1 p a σj ;j 1 3! σλµν H a b λµν = 1 2 0 p a b σj ;j , (32) 
Then, we use Lemmata 4.4 and 4.7 so that the system of Equations ( 32) is equivalent to:

G b a e σ b = 1 2 1 p a σj ;j h bb (T c b c e σ a + T c ca e σ b + T c ab e σ c ) = 0 p a bσj ;j . (33) 
The first line of the system [START_REF] Varlamov | Relativistic wavefunctions on the Poincaré group[END_REF] ;j e σ g . Then, the second line in the system of equations (33) yields:

0 p a bcj ;j = h bb T d b d δ c a + T d da δ c b + T d ab δ c d = h be T d ed δ c a -h bc T d ad + h bd T c ad , which is equivalent to T a cd = -h de δ a a δ c c + 1 2 δ c a (δ a d h ce -δ a c h de ) p c ea j
;j (see [START_REF] Hélein | Curved space-times by crystallization of liquid fiber bundles[END_REF] for further details).

Since the Lorentz group SO(3, 1) is not compact we cannot conclude that the right hand side of the HVDW-WEC equations (32) vanish in general (as opposed to the case of the Yang-Mills system, see [START_REF] Hélein | Multisymplectic formulation of Yang-Mills equations and Ehresmann connections[END_REF]). One way to overcome this difficulty, (see also [START_REF] Hélein | Curved space-times by crystallization of liquid fiber bundles[END_REF]), is to suppose that the field φ * ψ a µj and φ * ψ a bµj have compact support in P or decay at infinity. Then, the right hand side of (31) vanish and the system of equations reduces to the Einstein-Cartan system in vacuum.

Conclusion

In the context of liquid fiber bundles, it is difficult to give any meaning to a predetermined space-time topology. Nonetheless, the theory which is presented in this paper (as in Toller's approach [START_REF] Toller | Classical field theory in the space of reference frames[END_REF]) allows to prescribe the topology of the space-time manifold (e.g. globally hyperbolic space-times, where the topology is given by some foliation of Cauchy hypersurfaces). In addition, the 10-plectic formulation of WEC gravity might shed new light on cosmology and could open a road to the question of dark energy. In particular, the point to address is to see whether the right hand side of Equations ( 32) could be interpreted as a dark source. This would entails an interpretation of the multimomenta p a bcj and p a cj and of the relevant hypotheses to consider on those fields which would implicate that the right hand side of (32) vanish or, within the perspective of the cosmological constant, is independent of the point of the space-time manifold. We conclude by using relations [START_REF] Hélein | Multisymplectic formalism and the covariant phase space[END_REF] i.e. 

1 η 3 ! 3 !

 133 b , which are given by Definitions (4.1) and (4.2), respectively (see Section 4.3 in the Annex). Since Υ a ∧ dx ρ = 1 ρλµν Υ aλµν β(4) and Σ c d ∧ dx ρ = 1 ρλµν Σ c d λµν β(4) , Equation (19) yields:X 1 ∧ • • • ∧ X 10 dθ(10) 

  plays the role of Lagrange multipliers for the constraints given by Equation[START_REF] García | Geometría simplética en la teoria de campos[END_REF].

yields G b a e σ b e b σ = 1

 1 

1 Lemma 4 . 8 .Lemma 4 . 9 .

 14849 Lie algebra and representationsWe denote by R : G → GL( M) the standard representations of G. We fix R(g)(E b ) = E a g a b , ∀g ∈ G, ∀0 ≤ a, b ≤ 3, where g a b are the coefficients of R(g) in the basis (E a ) 0≤a≤3 . We denote also R : g → gl( M) the standard representations of the Lie algebrag of G. Analogously, ∀0 ≤ a, b ≤ 3, R(ξ)(E b ) = E a ξ a b, where ξ a b are the coefficients of R(ξ) in the basis (E a ) 0≤a≤3 . Note that ξ ab + ξ ba = 0, where ξ ab = ξ a b h b b . In addition, ∀1 ≤ i ≤ 6, l i is identified with the matrix with coefficients u a ib ; we also noteu ab i := u a ib h b b and u ab i + u ba i = 0. Then, (t a , u a ib ) := (t 0 , • • • t 3 , u a 4b , • • • , u a 9b ) is a basis of p whereas (t a , u ib a ) := (t 0 , • • • t 3 , u 4b a , • • • , u 9b a ) is a basis of p * . Let consider the vector subspace M ∧ M * := {t a b E a b ∈ M ⊗ M * ; t a b h b b + t b a h a a = 0}, where E a b := E a ⊗ E b . The standard representation R of G induces the map G -→ M ∧ M * , g -→ g a b E a b .Adjoint action -The restriction to G of the adjoint representation of P on p where e µ a is such that e µ a (x)e a µ (x) = δ a a . Finally, since 2H a b = cda b e d ∧ T c = cdab h bb e d ∧ T c = 1 2 ab cd e d ρ h bb T c µν β ρµν ,, then the Spin 3-forms H c d are given by The identity E abc d = 0 holds. Equivalently, ε abcd )h d d , which is identically vanishing. On the submanifold of constraints N , see (17), we have ad * ην (ψ µν )

Lemma 4 . 10 . 3 )µ = ε abc d 0 η a a ∧ 1 η a ∧ 1 η

 410311 On N ⊂ N (see (17)), we have (ad * ην (ψ µν )) d c β (b .

µ -δ ν µ β

ρ ) ∧ γ (6) 

µ ∧ γ (6) , so that:

µ ∧ γ (6) + [dη, η a ] A ∧ ψ µk A β (4) ∧ γ

µ ∧ γ (6) .

