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10–plectic formulation of gravity

and Cartan connections

Dimitri VEY [

7 December 2016

Abstract — We give a Hamiltonian formulation of Weyl–Einstein–Cartan grav-
ity which is covariant from the viewpoint of the geometry of the principal fiber
bundle. The connection is represented by a 1-form with values in the Poincaré
Lie algebra, which is defined on the total space of the orthonormal frame bundle
fibered over the space-time. Within the 10-plectic framework we discover that
the local equivariance property of the Cartan connection is a consequence of the
Hamilton equations.

One of the guiding ideas rooted in this paper is that the physical laws (in partic-
ular General Relativity) are independent of the point of the space-time manifold
and the pseudo-orthonormal (or reference frame) in which they are expressed.
This viewpoint is adopted in the approach to field theory based on the space of
reference frames, which is developed by Toller [28–30]. This standpoint echoed the
work initiated by Lurçat [24] towards a Quantum Field Theory on the Poincaré
group (see also [14,33]). The original motivation of Lurçat was to put the dynam-
ical role of spin in the foreground. Accordingly, in gauge theories of gravitation
the local model of Minkowski space is replaced by the Poincaré group [1,27]. We
present a Hamiltonian formulation of first order gravity which is covariant from
the viewpoint of the geometry of the principal fiber bundle, i.e. which does not de-
pend on choices of space-time coordinates nor on the trivialization of the principal
bundle1. We work with the multisymplectic approach, which goes back to the dis-
covery of generalizations of the Hamilton equations for variational problems with
several variables by Volterra [34,35]. These ideas were first developped in the thir-
ties [2,8,23,36] and later in the seventies of the last century [11–13,20–22,26]. The
multisymplectic theory has many recent developments (see e.g. [3,10,15–17]) The
basic concept is the notion of a multisymplectic (m+1)-form ωωω on a smooth mani-
fold N , where m corresponds to the number of independent variables. The form ωωω
is always closed and one often assumes that it is non degenerate: ∀ξ ∈ Γ(N , TN ),
ξ ωωω = 0 ⇒ ξ = 0. The solutions of the Hamilton–Volterra–De Donder–
Weyl (HVDW) equations are given by oriented m-dimensional submanifolds γγγ
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1For a formulation which is covariant from the viewpoint of the geometry of space–time only,

we refer to [31,32] and references therein.
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of N which satisfy the condition that, at any point m ∈ N , there exists a basis
(X1, · · · , Xm) of Tmγγγ such that X1∧· · ·∧Xm ωωω = (−1)mdH, where H : N −→ R
is a Hamiltonian function. Analogously one can replace ωωω by its restriction to the
level set H−1(0) and describe the solutions as the submanifolds γγγ of H−1(0) such
that X1 ∧ · · · ∧Xm ωωω = 0 everywhere and β(m)(X1 ∧ · · · ∧Xm) 6= 0, where β(m)

is some volume m-form, see [16].

Organization of the paper — In Section 1.1 we describe the space-time dynam-
ical fields (e, A) for Weyl–Einstein–Cartan (WEC) gravity. The multisymplectic
formulation of the WEC functional SWEC[e, A] is delicate because the dynamical
fields (e, A) are the components of a Cartan connection (see [4–6,25]) and subject
to gauge invariance. In Section 1.2 we lift the connection defined on some manifold
X representing the space-time to the principal bundle P over X with structure
group the Lorentz group. The connection is represented by a 1-form (α, ω) on P
with value in the Poincaré algebra p = g ⊕ t, which satisfies normalization and
equivariance hypotheses, see Equations (2). Although a priori mandatory the
equivariance condition has the shortcoming of being a non holonomic constraint,
i.e. on the first order derivatives of the field.

The geometrical background for the 10-plectic formulation of WEC gravity is
presented in Section 2. The covariant configuration space is Z := p ⊗ T ∗P , the
space of p-valued 1-forms over P . Section 2.1 is dedicated to present the WEC
10-form, the first order jet bundle J1Z and the De Donder–Weyl (DW) bundle
Λ10

1 T
∗Z. In the following, we compute the Legendre transform for the WEC action

by treating connections as normalized and equivariant p-valued 1-forms on P (see
Section 2.2). We find that the natural multisymplectic manifold can be built from
the vector bundles p⊗T ∗P and p∗⊗Λ8T ∗P over P , where 10 is the dimension of
P , p is the structure Lie algebra and p∗ its dual vector space. These vector bundles
are endowed with a canonical p-valued 1-form η and a canonical p∗-valued 8-form
ψ respectively (see also [19]). Then the multisymplectic manifold corresponds to
the total space of the vector bundle M := R ⊕P (p ⊗n T ∗P) ⊕P (p∗ ⊗ Λ8T ∗P),
equipped with the 10-form θ(10) = ςβ(4) ∧ γ(6) + ψ ∧ (dη + η ∧ η), where ς is a
coordinate on R, β(4) ∧ γ(6) is the volume form on P and p⊗n T ∗P ⊂ p⊗ T ∗P is
the subbundle of normalized forms.

Finally, the DW formulation of the Hamilton equations is given in Section 3.
Any solution of the Hamilton equations is given by a 10-dimensional submanifold
of N , more precisely a section φ of N over P . In Section 3.1, we compute the
11-plectic form ωωω := dθ(10). In Section 3.2, we finally discover that the dynamical
equations constrain the p-valued 1-forms to be equivariant, see Proposition 3.1.
In addition, the formalism yields Einstein–Cartan type equations:{

Gb
a = 1

2
ρj · pabj

T acd = −
(
hdeδ

a
a′δ

c′
c + 1

2
δc
′

a′(δ
a
dhce − δachde)

)
ρj · pc′ea

′j,
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where Gb
a is the Einstein tensor and T acd is the torsion tensor, see Section 4.3 in

the Annex. In addition, ρj is a left invariant vector field acting on the multimo-
menta coordinates pa

bj and pa
bcj which are given in Proposition 3.2.

The approach of curved space-time by crystallization of liquid fiber bundles,
which is developed elsewhere (see [19]), is more fundamental and includes the one
given in this paper as a peculiar case. Hence, Proposition 3.2 reproduces par-
tially the results obtained in the broader context of liquid fiber bundles, where the
Hamilton equations contain in addition non homogeneous Maxwell type equations
(see Equations (88) in [19]). In the former, no a priori hypotheses are given to
settle the structure of the principal fiber bundle.

Aknowledgements — I am indebted to F. Hélein for being a co–architect and
co–explorer of this work, both at its origins and developments; I thank him for
comments and corrections on preliminary variations of the paper.

1 Weyl–Einstein–Cartan

Let ~M be the Minkowski vector space endowed with the Minkowski metric h. We
fix a pseudo-orthonormal basis (Ea)0≤a≤3 of ( ~M, h). In addition, T is the Abelian

Lie group of translations on ~M, t its trivial Lie algebra, with basis (ta)0≤a≤3

and t∗ the dual of t with basis (ta)0≤a≤3. We denote by G the Lorentz group
SO(3, 1), g its Lie algebra, i.e. g := so(3, 1) and g∗ the dual of g. We denote
by (lj)1≤j≤6 a basis of g and (lj)1≤j≤6 a basis of and g∗, respectively. Finally,
GnT is the Poincaré group ISO(3, 1) := SO(3, 1) nT, p := g⊕ t its Lie algebra
and p∗ is the dual of p. We fix some basis (lA)0≤A≤9 = (t0, · · · , t3, l1, · · · , l6) and
(lA)0≤A≤9 = (t0, · · · , t3, l1, · · · , l6) of p and p∗, respectively.

1.1 Space-time dynamics

In WEC formulation of gravity, dynamical fields can be defined locally as being
pairs (e, A), where e = (e0, e1, e2, e3) is a moving coframe on X and A is a g-valued
connection 1-form on X . We set a volume 4-form e(4) := e0 ∧ e1 ∧ e2 ∧ e3 and
e

(2)
ab := ( ∂

∂ea
∧ ∂

∂eb
) e(4). The WEC action reads

SWEC[e, A] =

∫
X
e

(2)
ab ∧ F

ab =

∫
X
uabi e

(2)
ab ∧ F

i, (1)

where F := dA+A∧A is the curvature form and F cd := hdd
′
F c

d′ . Elsewhere, this
action is termed the � Palatini � action functional, which is inexact [9].

