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Rapid Stabilization of a Linearized Bilinear 1-D Schrédinger
Equation

Jean-Michel CORON? Ludovick GAGNON! Morgan MORANCEY?

Abstract

We consider the one dimensional Schrodinger equation with a bilinear control and prove the rapid
stabilization of the linearized equation around the ground state. The feedback law ensuring the rapid
stabilization is obtained using a transformation mapping the solution to the linearized equation on the
solution to an exponentially stable target linear equation. A suitable condition is imposed on the trans-
formation in order to cancel the non-local terms arising in the kernel system. This conditions also insures
the uniqueness of the transformation. The continuity and invertibility of the transformation follows from
exact controllability of the linearized system.

1 Introduction

1.1 Main result

Let T' > 0. Consider the Schrédinger equation

i) = —Ap —ut)u(z)y,  (t,x) € (0,T) % (0,1),
P(t,0) =(t,1) =0, t e (0,7).

In , 1 is the complex-valued wave function, of L?-norm 1, of a particle confined in a 1 — D in-
finite square potential well. The particle is subjected to an electric field inside of the domain, where
u € L%((0,T);R) is the amplitude of the electric field and 1 € H?((0, 1); R) is the dipolar moment of the
particle.

Before stating our main result, we set some notations. Let A : D(A) c L?((0,1);C) — L?((0,1);C) be
defined by

(1.1)

A¢ = —A¢, D(A) = H?*((0,1);C) N Hy((0,1); C). (12)
The eigenvalues and eigenfunctions of .4 are given by
Moo= (k)2 () == V2sin(krz), ke N*.

The eigenstates of (I.I)) (u = 0) are given by ®(t,x) := e~ !y (x). The eigenstate ®; associated to
the smallest eigenvalue is called the ground state.
Define the space Hj, ((0,1); C) := D(A*/?) equipped with the inner product

+oo

<¢7 ¢>H€0) = Z )‘:'<¢a ¢k><’¢)7 ¢k>a
k=1
where (-, -) is the L?((0, 1); C)-inner product. The space H, (0 1s endowed with the ||. | H¢, -norm associated
to the H (So)-inner product. We underline that the spaces used in this article can also be explicitly described

by H2,((0,1);C) = H2 1 H}((0,1); C) and

H{y)((0,1);C) ={¢ € H> N Hy((0,1);C) ; ¢"(0) = ¢"(1) = 0},
HYy((0,1):0) = {6 € H* 1 HY, ((0,1:0) 5 6 (0) = 6 (1) = 0}
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We denote by S the radius 1 sphere of L?((0,1); C).
Throughout this article, we assume that p satisfies the following assumption.

Hypothesis 1.1 The function u belongs to H3((0,1); R) and there exists ¢ > 0 satisfying

C *
[{per, )l 2 5, Yk eN™. (1.3)

Remark 1.2 A direct computation shows that, for every function ;1 € H3((0,1);R), we have

V2

4 0)) — W/o (np1)" (x) cos(kmzx)dx (1.4)

(o1, or) = ()P (1) (1) — 4/

—

and therefore there exists C > 0 such that

c .
(e on)| < 5 VR EN (1.5)
Moreover, since )
lim (np1)" (x) cos(kmx)dr = 0, (1.6)
k——+oo 0
it follows from (I4) that (1.3) implies that
' (1) # 1'(0) and p' (1) # —4/(0). (1.7)

As proved in [8], Hypothesis [I1] is not necessary to get local exact controllability of (I.I). However
(see [5]) it is a necessary and sufficient condition to get exact controllability of the following linearized
equation around the ground state

00 = —AU — o(Ou(@)®1(t7), (L) € (0,T) x (0,1),
W(t,0) = U(t,1) = 0, te(0,7), (1.8)
¥(0,z) = ¥o(x), x € (0,1).

Theorem 1.3 ([5]) Let T > 0 and assume that y satisfies Hypothesis[I.1| Then, for every
o€ {6 € Hyy s Rior) =0} = Ho,  Wr € {o€ Hiy; Rio,@1(T)) =0} = Hr, (1.9)

there exists v € L?((0,T);R) such that the solution ¥ of (I.8) with the initial condition ¥(0,.) = ¥,
satisfies, U(T,.) = Ur.

Condition (|1.9) means that ¥y and ¥ lie in the tangent vector space of S in ¢ and ®;(T"), respectively.
Due to the linearization of the preservation of the norm for the bilinear problem, the solution of (T-8)
satisfies R(¥(¢), P1(¢)) = O for every t > 0.

The main result of this paper is the construction of feedback laws leading to rapid stabilization of the linear
control system (T.8).

Theorem 1.4 Let T' > 0. Assume that i satisfies Hypothesis Then, for every X > 0, there exists
C > 0 and a feedback law v(t) = K (W (t,-)) such that for every W, € Hy the associated solution of (I.8)
satisfies
, Y
12(t, s, < Ce Wl

For the sake of simplicity we will focus, for the rest of this article, on the rapid stabilization of the
following linear Schrodinger equation

00 = =AY —v()u()er(z),  (t2) € (0,T) x (0,1),
U(t,0) =T(t,1) =0, € (0,T
€ (0,1

t (1.10)
U(0,z) = Uy(z), x € (0,

);
)



The only difference between (1.8 and (1.10) is that the control term “v(¢) ()P4 (¢, x)” has been replaced
by “v(t)u(z)p1”. Using again [5, Proposition 4], we get the analogous of Theorem that is exact
controllability with L2((0,T'); R) controls of system (1.10)) but now in the state space H3, ((0,1);C).
: . e (0)
We prove the following rapid stabilization result.

Theorem 1.5 Let T' > 0. Assume that i satisfies Hypothesis Then, for every A > 0, there exists
C > 0 and a real-valued feedback law v(t) = K (¢ (t,-)) such that, for every ¥, € H(?’O)((O7 1); C), the
associated solution of (I.10) satisfies

19, s, < Ce™™ ol -

Remark 1.6 The final goal would be to achieve local rapid stabilization of the bilinear problem (I.)
toward the ground state ®,. To avoid dealing with a moving target, notice that

() = @1t )z, = le 4 (t, ) — erllms, -

Thus it is simpler to look at the system satisfied by e**1*1))(t, -). In the same spirit, we will develop the proof
of Theorem[I.3]in this article and detail in Appendix[Clhow we can modify the proof to obtain Theorem[I.3)
The obtained feedback law does not allow us, for now, to obtain rapid stabilization of (I.]).

1.2 A finite dimensional example

Let us explain the general idea of the proof of Theoremin a finite dimensional setting. Let A € R™*"™
and B € R™. Consider the control system

7' (t) = Ax(t) + Bu(t) (1.11)

where, at time ¢, the state is 2(f) € R™ and the control is u(t) € R. We assume that the system is
controllable, which is equivalent to the Kalman rank condition

rank(B,AB,..., A" 'B) =n (1.12)

(see e.g. [18 Theorem 1.16]). It is well-known that the controllability allows one to use the pole-shifting
theorem [18, Theorem 10.1]) to design a feedback law u(t) = Kx(t) to obtain the exponential stability
with an arbitrary exponential decay rate of (I.TT). Let us present a different approach, more suitable for
PDEzs, to this result. Let A € R and denote the identity matrix of size n by I. Consider the target system

y'(t) = (A= X)y(t) + Bo(t) (1.13)

where, at time ¢, y(t) € R™ is the state and v(¢) € R is the control. A straightforward computation shows
that, for v = 0, the solutions to (T.13) satisfy

ly@)] < e= 14Dy 0)]].

Let us assume, for the moment, that we can design a transformation (7', K) € R™*™ x R*™ guch that
if z(t) is the solution of (T.11)) with
u(t) == Kz(t) + v(t), (1.14)

then y(t) := Tx(t) is the solution of (T.13). Notice that if moreover 7 is invertible, then
lz(@) = 1T~y @)l < 1T |e= A1 y(0)))
< |77 Hlem A IAD T (0) | < T HIT e~ P 14Dz (0))).

Therefore, the exponential stability of (I.TT) with an arbitrary exponential decay rate is reduced to find
such a transformation (7', K') with T invertible. The transformation (7', K') maps (L.IT) into

y'(t) = Ta'(t) = T (Az(t) + BKx(t) + Bo(t)) = (TA+ TBK) z(t) + TBu(t),
Hence this transformation maps (I.11)) into (T.I3) if and only if

TA+ BK = AT — AT, (1.15)
TB = B. (1.16)

One has the following theorem.



Theorem 1.7 ([19]) There exists one and only one (T, K) € GL,(R) x R'*" satisfying -.

The proof of Theorem provided in [19] relies on the phase variable canonical form (also called
controller form) of (I.TT). We present here a different proof (in the case where the eigenvalues of A are
simple) more suitable to deal with the infinite dimensional setting, with the additional assumption

A > 0is such that ((A; + A\)I — A) isinvertible V1 < i < n. (1.17)

Proof: ~ We first prove that the result holds for (7, K) € GL,(C) x C'*". The fact that (T, K) are
real-valued follows from the uniqueness of the transformations and the fact that A and B are real-valued.
Denote by {\;, €; }1<i<y the eigenvalues and eigenvectors of A. Then, (T.13)-(T.16) become

(A\i + A\)I — A)Te; = —BKe;, (1.18)
TBe; = Be;. (1.19)

The proof is then divided in four steps.
Step 1: Existence of a basis of the state space.
Assumption ([.I7) implies that that there exists n vectors f;, 1 < i < n satisfying
(M+NI-A)fi=-B, 1<i<n. (1.20)
We begin by proving that the set {f;} forms a basis of C™. Notice that if K is known, then one recovers

Te; from the relation Te; = f; Ke;.
Suppose there exists {a; }1<i<n C C, {ai}1<i<n 7 0 such that

zn:aifi =0. (1.21)

Applying A to this equation and using (T.20), we obtain

ZaZA +A)f (Zaz>

Applying successively A, we end up with
> ai(\i+ NP fi = Z (Z ai(Ni + AP ) A*1B, Vpe N~ (1.22)
i=1 k=1

Note that, for all j € N*, each coefficient
Z ai(Ni + A (1.23)
i=1

appears in (T.22) for all p > j + 1 in front of A?~7~! B. We distinguish two cases. If there exists j € N*
such that there is a coefficient (I.23) that is not equal to zero, then it implies that {AP~7='B},~; 1 C
span{ f; }. From the controllability assumption it comes that span{A?~7~! B}~ ;1 = C". Therefore, in
this case, the set of n vectors { f;} generates the whole space and consequently a basis of C".

The remaining case is the situation where every coefficient (T.23) vanishes i.e.

D ai(hi+A) =0, VjeN (1.24)
i=1
In this case, consider the entire function

G:zeCw— Zaieo‘ﬁ)‘)z.
i=1



From (T.24)), we obtain for all j € N,

n
GD0) = ai(Xi+ A =0.
i=1
Therefore G = 0. Let C := Conv{ A\; + A; 1 < i < n such that a; # 0} where, for a nonempty subset R
of C, ConvR is the closed convex-hull of R. The set C has at least one nonzero extremal, that is a point of
C such that there exists at least one hyperplane that meets C only on this point. One such point must be of
the form Ay, + A for 1 < kg < n. Therefore, there exists 6 € [0, 27| such that

RN + 1) < R(EP (M, +N), VI<Ek<n, k#ko. (1.25)
Let z = se'® where s € R. We have
e R0t N G(5ei?) =y, + Z aesCimAr)e” = (1.26)
i=1,i#ko

From (T.23)) and by letting s — oo in (I.26)), we obtain that ag, = 0. It is in contradiction with the fact
that the set C contains only nonzero a,;. Therefore a; = 0,1 < ¢ < n so the set { f;} is independant and
consequently a basis of C™. The two cases were covered which implies that { f;} is a basis of C™.

Remark 1.8 The latter part of the proof of the existence of a basis could have been done using the Vander-
monde matrix. The proof presented here has the advantage that it may be applied in the infinite dimensional
setting.

Step 2: Existence of the transformation (T, K).
The transformation is obtained using (T.19). Indeed, let

i=1
Notice that, by the controllability assumption, b; # 0,1 < ¢ < n. Then,
TB=B < B= ZbiTei = ZbiKeifi. (1.27)
i=1 i=1

Since {fi}1<i<n is a basis of C™, there exists {Ke;}1<i<n, C C such that the last equation is verified,
allowing to define 7’ € C™" and K € C"" such that (T.18) and (T.19) hold.

Step 3: Uniqueness of (T, K).

To prove the uniqueness of the transformations (7', K), consider (77, K1) and (75, K5) solutions of

(T-18)-(T:19). Therefore (T} — T», K1 — K>) satisfies (I.18) and
(T — T3)B = 0. (1.28)

Since (T} — T, K1 — K>) satisfies (I.18), we use the basis constructed previously and (T.28) to prove that

K, = K5 and T} = T5. With the uniqueness of the transformatigrzmd the fact that A and B are real-

valued, one ensures that the transformations are real-valued since (7", K) is also a solution of (T.18)-(T-19).
Step 4: Invertibility of T

Let T € C™" and K € C"™ be such that (I.I8) and (T.19) hold. We prove that T is invertible by
showing that Ker T* = {0}. Let z € Ker T*. From (T.13)-(T.16), we obtain

T*A*z = (A*T* + K*B*T* + \I")z = 0.
Therefore Ker 7 is stable by A*. From (L.16)) it comes that

Bz = B*T*z = 0.



Thus there exists  eigenvector of A* in Ker 7* C Ker B*. From the controllability assumption and the
Hautus test (see for instance [48] Prop. 1.5.5]) it comes that Ker 7* = {0}.
O

If the functional setting in the infinite dimensional case makes the proof more tricky, the strategy we
use remains the same. Riesz basis results will be used to prove the existence of a basis of the state space and
the invertibility of the transformation will be proved using the approximate controllability of the studied
system.

The main technical difficulty of this paper lies in the decomposition of B in the basis of the state
space. Indeed, the control operator B is admissible but not bounded in the state space. A careful analysis of
the Fourier components of the control operator B allow us to define a transformation 7" which is bounded
from the state space into itself but the feedback transformation won’t be bounded from the state space into
R. Even so, the transformation 7" will be proved to be invertible and the closed-loop linear equation will
be proved to be well-posed in the state space. It is important to note that this technical difficulty is in fact
essential for the invertibility of T (see Remark. Indeed, in our case, if B were to be bounded, then the
transformation 7" would be compact and thus not continuously invertible. However, the unboundedness of
K from the state space into R prevents us to prove directly the well-posedness of the closed-loop nonlinear
equation.

Let us underline that the uniqueness condition 7'B = B, which was used implicitly in similar previous
works, will be crucial not only to obtain the existence and uniqueness of the transformation, but also to
deal with the analogue of (T.13).

1.3 The linear Schrodinger equation

As presented in the previous paragraph, the strategy to prove the rapid stabilization of the linear equation
(T10) is inspired by the backstepping method. Recast the equations for W' + i¥? = W as

! 0 —A\ [U! 0
at@z)—(A 0><¢2>+v<t> (wn@c))’ A

Wh(t,0) = Wi(t,1) =0, W2(¢,0)=V2(t,1)=0, te(0,7T),
Ul(0,2) = ¥l(z), W2(0,2) = Vi(z), x € (0,1).
where W} and W3 are the real and imaginary part of ¥ respectively. From now on, all the functional

spaces are real-valued, except when specified. Moreover to deal with those real and imaginary parts, we
denote, for simplicity,

2
Xioy ((0,1)5R) = (H{yy ((0,1):€) N L2((0, 15 R)) (1.30)
with the product topology. We will use the following operators
A:D(A) — X}, B:R — (C x (H3N HY)((0,1);R))"
v — —Av a —a 0
v AN (1) () )7

with D(4) := X (50). Based on the previous work of the first author and Q. Lii ([22,23]), instead of Volterra
transformations of the second kind usually used for the backstepping approach, we seek for transformations
(T, K) of the form

T X{o) — Xy
v ' (kuey) ka(ey)\ ()
(\IJZ> — /0 <k21(l’,y) kQQ(I,y)) <\p2(y)) dy, (1.31)
K:D<K)CX(30) — R

@i) — /Olal(y)\l’l(y) +a”(y) P (y)dy, (1.32)



such that if (U'!, W2)T is solution of (T.29) with
e (Vi)
o(t) = K (\112(757.)) , (133)
then (£1(¢,.), €2(t,.))T == T(¥!(¢,.), ¥2(t,.))T is solution to

é—l B 0 —A 61 61
at <£2> N (A 0 > <§2> - <§2> ’ (t’x) © (O’T) ) (0’1)7 (134)

fl(t,O) = §I(t7 1) =0, 52(t70) = 52(t7 1) =0, tex(0,T),
51(0’1:) = fé(x)? 52(0"77) = 58(33)7 U X(07 1)a

with (&3,62)T = T(¥}, U2)T and T is invertible in the state space. The decomposition in real and imagi-
nary part of the solution of (T.I0) is made in order to ensure that the feedback v(t) = K (¥!(¢,.), U2(¢,.))T

is real-valued. Note that
5%))” ny <€6>
<
H(g%) x, o I\g

The kernels are defined through the equations they must satisfy for (7', K') to map solutions of (T.29) to
solutions of (I.34). This is done formally in Section [2] together with a more detailed presentation of this
strategy.

’ . te0,+00). (1.35)
X0y

1.4 A brief review of previous results

The controllability properties for the Schrodinger equation were mostly studied in the usual (in opposition
to the bilinear model presented here) linear setting. For the control of the linear Schrédinger equation with
internal control (localized on a subdomain), we refer to the survey [33] and the references therein. In this
more classical setting we also mention [35} 32} 26] concerning stabilization.

Exact controllability of the bilinear Schrodinger equation.

The first local controllability results on the bilinear Schrddinger equation appear in [2, 3, 5]]. These local
controllability results have been extended with weaker assumptions in [8]], in a more general setting in
infinite time [42] and also in the case of simultaneous controllability of a finite number of particles in
[38L139]. Note that, despite the infinite speed of propagation, it was proved in [[17, 4} |8} |38]] that a minimal
amount of time is required for the controllability of some bilinear Schrddinger equations. More recently,
local exact controllability has been established in [6] for a Schrédinger-Poisson model in 2D (see also [36]
for approximate controllability) and for the analogue of (I.I) with a control depending on time and space
in dimension less or equal than 3 [45]].

Approximate controllability and stabilization of the bilinear Schrodinger equation.

The above mentioned results of exact controllability are mostly limited to the one dimensional case. In a
more general setting, the available results deal with approximate controllability. Using geometric control
techniques on appropriate Galerkin approximations, approximate controllability in different settings has
been proved [13[10} 9} [16]]. For a detailed presentation, see the survey [L1].

However, most of these results are not suitable to prove approximate controllability in higher norms
(typically H (30)) and thus approximate controllability for bilinear Schrodinger equations has also been
studied from the Lyapunov functional point of view [37,(7,!40,/41]. Though it enabled global controllability
results, this strategy usually gives no indication on the convergence rate.

Rapid stabilization.

The strategy used in this article is inspired from backstepping techniques. Initially developed to design,
in a recursive way, more effective feedback laws for globally asymptotic stable finite dimensional system
for which a feedback law and a Lyapunov function are already known (we refer to [30} 46l [18] for a
comprehensive introduction in finite dimension and [20} 34] for an application of this method to partial



differential equations), the backstepping approach was later used in the infinite dimensional setting to
design feedback laws by mapping the system to stabilize to a target stable system. To our knowledge,
this strategy was first introduced in the context of partial differential equations to design a feedback law
for heat equation [1] and, later on, for a class of parabolic PDE [12]]. The backstepping-like change of
coordinates of the semi-discretized equation maps the discrete solution to stabilize to a stable solution.
The corresponding continuous mapping obtained is a Volterra transformation of the second kind, seen
as an infinite dimensional backstepping transformation from the triangular domain of definition of the
transformation. This backstepping strategy in infinite dimensions led to a series of work (see [31] for
a global presentation and [29]] for the use of the backstepping approach for the rapid stabilization of a
Schrodinger equation with a boundary control). The backstepping approach can be used to get stabilization
in finite time as shown in [24} [25]. Moreover it is not limited to linear equations, as shown in [14} 25].
Though using Volterra transformations of the second kind provides easily invertible transformations it is
also limited. Fredholm transformations, from which this paper is inspired, has already been used [22} 23|
21]] for rapid stabilization using boundary feedback laws.

Abstract methods have been developed to obtain the rapid stabilization of linear partial differential
equations. Among them, we cite the works [28]], [S0] and [49], based on the Gramian approach and the
Riccati equations, which could be applied to obtain the rapid stabilization of the linearized equation (T.29)
as (0, up1) € D(A*). However, it seems difficult to obtain, for various physical systems, the local
rapid stabilization of the nonlinear equation using those methods. For example, at least for the moment,
one does not know how to deduce from [15], where the rapid stabilization of a linearized Korteweg-de
Vries equation is obtained by using the method developed in [49], the rapid stabilization of the associated
nonlinear Korteweg-de Vries equation. This is in contrast with the method used here (linear transformations
to suitable target systems) applied to the same Korteweg-de Vries equation. Indeed, as shown in [22]], the
feedback laws obtained by means of this method allows to get the rapid stabilization for the nonlinear
Korteweg-de Vries equation. One may therefore hope that, as in [22], our feedback law K being quite
explicit it might allow to obtain the rapid stabilization of the nonlinear equation. Note however that in
[22] the feedback law K is continuous, which is not the case in our situation. It makes the application to
the nonlinear system more complicated to study and requires suitable nonlinear modifications of the linear
feedback law K.

1.5 Structure of the article

In Sec. |2} we give a detailed presentation of the strategy used to construct the transformation (7, K') and
give a formal expression of this transformation. In Sec. [3]we prove that this formal transformation 7" is well
defined and is continuous in the state space X (30). Then, we prove in Sec. 4{that the previous transformation
is indeed invertible in the state space. These properties of 7" will follow using Hypothesis i.e. exact
controllability of the linearized system. We end the proof of Theorem in Sec. 5| by proving that the
constructed feedback K leads to a well-posed closed-loop system (i.e. the equation with v defined
by (I.33)) and that 7" actually maps the closed-loop system to the exponentially stable solutions of (I.34).
In Appendix [A] we study in a similar way a simplified Saint-Venant equation which exhibits the same
phenomenon but on which we explicitly compute the transformation (7', K).

2 Heuristic construction of the transformations

We recall that we look for a transformation (T, K) of the form (1.31)- (1.32). Let us derive the set of
equations for (7', K) to map solutions of (I.29) to solutions of (I.34). First, to ensure that the boundary
conditions of (I.34) are satisfied, we assume that

k‘”(O,y) = kz](lvy) = Ov Vy € (O? 1)7 V’L,j € {152} (21)
Using the fact that (¥', ¥*)T € X7, and imposing the conditions
kij(z,0) = kij(z,1) =0, Va e (0,1), Vi,je{1,2}, (22)

formal computations, denoting A, and A, the Dirichlet Laplacian with respect to = and y variables re-



spectively, lead to

0 (t, ) + A (t, ) + A\ (t, )
1
ki1 (z,y) (—Ay W2 (L, y)) + kiz(z,y) (A, (8 y) + v(t) (ue1)(y)) dy

o\

[y

Akoy (2, )0 (t,y) + Apkoo(z,y) U2 (t, y)dy

+

+ [ Nenn (2, y) Pt y) + Merz(z,y) W2 (¢, y)dy

c\)_‘o

1
(Arkar + Aykig + Meir) (z,9) 0 (t, y)dy

(=)

/ (Agkao — Aykin + Mer2) (z,y) U2 (¢, y)dy

+o(t) / (1) (2)kra(z, 2)dz.

The boundary conditions (2.2) were imposed to avoid boundary terms in the integrations by parts. Using
the expression (T:32) of the feedback leads to

0 (t, ) + AE%(t, ) + A (t, )

:/O1 [(A k1o + Agkar + Mk1p) (2, (/01 (1) (2)k12(x z)dz)} U(t,y)dy

1

1
—/ l:(Ayk‘n A k‘Qg — /\k‘lg)( ( ,UApl /4}12 33 Z)dZ):l \1’2(t,y)dy. (23)
0

N

In the same way one gets
0,2 (t, ) — AEN(t, ) + N3 (t, )
= [k = vk xkn) o 0 ([ (o) Gbante 1 )| 0 e
-/ [(Aykm § Ak — Abn) (2,) — 0(y) ( | o) z)dz)} V(L y)dy. Q4
0 0

If we want (€', £?) to satisfy (1.34) then we need to find the functions k;; and o’ satisfying

1
(Aykll — Agkoo — Mk12) (z,y) — 042(1/) (/ (1) (2)k12(, Z)dZ> =0, (x,y) € (0, 1)2’

1
(A klg =+ A kgl =+ )\]{311) (/ ugpl klg 1‘ Z > , (0 1)
0
1
(Aykor + Azkia — Mkao) (z (/ pp1) (2)koz(x, 2) ) 0, € (0, 1) , (2.5)
0
1
(Aykgg - A kll + )\]{321) (/ ugpl kgg 1‘ Z ) , (0 1)
0

kij(Z,O) = kZJ( ) O T E
kij(0,y) = kij(1,y) = 0, yE(O,l)-

A fundamental extra condition. One could try to solve rightaway (2.3)) and prove the invertibility of the
transformation 7" but the non-local terms yield a tedious task. To overcome this difficulty, one introduces,
as in the finite dimensional setting, what will be referred throughout this article as the 7'B = B condition,

(o) = [ (25000 = ()



Plugging this into (2:3) we obtain that we now seek for a solution to

(Aykll — AkuQ — )\klg) (I, ’y) O, ({E, y) S (0, 1)2,
(Ayklg =+ Amkgl —+ )\kll) (.’ﬂ, y) 0 (l’, y) S (0, 1)2,
(Aykar + Agkiz — Meaa) (2,y) — @?(y) (1) (z) =0, (z,y) € (0,1)%, 2.6)
(Ayk22 - Awkll + )\k21) (.’L‘, y) +a (y)(uapl)(m) = 07 (x’ y) € (07 1)2’ .
k‘i]‘(JU,O) = kij(a:, 1) =0, x € (0, 1),
k:ij((),y) = k”(l,y) = 0, y € (O, 1),
together to the T'B = B condition
1
/ ki2(x,y) (1) (y)dy = 0, z € (0,1),
0 2.7)

/0 Fooa (2, ) (o)) (W) dy = (ppn) (), @ € (0,1).