(

By using the change of coframe given in Equation [START_REF] Kijowski | A canonical structure for classical field theories[END_REF], we are able to simplify Equation [START_REF] Lurçat | Quantum field theory and the dynamical role of Spin[END_REF] such that: (4) ∧ γ (6) .

In Equation [START_REF] Marle | The works of Charles Ehresmann on connections: from Cartan connections to connections on fibre bundles[END_REF] we have a duality product between ψ µν A and (ad ην (δη µ )) A := [η ν , δη µ ] A , which is equivalently seen as the product between (ad * ην (ψ µν )) A and δη A µ , where ad * ην is the adjoint of ad ην . We have also the duality product between ψ µj A and (ad l j (δη µ )) A := [l j , δη µ ] A , which is equivalent with the product between (ad * l j (ψ µj )) A and δη A µ . We refer to Section 4.1 in the Annex for further details on adjoint and coadjoint actions. Hence [START_REF] Marle | The works of Charles Ehresmann on connections: from Cartan connections to connections on fibre bundles[END_REF] reads:

which, in the standard representation, is equivalently given by 4) ∧ γ (6) .

(

reads ∀ξ ∈ p,

Coadjoint action -The coadjoint action of G on p * is defined by: ∀g ∈ G, ∀λ ∈ p * , Ad * g λ is the vector in p * such that: ∀ξ ∈ p, (Ad * g λ)(ξ) := λ(Ad g ξ). Then (Ad * g λ)(ξ) = 1 2 g a a λ a b (g -1 ) b b ξ a b + g a a λ a ξ a . At the level of Lie algebra, the coadjoint action of p on p * is defined by: ∀ξ ∈ p, ∀λ ∈ p * , ad * ξ λ is the vector in p * such that: ∀ζ ∈ p, (ad

). This gives us:

Coframe yoga

For any form α ∈ Ω * (X ), for any multivector field

) defined on the total space of the pseudo-orthonormal frame bundle (see Section 1.2). Consider the volume 4-form β (4) 

We define the family of basis p-forms β

µνρ . 4) and the following algebraic relations (see also [START_REF] Hélein | Curved space-times by crystallization of liquid fiber bundles[END_REF]):

and we denote by

µ , where δ µν ρσ := (δ µ ρ δ ν σ -δ µ σ δ ν ρ ). Analogously, we consider the volume 4-form e (4) = e 0 ∧ • • • ∧ e 3 and define the family of basis p-forms e (p) 

a = δ g a e (4) and the following algebraic relations (see also [START_REF] Hélein | Curved space-times by crystallization of liquid fiber bundles[END_REF]):

a -δ g a e

b , e gh ∧ e (2)

ab , e gh ∧ e 

c .

Finally, we denote γ (6) 

and we define the family of basis q-forms γ

:= ρ i γ (6) ; γ

i ; γ

ijkl := ρ l γ

ijk .

We have also (using δ ij kl := (δ i k δ j l -δ i l δ j k )) the useful relations: 5) + δ ij mk γ (5) + δ ij kl γ (5) .

Einstein and Spin forms

Proof. By definition of the Lorentz group we have,

, then:

Einstein 3-forms

Definition 4.1. The Einstein t * -valued 3-form is denoted by Υ = Υ a ⊗ t a , where

Proof. By using Lemma 4.1, we have the straightforward calculation:

Then, Υ a = G a g a a .

Lemma 4.3.

a = G a a e e e µ a β

µ , where G a b are the components of the Einstein tensor and e e e µ a := det(e)e µ a .

Proof. Note that

abc ). By using algebraic relations in Section 4.2, we have the straightforward calculation:

a + F bc ca e

(3)

b . Lemma 4.4. We have the identity

Proof. Consider Lemma 4.3 and since e

a := e e e µ a β

(3)

µ , we obtain:

µ .

Also, since 2G

σ , where 

c ), where T c ab are the components of the torsion tensor.

ab c ). By using algebraic relations given in Section 4.2:

a + δ a c ca e

b + δ a c ab e

(3) c

b + T c ab e

(3) c

.

Proof. Consider the 2-form

µν and the 1-form

µ .

Finally, on the submanifold of constraints N , we have η ab , where p µj a are given in Proposition 3.2. Proof. Note that ∀g ∈ G, (g -1 dg) i is the component of the Maurer-Cartan 1-form in the basis l i . Note also that dg -1 = -g -1 dgg -1 . Straightforwardly: