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10—plectic formulation of gravity
and Cartan connections

Dimitri VEY °

7 December 2016

Abstract — We give a Hamiltonian formulation of Weyl-Einstein—Cartan grav-
ity which is covariant from the viewpoint of the geometry of the principal fiber
bundle. The connection is represented by a 1-form with values in the Poincaré
Lie algebra, which is defined on the total space of the orthonormal frame bundle
fibered over the space-time. Within the 10-plectic framework we discover that
the local equivariance property of the Cartan connection is a consequence of the
Hamilton equations.

One of the guiding ideas rooted in this paper is that the physical laws (in partic-
ular General Relativity) are independent of the point of the space-time manifold
and the pseudo-orthonormal (or reference frame) in which they are expressed.
This viewpoint is adopted in the approach to field theory based on the space of
reference frames, which is developed by Toller [28-30]. This standpoint echoed the
work initiated by Lurcat [24] towards a Quantum Field Theory on the Poincaré
group (see also [14,33]). The original motivation of Lurgat was to put the dynam-
ical role of spin in the foreground. Accordingly, in gauge theories of gravitation
the local model of Minkowski space is replaced by the Poincaré group [1,27]. We
present a Hamiltonian formulation of first order gravity which is covariant from
the viewpoint of the geometry of the principal fiber bundle, i.e. which does not de-
pend on choices of space-time coordinates nor on the trivialization of the principal
bundle'. We work with the multisymplectic approach, which goes back to the dis-
covery of generalizations of the Hamilton equations for variational problems with
several variables by Volterra [34,35]. These ideas were first developped in the thir-
ties [2,8,23,36] and later in the seventies of the last century [11-13,20-22,26]. The
multisymplectic theory has many recent developments (see e.g. [3,10,15-17]) The
basic concept is the notion of a multisymplectic (m+1)-form w on a smooth mani-
fold N, where m corresponds to the number of independent variables. The form w
is always closed and one often assumes that it is non degenerate: V¢ € T'(N, TN),
¢ Jw = 0 = & = 0. The solutions of the Hamilton—Volterra-De Donder—
Weyl (HVDW) equations are given by oriented m-dimensional submanifolds vy
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of N which satisfy the condition that, at any point m € N, there exists a basis
(X1, , Xpn) of Ty such that XA AX,, Jw = (—1)"dH, where H : N — R
is a Hamiltonian function. Analogously one can replace w by its restriction to the
level set H'(0) and describe the solutions as the submanifolds y of H~1(0) such
that X; A---A X, Jw = 0 everywhere and S (X; A--- A X,,) # 0, where 8™
is some volume m-form, see [16].

Organization of the paper — In Section 1.1 we describe the space-time dynam-
ical fields (e, A) for Weyl-Einstein—Cartan (WEC) gravity. The multisymplectic
formulation of the WEC functional Syecle, A is delicate because the dynamical
fields (e, A) are the components of a Cartan connection (see [4-6,25]) and subject
to gauge invariance. In Section 1.2 we lift the connection defined on some manifold
X representing the space-time to the principal bundle P over X with structure
group the Lorentz group. The connection is represented by a 1-form («,w) on P
with value in the Poincaré algebra p = g @ t, which satisfies normalization and
equivariance hypotheses, see Equations (2). Although a priori mandatory the
equivariance condition has the shortcoming of being a non holonomic constraint,
i.e. on the first order derivatives of the field.

The geometrical background for the 10-plectic formulation of WEC gravity is
presented in Section 2. The covariant configuration space is Z := p ® T*P, the
space of p-valued 1-forms over P. Section 2.1 is dedicated to present the WEC
10-form, the first order jet bundle J'Z and the De Donder-Weyl (DW) bundle
AT Z. In the following, we compute the Legendre transform for the WEC action
by treating connections as normalized and equivariant p-valued 1-forms on P (see
Section 2.2). We find that the natural multisymplectic manifold can be built from
the vector bundles p ® T*P and p* @ A®T*P over P, where 10 is the dimension of
P, p is the structure Lie algebra and p* its dual vector space. These vector bundles
are endowed with a canonical p-valued 1-form n and a canonical p*-valued 8-form
1 respectively (see also [19]). Then the multisymplectic manifold corresponds to
the total space of the vector bundle M := R @p (p @ T*P) ®p (p* @ AST*P),
equipped with the 10-form 1% = ¢3®W A 4©) o) A (dn + n A1), where < is a
coordinate on R, B® A 4 is the volume form on P and p @ T*P C p @ T*P is
the subbundle of normalized forms.

Finally, the DW formulation of the Hamilton equations is given in Section 3.
Any solution of the Hamilton equations is given by a 10-dimensional submanifold
of N/, more precisely a section ¢ of N' over P. In Section 3.1, we compute the
11-plectic form w := d#?. In Section 3.2, we finally discover that the dynamical
equations constrain the p-valued 1-forms to be equivariant, see Proposition 3.1.
In addition, the formalism yields Einstein—Cartan type equations:

{ Gba = %p] 'pabj
Tacd = — (hdeég,&’f -+ %(55(53"\0@ — 5ghde>) pj . pclealj,
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where GY, is the Einstein tensor and 7% is the torsion tensor, see Section 4.3 in
the Annex. In addition, p; is a left invariant vector field acting on the multimo-
menta coordinates p,* and p,*“ which are given in Proposition 3.2.

The approach of curved space-time by crystallization of liquid fiber bundles,
which is developed elsewhere (see [19]), is more fundamental and includes the one
given in this paper as a peculiar case. Hence, Proposition 3.2 reproduces par-
tially the results obtained in the broader context of liquid fiber bundles, where the
Hamilton equations contain in addition non homogeneous Maxwell type equations
(see Equations (88) in [19]). In the former, no a priori hypotheses are given to
settle the structure of the principal fiber bundle.

Aknowledgements — I am indebted to F. Hélein for being a co-architect and
co—explorer of this work, both at its origins and developments; I thank him for
comments and corrections on preliminary variations of the paper.

1 Weyl-Einstein—Cartan

Let M be the Minkowski vector space endowed with the Minkowski metric h. We

—

fix a pseudo-orthonormal basis (E,)o<a<s 0f (M, h). In addition, ¥ is the Abelian
Lie group of translations on M, t its trivial Lie algebra, with basis (t,)o<a<s
and t* the dual of t with basis (t*)o<a<3. We denote by & the Lorentz group
SO(3,1), g its Lie algebra, i.e. g := so(3,1) and g* the dual of g. We denote
by (I;)1<j<6 a basis of g and (F);<;< a basis of and g*, respectively. Finally,
& x T is the Poincaré group 1S0O(3,1) := SO(3,1) x T, p := g D t its Lie algebra
and p* is the dual of p. We fix some basis (I4)o<a<o = (to, - ,t3, 01, -+, lg) and

(Mo<cacog = (1% - 3,11 .- [15) of p and p*, respectively.

1.1 Space-time dynamics

In WEC formulation of gravity, dynamical fields can be defined locally as being
pairs (e, A), where e = (€%, ¢!, €2, €®) is a moving coframe on X and A is a g-valued

connection 1-form on X. We set a volume 4-form e® := €2 A el A e? A e? and
e?) = (5% A %) 2 e, The WEC action reads
Swecle, A] = / eg) A F — / u?beﬁ) A FY (1)
X e

where F := dA+ AA A is the curvature form and F° := h® fe,,, Elsewhere, this
action is termed the < Palatini > action functional, which is inexact [9].

Torsion and curvature — The torsion and curvature 2-forms, which are denoted
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by T® and F®, are related to the dynamical field (e, A) by the Cartan structure
equations: 7% = de® + A% A €’ and F% = dA%, + A% A A%, respectively. We
introduce the torsion tensor 7%.; such that 7° = 1T‘lC ecd = 172 giv wwhere the

2t

components T, = T4¢, ed are given by T3, = Ouey, — Oy€), + Al ey, — € Aj..
addition, the curvature tensor Feq is such that F 4 = 1F @ ped€ ecd =F “bc e ed
where the components are written as F/ ﬁfj = 0,A%” — 8 A;‘jb + AZCACZ’ A AL

’

Ricci and Einstein tensors — We denote by Rice, = F% .0 = hay F¥Y gy the
Ricci tensor. Then, G, = Ricy, — %habS is the Einstein tensor, where S is the
scalar curvature, which is given by S = h®Ricg, = h®hay F*Y iy = F¥

1.2 Bundle dynamics

In addition, the WEC functional is invariant by gauge transformations of the form
(e, A) — (g te gilngrg*lAg) which are written in indices as e — (g7 1)%ye®
and A% — (g7 )% dg” 4 (g7 1) 0 A” yg"y, where g : X — &. In order to fully
consider the gauge invariance, we now lift the theory to the total space of the
principal fiber bundle (P, X, m, &), where X is the base space, P is the total
space, & is the Lorentz structure group and 7y : P — X is the fibration map.
We assume that & is acting on the right on P:

R,: Px®& — P
(z,9) +— z-g=Ry2)

This induces an infinitesimal action of g, to any £ € g, we associate the vector
field pe(z) = z- & on P defined by: V z € P,VE € g, pe(z) := d/dt(z - )] i=o.
For any z € P the orbit of the & action containing z is the fiber P,, where
x = 7mp(z). The tangent vector subspace to P, at z is the vertical subspace
V,P := kerd(my), and is isomorphic to the Lie algebra g of &. By choosing a
section o : X — P which induces a trivialization z = o(x) - g ~ (x,g), we set
0u(z) == d(Ry 0 0)x(0,(x)) =~ Ou(x) - g,for 4 = 0,---,3, where (9,)o<u<s is a
moving frame on X. We consider also the family of independent tangent vector
fields (p;)1<i<¢ on P induced by the right action of u; on P, Which at every point

S SOyEF S

on P. The dual frame (da*,v")o<u<sa<i<o is the famlly of sections of TP such
that dz*(9,) = 6% and ~*(p;) = 0}

To picture geometrically the gauge invariance we lift the variational problem
on the total space P of the principal bundle of orthonormal frames. We represent
each pair (e, A) by a pair of 1-forms (a,w) on P with values in p, i.e. « takes
values in t and w takes values in g. However, (o, w) needs to satisfy the following
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normalization and equivariance hypotheses:

pida = 0 Lya+u-a = 0 (2)
pi Jw = Lyw—+[u,w] = 0,

where L, is the Lie derivative with respect to a vector field p;. We can lift the
action Syec[e, A] to a functional on the space of p-valued 1-forms (o, w) by setting:

S\WEC[Q,M] = / a((li) A Qab /\,Y(G) — / u;zba((j)) A QF /\7(6)' (3)
P P

where o

= a® A ob. By setting oz((j)) = (3% As) JaW, Q= dw+ wAw,
Q9 = Qo h® and 4 := y'A. - .A45. Then critical points of Syec|e, A] correspond
to critical points of §WEC [, w] under the constraints (2).

For any p-valued 1-form (o, w) on P which satisfies (2) and for any local section
o : X — P, we obtain a pair (e, A) on X simply by setting e = o*a and A = o*w.
Conversely, given a pair (e, A) on X and a local section o : X — P, this provides
us with a local trivialization 7: P — X x & : z — (x,g), where (x, g) is such
that z = o(x) - g. We associate to (e, A) a p-valued 1-form (a,w) on P which
satisfies (2), given by a = 7*(¢g71e) and w = 7*(g~tAg + g~ 'dg).

(,w) = (9,97 dg+ g 'Ag) <<= (a,w)=(0,g""dg)+Ady-1(e, 4), (4)

where (e, A) is a p-valued 1-form whose coefficients depend only on the x variables.
In particular, by using the representation w = g~ 'dg+ ¢ 'Ag and o = g~ e, then
we obtain dw+wAw =g ' (dA+ AN A)gand da +wAa =g ' (de+ ANe).

2 Towards the 10-plectic formulation

2.1 Geometrical background

The covariant configuration space is the 110-dimensional vector bundle p @ TP
over P, whose fiber at point z € P is the tensor product p ® T,P. Note that
dim(P) = 10 and dim(p ® T;P) = dim(p) - dim(7;P) = 100. A point in p @ T*P
will be denoted by (z,y), where z€ P and y € p @ T)P.

2.1.1 Weyl-Einstein—Cartan 10-form

We consider the canonical p-valued 1-form 7 (a section of p@T*(pRT*P)) defined
by:
V(Z, y) cp ® T*Pa Vv € T(z,y) (p & T*P), N(z,y) (U) = y<d7T(Z,y) (U))J
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where 7 : p ® T*P — P is the canonical projection map. This p-valued 1-form
can be decomposed as n = [4n?, where each n? is a 1-form on P. Any pair (o, w)
as considered in previously is a section of p ® T*P over P. In the following we
identify such a pair with a map ¢ from P to the total space of p @ T*P such that
mo(z) =z, Vz € P, by letting

(o, w) = ™. (5)

We introduce the following coordinates on p @ T*P. (Zl)lgjgl() are local coordi-
nates on P; thus they provide us with locally defined functions z/ ~ 2! o 7w on

p®T*P. In a given trivialization 7: P — X X & : z — (x,¢g), we denote by

Pt

Il i >

Furthermore, by using the splitting 7 = 747 and the standard representation (see
Section 4.1 in the Annex) we write equival@ntly (;)flﬂ, ;]flj, nz, nj) for the coordinates
on p ® TFP in the basis (ud ® dx*, ué ® 47, t. ® dz*,t. ®~’). The bundle p ® T*P
is endowed with local coordinates (z*, g, 7073“, 7072]., 717;77175) In these coordinates 7
reads (1,7) = (ﬁguuf ® dzt + ﬁgjugl ® ¥, 7172250 ® dzt + 7175150 ®y)epTiP.

We define the following 10-form on p ® T*P (a section of AT*(p @ T*P)):

A= w0 @ A (di+ 0 A0 ARO, (6)

where 717533 = (a%a A 8,817b> an®W = %eabcdnc A n?. Then, the WEC action (3) is

written as Syec[a, w] = J»©*A, where ¢ is such that (5) holds.

2.1.2 First jet bundle

We introduce the first jet bundle J'Z := JY(P,p @ T*P). A section ¢ of the fiber
bundle p&T™P can be seen as a map ¢ : P — pRT™P such that mygr«pop = Idp.
The first jet space J'Z is the manifold of triplets (z,y,y), where (z,y) € p @ T*P
and y is the equivalence class of local sections ¢ of p ® T*P over a neighborhood
of z such that ¢(z) =y, for the equivalence relation: ; ~ @y iff d(n7* o 1), =
d(n o ¢q),, VI, A. We then write [p],, the class of ¢. Local coordinates on
JYP,p @ T*P) are (2!, ni',nit,), where

L Onfop .
s = VLD o) where g = [gl,

Equivalently, the first jet space J'Z is identified (see [18]) with T*P @pgrp (T (p®
T*P)/TP), the bundle whose fiber at (z,y) € p ® T*P is the space of linear maps
0 T,P — Ty (p ® T*P) such that d(7mp)(,y) © ¢ = Idgp, which is canonically
identified with T*P, ® (T(,y)(p " T*P)/T,P)).
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2.1.3 De Donder—Weyl bundle

Consider the fiber bundle A1°T*Z of 10-forms over Z := p ® T*P. By using the
fibration 7z : A'T*Z — Z we define a canonical 10-form 01 on A°T*Z by
V(z,y) € Z,Vp e AT (Z VX4, -+, Xig € Ty p (AVT*Z),

(zy)

000 (X1, Xo) == p((m2)e X1, -+, (72) X10)- (7)

(z,y,p)

The 46 897 636 624 091-dimensional universal Lepage-Dedecker manifold A10T*Z
is far too big. We define the subbundle of 9-horizontal forms (following the ter-
minology used in [3,10])

AlOT*Z = { z,y,p) € AT Z: Vv, vy € VieynZ,v1 Avy 1 p = 0}

where the projection map nz : Z — P defines in each tangent space T;Z
a vertical subspace V(,,)Z := ker(rz,). We denote by Npy := A°T*Z the DW
bundle, the < multimomentum phase space >> of the DW theory Local coordinates
Ol /Vpw are (xu7 9, 77;:17 77] S ¢ V HJ ) where (§ ¢ V 5;]’ @Z)ff) are the
components of 1) € A}OT(*Z’y) (p®T*73) in the basis (3" Ay(©), dnf}/\@(,g) AYO) dnt A
B Ny ®, dn A BD A dit A BE A ).

The canonical 10-form (7) restricted to Mg, is denoted by 910 € Q(A0T*Z)
and reads

610 = BB AYO 4 Y dnd A 5(3) 7O+ dnt A B Ay ©

+ PIdnA ABOAYD 1 gifand /\5<4>m )
Since we are interested in normalized sections of p ® T*P, we actually work on the
bundle A°T*(p @™ T*P) over p @™ T*P, which is constructed through a reduction
of Al°T*(p@T*P) (see [18]). This amounts to impose n* = ¢ if A =i and n! =0
otherwise. We note that, when these constraints are assumed, the terms with @Di}”
and @Z)JAk vanish and actually don’t play any role in the following, so that we may
forget about coordinates ( f;f, jAk) Denoting simply by #(1% the restriction to
AT (g @Y T*P) of 019 given in (8), this leads to the simplification:

910 _ §6(4) A ’7 ) 4 ¢Mvdn“ A B ®3) A 7 ) 4 Ph dm A 5 (5). (9)

2.2 Legendre transform

Let (z,y,y) € JYP,p ® T*P) and let ¢ be a section such that [¢],, =y. In order
to compute the Legendre transform at (z,y,y, p) we need to determine the value of
the quantity W (z,y, y, p) which is defined by ©* (819 —X) = W (z,y,y, p)3W A~©),
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where we denote S A 4©) = o*(BW A 4O) (see [17] for details). Using the
standard representation of p = g @ t, the canonical form (9) is then given by:

610 = (BDAYO 4 gdwdne A B A L duidis A D Ay (10)

+ pvdng A B A+ pradig A SO AP

The problem we start with concerns gauge fields on the space-time manifold X
which are not only normalized but also equivariant sections, i.e. such that:

7072#;]‘ + [IJ'?%;L]; =0, ;Ilct;j + L 717/(1 =0, (11)

To simplify the computation we choose the right coframe, as we learned from

Cartan. Here given some (z,y,y, p), we replace the arbitrary coframe (dz*, ", dnﬁ)
10)

by (dz*,~, 577;:‘) in the expression of ngy b)

where 5772l is given by
S = dnft — @ (dn) = diy =, da” — i, (12)
since 17, (y)dz" = d(nf' 0 ), = (¢*dny'),. Then,
Yv e T,P, 5772‘(6(1})) =0. (13)

We compute the Legendre correspondence along equivariant sections, i.e. which
satisfy the condition (11). Therefore, the change of coframe (12) is given by

6;13;1 = d%?l‘u - ;]ZHQdeV _'_ [[.77 ;]p,]gfyj7
ony, = dnj, —ny,dz” +Lngy,
Note that, by using the standard representation of the WEC form (6) (and since

a4+ i = 0), we obtain

* 1 v OC 1 o o c
PN = —n (ndu;u = 5l m]d> B A 4O, (14)

It follows that:

Wi(zy.y.p) = (sop) + (W‘” o 90) M + (%"” 0P = l?“”) N
= (8 0 ) 7,5 — (e 0 0) L (15)
1 1 v o o c
= S0 0

2

The Legendre correspondence holds on the points with coordinates (z,y,y,p)
which are critical points of W with respect to infinitesimal variations of y which
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respect the constraints, i.e., such that OW /n5,., = 0 and 8W/8717;;V = 0. The
Legendre condition yields:

Piop=0 and ¢ op= b (16)

The image of the Legendre transform is denoted by

N i={(z,y.,p) € AT (p @ TP) /0 = i i =0} (17)
Thus, the value of the Hamiltonian function is then the restriction of W at the
points where (16) holds, i.e. simply:

L duy

1 0
H(z,y,p)—<—§m (7,5 — (@D? [, 7,5 + M m,i)-

We change the coordinates on A in order to simplify the Hamiltonian function
and in such a way that (!9 depends on 1 uniquely through the quantity dn+nAmn.

o

We set s := ¢ — n®[n, 0,15 — (W[, 1,15 + ¥M05), so that H(z,y,p) = .
The canonical 10-form % on N then reads

0 1

1 1 » 1 . N .
000 = 2D A0+ Se B A+ wc“jﬂ,ff’) A 7](-5)) A (dn+17 A1)
1o °o ° °\e
+ | FVeBE A + U pH A A ) A (dip+ 0 A ).

The multisymplectic manifold (N,w) has another construction (see also [18,19]).
We choose, as suitable submanifold of A%T*(p @ T*P), the total space of the
fiber bundle M := R @®p (p* @ A3T*P) @p (p ¥ T*P) over P. The base P is
equipped with the volume form ¥ A v and ¢ is a coordinate on R. Denote
by (Y*, ¢ 1p%) the p*-valued coordinates on the fibers of p* @ AST*P in the
basis (ﬁﬁ) Ay, /B;(LS) A %@, B A 7](.;)). The bundle p* ® A¥T*P is endowed with
the canonical p*-valued 8-form 1 defined by (see [19]): V(z,p) € p* ® AST*P,
le, <o, Wg € T(Z,p) (p* X AST*P>,

77ZJ(Z,p) (wlv T 7w8) = p(dﬂ-(z,p) (wl)v T 7d7T(Z,p) (’[Ug)),

where ™ = Tpgpspep : p* @ A®T*P — P is the canonical projection map. This
p*-valued 8-form decomposes as 1 = 4[4 where 104 is written as:

. 1 .
a = URBE A+ O B AR+ SudBY AR, (18)

The final multisymplectic space under consideration is the submanifold N, :=
N N H71(0) of M which is the intersection of the image of the Legendre corre-
spondence, defined by the constraints (16), with the level set H~!(0). Thus, the
canonical 10-form on N, has the simple structure: 019 := ¢4 A (dn +n A n)A.

9



3 The Hamilton equations

We consider a point (z,m,m) € JY(P, (p @ T*P) &p (p* @ AST*P)), where z € P,
m € (pRYTP) P (p* @Y APT,P) and m represent the tangent space to a section of
the first jet bundle J' (P, (pQ NT*P)&p (p*@¥AST*P)) at (z, m). Local coordinates
on (p @ T*P) @p (p* @ AST*P) are (21, nt, 4", v7), where n = nitdz!. We
identify m with the equivalence class of sections ¢ of (p @~ T*P) ®p (p* QN AST*P)
over P such that ¢(z) = m, for the equivalence relation:

d(nf o dr)(z) = d(nf o ¢2)(2),
o1~ ¢y iff d(Wa o ¢1)(z) = d(1a" o ¢2)(z),
d(Pa o pr1)(z) = d(¥a" o pa)(z).

The HVDW equations in (NV,,w) consists in a condition on a 10-dimensional
oriented submanifold 4 of (p @ T*P) ®p (p* ® AST*P) which says that, for any
point m of coordinates (2,7, ¢y, M) of 7y, if (X1,---, X10) is a basis of the
tangent space to 4 at m such that 8 Ay©) (X, .-+ X10) = 1, then

Xl/\---/\XlonQ(lo) :O, (19)

(see [17]). The independence condition 3™ A (X, -+ X10) # 0 means that
such sub-manifolds are locally the graph of some section ¢ of the fiber (p ®~
T*P)Dp(p*@AST*P) over P. For any section ¢, we denote by ¢®df*?) the 10-form
on P, such that the fiber at z € P is T}, [(p ®" T*P) ®p (p* @ AT*P)], which

is defined by: VZi,- -, Z1g € T,P, Vv € Ty [(p @ T*P) ®p (p* @ AST*P))],

(dQ(IO))¢(Z)(¢*Zl7 e 0T, V) = ((¢®d0(10))z(21, -, Zho), U) 5

or equivalently ((¢®d019),,v) = (—1)"%*(v 1 d#?). The HVDW equations
then read ¢®df#'%) = 0. The 11-plectic form w = dO19 on N, is

w=dpa A (dn+nAn)?t+dyp An* Apa. (20)

where we denote [dnAn] := dnAn—nAdn. Following the same steps as in [18], we
evaluate separately the terms in (20) in view of finding the Hamilton equations.
Given some point m of 4 of coordinates (27, 77;‘, Wi YY), we replace the coframe

(dz*, dnﬁ, Ayt dipt) at m by the coframe (dz!, 577;‘7 oYY oY), where:

oy = dn, — ¢*dn;;
oYl =AYl — ¢y (21)

oYl = del — gyl

10



which is equivalently written as:

dny = ony +nj,dat 0T
ayly’ = SN+ da + (22)
dyl = Syl + ol dar + W;M

Since ¥7,(y)dz’ = d(n' o ¢), = (¢*dnj'), and Yl (y)d=" = d(¥i o ¢),

(¢*d¢£{K)Z. Note that in the followmg, we abuse notations 77“ = (;S*n b =

¢y and v = ¢ 0.

3.1 Computation of the 11-plectic form w

Let us denote by w, := dipq A (dn +n An)* and w, = [dn A n]* A4 such that
wi=w, +w,.

3.1.1 The computation of w,

Recall that we work on normalized sections i.e. on the space (p Q¥T*P) Dp (p* @
A®T*P) over P. Then using the change of coframe (21), we have

(dn+nAm* = gy ANde + 5 (=1, + 04004 B*
— (ks — I 1) dat A7,
which in the standard representation is written as:
( 1 1 1 [ 1
(dn+nAn)* = ontAdet+ 3 (?7‘5;,; — 1+ [N m]“) Brv
— (it = [ 1) dar A7,
(dn+nA 77)? = 573?/1 A dxt +- % (707?1/# 77cu vt [77#7 771/] > B
\ - (Ucu;j - [77u>[j]c) dax Ny
Note also that dips = Ldv™ A B2 Ay©® + dpd A B A 4P, Then, we apply the
2 A 2 A 14 j

change of coframe (21) and algebraic relations which are given in Section 4.2 of
the Annex:

diba = 005 A B A + Loty (38 m@)
&W /\ﬁ(3) /\% +¢w ﬁ(4) /\% lp Bu /\7 6)

We translate this expression by using the standard representation and imposing
the constraints (16):

YR (4) k (5)
difa = MW/\B Ay +1/1’”ﬁ A wa 75 A B
dwi = Eabe (577M/\da:“/\77 /\'y()—l—sabcnwﬁ”“/\n /\fy()

+ 59 A BD A 4 i g A 8 _ i g®)

11




Finally, the expression of w, := dy A (dn +n A n), is given by:
wy = a0 AP A GG A B A
[0 A B+ 60T A ] A B A
+ 577u [ €abe (707270 nda‘r + [7707777] ) BTN 77 @Da } ’Y( )
G A Sease? (M = 2, ) 870 AP = T38| A 4O
+ 0089 A (W = [, Ul ) B9 A7
+ 00 A (i = e 1)) BO A,
(23)
3.1.2 The computation of w,

Let us compute w, := [dn An]* Aa. First, note that [dn An]* = [dn, n.]* Adz* +
[dn, ;]* A+7, then

w, = %[dnvm]A/\ﬁbW((syﬁu ﬁﬁ )
+[dn, ]t A RSB Ay dn, ] NS A A1),
so that:
we = [dn [t AVEEY A T AURBO AT
[dn’ ] @D’”B(S)/\’y 6)

By using the change of coframe given in Equation (21), we are able to simplify
Equation (24) such that:

w, = (VW [, 0] + 0 1, 6mu) ) A B A A (25)

In Equation (25) we have a duality product between 9" and (adny(énu))A =
[nu,c?nu] , which is equivalently seen as the product between (ad; (¢¥*”))4 and
577u’ where ad is the adjoint of ad,,. We have also the duality product between

P and (ad[j(dn“))A = [l;,6m,)4, Which is equivalent with the product between
(adf‘j (1*7)) 4 and 6n'. We refer to Section 4.1 in the Annex for further details on
adjoint and coadjoint actions. Hence (25) reads:

w, = ((ad;, (W) 4 + (adf () ) 1) gt A B9 AA©. (26)
which, in the standard representation, is equivalently given by
w, = ((ad;;y (wuu)) d 4 (adfj (W”)) g) 5;’73# A BH A ~©)

+ ((ad;';u (Ww)) at <adfj(¢m’)> a) 5;7; A BE A ~©), (27)

12



Working on the submanifold of constraints N, see (16), and using Lemma 4.10
(see Section 4.3), Equation (27) yields:

wy = O A (d:c“Aeabcdfvz AT AP+ [0, )28 ) A 4O

(28)
80 A (PH1), 8D A O,

3.2 HVDW-WEC equations
Collecting (23) and (28), the 11-plectic form w := d§*?) is then written as:
w = non linear terms in 57}2‘ and (51#’;{
80 A (20 Adat — (a7 = Lk BO] A4 ©
B A28 A dat = (D07 — [, L]2) B0 A4© (g9
0GR+ sl ) B9 A 4O
+ Ot A ( &+ nCIk) B A~
We have recognized the Einstein 3-forms T, := %eabcd(dﬁg +n4 An¢) AnP and the
Spin 3-forms X4 := leu 4 (dn® + n% An%) An°, which are given by Definitions

(4.1) and (4.2), respectively (see Section 4.3 in the Annex). Since T, A dz? =
%e")‘““Tawyﬂ(‘l) and 2.4 A dxP = %epk“"Ecd,\Wﬂ(@, Equation (19) yields:

Xy A A Xy 1d900 =+ i ((33) e Y +12b”j1j2>
+ 60 ((3) €S — 087 + [0, )
o+ 00 (e + e, )
+ O (ﬁ#;k + [l 77, ) ,

where the first line in the right hand side of (29) do not contribute because of
terms quadratic in d(-).

Proposition 3.1. The HVDW-WEC equations ¢®df*?) = 0 (see (19)) yields the
following system of equations:

(30)

( R
(2) U)\;U/E b _ = bo
a Auv Za
¥ N > Einstein—Cartan
2 oy .
HVDW-WEC < (51) €™ YLanw = Ze )

nuk+[lkan#] =0 . .
» Equivariance
0

nu;k + [knu

13



o o o 1 1 . 1
; =dp . — od pj AL T M e gy BT ), pIL b
where we use the notations Z¢# 1= ¢,;# + [[;, Y]7 and 2./ 1= .l — M1,

The Hamilton equations are composed of the Einstein—Cartan system of equations
together with the equivariance condition for the for the 1-form 7. Note that the
latter is not assumed a priori but is obtained by unfolding the dynamics: the fields
Y@ and 1 plays the role of Lagrange multipliers for the constraints given by
Equation (11).

Proposition 3.2. We denote p%9 := g4 y&# (g~ and p := " (g~ 1)¥. The
HVDW-WEC equations ¢®df1% = 0 yields the following Einstein-Cartan system
of equations:

b = L1, .5 bj
Gaa 2p‘7 paa o 1¢e /ca a ea’j (31)
T = —(haedfd; + 505/(93hee — 0thac)) pj - pert®?,

2" a
L L
where p,’7 1= p,*7e¢ and p,% := p,7Iel.

Proof. The equivariance condition found in Proposition 3.1 is equivalent to say
that there exists g-valued functions A,(x) and t-valued functions e, (x), which
depends only on z € X such that (see Equation (4)) Vx € X', Vg € &,

Mu(t,9) = (9 Ny Apar(@)gi, Mz, 9) = (97 "iel (2).

Using Lemmata 4.2 and 4.5 of the Annex, T, := Ga/g“/a and ¥,.¢ := Hcrd/ggl (g_l)gl,
respectively.

1\ _oluv _ 1Yt oj
(%) EJAHVHab)\,uV = %pab;"ja
Then, we use Lemmata 4.4 and 4.7 so that the system of Equations (32) is equiv-
alent to:
b o _ 11 ogj
/ G aCy = gpa;j (33)
W (TCyeed + TCqed + Topel) = pab?jj.

The first line of the system (33) yields G’efe? = %]loa‘? e = G¥, = %]l?a? e’ =
%pa?j]. Analogously, ﬁabg-] = f)abfjj 7. Then, the second line in the system of
equations (33) yields:

0o

D"y = " (Tyad + T aay + T 05) = hTa8; — W T + N,

which is equivalent to T%4 = — (hdeég,ég/ + %52',(5%06 — 5‘jhde)) pc/ea'j;j (see [19]
for further details). O
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Since the Lorentz group SO(3,1) is not compact we cannot conclude that
the right hand side of the HVDW-WEC equations (32) vanish in general (as
opposed to the case of the Yang-Mills system, see [18]). One way to overcome
this difficulty, (see also [19]), is to suppose that the field ¢*1,* and ¢*1),"* have
compact support in P or decay at infinity. Then, the right hand side of (31) vanish
and the system of equations reduces to the Einstein—Cartan system in vacuum.

Conclusion

In the context of liquid fiber bundles, it is difficult to give any meaning to a pre-
determined space-time topology. Nonetheless, the theory which is presented in
this paper (as in Toller’s approach [29]) allows to prescribe the topology of the
space-time manifold (e.g. globally hyperbolic space-times, where the topology
is given by some foliation of Cauchy hypersurfaces). In addition, the 10-plectic
formulation of WEC gravity might shed new light on cosmology and could open
a road to the question of dark energy. In particular, the point to address is
to see whether the right hand side of Equations (32) could be interpreted as
a dark source. This would entails an interpretation of the multimomenta p,’%
and p,“ and of the relevant hypotheses to consider on those fields which would
implicate that the right hand side of (32) vanish or, within the perspective of the
cosmological constant, is independent of the point of the space-time manifold.

4 Annex

4.1 Lie algebra and representations

We denote by R : & — GL(M) the standard representations of &. We fix
R(9)(Ey) = Eag®, Vg € &, V0 < a,b < 3, where g%, are the coefficients of R(g) in
the basis (E,)o<a<s. We denote also R : g — gl(M) the standard representations
of the Lie algebra g of &. Analogously, V0 < a,b < 3, R(§)(E,) = E.£%, where
€% are the coefficients of R(£) in the basis (E,)o<q<s. Note that £ + ¢ = 0,
where % = §ab/hb,b. In addition, V1 < i <6, [; is identified with the matrix with
coefficients ug; we also note u® := u%h®® and u® + ul* = 0. Then, (t,,u%) :=
(to, -~ t3,uly, -+ ,ud) is a basis of p whereas (%, u®) := (%, -3, ull -+ [ u) is
a basis of p*.

Let consider the vector subspace M A M* = {t“bEab ceM® M*;t“b/hblb +
t'h®® = 0}, where E,’ := E, ® E*. The standard representation R of & induces
the map & —s M A M*, g —> ¢%E,".

Adjoint action — The restriction to & of the adjoint representation of 3 on p

15



reads V¢ € p,
Adg(gabEab7§aEa) = ((gaa’fa/b’(g_l)b/b)Eab7 gaa’fa/Ea> .

Coadjoint action — The coadjoint action of & on p* is defined by: Vg € &, VA € p*,
Ady\ is the vector in p* such that: V¢ € p, (Ad;\)(€) := A(AdyE). Then

(AGN(E) = (9" ara” (971 %) €% + (9% aAar) £
At the level of Lie algebra, the coadjoint action of p on p* is defined by: V& € p,
VA € p*, adi) is the vector in p* such that: V¢ € p,(adi))(() = Aade() =
A([€,¢]). This gives us:

(adA)(Q) = 5 (E%e” = AaE"e = 2Xa€”) (% + (€%Aa) ¢ (34)

l\:)ln—

4.2 Coframe yoga

For any form a € Q*(X), for any multivector field v := vy A --- A v, € XP(X),
we have v Ja= (v A+~ Avy) Ja =0, J --- Ju; Ja. We consider a moving
frame (9, p;) := (Do, -+ , 03, p1,- -+ , ps) and its dual moving coframe (dz*,~") :=
(dx®,---  dx3,~', -+, ~%) defined on the total space of the pseudo-orthonormal
frame bundle (see Section 1.2). Consider the volume 4-form ) := daz®A- - - Adz®.
We define the family of basis p-forms ﬁm s, Such that:

2 3 1 0
5u = W 189 Bz(w) = ('91:” - B( )a 5;(w)p = 8:59 - ﬁwa @(W)pa = 81‘" - BWP

and we denote by gH1He = dx A - - Adxtr. We have 57 A ﬁu - 555 and the
following algebraic relations (see also [19]):

BN B = B — ALY,
BN = 8B,

ﬁo—/\ﬁ;%/)p _ 505@ +§0/8(2)+505MV7
oK 1 OKR OK

BO5N By = 0558+ ogs B + ogrBY,

where 687 1= (040, — 6%d,). Analogously, we consider the volume 4-form e =
e’ A --- Ae? and define the family of basis p-forms egﬁ)...a( +_,, Such that:

i s i sl e oll e ool
and e % = e A - . We have g7 A ﬁ(?’) 5"5(4 , €9 N el = = 69¢™ and the
following algebraic relat10ns (see also [19]):

eI ned = §9el) — §9el®)

edh A 6(2) = 5%6(4),

e = g3 1ol T ogely),
egh/\e&l = 5ghea —|—(59h 5226&3).
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Finally, we denote 7( ) :(

! AR, it = At Ao Ay and we define the
family of basis g-forms ;" )

» such that:

Z(6

5 3
YW = a9 = 05 A= e S Yo = e

We have also (using 67 := (0567 — 0:67)) the useful relations:

A A 7](5) _ (')‘i

YA %(:l;) = z’Yk 5k% ;
YAy = &,
YA ’YIST)n = 5lm7 + 5Zk 5kz’Y

4.3 Einstein and Spin forms

!/

Lemma 4.1. Vg € &, e (g7 )2 (9715 9% = ¢ cqrper®

Proof. By definition of the Lorentz group we have, Vg € &, g.’hay ¢ s = hap so
that Vg € &, (g7")a® = hawrg”yh”’. Note that Vg € &, det(g) = 1, then:

a/ b/ C/ d/ d// / ///
Eabed = Eavc!d'Yq 9p e 94 <~ Eabe = Eg'bc ’ ga gb gc d” hd”’d’
dd// ///
<~ 6abcd = Eave gg gll; gg h gd” hd’”d’
d __ a’ b c d
— Eabe = EalVe ’ ga gy gc (g )

4.3.1 Einstein 3-forms
Definition 4.1. The Einstein t*-valued 3-form is denoted by T = T, ® t*, where
v0 <a< 37 Ta = %Eabcd(dﬁcd + ’;]Cc’ A ﬁdd) A ,'l’/b'

Lemma 4.2. Vx € X,Vg € &, if 5¢,(z,9) = (g_l)‘g,AZa/(x)g;}' and 7%(z,9) =
(gil)g,ez/(x), then T, = Gug®, where G, = %eabcd (dAcd + Ay A Ad/d) A eb
Proof. By using Lemma 4.1, we have the straightforward calculation:

[

Yo = zeanc’(97)alg " hgd (dA+ AN A)G A e
= %gglga/blcld/(dAc d’ -+ A d" A Ad//d/) A\ eb,,
Then, T, = Gag?. N
(3)

Lemma 4.3. G, = G“'aea, = G“'aeg,ﬁ,(f’), where G%, are the components of the
Einstein tensor and e” := det(e)e#
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P(rc;of Note that G = $€abea’ AF = 1egpeqe? NFP = lFbC/\egbi = 1F% ("N
1

€..)- By using algebraic relations in Section 4.2, we have the straightforward
calculation:

G, = 1 (Fbc e + Fte_e 1(73) 4 pre,, o3 )) —1 (Fbcca n Fcbac) )41 1S ®)

= —h"'Fe, Caeb 1Se — (Ric’, — %S)
Then G, = —Gbae,(;g). U
Lemma 4.4. We have the identity (l) e“””"Ga,,pa = G,el.
Proof. Consider Lemma 4.3 and since ea = 6“6(3) : (( ) Eapea”P e peo) ,83),
we obtain:

G, = —G“laeg’) = (3,) ea/bcde“"p"G“ eyepeaﬁﬂ

= (3,) €arbea€” "G e ,,ﬁu = 5“ ‘G, et l(?) = aebﬁﬂ .