Remark 2.1 In [22| 23], the authors were dealing with a boundary control for the Korteweg-de Vries
equation and for the Kuramoto-Sivashinsky equation. In their case, the T B = B condition writes

ky(va) = 07 VS (OaL)a

for the former and
kyy(z,L) =0, x¢€(0,L),

for the latter, where k is the kernel of the Fredholm transformation in each case. Contrary to our frame-
work, this boundary condition appeared naturally from the integration by parts performed in order to
obtain the equation on the kernel. It was not seen as a particular boundary condition although, a careful
analysis of their work shows that the T'B = B condition was used to prove the uniqueness of the transfor-
mation (T, K). The common ground between their work and this article is the additional regularity that
the kernel needs in order to satisfy the T'B = B condition. Notice that in what we present in this article,
the relation between the kernels k;; and o7 is more intricate and considerably modify the analysis.

Formal decomp051t10n The global strategy to construct a solution of ([2.6)-(27) is the followmg First
assume that a and o2 are known. This enables us to compute the kernels k;; satisfying (2.6) as functions
of o' and o%. Then we prove that we find o' and o? such that (2.7) is satisfied.

We decompose the functions in the following form

+oo
kij(xy) = > £ (@)en(v), Z o only 2.8)
n=1

This leads to
Fot" (@) + )\nf22($) At (@) = ag, (1) (@),
n (@) = A fit(x) = A () = aq () (),
£t (@) = f”(sc) +Af (@) =0, (2.9)
I (@) + A fo (@) + A2 (2) = 0,
£200)=f7(1) = 0.
The T'B = B condition (2.7) becomes
+oo
D (wprs n) f37 () = 0,
i;l (2.10)
(pr, o) [22(2) = (1) ().
>
n=1

10



As mentioned, we begin by assuming that the feedback law is known. We consider two sequences (3} ),,en-
and (32 )neN* to be premsed later on.

Let (g1, g2, g2, g22)T be the solution of system with right-hand side (3}, (1¢1),0,0,0) T and let
(hLl, h12 K21 h22)T be the solution of system with right-hand side (0, 82 (1¢1),0,0) T. System

n n n n

being linear, it comes that
1 a2

1J an % X i
fia = 51 g9 + 52 —_y (2.11)
Decomposing g%/ in the L?-orthonormal basis (. )xen+, if we denote by A, the following matrix
A 0 A
_ 0 =X —An —=A
Ank - )\ _)\n _>\k: 0 ’ (212)
An A 0 — Ak
system (2.9) leads to
(90" x) Bhliprs o)
A 5 <971127 ‘Pk> — 0
" ant en) 0
(972, o1 0
Then N
X Ak (/\2 -2 - /\2)
11 n k) g1
In ((E) - ; 6nk()\) Bn</u‘§017§0k>§0k(x)a
—+oo
22\ A\
g’ (@) =) = o Baluer, or)er (@),
]-:i ( 2 2 2) 2.13)
“A(ANEHAL A
21 k n 1
too 2 2 2
A (/\ A+ A )
22 _ n k n 1
where
Sak(N) = det(Anr) = (A + (e — An)?) (W + (s + An)?) (2.14)
The same computations can be carried out for b/, leading to the following relations
2 2
1 _ Bao1o 12 _ Ba o1
h - _Tgn ) h ,81 n o
5 5 (2.15)
B2l — B g22 h22 = Bn 21
Bl n Y ﬁl gn N
For the sake of simplicity, we denote by cfljk and difk the coefficients such that
+oo
g (@) =" B lper, oder(@),  hil(x Zd 2 (ppr, oi)on (). (2.16)
k=1

Summary of the construction. Finally, using the definition of the transformation (I.31), the decomposi-
tions (2.8), (211 and the relations (2.15) it comes that the transformation 7" we are looking for is defined

11



by
+o0o Oél
-n 11 n 11 n 12 n 12 2
\112 - Jroo 1
(61 n +nh21> bon) +Z< Tg%2+”h22> (02, 0,)

2 n 2'"n
=1 6 n=1 6

+oo \1,2 " 2 \1,1’ . 71\1,17 N 2 \112’ . 12

n

(2.17)
In the same spirit, the T'B = B condition (2.10) becomes
too 1 12 2 12
0\ _ 5~ lenen) (922 | aulper en) (hy,
<u<p1) => i g )t nh ) (2.18)

n=1

This ends the heuristic of the construction of the transformation and the feedback law. Indeed, in the
following section we prove that for a suitable choice of the sequences (3} ),en+ and (82)nen+ then

12 12
B:= {@5@) : (Zﬂ) ne N*}, (2.19)

is a Riesz basis of X (20) (see Proposition . Then from (2.18) we get the feedback laws from the expan-

sion of (0, su1)T in the basis B. Finally, we study the behaviour of the coefficients ol and o2 as n goes
to infinity to prove that the transformation 7" given by (2 is indeed continuous from X3 (0 t0 X3 ()"

Remark 2.2 From (@ it already appears that the behaviour of the coefficients (1, py), and thus
Hypothesis[[.1] will play a crucial role.

3 Definition and properties of the transformation

In this section, we make rigorous the heuristic developed in the previous section. In subsection 3.1} we
prove that for a suitable choice of 61 and (32 then B defined in lb is a Riesz basis of X? {0y Where the

functions g%/ and h% are defined by (2.13) and (2.15] - This enables us to define the feedback law and the
transformation 7' using the relations and (2.17). However, this does not give enough regularity to
prove that 7' : X ?0) —- X 30 . We prove the extra regularity we need on the feedback laws in subsection
This leads, in subsection to the expected regularity for the transformation 7.

3.1 Riesz basis property

Let us recall some results on Riesz basis.
Definition 3.1 Let H be an Hilbert space and { gy, } nen» C H. We say that {gp }nen~ is w-independent if

Z angn =0, with {a,}nen» CR = a, =0,Vn € N*.
neN*

Theorem 3.2 [51) Theorem 15] Let H be a separable Hilbert space and let {e,, } nen+ be an orthonormal
basis for H. If {gn } nen~ is an w-independent sequence quadratically close to {ep, }nen+, that is

Z llen — gn”%[ < +09,
neN*

then {gn }nen~ is a Riesz basis for H.

12



Theorem 3.3 Let H be a separable Hilbert space and let {e, }nen= be an orthonormal basis for H. If
{9gn }nen~ is dense in H and is quadratically close to {e, } nen+, i.e.

Z len = gnllzr < +00,
neN*

then {gn }nen+ is a Riesz basis for H.

Let us provide a proof of Theorem [3.3] stated as a remark in [27, Remark 2.1, p. 318].
Proof:

Let us prove Theorem by contradiction. Suppose that the {g,, } nen- is dense in H and is quadrat-
ically close to {ey, }nen+ but that {g,, }nen~ is not a Riesz basis. Therefore, by Theorem there must
exist a non-zero sequence {a, } nen+ C R such that

Z angn = 0.
neN*
Since {gn }nen+ is quadratically close to {e;, }nen+, there exists N € N* such that
Z llen — gn”?ﬁl <L
n>N+1

Therefore, from [51, Theorem 13], the {e,, }1<n<n U {gn }n>n+1 is @ Riesz basis of H. This implies that
there exists £ < IV such that a; # 0. Hence, with the density assumption, we have

H = span{g, |n € N*} = span{g, |n € N*\ {k}}.

Thus,
codim(span{g, |n > N +1}) < N — 1.

However

H/span{g, |n > N + 1},

is isomorphic to span{e, | n < N}, which is of dimension N, leading to a contradiction.

We will use the previous criteria to prove the following proposition.

Proposition 3.4 Let 3! being defined as (3.1)). Then,

12 h12 .
B = {(?32) ’ (h%) ; n €N }

G d (92N (Y
T g22/)\71/2 ’ h22/)\i/2 yn e

To apply the previous criterion for the Riesz basis, we prove that B (resp. B) is quadratically close to
the orthonormal basis of X (20) (resp. X (30)) given by

s/2 0
{(cp"/o)‘” ) , (cp /)\5/2) i nE N*}, with s = 2 (resp. s = 3).

Thus, we choose 3} and 32 such that g2 and h?2 are close to ¢, /A, i.e. (gL, on) = (h22,¢,) = 1/\,,
that is,

is a Riesz basis of X(20) and

is a Riesz basis of X?o)-

g A2 4 422)
203 (e, on)
- AAZ 4 4X2)
" ()‘2 + 2)‘%))‘71 <M<p17 <Pn> .

3.1

B

13



Notice that, from Hypothesis[T.T|and Remark [T.2] there exists C' > 0 such that

2 <l <om, %S |B2] < Cn, VneN*. (3.2)
During the proof of Proposition[3.4] we will use the following lemma. Its proof is purely technical and

postponed to Appendix [B]

Lemma 3.5 With the above definition, for s = 2 and s = 3, one gets

Z ( <Pn/0>\f/2 ) B ( 12;1(:—2);2 ) 2 .
neN* gn Xa))

0 h%2/>\£18—2)/2 2
% ( on/ N >_ ( B2/ ) . o

(0)

We are now ready to prove Proposition [3.4]
Proof: Lets = 2ors = 3. In view of Theorem [3.2]and Lemma|[3.5] assume that there exists a sequence
{@n, by }nen+ such that

Iy h2 N (0 e
neN*
First step: we apply negative powers of the Laplacian to characterize elements of S := span 3.
Recall that A is defined in (T.2)). Let us write (2.9) for g%/ as
0o 0 0 1 00 -1 0 Loy
0 0 -1 0 00 0 -1 0
A =10t o 1 0 o [TAM 10 0 o [[2] o |
1 0 0 0 01 0 O 0
=:Jp =:Fy
where g, = (g,', 9,7, 92", 9,) " and where Ag,, = (Ag,', Ag,?, Agi', Agi?)T.
Since det(.J,,) = (A2 + A2)? =£ 0, we have
A_lgn = J;19n + -A_lJy:ana
where
0 0 A
-1 1 0 0 =X A
X EX2 | A =N 00
A —A 0 0
Therefore, using (2.13)), we obtain
| B
Lgl2 22 n 722
A" — An=ah
A A% + AQ | g’n, /82 n } )
1 r 1
“1422 _ n 12 12 1g-1
Anoohe® — A An ,
) Sy (3.4)
71h12 _ )\ Mn 22 )\h22
AT = e Mo T
-1 [, B _
AT = s [l 4 4 A8 )|
Thus, applying A~! to (3.3) leads to
1
-1 Ay, + Ay "b —)\nﬁ—"an + Ab,, h12
coA™ (mp1) ) _ 3 B " 7212 g T () (3.5)
0 A2 + )2 9n A2 + )2 hy;

neN*

14



where

Anﬁyllan - )\/Bibn
coi= ) T e (3.6)
neN* n

Applying A~! to (B:3) we obtain

B,
(C1A1(M<,01)> ) Z (A2 = X2)a,, + QAAnﬁl by, (gi?) . —QAAnEan + (A2 = A2)b, (h}?)

A (per)) &, (A2 4 A2)2 922 (A2 +A2)2 h22
(3.7)
where Mgl (2 - A3
20\ B an + n
ci= ) SR (3.8)
o (AR +A%)?
In order to iterate (3.3)) and (3.7), notice that applying A~ to the relations (3.4) leads to
A2g12 = 1 [(/\2 —)\2)g12—|—2)\)\nﬁ”h12 +2/\>\n61u471(u901)}
()\2 +)\2) n n ﬁg n n ’
2422 _ e 022 AnBy
A )\2 + )\2 2 |: +2AA, Bg hn } + /\2 a2 (M@l)a 49)
) .
2712 _ 12 Ba 12 | ()2 _\2)52 4!
AN = AQ e (0% = VIHZ = 2 Gl & (= X824 (o)
2722 _ 21722 Ba 922 A o
AP = oy +>\2 5|02 = A2)p22 - 20, "o 2] - oA ).

Applying successively A2 to (3:3) we obtain, for every p € N (with the convention that the sum from 1
to 0 is equal to 0),

_ 22\, Bk (A2 —2%)B2 17 —2(p—7)—
oA (o) + 0y (Scrr 2REiE i ot ) A-2071 pup)
AnBrkl =B —2(p—j
?:1 <Zn€N* (B)\2+)\2)gj )A 2 J+1)(N901)

. (3.10)
h
- b () ()
N2 1 Z2\2p+1 |: n 22 ’
nGN* + )\ P g hn
where the coefficients (k7, 17) are defined by
kit (A2-22) 2% \ /w (kL Ay + A b,
e ) = o) L . 5] with A= s . (3.11)
n — n g8 ()\ )\n) n n —)\nEan + Ab,
Applying successively A~? to (3.7) we obtain, for every p € N*,
j 2 2\ 22 77 .
e AT (py) + Z§:1 > nen- 2/\)\7L[(3,\§+§g;\2<7+)\1>),8"l") AT2P=D L ()
177 _\B2[J .
COA72(p+1) Z?:l ZnEN* %) AiZ(pi]Jrl) (,usﬁl) (3 12)
1 |: gl2 ~ h12
— Z kp-f—l < n +lp+1 n
2 2\2(p+1 22 n 22 )
S (A2 4 22)20HD) In h
where the coefficients (k7,17 ) are defined by
By (022 2, g”f ki (B _ (an G13)
Z%‘Fl - _2)\)"” 22 ()\ Ai) Zgz ’ w lg - bn . .

Assuming that ¢ # 0, equality (3.5) implies that

—1
(A 8”901)) ¢ spanB.
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Then using (3.7) we obtain

0 aA  (ue)\ - =5 0 —
(COAQ(/MM)) + ( 0 €spanB = A=2(jupr) € span B.

Iterating with the relations (3.10) and (3.12) it comes that, for every p € N*,

A-(2p—1) - 0 -
( 0 (Nsﬁl)) €spanB and (A_Qp('u(pl)> € span B. (3.14)

Notice that if ¢g = 0 and ¢; # 0, the same argument can be repeated to obtain (3.14). Actually, one
gets (3:14) as soon as there exists a non-zero coefficient in the left-hand side of (3:10) or in the left-hand
side of (3:12). Thus it comes that either (3.14) holds or, for every j € N*,

0= S 2MBakh + (O - N8Rk
o Z (A2 + \2)2i+1 ’

neN*
o AaBLKL - A8
0= Z ()\2 _|_)\2)23 )
B ML BLED + (N2 — A2)B210
=2 (A2 + A2)26+D) ’

(3.15)

AnBEkT — \B2TJ

2 R

Second step: we prove that if (3.14) holds, then B is a Riesz basis.
Let (d"',d*)" € X, such that

@) ()

Using (3:14), we obtain that, for every p € N*,

o= () (),

(0)
= (d", AP (1)) e

=) Ad ) (or, AP (ugy))

kEN*

_ Z Aot (1, or)(d', or)

—k Ok \2P :
eN k

Let d. := (d', ) and define

s 2
G:2eCr Z A7 Yper, pr)die* e e C.
kEN~
From uniform convergence on compact sets, it comes that G is an entire function and the previous relation

imply that, for every p € N*,

G(pfl Z )\s+1 :U"pla Sﬁk>d = 0.
keN >\2p
N~

Thus, G = 0. If d* # 0, let
ng := min{n € N*;d}, # 0}.
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It comes that

_ 11
0= Aoy Hor, ono) iy + D Ay Hper, pr)diexp (2 (5 — 5 ) ] - (3.16)
k>ngo )\k )‘no

As (pp1, pny) # 0, considering z real and letting z go to 400 in (3.16) imply d}, = 0. Therefore, from
the definition of ng, d* = 0.
Using the exact same strategy for

0 —0 %
<A_2p(/up1)> €spanB, Vpe N*,

implies d? = 0. Thus, it comes that d* = d? = 0 i.e. spanB = X ('50). From Theorem we obtain that
B is a Riesz basis of X(QO) (resp. B is a Riesz basis of X?O)).

Third step: we prove that in the remaining case (3.13)), one has a,, = b, = 0 for any n € N*.
Let us define

- 1 22\, 8L a
G:zE(Cn—>Z<< g o 2>,exp(zM)<")>, (3.17)
nenN= (A’?L + )‘2)2 (/\n = A )ﬁn bn
with
2 2 B2
_ ﬁ (A2=A2) 225 . G1s)
(A% +22)2 \ —2aA, g (A2 — \2)

Notice that the matrix appearing in this definition is the one used in the recurrence relations (3.11) and (3.13).
This matrix is diagonalized as follows

B2 ify 1

M 1 el Bl (()\2—)\%)—#22')\)\” 0 ) 2p 2
“opeer| 0 R A
2 B2 2

From this diagonalization we deduce that

G =Y ex (

A+ i,
A2 422

2N [ iBlan A= iXa)?  B2ba (At ida)?
2 2 (2122 2 (A2 +A2)2

(3.19)

\/\—/ \/\_/

(
(

=
e (( TR

Again, G is an entire function from the uniform convergence on compact sets. The recurrence rela-
tion (3:13) implies that, for every p € N,

0= 5 e (62 5he) v ()

neN*
e 2WaBhRE + (A2 - A2
- Z (A2 + A2)2(p+1)

2\ | #Baan (A +iAn)? N B2b, (A —i\y)?
2 2 (AZ2+A2)2 7 2 (A2 +)A2)2

neN*
=0.
Thus we obtain }
G=0. (3.20)
We claim that O \ )2 (}\ \ )2
(A2 + A2)2 7 (A2, + A2)2 (n,m) € (N*)=. (3.21)
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Indeed, let (n,m) € (N*)? be such that

A —ida)? , (A +idy,)?

21222 7 (02, 4 a2 (:22)
Taking the modulus of both sides of (3:22)), one gets
1 B 1
AZ + A2 A2 4\
which implies that A\, = A, and therefore n = m. Hence
(A —i\n)? _ (A +iX,)? (3.23)

(AL +A%)2 (AR + %)%

Taking the imaginary part of (3.23)) yields a contradiction and proves that (3.21)) holds.
For simplicity, we rewrite G as

Glz) = 3 Cue?,

neN*

with g, equal to (A — iXg)2/ (A2 + A%)2 or (A + iAg)? /(A7 + A%)? for some k € N* and C,, is the
corresponding coefficient in @ Notice that u,, are all different, u,, — 0 asn — oo and C,, €
2(N*; C).

We repeat the same argument as in the finite dimensional case. Let

C := Conv{u, |n € N* such that C,, # 0}.

Consider a nonzero extremal point of C, which is therefore of the form p,, for some nog € N*. Hence,
there exists 6 € [0, 2] such that

R (ePpn) < R(e“hny), ¥neN*\{ng} (3.24)
By letting z = pe’® with p € R and using (3.20), we obtain

0=0@ (peie) e—pe'ie,uno = Ch, + Z Onep(ewun—e"euno). (3.25)
neN*\{ng}

We then let p — o0 in (3:23) to obtain, using (3:24), that C,,, = 0 which is a contradiction with the
construction C. It implies that C,, = 0,Vn € N. The expression of the C), implies for all n € N*

iBhan (A —i\g)?  B2b, (N +iX,)? 0
2 (A2 +22)2 2 (A2 4+2A2)2 7
iBran (A+1iXg)? B2, (A —iX,)?
2 (A2 4+A2)2 2 (A2 +A2)2

One then easily concludes that a,, = b,, = 0 by using (3.22) and the fact that 3% # 0 and 32 # 0 for all
n € N*. Theorem [3.2]thus implies the Riesz basis property.
O

3.2 Definition and regularity of the feedback law

So far, we have obtained from (2.9) the expression of the kernels k% with respect to the Fourier coefficients
!, of the feedback

) X
K (\I/2> = Z al (Wl p,) 4+ a2 (T2 p,,). (3.26)
n=1
The regularity of the kernels and, consequently, the regularity of 7', will be directly related to the decay

rate of those coefficients as n — +oo. It remains to use the 7'B = B condition (2:18) to construct K and
T.
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As pp1 € H (20) and B is a Riesz basis of X (20) (see Proposition , it comes that there exist sequences
(al)nens (a2)nen € £2(N*,R) such that

—+oo
0 -Y al I\ g2 (M) in X2, (3.27)
1p1 "\ g BN ©

n=1

Getting back to the 7T'B = B condition (2.18), we define

1 2
a) = 67"(11, a? = 57"112. (3.28)

(p1; n) " (1, on) "
Then, following the heuristic of Sec.[2} the transformation 7" is defined by (2:17) and the feedback law K

is defined by (3.26).

Unfortunately, the regularity of the coefficients is only (a7, )nen+ € £2(N*,R) for the X (20) Riesz basis
and will not be sufficient to prove that 7" is continuous in X (30).

Remark 3.6 Recall that we assumed controllability of the linearized system i.e. Hypothesis[I.1]. From [53]

Remark 2], it follows that 1/ (0) &+ /(1) # 0 and then that (pp1) € H(go). Thus, (0, up1)" cannot be

decomposed in the Riesz basis of X ?0)' This would have led to more regularity for the sequences ().,
It is fortunate since, as it will be noticed in Remark if (up1) € H (‘0’0), the obtained transformation
T would have been compact in X 5’0) and thus not invertible in X (30).

Performing a suitable decomposition of the function w1, we prove that the coefficients of the feedback
law satisfy the following regularity.

Proposition 3.7 We define the sequence (hy,)nen+ by

4
h, =

n3m2

((=1)" /(1) = w'(0)) .

Then the sequences () nen+ and () ,en- defined in satisfy

<O"1”L> € (*(N*,R) <1 <a2 - 52}1”» € (*(N*,R)
n3 Y nd \" T (e, on) e

Remark 3.8 As a corollary, it comes that, for every j € {1,2},

J
(a;j) € (=(N*,R).
n neN*

Proof:
First step: splitting of the problem. We start using the ideas developed in [44] to extend the regulariza-
tion result [5, Lemma 1] to higher dimensions. Let

V2
hia e (0,1) = == ((W(0) + ' (1)a” = 3/ (0)a® + (20 (0) - (D))
It comes that
g = ppr —h € Hy,. (3.29)
The Fourier coefficients of & are given by
4
(hoip) = hie = 25— (=D)/(1) = #(0), ¥k €N, (3.30)

which is the leading term in the asymptotic expansion of {1, ¢k ) given in 5, Remark 2]. Let us split the

left-hand side of (3:27) in two parts
0 0 0
(/wl) <9> (h>

19



Asg € H} ()’ using the Riesz basis of X7 (0) We get the existence of sequences (3} ), en+ and (92),,en-

such that
+oo 1/2¢1 1/2 1/2 2 12 /,1/2
A6 (g12 /)L M 262 (hi2/ Ak
(0) = § </’L<)01a§0n> 1 In / 1/2 + 2 l n/ 1/2 ’ (331)
g Brn \gr2 /A Br \hi2/xn

n=1

The coefficients of the decomposition in a Riesz basis being £? sequences, Hypothesisand the behaviour
of coefficients 37 in (3.2) imply that, for every j € {1,2},

J
(%) € *(N*,R). (3.32)
n neN*

Second step: decomposition of h. Using the Riesz basis B of X (20), we get coefficients (p}),en+ and

(2) = +§<M9017<Pn> [gi (g” ) 5 (’,}Z)] : (3.33)

n=1

(2 )nen~ such that

Recall that the basis B is obtained as a perturbation of the L?-orthonormal basis. To highlight this, we
define the sequences (V7 )nen+, j € {1,2}, such that

- ATL/BTL’YTU

pi = An6§7< ), 22
(o1, n)

From (2.16), (3.33), and (3.34), we get, for every k € N*,
“+oo
0 12 J12
= y ¥n ) n + Py 5y
((h,ww) D {per end1er, ) {p ( k) o <d33€>}

n=1

=§<u<p1,son><us0h<ﬂk> (W ”ﬁ2> (%%)

foo 12 12
c d
+ D e en) (wprs er) [Anﬁfmﬁ (%’:) + Ao (d%’:ﬂ

n=1

which, using 2-13), 2-14), (2-13), and (31, is equivalent to
_( 25 pr, o)y on) An 213 )

(3.34)

Z;ﬁ,n#k <US017 ‘Pk><ha 9071> nﬁ%dgﬁc

Foo J12
= > tupn ) en ) Mk (G8) + 2002 ()]

n=1 Crk nk

for every k € N*. Hence, if we define

<h1) - (S (o) or, ) M 52033 ) o

, (3.35)
ha k=1 (Zizl,n#%, ©n) (W1, Q) A nﬁ%dﬁ)

we get, using also (2.16),

bt “+o00 +oo

hy 1 <<W1,<pk> : 1i> (<N901780k> 2dli>}

7 = yon) | An n 1B + A n 5 5

(h) 22t >[ T\, 1) BLEZ, Yo\ (g, on) 82422 ) | ¥

n=1k=1

I 12 /,1/2 12 /y1/2
o/ A ha? [ A
=Y X uer, on) [%11 @22%3/2) +m (hm;WQN : (3.36)

n=1
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Finally, if (El , EQ)T e X (30) (which will be proved in the next two steps), it comes that, for every j € {1, 2},

(X2 (wor, a)ih) € C(N'RR),
which, thanks to Hypothesis[T.T] implies that
()0 € C(N*,R).
Using (3.27), (3:28), (3.29), (331), (3-33)), and (3.34)), we obtain

1

o2 n 1
n3 n3 + n3 g It n3’
oy pn + ﬁ _ )\nﬂ’?L,yQ + AnBn (s on) + ﬁ
nd  ndond n3 " n3 (1, on) 03

which, with (T.3), (3:2), (3:30), (3:32), and (3:37) will end the proof of Proposition[3.7]
Third step: Hfo) regularity of hy. We start by proving that hy € H(?’o) ie.

+oo B 2 “+o0 +oo
> ‘k3<h1,wk>‘ =D 1D (per, o) (b, on) AnBrdii| < 400
k=1 k=1 n=1

From (3:2) and (3:30) it comes that there exists C' > 0 such that

Using (T:3) together with 2:13), (2:14), (2-13) and (2.16)), it suffices to prove that

“+o00 |+oo “+o00 |+oo

2 2 2 2
W=D |2 i) =212 7 O | <
Notice that )
A2, 2 +00
My < 22 (/\2/\2‘f'4>\2)) + z:ldmk
ntk
As

Ji:.o ( AZAk) 2 < 400
— A2(A2 4+ 4)%) ’
we only deal with the second term. Straightforward computations lead to

fdu:lf A = An n Ak + Ay
T L NN (A=A 2+ (A2

nAtk nAtk

The second term of this sum is easily dealt with. As A2 + (A + A,)? > (Ax + Ay,)? it comes that

—+00

A+ A
Z A2+ )\k + )\ Z A + )\
n#k
+oo  .n 1
= ;/"_1 Ak + ﬂ'szdx
. 1
2k

21
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(3.38)

(3.39)

(3.40)



Thus,

+oo —+oo
A+ A
. 341
2\ Ly | < (4D
- n#k

We now turn back to the first term of the right-hand side of (3:40). We have

Z)\2+ )\k— Z|)\k—)\| Z)\k— Z An —)\k
n#k:

n=k+1

Straightforward computations lead to

n=1 n
k—1 2k—1
1 1 1
= 2 ( it
J=1 j=k+1
1 2k—1 11
= 5 S
2k il k
In the same spirit, for N > k + 1
N N+k N—k
1 1 1 1 1
0> = — - — -
- Z A — A 2k Z j 2kn? j
n=k+1 j=2k+1 j=1
and thus,
N+k 2k
1 1 1 1
0< < Z.
Z An —)\k 2k7r2 Z 2km? Z j = 2km2 L~y
n=k+1 j=n—k+1 j=1
Finally,
+oo )\k . “+o00o 1 1 2k—1 1 1
< < 2 - — — 3.42
s RHED ST REE T () SE S ) PR
n;ék n#k

which belongs to £2(N*) as sz 'l

~r
J k— 400

In(2k — 1). From (3.40)), this proves that h; € H(30).

Fourth step: H? 0) regularity of hy. We end the proof of Proposmonby proving that hy € H? (o)

by (3:33),

2

+oo 5 2 —+oo +oo
> ‘k3<h2>@k>‘ =D D (uer, o) (B, on) AnBrdin| < +00. (3.43)
k=1 k=1| n=1

n#k

From (3:2) and (3:30) it comes that there exists C' > 0 such that
|<h750n>/\n62| < 07 Vn € N*.

Using (T23) it suffices to prove that

2 2
400 | +oo 400 | +oo
A2+ X2 +22)
23| = k_ ‘n < +o0. 3.44
T | %k =Nk

22



Notice that

AAZ+ 274+ 22)
()\2 + (>\k — )\n)2) ()\2 + (>\k + )\n)2)

N> N> N>

1 1
(v G VS W AL C R v )\n)2>
Mt el
A4+ M+ An)2 0 A2+ (A —A)?

( A+ A n 1 )
>‘2+(/\k+>\n)2 |>\k _)\n‘ .

From (3.47)) and (3.42), it comes that

i" i‘) AN+ A2 +22) .
£ 2 (2 + (= An)?) (A2 + (A + An)2) '

n;ék

This ends the proof of Proposition[3.7]

3.3 Domain of definition and continuity of the transformation

The regularity of the coefficients obtained in the previous section is sufficient to define a continuous oper-
ator 7' in the state space.

Proposition 3.9 The transformation T defined on X by (-) and (3 8 is linear continuous in X3 (0)"

Proof: Let (V! ¥2)T ¢ X3 (0y- From (2.17), using the Riesz basis property of Proposition it comes

1
that T' <$2> belongs to X3 0) if the following sequences,
Mol (02, 0,) A a2 (01 )
}L Bl neN* ’
1/2 1/2
M 2o (W on) M3 (9%, n)
B B ’
n n neN*

belong to £2(N*,R). From (3.2) and Remark it comes that, for every i, j, k € {1,2},

“+o00 2

>

n=1

—+o0

<Ccy

. . 2
M2l (W, 0,

04% i
ﬁk ﬁn3<qy ’SDTL>

— i||2
= CIw s

), =l @,

(0) (0)

Finally, we obtain

4 Invertibility of the transformation
This section aims at proving the invertibility of T'. As a first step, we prove in subsection {.1] that 7" is a

Fredholm operator. In subsection we prove that the analogous of (1.15) in finite dimension holds on a
certain functional space. This will be used in subsection (&.3) to obtain the invertibility of T'.
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4.1 Fredholm form

The goal of this subsection is the proof of the following result.

Proposition 4.1 There exists T:X &30) — X (30) invertible such that T — T is a compact operator.

The proof of this proposition rely on the study of the feedback law done in Proposition 3.7}
Proof: Let T be the transformation defined by || where the coefficients o’ and o2 are respectively
replaced by

=0, a= _{hon) Anf2.
(11, on)
From Proposition [3.7] (recall that h,, = (h, ¢,) is given in (3:30)), it follows that defining &, = od, — &,
we get that (&7, /n?), € (2(N*,R).
The computations done in the proof of Proposition show that T is a linear continuous operator of

We prove that T is invertible. For any (¥!, U2)T € X &y

S0 S a2 a2 /n\ @, hi2/a

From (T.3), (7). (3-2), and (3.30), we have that, for every j € {1,2}, (33 \3/%/(a2\/?)), € £°(N*,R).
Then, the Riesz basis property of Proposition|3.4|ends the proof of the invertibility of 7.
Finally, we prove that T — T' is compact using the Hilbert-Schmidt criterion, i.e., we prove that
2

w0 (0, =m0 (o)

From 1} and the definition of T it comes that

(1-7) () -3 [0 0 00)] (o)

n=1

too ra1 gl A2 2 12
an<\If7(pn> O‘n<\:[}7(pn> hn
w3 |l S (B),

n=1

n

~1
Q,

3
X(o)~

n=1

+00 2

>

n=1

< +o0. 4.1)

3
X{oy

Thus,
2

e (2257
Xy
| (o) ()]
An ﬁrll In An 5721 n X8,
an (a2/n?\ | an (hiE/N?
- H‘Anff% (g%/AW) MW (h%/Ai/ 2)

The first term is estimated in the following way

a2 (gl2/n?
)\nﬂrll 922/)\}/2

2

3
X (o)

2

3
X0y

2

<2 ﬁ(g’lf”’lﬁ‘ﬁz“im) ol ([
o . X{o) Anbi 0 XG0

S G (Y

A\ g2 /N xi,
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We proved in Lemma 3.3 that

+oo 12 1/2 3/2
3 In /)\n — n/An < oo,
2/
n=1 n X<30)
As (62 /n?),, € £?(N*,R), this gives, using (3:2), that
2
f OA[% (grl?/)\?lzm) < 400
1/2 .
n=1 )‘nﬁvlz g%Q/An/ X3
©
The term )
*f al <h12/)\1/2>
1/2 5
n=1 Anﬂ% h22/)\ / X3

©
is dealt with in the exact same way, ending the proof of Proposition 4.1}
d

Remark 4.2 Notice that the key point in proving the invertibility off is that for any n € N*, (h, ¢,,) # 0.
We also underline that the compactness of T — T comes from the fact that (&3, /n3),en< € €2(N*,R).
If we had pp1 € H (30) (this is not possible due to Hypothesis see [I51 Remark 2]), then from

we would have obtained that (od, /n?),en- € £2(N*,R). This would have led to the compactness of the
transformation T preventing its invertibility.

4.2 Operator equality
We prove that the formal operator equality
T(A+ BK) = AT — AT 4.2)

holds true on an appropriate functional space. Recall that K is defined by (3.26).

Remark 4.3 Notice that due to the regularity of the coefficients o, obtained in Proposition the oper-
ator K is not defined on X(Bo)' Otherwise, taking any (0,v)T € X(o with ) ¢ H,) for any s > 3 would

imply
(%)) 5 et

neN*
and therefore (a2 /n3),en+ € 12(N*,R) which is in contradiction with Proposition

= < 400,

> 20w, n)

neN*

Due to the previous remark, the functional setting for (#.2) to hold needs to be specified. Let us first deal
with K. Propositionimplies that, for every (U1, U%)T ¢ (0) x HY 0y,

L2\ 172
2 a 1 3/2 2
Z |an ﬂpn <\I’ 7<Pn>| < (Z nig ) H\IJ HH?O) +C Z )‘n/ |<\I/ 780n>’
neN* neN* neN*
ol |2 1/2 ) 1/2 , 1/2
< (z 4w e (2 ) (T hener)
nEN~ neNs T nEN~

<O i, +CI02 s,

This shows that K is well defined and continuous on H (0) X H ELO)
We now turn to A + BK. Recall that we expect

(A + BK) ($;> = <g OA> (i;) + K (g;) (NSO01> . (4.3)
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We define

\Ijl 5 s \Ill
D(A+ BK) = {(‘Iﬂ) € (H°NHY)) x Hpyy ; AV + K (\1:2> ppr € H(?’O)} :

and then define A + BK on D(A + BK) by @3). Note that (U1, U2)T € D(A + BK) if and only if
(U1, 9?) € (H® N H},) x Hfy and
2yl \Ill / /
AT (z) + 2K o2 | (x)pi(x) =0, z€{0,1}. 4.4)
We now prove the density of D(A + BK).