Torsion and curvature — The torsion and curvature 2-forms, which are denoted
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by T a and F ab, are related to the dynamical field (e, A) by the Cartan structure
equations: T a = dea + Aab ∧ eb and F a

b = dAab + Aac ∧ Acb, respectively. We
introduce the torsion tensor T acd such that T a = 1

2
T acde

cd = 1
2
T aµνβ

µν , where the
components T aµν = T acde

c
µe
d
ν are given by T aµν = ∂µe

a
ν − ∂νeaµ + Aaµce

c
ν − ecµAaνc. In

addition, the curvature tensor F a
bcd is such that F a

b = 1
2
F a

bcde
cd = F ab

cde
c
µe
d
ν ,

where the components are written as F ab
µν = ∂µA

ab
ν − ∂νAabµ + AaµcA

cb
ν − AaνcAcbµ .

Ricci and Einstein tensors — We denote by Ricab := F a′
aa′b = hab′F

a′b′
a′b the

Ricci tensor. Then, Gab = Ricab − 1
2
habS is the Einstein tensor, where S is the

scalar curvature, which is given by S = habRicab = habhab′F
a′b′

a′b = F a′b
a′b.

1.2 Bundle dynamics

In addition, the WEC functional is invariant by gauge transformations of the form
(e, A) 7−→ (g−1e, g−1dg+g−1Ag), which are written in indices as ea 7−→ (g−1)aa′e

a′

and Aab 7−→ (g−1)aa′dg
a′
b + (g−1)aa′A

a′
b′g

b′
b, where g : X −→ G. In order to fully

consider the gauge invariance, we now lift the theory to the total space of the
principal fiber bundle (P ,X , π,G), where X is the base space, P is the total
space, G is the Lorentz structure group and πX : P → X is the fibration map.
We assume that G is acting on the right on P :

Rg : P ×G −→ P
(z, g) 7−→ z · g = Rg(z)

This induces an infinitesimal action of g, to any ξ ∈ g, we associate the vector
field ρξ(z) = z · ξ on P defined by: ∀ z ∈ P ,∀ξ ∈ g, ρξ(z) := d/dt(z · etξ)|t=0.
For any z ∈ P the orbit of the G action containing z is the fiber Px, where
x = πP(z). The tangent vector subspace to Px at z is the vertical subspace
VzP := kerd(πX )z and is isomorphic to the Lie algebra g of G. By choosing a
section σ : X → P which induces a trivialization z = σ(x) · g ' (x, g), we set
∂µ(z) := d(Rg ◦ σ)x(∂µ(x)) ' ∂µ(x) · g, for µ = 0, · · · , 3, where (∂µ)0≤µ≤3 is a
moving frame on X . We consider also the family of independent tangent vector
fields (ρi)1≤i≤6 on P induced by the right action of ui on P , which, at every point
z ∈ P , spans the vertical subspace VzP . Then (∂µ, ρi)0≤µ≤3,4≤i≤9 is a moving frame
on P . The dual frame (dxµ, γi)0≤µ≤3,4≤i≤9 is the family of sections of T ∗P such
that dxµ(∂ν) = δµν and γi(ρj) = δij.

To picture geometrically the gauge invariance we lift the variational problem
on the total space P of the principal bundle of orthonormal frames. We represent
each pair (e, A) by a pair of 1-forms (α, ω) on P with values in p, i.e. α takes
values in t and ω takes values in g. However, (α, ω) needs to satisfy the following
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normalization and equivariance hypotheses:{
ρi α = 0
ρi ω = ui,

{
Lρiα + ui · α = 0
Lρiω + [ui, ω] = 0,

(2)

where Lρi is the Lie derivative with respect to a vector field ρi. We can lift the
action SWEC[e, A] to a functional on the space of p-valued 1-forms (α, ω) by setting:

ŜWEC[α, ω] =

∫
P
α

(2)
ab ∧ Ωab ∧ γ(6) =

∫
P
uabi α

(2)
ab ∧ Ωi ∧ γ(6). (3)

where αab = αa ∧ αb. By setting α
(2)
ab :=

(
∂
∂αa
∧ ∂

∂αb

)
α(4), Ω := dω + ω ∧ ω,

Ωab := Ωa
b′h

bb′ and γ(6) := γ1∧· · ·∧γ6. Then critical points of SWEC[e, A] correspond

to critical points of ŜWEC[α, ω] under the constraints (2).
For any p-valued 1-form (α, ω) on P which satisfies (2) and for any local section

σ : X −→ P , we obtain a pair (e, A) on X simply by setting e = σ∗α and A = σ∗ω.
Conversely, given a pair (e, A) on X and a local section σ : X −→ P , this provides
us with a local trivialization τ : P −→ X × G : z 7−→ (x, g), where (x, g) is such
that z = σ(x) · g. We associate to (e, A) a p-valued 1-form (α, ω) on P which
satisfies (2), given by α = τ ∗(g−1e) and ω = τ ∗(g−1Ag + g−1dg).

(α, ω) = (g−1e, g−1dg+ g−1Ag) ⇐⇒ (α, ω) = (0, g−1dg) + Adg−1(e, A), (4)

where (e, A) is a p-valued 1-form whose coefficients depend only on the x variables.
In particular, by using the representation ω = g−1dg+ g−1Ag and α = g−1e, then
we obtain dω + ω ∧ ω = g−1(dA+ A ∧ A)g and dα + ω ∧ α = g−1 (de+ A ∧ e).

2 Towards the 10-plectic formulation

2.1 Geometrical background

The covariant configuration space is the 110-dimensional vector bundle p ⊗ T ∗P
over P , whose fiber at point z ∈ P is the tensor product p ⊗ T ∗z P . Note that
dim(P) = 10 and dim(p⊗ T ∗z P) = dim(p) · dim(T ∗z P) = 100. A point in p⊗ T ∗P
will be denoted by (z, y), where z ∈ P and y ∈ p⊗ T ∗z P .

2.1.1 Weyl–Einstein–Cartan 10-form

We consider the canonical p-valued 1-form η (a section of p⊗T ∗(p⊗T ∗P)) defined
by:

∀(z, y) ∈ p⊗ T ∗P ,∀v ∈ T(z,y)(p⊗ T ∗P), η(z,y)(v) = y(dπ(z,y)(v)),
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where π : p ⊗ T ∗P −→ P is the canonical projection map. This p-valued 1-form
can be decomposed as η = lAη

A, where each ηA is a 1-form on P . Any pair (α, ω)
as considered in previously is a section of p ⊗ T ∗P over P . In the following we
identify such a pair with a map ϕ from P to the total space of p⊗ T ∗P such that
π ◦ ϕ(z) = z, ∀z ∈ P , by letting

(α, ω) = ϕ∗η. (5)

We introduce the following coordinates on p ⊗ T ∗P . (zI)1≤I≤10 are local coordi-
nates on P ; thus they provide us with locally defined functions zI ' zI ◦ π on
p ⊗ T ∗P . In a given trivialization τ : P −→ X × G : z 7−→ (x, g), we denote by
(xµ, g) the coordinates functions for a point z ∈ P . We denote by (ηAI )0≤A≤9;1≤I≤10

the local coordinates on the space p ⊗ T ∗z P in the basis (lA ⊗ dzI)0≤A≤9;1≤I≤10.

Furthermore, by using the splitting η =
0

η+
1

η and the standard representation (see

Section 4.1 in the Annex) we write equivalently (
0

ηcdµ,
0

ηcdj,
1

ηcµ,
1

ηcj) for the coordinates

on p⊗ T ∗z P in the basis (udc ⊗ dxµ, udc ⊗ γj, tc⊗ dxµ, tc⊗ γj). The bundle p⊗ T ∗P
is endowed with local coordinates (xµ, g,

0

ηcdµ,
0

ηcdj,
1

ηcµ,
1

ηcj). In these coordinates η

reads (
0

η,
1

η) = (
0

ηcdµu
d
c ⊗ dxµ +

0

ηcdju
d
c ⊗ γj,

1

ηcµtc ⊗ dxµ +
1

ηcjtc ⊗ γj) ∈ p⊗ T ∗z P .

We define the following 10-form on p⊗ T ∗P (a section of Λ10T ∗(p⊗ T ∗P)):

λλλ := uabi
1

η
(2)
ab ∧ (d

0

η +
0

η ∧ 0

η)i ∧ 0

η(6), (6)

where
1

η
(2)
ab := ( ∂

∂
1
ηa
∧ ∂

∂
1
ηb

)
1

η(4) = 1
2
εabcdη

c ∧ ηd. Then, the WEC action (3) is

written as ŜWEC[α, ω] =
∫
P ϕ
∗λλλ, where ϕ is such that (5) holds.

2.1.2 First jet bundle

We introduce the first jet bundle J1Z := J1(P , p⊗T ∗P). A section ϕ of the fiber
bundle p⊗T ∗P can be seen as a map ϕ : P −→ p⊗T ∗P such that πp⊗T ∗P◦ϕ = IdP .
The first jet space J1Z is the manifold of triplets (z, y, ẏ), where (z, y) ∈ p⊗ T ∗P
and ẏ is the equivalence class of local sections ϕ of p⊗ T ∗P over a neighborhood
of z such that ϕ(z) = y, for the equivalence relation: ϕ1 ' ϕ2 iff d(ηAI ◦ ϕ1)z =
d(ηAI ◦ ϕ2)z, ∀I, A. We then write [ϕ]z,y the class of ϕ. Local coordinates on
J1(P , p⊗ T ∗P) are (zI , ηAI , η

A
I;J), where

ηAI;J(ẏ) =
∂(ηAI ◦ ϕ)

∂zJ
(z) where ẏ = [ϕ]z,y,

Equivalently, the first jet space J1Z is identified (see [18]) with T ∗P⊗p⊗T ∗P (T (p⊗
T ∗P)/TP), the bundle whose fiber at (z, y) ∈ p⊗T ∗P is the space of linear maps
` : TzP −→ T(z,y)(p ⊗ T ∗P) such that d(πP)(z,y) ◦ ` = IdTzP , which is canonically
identified with T ∗Pz ⊗ (T(z,y)(p⊗n T ∗P)/TzP)).
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2.1.3 De Donder–Weyl bundle

Consider the fiber bundle Λ10T ∗Z of 10-forms over Z := p ⊗ T ∗P . By using the
fibration πZ : Λ10T ∗Z −→ Z we define a canonical 10-form θ(10) on Λ10T ∗Z by
∀(z, y) ∈ Z, ∀p ∈ Λ10T ∗(z,y)Z, ∀X1, · · · , X10 ∈ T(z,y,p)(Λ

10T ∗Z),

θ
(10)
(z,y,p)(X1, · · · , X10) := p((πZ)∗X1, · · · , (πZ)∗X10). (7)

The 46 897 636 624 091-dimensional universal Lepage–Dedecker manifold Λ10T ∗Z
is far too big. We define the subbundle of 9-horizontal forms (following the ter-
minology used in [3, 10])

Λ10
1 T

∗Z :=
{

(z, y, p) ∈ Λ10T ∗Z;∀v1, v2 ∈ V(z,y)Z, v1 ∧ v2 p = 0
}
.

where the projection map πZ : Z −→ P defines in each tangent space TZZ
a vertical subspace V(z,y)Z := ker(πZ∗). We denote by NDW := Λ10

1 T
∗Z the DW

bundle, the � multimomentum phase space � of the DW theory. Local coordinates
on NDW are (xµ, g, ηAµ , η

A
j , ς, ψ

µν
A , ψ

jν
A , ψ

µj
A , ψ

jk
A ), where (ς, ψµνA , ψ

jν
A , ψ

µj
A , ψ

jk
A ) are the

components of ψ ∈ Λ10
1 T

∗
(z,y)(p⊗T ∗P) in the basis (β(4)∧γ(6), dηAµ ∧β

(3)
ν ∧γ(6), dηAj ∧

β
(3)
ν ∧ γ(6), dηAµ ∧ β(4) ∧ γ(5)

j , dηAj ∧ β(4) ∧ γ(5)
k ).

The canonical 10-form (7) restricted to NDW is denoted by θ(10) ∈ Ω10(Λ10
1 T

∗Z)
and reads

θ(10) = ςβ(4) ∧ γ(6) + ψµνA dη
A
µ ∧ β

(3)
ν ∧ γ(6) + ψjνA dη

A
j ∧ β

(3)
ν ∧ γ(6)

+ ψµjA dη
A
µ ∧ β(4) ∧ γ(5)

j + ψjkA dη
A
j ∧ β(4) ∧ γ(5)

k .
(8)

Since we are interested in normalized sections of p⊗T ∗P , we actually work on the
bundle Λ10

1 T
∗(p⊗n T ∗P) over p⊗n T ∗P , which is constructed through a reduction

of Λ10
1 T

∗(p⊗T ∗P) (see [18]). This amounts to impose ηAj = δij if A = i and ηAj = 0

otherwise. We note that, when these constraints are assumed, the terms with ψjνA
and ψjkA vanish and actually don’t play any role in the following, so that we may
forget about coordinates (ψjνA , ψ

jk
A ). Denoting simply by θ(10) the restriction to

Λ10
1 T

∗(g⊗n T ∗P) of θ(10) given in (8), this leads to the simplification:

θ(10) = ςβ(4) ∧ γ(6) + ψµνA dη
A
µ ∧ β(3)

ν ∧ γ(6) + ψµjA dη
A
µ ∧ β(4) ∧ γ(5)

j . (9)

2.2 Legendre transform

Let (z, y, ẏ) ∈ J1(P , p⊗ T ∗P) and let ϕ be a section such that [ϕ]z,y = ẏ. In order
to compute the Legendre transform at (z, y, ẏ, p) we need to determine the value of
the quantity W (z, y, ẏ, p) which is defined by ϕ∗(θ(10)−λλλ) = W (z, y, ẏ, p)β(4)∧γ(6),
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where we denote β(4) ∧ γ(6) := ϕ∗(β(4) ∧ γ(6)) (see [17] for details). Using the
standard representation of p = g⊕ t, the canonical form (9) is then given by:

θ(10) = ςβ(4) ∧ γ(6) +
0

ψdc
µνd

0

ηcdµ ∧ β
(3)
ν ∧ γ(6) +

0

ψdc
µjd

0

ηcdµ ∧ β(4) ∧ γ(5)
j

+
1

ψc
µνd

1

ηcµ ∧ β
(3)
ν ∧ γ(6) +

1

ψc
µjd

1

ηcµ ∧ β(4) ∧ γ(5)
j .

(10)

The problem we start with concerns gauge fields on the space-time manifold X
which are not only normalized but also equivariant sections, i.e. such that:

0

ηcdµ;j + [lj,
0

ηµ]cd = 0,
1

ηcµ;j + li ·
1

ηcµ = 0, (11)

To simplify the computation we choose the right coframe, as we learned from
Cartan. Here given some (z, y, ẏ, p), we replace the arbitrary coframe (dxµ, γi, dηAµ )

by (dxµ, γi, δηAµ ) in the expression of θ
(10)
(z,y,p), where δηAµ is given by

δηAµ = dηAµ − ϕ∗(dηAµ ) = dηAµ − ηAµ;νdx
ν − ηAµ;jγ

j, (12)

since ηAI;J(ẏ)dzJ = d(ηAI ◦ ϕ)z = (ϕ∗dηAI )z. Then,

∀v ∈ TzP , δηAµ (`(v)) = 0. (13)

We compute the Legendre correspondence along equivariant sections, i.e. which
satisfy the condition (11). Therefore, the change of coframe (12) is given by{

δ
0

ηcdµ = d
0

ηcdµ −
0

ηcdµ;νdx
ν + [lj,

0

ηµ]cdγ
j,

δ
1

ηcµ = d
1

ηcµ −
1

ηcµ;νdx
ν + lj

1

ηcµγ
j,

Note that, by using the standard representation of the WEC form (6) (and since
1

ηdµνc +
1

ηdνµc = 0), we obtain

ϕ∗λλλ = − 1

ηdc
µν

(
0

ηcdµ;ν −
1

2
[
0

ηµ,
0

ην ]
c
d

)
β(4) ∧ γ(6). (14)

It follows that:

W (z, y, ẏ, p) = (ς ◦ ϕ) +
( 1

ψc
µν ◦ ϕ

)
1

ηcµ;ν +
( 0

ψdc
µν ◦ ϕ− 1

ηdµνc

)
0

ηcdµ;ν

−
( 0

ψdc
µj ◦ ϕ

)
[lj,

0

ηµ]cd −
( 1

ψc
µj ◦ ϕ

)
lj

1

ηcµ

− 1

2

1

ηdµνc [
0

ηµ,
0

ην ]
c
d.

(15)

The Legendre correspondence holds on the points with coordinates (z, y, ẏ, p)
which are critical points of W with respect to infinitesimal variations of ẏ which
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respect the constraints, i.e., such that ∂W/∂
0

ηcdµ;ν = 0 and ∂W/∂
1

ηcµ;ν = 0. The
Legendre condition yields:

1

ψµνa ◦ ϕ = 0 and
0

ψdc
µν ◦ ϕ =

1

ηdµνc . (16)

The image of the Legendre transform is denoted by

N := {(z, y, p) ∈ Λ10
1 T

∗(p⊗n T ∗P)/
0

ψdc
µν =

1

ηdµνc ,
1

ψµνa = 0} (17)

Thus, the value of the Hamiltonian function is then the restriction of W at the
points where (16) holds, i.e. simply:

H(z, y, p) = ς − 1

2

1

ηdµνc [
0

ηµ,
0

ην ]
c
d −

( 0

ψdc
µj[lj,

0

ηµ]cd +
1

ψc
µj lj

1

ηcµ

)
.

We change the coordinates on N in order to simplify the Hamiltonian function
and in such a way that θ(10) depends on η uniquely through the quantity dη+η∧η.

We set κ := ς − 1
2

1

ηdµνc [
0

ηµ,
0

ην ]
c
d − (

0

ψdc
µj[lj,

0

ηµ]cd +
1

ψc
µj lj

1

ηcµ), so that H(z, y, p) = κ.

The canonical 10-form θ(10) on N then reads

θ(10) = κβ(4) ∧ γ(6) +

(
1

2

1

ψc
µνβ(2)

µν ∧ γ(6) +
1

ψc
µjβ(3)

µ ∧ γ
(5)
j

)
∧ (d

1

η +
0

η ∧ 1

η)c

+

(
1

2

0

ψdc
µνβ(2)

µν ∧ γ(6) +
0

ψdc
µjβ(3)

µ ∧ γ
(5)
j

)
∧ (d

0

η +
0

η ∧ 0

η)cd.

The multisymplectic manifold (N ,ωωω) has another construction (see also [18,19]).
We choose, as suitable submanifold of Λ10T ∗(p ⊗ T ∗P), the total space of the
fiber bundle M := R ⊕P (p∗ ⊗ Λ8T ∗P) ⊕P (p⊗n T ∗P) over P . The base P is
equipped with the volume form β(4) ∧ γ(6) and ς is a coordinate on R. Denote
by (ψµν , ψµj, ψjk) the p∗-valued coordinates on the fibers of p∗ ⊗ Λ8T ∗P in the

basis (β
(2)
µν ∧ γ(6), β

(3)
µ ∧ γ(5)

j , β(4) ∧ γ(4)
jk ). The bundle p∗ ⊗ Λ8T ∗P is endowed with

the canonical p∗-valued 8-form ψ defined by (see [19]): ∀(z, p) ∈ p∗ ⊗ Λ8T ∗P ,
∀w1, · · · , w8 ∈ T(z,p)(p

∗ ⊗ Λ8T ∗P),

ψ(z,p)(w1, · · · , w8) = p(dπ(z,p)(w1), · · · , dπ(z,p)(w8)),

where π = πp∗⊗Λ8T ∗P : p∗ ⊗ Λ8T ∗P −→ P is the canonical projection map. This
p∗-valued 8-form decomposes as ψ = ψAl

A where ψA is written as:

ψA :=
1

2
ψµνA β

(2)
µν ∧ γ(6) + ψµjA β

(3)
µ ∧ γ

(5)
j +

1

2
ψijAβ

(4) ∧ γ(4)
ij . (18)

The final multisymplectic space under consideration is the submanifold N◦ :=
N ∩ H−1(0) of M which is the intersection of the image of the Legendre corre-
spondence, defined by the constraints (16), with the level set H−1(0). Thus, the
canonical 10-form on N◦ has the simple structure: θ(10) := ψA ∧ (dη + η ∧ η)A.
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3 The Hamilton equations

We consider a point (z,m, ṁ) ∈ J1(P , (p⊗n T ∗P)⊕P (p∗⊗Λ8T ∗P)), where z ∈ P ,
m ∈ (p⊗nT ∗z P)⊕(p∗⊗n Λ8T ∗z P) and ṁ represent the tangent space to a section of
the first jet bundle J1(P , (p⊗nT ∗P)⊕P (p∗⊗nΛ8T ∗P)) at (z,m). Local coordinates
on (p ⊗n T ∗P) ⊕P (p∗ ⊗n Λ8T ∗P) are (zI , ηAµ , ψ

µν
A , ψ

µj
A ), where ηA = ηAI dz

I . We
identify ṁ with the equivalence class of sections φ of (p⊗nT ∗P)⊕P (p∗⊗n Λ8T ∗P)
over P such that φ(z) = m, for the equivalence relation:

φ1 ∼ φ2 iff


d(ηAI ◦ φ1)(z) = d(ηAI ◦ φ2)(z),

d(ψA
µν ◦ φ1)(z) = d(ψA

µν ◦ φ2)(z),
d(ψA

µj ◦ φ1)(z) = d(ψA
µj ◦ φ2)(z).

The HVDW equations in (N◦,ωωω) consists in a condition on a 10-dimensional
oriented submanifold γγγ of (p ⊗ T ∗P) ⊕P (p∗ ⊗ Λ8T ∗P) which says that, for any
point m of coordinates (zI , ηAµ , ψ

µν
A , ψ

µj
A ) of γγγ, if (X1, · · · , X10) is a basis of the

tangent space to γγγ at m such that β(4) ∧ γ(6)(X1, · · · , X10) = 1, then

X1 ∧ · · · ∧X10 dθ(10) = 0, (19)

(see [17]). The independence condition β(4) ∧ γ(6)(X1, · · · , X10) 6= 0 means that
such sub-manifolds are locally the graph of some section φ of the fiber (p ⊗n

T ∗P)⊕P(p∗⊗Λ8T ∗P) over P . For any section φ, we denote by φ~dθ(10) the 10-form
on P , such that the fiber at z ∈ P is T ∗φ(z) [(p⊗n T ∗P)⊕P (p∗ ⊗ Λ8T ∗P)], which

is defined by: ∀Z1, · · · , Z10 ∈ TzP , ∀v ∈ Tφ(z) [(p⊗n T ∗P)⊕P (p∗ ⊗ Λ8T ∗P)],

(dθ(10))φ(z)(φ∗Z1, · · · , φ∗Z10, v) =
(
(φ~dθ(10))z(Z1, · · · , Z10), v

)
,

or equivalently ((φ~dθ(10))z, v) = (−1)10ψ∗(v dθ(10)). The HVDW equations
then read φ~dθ(10) = 0. The 11-plectic form ωωω = dθ(10) on N◦ is

ωωω = dψA ∧ (dη + η ∧ η)A + [dη ∧ η]A ∧ ψA. (20)

where we denote [dη∧η] := dη∧η−η∧dη. Following the same steps as in [18], we
evaluate separately the terms in (20) in view of finding the Hamilton equations.
Given some point m of γγγ of coordinates (zI , ηAµ , ψ

µν
A , ψ

µj
A ), we replace the coframe

(dzI , dηAµ , dψ
µν
A , dψ

µj
A ) at m by the coframe (dzI , δηAµ , δψ

µν
A , δψ

µj
A ), where:

δηAµ := dηAµ − φ∗dηAµ
δψµνA := dψµνA − φ∗dψ

µν
A

δψµjA := dψµjA − φ∗dψ
µj
A

(21)
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which is equivalently written as:
dηAµ = δηAµ + ηAν;µdx

ν + ηAµ;jγ
j

dψµνA = δψµνA + ψµνA;ρdx
ρ + ψµνA;jγ

j

dψµjA = δψµjA + ψµjA;ρdx
ρ + ψµjA;kγ

k

(22)

Since ψAI;J(ẏ)dzJ = d(ηAI ◦ φ)z = (φ∗dηAI )z and ψIJA;K(ẏ)dzK = d(ψIJK ◦ φ)z =
(φ∗dψIJA;K)z. Note that in the following, we abuse notations ηAµ := φ∗ηAµ , ψµνA :=

φ∗ψµνA and ψµjA = φ∗ψµjA .

3.1 Computation of the 11-plectic form ωωω

Let us denote by ωωω1 := dψA ∧ (dη + η ∧ η)A and ωωω2 := [dη ∧ η]A ∧ ψA such that
ωωω := ωωω1 +ωωω2.

3.1.1 The computation of ωωω1

Recall that we work on normalized sections i.e. on the space (p⊗nT ∗P)⊕P (p∗⊗n

Λ8T ∗P) over P . Then using the change of coframe (21), we have

(dη + η ∧ η)A = δηAµ ∧ dxµ + 1
2

(
ηAν;µ − ηAµ;ν + [ηµ, ην ]

A
)
βµν

−
(
ηAµ;j − [ηµ, lj]

A
)
dxµ ∧ γj,

which in the standard representation is written as:

(dη + η ∧ η)a = δ
1

ηdµ ∧ dxµ + 1
2

(
1

ηaν;µ −
1

ηaµ;ν + [
0

ηµ,
1

ην ]
a
)
βµν

−
(

1

ηaµ;j − [
0

ηµ, lj]
a
)
dxµ ∧ γj,

(dη + η ∧ η)dc = δ
0

ηdcµ ∧ dxµ + 1
2

(
0

ηdcν;µ −
0

ηdcµ;ν + [
0

ηµ,
0

ην ]
d
c

)
βµν

−
(

0

ηdcµ;j − [
0

ηµ, lj]
d
c

)
dxµ ∧ γj.

Note also that dψA = 1
2
dψµνA ∧ β

(2)
µν ∧ γ(6) + dψµjA ∧ β

(3)
µ ∧ γ(5)

j . Then, we apply the
change of coframe (21) and algebraic relations which are given in Section 4.2 of
the Annex:

dψA = 1
2
δψµνA ∧ β

(2)
µν ∧ γ(6) + 1

2
ψµνA;ρ

(
δρνβ

(3)
µ − δρµβ

(3)
ν

)
∧ γ(6)

+ δψµjA ∧ β
(3)
µ ∧ γ(5)

j + ψµjA;µβ
(4) ∧ γ(5)

j − ψ
µj
A;jβ

(3)
µ ∧ γ(6).

We translate this expression by using the standard representation and imposing
the constraints (16):

d
1

ψa = δ
1

ψa
µj ∧ β(3)

µ ∧ γ
(5)
j +

1

ψa
µj
;µ β

(4) ∧ γ(5)
j −

1

ψa
µj
;k γ

k ∧ β(3)
µ ∧ γ

(5)
j ,

d
0

ψdc = εabc
dδ

1

ηaµ ∧ dxµ ∧
1

ηb ∧ γ(6) + εabc
d 1

ηaµ;νβ
νµ ∧ 1

ηb ∧ γ(6)

+ δ
0

ψdc
µj ∧ β(3)

µ ∧ γ
(3)
j +

0

ψdc
µj
;µ β

(4) ∧ γ(5)
j −

0

ψdc
µj
;j β

(3)
µ ∧ γ(6).

11



Finally, the expression of ωωω1 := dψ ∧ (dη + η ∧ η), is given by:

ωωω1 = εabc
dδ

1

ηaµ ∧
1

ηb ∧ δ 0

ηcdσ ∧ βµσ ∧ γ(6)

+
[
δ

0

ψdc
µj ∧ δ 0

ηcdµ + δ
1

ψa
µj ∧ δ 0

ηaµ

]
∧ β(4) ∧ γ(5)

j

+ δ
1

ηaµ ∧
[

1
2
εabc

d
(

0

ηcdτ ;σ −
0

ηcdσ;τ + [
0

ησ,
0

ητ ]
c
d

)
βστµ ∧ 1

ηb −
1

ψa
µj
;j β

(4)
]
∧ γ(6)

+ δ
0

ηcdσ ∧
[

1
2
εabc

d
(

1

ηaµ;ν −
1

ηaν;µ

)
βνµσ ∧ 1

ηb −
0

ψdc
µj
;j β

(4)
]
∧ γ(6)

+ δ
0

ψdc
µj ∧

(
0

ηcdτ ;k − [
0

ητ , lk]
c
d

)
β(4) ∧ γ(6)

+ δ
1

ψµja ∧
(

0

ηaτ ;k − [
0

ητ , lk]
a
)
β(4) ∧ γ(6).

(23)

3.1.2 The computation of ωωω2

Let us compute ωωω2 := [dη∧η]A∧ψA. First, note that [dη∧η]A = [dη, ηµ]A∧dxµ+
[dη, lj]

A ∧ γj, then

ωωω2 = 1
2
[dη, ην ]

A ∧ ψµρA (δνρβ
(3)
µ − δνµβ

(3)
ρ ) ∧ γ(6)

+[dη, ην ]
A ∧ ψµkA δνµβ(4) ∧ γ(5)

k − [dη, lj]
A ∧ ψµkA δ

j
kβ

(3)
µ ∧ γ(6),

so that:

ωωω2 = [dη, ην ]
A ∧ ψµνA β

(3)
µ ∧ γ(6) + [dη, ηa]

A ∧ ψµkA β(4) ∧ γ(5)
k

−[dη, lj]
A ∧ ψµjA β

(3)
µ ∧ γ(6).

(24)

By using the change of coframe given in Equation (21), we are able to simplify
Equation (24) such that:

ωωω2 =
(
ψµνA [ηb, δηµ]A + ψµjA [lj, δηµ]A

)
∧ β(4) ∧ γ(6). (25)

In Equation (25) we have a duality product between ψµνA and (adην (δηµ))A :=
[ην , δηµ]A, which is equivalently seen as the product between (ad∗ην (ψ

µν))A and
δηAµ , where ad∗ην is the adjoint of adην . We have also the duality product between

ψµjA and (adlj(δηµ))A := [lj, δηµ]A, which is equivalent with the product between

(ad∗lj(ψ
µj))A and δηAµ . We refer to Section 4.1 in the Annex for further details on

adjoint and coadjoint actions. Hence (25) reads:

ωωω2 =
((

ad∗ην (ψ
µν)
)
A +

(
ad∗lj(ψ

µj)
)
A

)
δηAµ ∧ β(4) ∧ γ(6). (26)

which, in the standard representation, is equivalently given by

ωωω2 =
((

ad∗ην (ψ
µν)
)
d
c +

(
ad∗lj(ψ

µj)
)
d
c

)
δ

0

ηcdµ ∧ β(4) ∧ γ(6)

+
((

ad∗ην (ψ
µν)
)
a +

(
ad∗lj(ψ

µj)
)
a

)
δ

1

ηaµ ∧ β(4) ∧ γ(6).
(27)
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Working on the submanifold of constraints N , see (16), and using Lemma 4.10
(see Section 4.3), Equation (27) yields:

ωωω2 = δ
0

ηcdµ ∧
(
dxµ ∧ εabcd

0

ηaa′ ∧
1

ηa
′ ∧ 1

ηb + [
0

ψµj, lj]
d
cβ

(4)
)
∧ γ(6)

+ δ
1

ηaµ ∧ (
1

ψµj lj)aβ
(4) ∧ γ(6).

(28)

3.2 HVDW–WEC equations

Collecting (23) and (28), the 11-plectic form ωωω := dθ(10) is then written as:

ωωω = non linear terms in δηAµ and δψµjA

+ δ
1

ηaσ ∧
[
2Υa ∧ dxµ −

( 1

ψa
σj
;j −

1

ψb
σj lj

b
a

)
β(4)
]
∧ γ(6)

+ δ
0

ηcdσ ∧
[
2Σc

d ∧ dxµ −
( 0

ψdc
σj
;j − [

0

ψσj, lj]
d
c

)
β(4)
]
∧ γ(6)

+ δ
0

ψdc
µj ∧

(
0

ηcdµ;k + [lk,
0

ηµ]cd

)
β(4) ∧ γ(6)

+ δ
1

ψc
µj ∧

(
1

ηcµ;k +
1

ηcµlk

)
β(4) ∧ γ(6).

(29)

We have recognized the Einstein 3-forms Υa := 1
2
εabc

d(d
0

ηdc +
0

ηdc′ ∧
0

ηc
′
c )∧ 1

ηb and the

Spin 3-forms Σc
d := 1

2
εabc

d(d
1

ηa +
0

ηaa′ ∧
0

ηa
′
) ∧ 1

ηb, which are given by Definitions
(4.1) and (4.2), respectively (see Section 4.3 in the Annex). Since Υa ∧ dxρ =
1
3!
ερλµνΥaλµνβ

(4) and Σc
d ∧ dxρ = 1

3!
ερλµνΣc

d
λµνβ

(4), Equation (19) yields:

X1 ∧ · · · ∧X10 dθ(10) = + δ
1

ηaµ

((
2
3!

)
εσλµνΥaλµν −

1

ψa
σj
;j +

1

ψb
σj lj

b
a

)
+ δ

0

ηcdσ

((
2
3!

)
εσλµνΣc

d
λµν −

0

ψdc
σj
;j + [

0

ψσj, lj]
d
c

)
+ δ

0

ψdc
µj
(

0

ηcdµ;k + [lk,
0

ηµ]cd

)
+ δ

1

ψc
µj
(

0

ηcµ;k + [lk,
0

ηµ]c
)
,

(30)

where the first line in the right hand side of (29) do not contribute because of
terms quadratic in δ(·).
Proposition 3.1. The HVDW–WEC equations φ~dθ(10) = 0 (see (19)) yields the
following system of equations:

(
2
3!

)
εσλµνΣa

b
λµν =

0

Ξa
bσ(

2
3!

)
εσλµνΥaλµν =

1

Ξa
σ

0

ηµ;k + [lk,
0

ηµ] = 0

1

ηµ;k + lk
1

ηµ = 0

HVDW–WEC

Einstein–Cartan

Equivariance
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where we use the notations
0

Ξd
c
µ :=

0

ψdc ;j
µj + [lj,

0

ψµj]dc and
1

Ξa
µ :=

1

ψa
µj
;j −

1

ψb
µj lj

b
a.

The Hamilton equations are composed of the Einstein–Cartan system of equations
together with the equivariance condition for the for the 1-form η. Note that the
latter is not assumed a priori but is obtained by unfolding the dynamics: the fields
0

ψdc
µj and

1

ψc
µj plays the role of Lagrange multipliers for the constraints given by

Equation (11).

Proposition 3.2. We denote
0
pdc
µj := gdd′

0

ψd
′

c′
µj(g−1)c

′

c and
1
pµja :=

1

ψa′
µj(g−1)a

′
a . The

HVDW–WEC equations φ~dθ(10) = 0 yields the following Einstein–Cartan system
of equations:{

Gb
a = 1

2
ρj · pabj

T acd = −
(
hdeδ

a
a′δ

c′
c + 1

2
δc
′

a′(δ
a
dhce − δachde)

)
ρj · pc′ea

′j,
(31)

where pa
bcj :=

0

pa
bσjecσ and pa

bj :=
1

pa
σjebσ.

Proof. The equivariance condition found in Proposition 3.1 is equivalent to say
that there exists g-valued functions Aµ(x) and t-valued functions eµ(x), which
depends only on x ∈ X such that (see Equation (4)) ∀x ∈ X ,∀g ∈ G,

0

ηab µ(x, g) = (g−1)ab′A
b′

µa′(x)ga
′

b ,
1

ηaµ(x, g) = (g−1)aa′e
a′

µ (x).

Using Lemmata 4.2 and 4.5 of the Annex, Υa := Ga′g
a′
a and Σc

d := Hc′
d′gc

′
c (g−1)dd′ ,

respectively. { (
1
3!

)
εσλµνGaλµν = 1

2

1
pa
σj
;j(

1
3!

)
εσλµνHa

b
λµν = 1

2

0
pa
bσj
;j ,

(32)

Then, we use Lemmata 4.4 and 4.7 so that the system of Equations (32) is equiv-
alent to: {

Gb
ae
σ
b = 1

2

1
pa
σj
;j

hbb
′
(T cb′ce

σ
a + T ccae

σ
b′ + T cab′e

σ
c ) =

0
pa
bσj
;j .

(33)

The first line of the system (33) yields Gb
ae
σ
b e
b′
σ = 1

2

1
pa
σj
;j e

b′
σ ⇒ Gb′

a = 1
2

1
pa
σj
;j e

b′
σ =

1
2
pa
b′j
;j . Analogously,

0
pa
bσj
;j =

0
pa
bgj
;j e

σ
g . Then, the second line in the system of

equations (33) yields:

0
pa
bcj

;j = hbb
′ (
T db′dδ

c
a + T ddaδ

c
b′ + T dab′δ

c
d

)
= hbeT dedδ

c
a − hbcT dad + hbdT cad,

which is equivalent to Ta
cd = −

(
hdeδ

a
a′δ

c′
c + 1

2
δc
′

a′(δ
a
dhce − δachde)

)
pc′

ea′j
;j (see [19]

for further details). �
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Since the Lorentz group SO(3, 1) is not compact we cannot conclude that
the right hand side of the HVDW–WEC equations (32) vanish in general (as
opposed to the case of the Yang–Mills system, see [18]). One way to overcome
this difficulty, (see also [19]), is to suppose that the field φ∗ψa

µj and φ∗ψa
bµj have

compact support in P or decay at infinity. Then, the right hand side of (31) vanish
and the system of equations reduces to the Einstein–Cartan system in vacuum.

Conclusion

In the context of liquid fiber bundles, it is difficult to give any meaning to a pre-
determined space–time topology. Nonetheless, the theory which is presented in
this paper (as in Toller’s approach [29]) allows to prescribe the topology of the
space–time manifold (e.g. globally hyperbolic space-times, where the topology
is given by some foliation of Cauchy hypersurfaces). In addition, the 10-plectic
formulation of WEC gravity might shed new light on cosmology and could open
a road to the question of dark energy. In particular, the point to address is
to see whether the right hand side of Equations (32) could be interpreted as
a dark source. This would entails an interpretation of the multimomenta pa

bcj

and pa
cj and of the relevant hypotheses to consider on those fields which would

implicate that the right hand side of (32) vanish or, within the perspective of the
cosmological constant, is independent of the point of the space-time manifold.

4 Annex

4.1 Lie algebra and representations

We denote by R : G → GL( ~M) the standard representations of G. We fix
R(g)(Eb) = Eag

a
b, ∀g ∈ G, ∀0 ≤ a, b ≤ 3, where gab are the coefficients of R(g) in

the basis (Ea)0≤a≤3. We denote also R : g→ gl( ~M) the standard representations
of the Lie algebra g of G. Analogously, ∀0 ≤ a, b ≤ 3, R(ξ)(Eb) = Eaξ

a
b, where

ξab are the coefficients of R(ξ) in the basis (Ea)0≤a≤3. Note that ξab + ξba = 0,
where ξab = ξab′h

b′b. In addition, ∀1 ≤ i ≤ 6, li is identified with the matrix with
coefficients uaib; we also note uabi := uaib′h

b′b and uabi + ubai = 0. Then, (ta, u
a
ib) :=

(t0, · · · t3, ua4b, · · · , ua9b) is a basis of p whereas (ta, uiba ) := (t0, · · · t3, u4b
a , · · · , u9b

a ) is
a basis of p∗.

Let consider the vector subspace ~M ∧ ~M∗ := {tabEa
b ∈ ~M ⊗ ~M∗; tab′hb

′b +
tba′h

a′a = 0}, where Ea
b := Ea⊗Eb. The standard representation R of G induces

the map G −→ ~M ∧ ~M∗, g 7−→ gabEa
b.

Adjoint action — The restriction to G of the adjoint representation of P on p
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reads ∀ξ ∈ p,

Adg(ξ
a
bEa

b, ξaEa) =
(

(gaa′ξ
a′
b′(g

−1)b
′
b)Ea

b, gaa′ξ
a′Ea

)
.

Coadjoint action — The coadjoint action of G on p∗ is defined by: ∀g ∈ G, ∀λ ∈ p∗,
Ad∗gλ is the vector in p∗ such that: ∀ξ ∈ p, (Ad∗gλ)(ξ) := λ(Adgξ). Then

(Ad∗gλ)(ξ) = 1
2

(
ga
′
aλa′

b′(g−1)bb′
)
ξab +

(
ga
′
aλa′

)
ξa.

At the level of Lie algebra, the coadjoint action of p on p∗ is defined by: ∀ξ ∈ p,
∀λ ∈ p∗, ad∗ξλ is the vector in p∗ such that: ∀ζ ∈ p, (ad∗ξλ)(ζ) := λ(adξζ) =
λ([ξ, ζ]). This gives us:

(ad∗ξλ)(ζ) =
1

2

(
ξcaλc

b − λacξbc − 2λaξ
b
)
ζab + (ξabλa) ζ

b (34)

4.2 Coframe yoga

For any form α ∈ Ω∗(X ), for any multivector field v := v1 ∧ · · · ∧ vp ∈ Xp(X ),
we have v α = (v1 ∧ · · · ∧ vp) α := vp · · · v1 α. We consider a moving
frame (∂µ, ρi) := (∂0, · · · , ∂3, ρ1, · · · , ρ6) and its dual moving coframe (dxµ, γi) :=
(dx0, · · · , dx3, γ1, · · · , γ6) defined on the total space of the pseudo-orthonormal
frame bundle (see Section 1.2). Consider the volume 4-form β(4) := dx0∧· · ·∧dx3.

We define the family of basis p-forms β
(p)
µ1···µ4−p such that:

β
(3)
µ := ∂

∂xµ
β(4); β

(2)
µν := ∂

∂xν
β

(3)
µ ; β

(1)
µνρ := ∂

∂xρ
β

(2)
µν ; β

(0)
µνρσ := ∂

∂xσ
β

(1)
µνρ.

and we denote by βµ1···µp := dxµ1 ∧ · · · ∧ dxµp . We have βσ ∧β(3)
µ = δσµβ

(4) and the
following algebraic relations (see also [19]):

βσ ∧ β(2)
µν = δσνβ

(3)
µ − δσµβ

(3)
ν ,

βµν ∧ β(2)
ρσ = δµνρσβ

(4),

βσ ∧ β(1)
µνρ = δσµβ

(2)
νρ + δσνβ

(2)
ρµ + δσρβ

(2)
µν ,

βσκ ∧ β(1)
µνρ = δσκνρβ

(3)
µ + δσκνρβ

(3)
µ + δσκνρβ

(3)
µ ,

where δµνρσ := (δµρ δ
ν
σ − δµσδνρ). Analogously, we consider the volume 4-form e(4) =

e0 ∧ · · · ∧ e3 and define the family of basis p-forms e
(p)
a1···a(4−p) such that:

e
(3)
a := ∂

∂ea
e(4); e

(2)
ab := ∂

∂eb
e

(3)
a ; e

(1)
abc := ∂

∂ec
e

(2)
ab ; e

(0)
abcd := ∂

∂ed
e

(1)
abc.

and ea1···ap := ea1 ∧ · · · eap . We have βσ ∧ β(3)
µ = δσµβ

(4), eg ∧ e(3)
a = δgae

(4) and the
following algebraic relations (see also [19]):

eg ∧ e(2)
ab = δgb e

(3)
a − δgae

(3)
b ,

egh ∧ e(2)
ab = δghab e

(4),

eg ∧ e(1)
abc = δgae

(2)
bc + δgb e

(2)
ca + δgce

(2)
ab ,

egh ∧ e(1)
abc = δghbc e

(3)
a + δghca e

(3)
b + δghab e

(3)
c .
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Finally, we denote γ(6) := γ1 ∧ · · · ∧ γ6, γi1···iq := γi1 ∧ · · · ∧ γiq and we define the
family of basis q-forms γ

(q)
i1···i(6−q) such that:

γ
(5)
i := ρi γ(6); γ

(4)
ij := ρj γ

(5)
i ; γ

(3)
ijk := ρk γ

(4)
ij ; γ

(2)
ijkl := ρl γ

(3)
ijk.

We have also (using δijkl := (δikδ
j
l − δilδ

j
k)) the useful relations:

γi ∧ γ(5)
j = δijγ

(6),

γi ∧ γ(4)
kl = δilγ

(5)
k − δikγ

(5)
l ,

γij ∧ γ(4)
kl = δijklγ

(6),

γij ∧ γ(3)
klm = δijlmγ

(5) + δijmkγ
(5) + δijklγ

(5).

4.3 Einstein and Spin forms

Lemma 4.1. ∀g ∈ G, εabc
d(g−1)bb′(g

−1)cc′g
d′

d = ga
′
a εa′b′c′

d′ .

Proof. By definition of the Lorentz group we have, ∀g ∈ G, ga
bha′b′g

b′
b = hab so

that ∀g ∈ G, (g−1)a
b = haa′g

a′
b′h

b′b. Note that ∀g ∈ G, det(g) = 1, then:

εabcd = εa′b′c′d′g
a′
a g

b′

b g
c′
c g

d′

d ⇐⇒ εabc
d′′ = εa′b′c′

d′ga
′
a g

b′

b g
c′
c g

d′′′

d′′ hd′′′d′ ,

⇐⇒ εabc
d = εa′b′c′

d′ga
′
a g

b′

b g
c′
c h

dd′′gd
′′′

d′′ hd′′′d′ ,
⇐⇒ εabc

d = εa′b′c′
d′ga

′
a g

b′

b g
c′
c (g−1)dd′ .

�

4.3.1 Einstein 3-forms

Definition 4.1. The Einstein t∗-valued 3-form is denoted by Υ = Υa⊗ ta, where
∀0 ≤ a ≤ 3, Υa := 1

2
εabc

d(d
0

ηcd +
0

ηcc′ ∧
0

ηc
′
d) ∧

1

ηb.

Lemma 4.2. ∀x ∈ X , ∀g ∈ G, if
0

ηab µ(x, g) = (g−1)ab′A
b′

µa′(x)ga
′

b and
1

ηaµ(x, g) =

(g−1)aa′e
a′
µ (x), then Υa = Ga′g

a′
a , where Ga = 1

2
εabc

d
(
dAcd + Acd′ ∧ Ad

′
d

)
∧ eb.

Proof. By using Lemma 4.1, we have the straightforward calculation:

Υa = 1
2
εabc

d(g−1)cc′(g
−1)bb′g

d′

d (dA+ A ∧ A)c
′

d′ ∧ eb
′

= 1
2
ga
′
a εa′b′c′

d′(dAc
′
d′ + Ac

′
d′′ ∧ Ad

′′
d′) ∧ eb

′
.

Then, Υa = Ga′g
a′
a . �

Lemma 4.3. Ga = Ga′
ae

(3)
a′ = Ga′

aeee
µ
a′β

(3)
µ , where Ga

b are the components of the
Einstein tensor and eeeµa := det(e)eµa .
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Proof. Note that Ga = 1
2
εabcde

b∧F cd = 1
2
εabcde

d∧F bc = 1
2
F bc∧e(1)

abc = 1
4
F bc

b′c′(e
b′c′∧

e
(1)
abc). By using algebraic relations in Section 4.2, we have the straightforward

calculation:

Ga = 1
2

(
F bc

bce
(3)
a + F bc

cae
(3)
b + F bc

abe
(3)
c

)
= 1

2

(
F bc

ca + F cb
ac

)
e

(3)
b + 1

2
Se

(3)
a ,

= −hbb′F c
b′cae

(3)
b + 1

2
Se

(3)
a = −

(
Ricba − 1

2
S
)
e

(3)
b

Then Ga = −Gb
ae

(3)
b . �

Lemma 4.4. We have the identity
(

1
3!

)
εµνρσGaνρσ = Gb

ae
µ
b .

Proof. Consider Lemma 4.3 and since e
(3)
a := eeeµaβ

(3)
µ :=

((
1
3!

)
εabcdε

µνρσebνe
c
ρe
d
σ

)
β

(3)
µ ,

we obtain:

Ga = −Ga′
ae

(3)
a′ = −

(
1
3!

)
εa′bcdε

µνρσGa′
ae
b
νe
c
ρe
d
σβ

(3)
µ

= −
(

1
3!

)
εa′bcdε

a′′bcdGa′
ae
µ
a′′β

(3)
µ = δa

′′

a′ G
a′
ae
µ
a′′β

(3)
µ = Gb

ae
µ
bβ

(3)
µ .

Also, since 2Ga = εabc
dF c

d ∧ eb = εabcde
d ∧ F bc = 1

2
εabcde

d
ρF

bc
µνβ

ρµν , we then obtain

Ga = 1
3!
Gaµνρβ

µνρ = 1
3!
εσλµνGaλµνβ

(3)
σ , where Gaµνρ =

(
3!
4

)
εabcde

d
ρF

bc
µν . �

4.3.2 Spin 3-forms

Definition 4.2. The Spin g∗-valued 3-form is Σ := Σc
d⊗uci dli, where ∀0 ≤ a, b ≤

3, Σc
d := 1

2
εabc

d(d
1

ηa +
0

ηaa′ ∧
1

ηa
′
) ∧ 1

ηb.

Lemma 4.5. ∀x ∈ X , ∀g ∈ G, if
0

ηab µ(x, g) = (g−1)ab′A
b′

µa′(x)ga
′

b and
1

ηaµ(x, g) =

(g−1)aa′e
a′
µ (x), then Σc

d = Hc′
d′gc

′
c (g−1)dd′ , where Hc

d = 1
2
εabc

d(dea +Aaa′ ∧ ea
′
)∧ eb.

Proof. By using Lemma 4.1, we have the straightforward calculation:

Σc
d = 1

2
εabc

d(g−1)aa′(g
−1)bb′ (de+ A ∧ e) a′ ∧ eb′

= 1
2
εa′b′c′

d′(g)c
′
c (g−1)bb′(de

a′ + Aa
′
a′′ ∧ ea

′′
) ∧ eb′

Then, Σc
d = Hc

dgc
′
c (g−1)dd′ . �

Lemma 4.6. Ha
b = 1

2
hbb
′
(T cb′ce

(3)
a +T ccae

(3)
b′ −T cb′ae

(3)
c ), where T cab are the com-

ponents of the torsion tensor.

Proof. Note that Ha
b := 1

2
εab′cdh

bb′ed∧T c = 1
2
hbb
′
T c∧e(1)

ab′c = 1
4
hbb
′
T ca′c′(e

a′c′∧e(1)
ab′c).