Also, since 2G, = €gptFCq N €¥ = egpeqe? A FP¢ = leadeeZF 355”“” we then obtain
G = 3 GappB"” = He™ " Gor B, where Gapup = (3) capcaclFl5. O

4.3.2 Spin 3-forms

Deﬁnition 4.2. The Spin g*-valued 3-form is ¥ := B @ uéyl!, where VO < a,b <
3, ¥4 = eabc Udn® + 0y AD%) AP

Lemma 4.5. Vx € X,Vg € &, if 1¢,(z,9) = (g _1)“Ab/ ,(2)gf" and ﬁZ(m,g) =
(g71)%e? (x), then S.4 = Ho? g¢ (g71)4, where H.* = leabc (de® + A% Ne®) Neb.

Proof. By using Lemma 4.1, we have the straightforward calculation:

Yt = LlengHa(ghy (de+ Ane)d Ae”

a

= %6a/b/c/d/ (g)gl (gil)g,(deal + Aa/a// AN Ga//) A Gbl
Then, ¥4 = H. ¢ (g71)4.. O

Lemma 4.6. H,' =1 hbb (T4, Ce((l ) +T°..e ,(),) — ch/aeg)’)), where T°,;, are the com-
ponents of the torsmn tensor.

Proof. Note that H," := Leayeah® e? AT = 1hbb Tenel)), = th¥Tey 0 (e Ael}),).
By using algebraic relatlons given in Sectlon 4.2

b b’ e a'c a’c! a'd (3
HY = W70, < e o® 4 g’ e >>
= %hbb/ <ch/c€é ) + chael()/ —I'_ TCa €£3)) .
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Lemma 4.7. The identity (%) e“””"HabV,m7 = %hbb/ (ch,cég/ + TC. g,' + Tcablég/) e’;,
holds.

Proof. By using Lemma 4.6 and since el 6“5(3) = ((%) Eaped€"VP7 el e’ epe U) ,83),
we have:
H = 30 (Tyel + Tl + Toapel)| A
1

1

2

(2_3-) [eﬂ”f’”hbb (€ades T ve + e ca + EcdefT ) e'/epe‘é] 5
= T3 (53 ch’cea/ + chatsl?’ﬂeb” + 56 T blecl) ﬁﬂ

= _%hbb/ (ch'c&‘f/ + cha b’ + Tcab'(sg ) eg’ﬁ’(‘s)'

where e is such that e’ (z )eu( z) = 0%. Finally, since 2H," = €.4.°¢? AN T¢ =
€edaryh?” "ed AT = —Eabxcdedhbb Ty LBPH - then the Spin 3-forms H, 4 are given by
Hab 1 Habﬂypﬂuup — ?}! a)\/wHab A ((73)7 where H(lb/LVP — (i) Gab/cdepTw, O]

4.4 Coadjoint exterior yoga

o/ o/ o ./ o
Let us denote by Eupe? := 1% €arne® + 12 €apre® + N aper® — NhEape?

Lemma 4.8. The identity &, = 0 holds. Equivalently, 7 d,eabc fyglgabc/d =
%glga’bcd + ﬁglgab’cd

°d d a'd"’ dd’ ° a4 o d'd
Proof. —n%ean” = Eapear (— nd/h ) = Eabcd”(h n%) = abearn® h
o/ o/ o g .
Eabcd = (ng Ea'bed” T+ 772 Eabled” + nc Eabe’d” + nd’ €abcd//)hd , which is identically van-

ishing. 0

. Therefore:

Lemma 4.9. On the submanifold of constraints N, see (17), we have

ad;, (v) = L

° * j Lo c gy e\ qe
St adf (V) = S [, Gloute + (lec ) t

Proof. First, using Equation (341) in Section 4.1,

ady () = (D, — i D — 2t ) e+ (i) ¢

adf (VW) = 3 (1/1?/“”;'2 - [jd/lzil’“j> utq + (W’“%) te
We conclude by using relations (16) i.e. ;ﬂf‘“’ = " and 12‘“’ = O, where we
denote [7, 7,12 == %3¢, — o, nd™ and [0, 1) == GAmle —(dgde, O
Lemma 4.10. On N C N (see (17)), we have (adj,y(w“”))gﬂ/(f) = cape N AN AP
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Proof. Consider the 2-form 17) = %17}“" ;(5/) and the 1-form 7 = ﬁpdx”, Then:

[onil = 5 (B A der =oAL
= L (e, (5%55”) - 696(3)) — i (0080 - 0058))
= 12“”%6“ —
= W’Waf?u]@# :
Finally, on the submanifold of constraints N, we have 12?“” = nd (see (16)),
therefore, we obtain %121?’“’6& aa 0% where n® = n® AP

drab ¢! d' tab °d
Eabc! 77& /\772 — Eabe na /\774/>

o ./ Od d/ b
Ug 8abc’ - Tldlgabc > A na

dO ! 1 b dOb/ 1b
Eabc Mg NNY + Epac™My AN “)
_ de La'b
= Eabe 772/ A na ;

(ad;, ()26 =

NI= N= N

where in the second line we have used Lemma 4.8. O

Lemma 4.11. Vg € &, 2% and =, are given by:
2 _ o 2 1,4 o
== (g (BE) af m0 = () 9 (35)

0, 1, . . .. o
where p? and p// are given in Proposition 3.2.

Proof. Note that Vg € &, (g 'dg)" is the component of the Maurer—Cartan 1-form
in the basis [;. Note also that dg~! = —g~'dgg~". Straightforwardly:

(= “d g ° ujrd
B¢ = g+ g, o

= Izd“j,j + ((97) 5 94m) lzdﬁm J’d o ((9_1)5”912;3‘)
= (g7 (98 (g7 + glbtiva s (g7
g (g ghao ) 9
= (9 )d/(gduwd (g )uge
a = wa;j —7/}b“]1ja
Vald — it (g™ 8 9
S (A A O Ve TR U P

!

\ = (wa“ﬂj(g_l)g;/);jgg :

° ’ / ,i, : ’ .
Then, 2 = (g4 <pg ;;J) g¢ and 2,7 = (zljf;,];j> g%, respectively. O

[1]+~
q
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