By using algebraic relations given in Section 4.2:

Ha
b = 1

4
hbb
′
T ca′c′

(
δa
′c′

b′c e
(3)
a + δa

′c′
ca e

(3)
b + δa

′c′

ab′ e
(3)
c

)
= 1

2
hbb
′
(
T cb′ce

(3)
a + T ccae

(3)
b′ + T cab′e

(3)
c

)
.

�
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Lemma 4.7. The identity
(

1
3!

)
εµνρσHa

b
νρσ = 1

2
hbb
′ (
T cb′cδ

a′
a + T ccaδ

a′

b′ + T cab′δ
a′
c

)
eµa′

holds.

Proof. By using Lemma 4.6 and since e
(3)
a := eeeµaβ

(3)
µ :=

((
1
3!

)
εabcdε

µνρσebνe
c
ρe
d
σ

)
β

(3)
µ ,

we have:

Ha
b = 1

2

[
hbb
′
(T cb′ceee

µ
a + T ccaeee

µ
b′ + T cab′eee

µ
c )
]
β

(3)
µ

=
(

1
2·3!

) [
εµνρσhbb

′
(εadefT

c
b′c + εb′defT

c
ca + εcdefT

c
ab′) e

d
νe
e
ρe
f
σ

]
β

(3)
µ

= −1
2

(
δa
′
a T

c
b′ce

µ
a′ + T ccaδ

b′′

b′ e
µ
b′′ + δcc′T

c
ab′e

µ
c′

)
β

(3)
µ

= −1
2
hbb
′ (
T cb′cδ

a′
a + T ccaδ

a′

b′ + T cab′δ
a′
c

)
eµa′β

(3)
µ .

where eµa′ is such that eµa′(x)eaµ(x) = δaa′ . Finally, since 2Ha
b = εcda

bed ∧ T c =

εcdab′h
bb′ed ∧ T c = 1

2
εab′cde

d
ρh
bb′T cµνβ

ρµν ,, then the Spin 3-forms Hc
d are given by

Ha
b = 1

3!
Ha

b
µνρβ

µνρ = 1
3!
εσλµνHa

b
λµνβ

(3)
σ , where Ha

b
µνρ =

(
3!
4

)
εab′cde

d
ρT

c
µν . �

4.4 Coadjoint exterior yoga

Let us denote by Eabcd :=
0

ηa
′
a εa′bc

d +
0

ηb
′

b εab′c
d +

0

ηc
′
c εabc′

d − 0

ηdd′εabc
d′

Lemma 4.8. The identity Eabcd = 0 holds. Equivalently,
0

ηdd′εabc
d′ − 0

ηc
′
c εabc′

d =
0

ηa
′
a εa′bc

d +
0

ηb
′

b εab′c
d.

Proof. − 0

ηdd′εabc
d′ = εabcd′′(−

0

ηdd′h
d′d′′) = εabcd′′(h

dd′ 0ηd
′′

d′ ) = εabcd′′
0

ηd
′′

d′ h
d′d. Therefore:

Eabcd = (
0

ηa
′
a εa′bcd′′ +

0

ηb
′

b εab′cd′′ +
0

ηc
′
c εabc′d′′ +

0

ηd
′′

d′ εabcd′′)h
d′d, which is identically van-

ishing. �

Lemma 4.9. On the submanifold of constraints N , see (17), we have

ad∗ην (ψ
µν) =

1

2
[
1

ηµν ,
0

ην ]
d
cu

c
d ad∗lj(ψ

µj) =
1

2
[
0

ψµj, lj]
d
cu

c
d +

( 1

ψµjc′ lj
c′

c

)
tc

Proof. First, using Equation (34) in Section 4.1, ad∗ην (ψ
µν) = 1

2

( 0

ψdc′
µν 0

ηc
′
c ν −

0

ηdd′ν
0

ψd
′
c
µν − 2

1

ψµνc
1

ηdν

)
ucd +

( 1

ψµνc
1

ηdµ

)
tc

ad∗lj(ψ
µj) = 1

2

( 0

ψdc′
µj lj

c′
c − ljdd′

0

ψd
′
c
µj
)
ucd +

( 1

ψc′
µj lj

c′
c

)
tc

We conclude by using relations (16) i.e.
0

ψdc
µν =

1

ηdµνc and
1

ψµνa = 0, where we

denote [
1

ηµν ,
0

ην ]
d
c :=

1

ηdµνc′
0

ηc
′
c ν −

0

ηdd′ν
1

ηd
′µν
c and [

0

ψµj, lj] :=
0

ψdc′
µj lj

c′
c − ljdd′

0

ψd
′
c
µj. �

Lemma 4.10. OnN ⊂ N (see (17)), we have (ad∗ην (ψ
µν))dcβ

(3)
µ = εabc

d 0

ηaa′∧
1

ηa
′∧ 1

ηb.
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Proof. Consider the 2-form
0

ψ = 1
2

0

ψµνβ
(2)
µν and the 1-form

0

η =
0

ηρdx
ρ, Then:

[
0

ψ ∧ 0

η] := 1
2

( 0

ψµν
0

ηρβ
(2)
µν ∧ dxρ −

0

ηρ
0

ψµνdxρ ∧ β(2)
µν

)
= 1

2

( 0

ψµν
0

ηρ

(
δρνβ

(3)
µ − δρµβ

(3)
ν

)
− 0

ηρ
0

ψµν
(
δρνβ

(3)
µ − δρµβ

(3)
ν

))
=

0

ψµν
0

ηνβ
(3)
µ −

0

ην
0

ψµνβ
(3)
µ

= [
0

ψµν ,
0

ην ]β
(3)
µ .

Finally, on the submanifold of constraints N , we have
0

ψdc
µν =

1

ηdµνc (see (16)),

therefore, we obtain 1
2

0

ψdc
µνβ

(2)
µν = 1

2
εabc

d 1

ηab, where
1

ηab :=
1

ηa ∧ 1

ηb.

(ad∗ην (ψ
µν))dcβ

(3)
µ = 1

2

(
εabc′

d 1

ηab ∧ 0

ηc
′
c − εabcd

′ 1
ηab ∧ 0

ηdd′
)

= 1
2

(
0

ηc
′
c εabc′

d − 0

ηdd′εabc
d′
)
∧ 1

ηab

= 1
2

(
εa′bc

d 0

ηa
′
a ∧

1

ηab + εb′ac
d 0

ηb
′

b ∧
1

ηba
)

= εabc
d 0

ηaa′ ∧
1

ηa
′b,

where in the second line we have used Lemma 4.8. �

Lemma 4.11. ∀g ∈ G,
0

Ξd
c
µ and

1

Ξa
µ are given by:

0

Ξd
c
µ = (g−1)dd′

(
0
pd
′

c′
µj
;j

)
gc
′

c ,
1

Ξa
µ =

(
1
pµja′;j

)
ga
′

a , (35)

where
0
pdc
µj and

1
pµja are given in Proposition 3.2.

Proof. Note that ∀g ∈ G, (g−1dg)i is the component of the Maurer–Cartan 1-form
in the basis li. Note also that dg−1 = −g−1dgg−1. Straightforwardly:

0

Ξd
c
µ =

0

ψdc ;j
µj + [lj,

0

ψµj]dc

=
0

ψdc
µj

;j +
(
(g−1)dd′g

d′

d′′ ;j

) 0

ψd
′′
c
µj −

0

ψdc′′
µj
(
(g−1)c

′′

b g
b
c ;j

)
= (g−1)dd′

(
gd
′

d′′ ;j

0

ψd
′′

c′′
µj(g−1)c

′′

c′ + gd
′

d′′

0

ψd
′′

c′′
µj

;j(g
−1)c

′′

c′

−gd′d′′
0

ψd
′′

c′′
µj(g−1)c

′′

b g
b
b′ ;j(g

−1)b
′

c′

)
gc
′
c

= (g−1)dd′(g
d′

d′′

0

ψd
′′

c′′
µj(g−1)c

′′

c′ );jg
c′
c ,

1

Ξa
σ =

1

ψa
µj
;j −

1

ψb
µj lj

b
a

=
1

ψa
µj
;j −

1

ψa′′
µj(g−1)a

′′

b g
b
a;j

=
( 1

ψa′′
µj
;j (g−1)a

′′

a′ −
1

ψa′′
µj(g−1)a

′′

b g
b
b′ ;j(g

−1)b
′

a′

)
ga
′

a

= (
1

ψa′′
µj(g−1)a

′′

a′ );jg
a′
a .

Then,
0

Ξd
c
µ = (g−1)dd′

(
0
pd
′

c′
µj
;j

)
gc
′
c and

1

Ξa
σ =

(
1
pµja′;j

)
ga
′
a , respectively. �
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différentielle, Colloq. Intern. du CNRS LII, 1953.
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