Lemma 4.4 The domain D(A + BK) is dense in X(30).

Proof:  Let us prove that D(A + BK)* = {0} in X{. Let (¢!, )T € D(A + BK)™.
First step: we prove that ¥' = 0,
Let k € N*. Consider ¢! := . From the asymptotic behaviour of a2 (see Proposition , there

exists N € N* such that Vn > N, a2 # 0. Therefore, setting ¢* = —a}.p, /a2 € H (50) implies that

which means that (#.4) is satisfied and (¢, $?)" € D(A + BK). Thus,

vl Pk 1 ap oo
0= alk =¥, - — (v
<<W) | (¢>> (% oedg, = g (5 endim,

(0)

)\i/2 1
= <lI/1a <Pk>H?0) - 7% ()‘i/Q <\I/27 @n>)

1
W (T Pk s

Indeed, since U* € Hy,, it implies that (n”(¥?, 90”>)n21v € (*(N*;R) and Remark (3-2) and (3:34)

imply that ()\2/204%/0[%) € °°(N*\ {1,..., N — 1}; R). We conclude that

(U, o1) s =0, VEeEN,

and thus U! = 0.

Second step : we prove that ¥? = (.
For all k € N*, let ¢* = ¢y, If there exists n € N* such that a;, # 0, then setting ¢* = —a2 ¢y, /al

1
) = 0 and therefore (¢!, $?)T € D(A + BK). Thus,

u! —afi%@ 2
= (7= n = \II - .
" <<‘1’2> ( Pr | =W,
X{oy

Otherwise, for every qbl cH (30),

implies that K (iz

Then we consider ¢! solution to
—A¢ = o (upr)
¢'(0) = ¢'(1) = 0.
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Since pp1 € H® N Hg, then ¢' € H® N HY and, since @A) is satisfied, (¢*,¢°)7 € D(A + BK).

Moreover, as U1 = 0,
\Ifl ¢1)> 5
0= : — (02, .
() (), = 0o,

©)
This proves that (U1, ¥2)T = 0.

Let us now turn our attention to the kernel system. More precisely, we prove the following.
Proposition 4.5 For (¥!,¥2)T € D(A + BK),

e ! :
T(A + BK) <W2> =(A-\T <W2> ;o in Xy

Proof: Let (0!, ¥2)T € D(A + BK). Then

o _AD2
_ 1
(A + BK) (\I/2> A‘Ifl + K ($2> o1
Therefore
pl ak gl a? 12
T(A+ BK) <q,2> = {1 <A‘If1 +K (qﬂ) 1, wn> + 5t (a2, w)} <§’2‘2>
neN* n n n
ak a? gl h12
+ [—% (AT, o) + B2 <A‘1’1 + K (W) N‘Pl»@n>:| <h§2>
! al /g2 a2 (h12
K (qu) Z { 1 (532 + 32 (hmﬂ (11, on)
neN* n n n n
al a? 12
3 [t + B )] ()
neEN* n n n

1 2
+) M [Z’f (U, o) + OZ?(\I/Q’%)} (%‘2)

a}z OJ% hl2 ]
+ )\n |:/372L <\P2a<pn> - E <\I’1a90n>:| (h??) , 1 X(20)7

n

using the expression of 7" in (2:17), the TB = B condition (2.I8) and the expression of K™ given in (3.26).
Moreover, by the definition of g%, h%/ given in (2.13) and by the relations (2.13), we have, on one hand,
using (2:17) once more,

(=207 (52): (3)) o =€ () 4 (5)) =20 () (7))o,
(r(8)- G,

2

1
=3 [;?@2,@0 - C;;L<\I/17%0n>:| (Mgn?s o) — Mgn®s o1))

al %
+ |:ﬁ721<\1/17 Qon> + Fg<\1123 §Dn>:| ()‘k<h7212a ka> - )‘<h71127 SOk>)
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ay, ay
[ - 61<\I]17§0n>:| /\n<g7111ﬂ0k>

2

an
ﬁ <\112’ ‘Pn>] An (hrlz17 ©k)

1 2
-3 [g;@%m - O‘Zwam} Anha?, 1)

n

2

Ay
?<\Ij25 Sﬁn>] )\n <g71L27 Sok>

- <T(A + BK) @;) ’ <%k> >(L2)2 '

On the other hand, using again (2.13)), 2.13) and 2.17)

Qwnr (32)- (), =0 o) (532)

\/

(L2)?

—%; [ﬂl 2 n) — gi(\lﬂ»wnﬁ (= Mg2%, o) — Melgn?, o))
+ [géwaw + SR 00)] (MO 00) = el )
= 5 [t e - G| woit o
- [g’?@l,m ¥ ﬁ@%@] Al o0
+ XR; U on) + 02 (U2, )] (pr, ox)

\Ill
:<T(A+BK) (@2> , ( 0 >> .
Pk (L2)2
Indeed, (2.13)) and (2.13)) imply

i (h?s k) = MR2E @) =M (bl on) + Baluer, or)

ﬁ2
= ﬁl L(g2?, o) + Balupr, or).

Consequently, by the definition of D(A + BK) and by the continuity of 7" from X ) into itself, T'(A +
BK) = (A — AT holds in X (30). Notice that all the previous infinite sums are converging due to the

regularity assumptions on the functions of D(A + BK).
O
We conclude this section by noting that, following Proposition if (U1

1
UHT € D(A+ BK), then T ($2> € X(50). Indeed,

\Ill \:[/1 \:[/1
where the right-hand side of the last equation is in X3 (0):

4.3 Invertibility

Let us now turn to the invertibility of 7" and prove the following result.

Proposition 4.6 The operator T is invertible from X ?0) into itself.
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Proof: In the previous section, we have proven that T is invertible and T — T is a compact operator.
Consequently, the index of 7" is equal to zero. Thus, it is sufficient to prove that Ker 7* = {0} to show the
invertibility of 7.

Let us rewrite the operator equality (4.2) under the form

T(A+ BK 4+ M+ pl) = AT + pT = (A + pI)T, 4.5)

where p € C will be chosen later. Assume for the moment that p € C is such that
(A + pI + BK + M) is an invertible operator from D(A 4+ BK) to X(?’O), (4.6)
(A + pI) is an invertible operator from D(A) to X (30). 4.7
Note that here, the vector spaces D(A+ BK), D(A) and X (30) are complexified. Then, from (#.3), one has
(A+pI)'T =T(A+ BK + X + pI)~". (4.8)

Consider (x',x*)" € Ker T*. Then, for all (¢", ¢*)T € X7, we have

0 = ((A+pD)~'T <£;> — T(A+ BK + M + pI)~! (ii) , <X1> )xs,

2
¢1 1 X ¢1 Xl
= () s on ()i, — (B Az o0 (5). 7 (% ),
1 1
= (%) @+ (5 ),

Thus the space Ker T*, which is of finite dimension, is stable by ((A + pI)*)~!. Hence, if
Ker T* # {0}, 4.9)

((A+ pI)*)~! has an eigenfunction in Ker 7. This eigenfunction is also an eigenfunction of (A*)~*.
Thus, if #.9) holds, there exists v € C and (x*, x?)" € Ker T* \ {0} such that

1 CA-1.2 1
(A1)~ <§2> = ( Aﬂ;& ) =v @2) . (4.10)

Hence, for every j € N*,

_ 1 B 1
(XY ) = v(—ATINE ) = ;V<x2,<pj> = XA ) = —p<x1,wj>~ (4.11)
Y j
Therefore, )
(v + 32) X 95) = 0. (4.12)
J

Note that x! = 0 together with (@TT) implies x? = 0. Hence, since (x!, x?)T # 0, x! # 0, which with
(@12) implies that there exists one and only one k& € N* such that

1
szti/\—, ! = eron, e, € C\{0}.
k

Furthermore, from {@.10), we obtain x? = Ficky. Finally, we have, by the TB = B condition (2.18)),

it AR (ip1s o) =(por, X my s,

(0N %)) e

- 11 ’ X2 (Ho)Qv(H(o))z
0 X
0 . (X

:<<us01> o <X2)>(H3)2’(H<5°>)2

=0.
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Since (w1, pr) # 0, we conclude that ¢, must be zero, which implies that (4.9) does not hold and
therefore Ker T* = {0}.

It remains to prove the existence of p € C such that and hold. Let k := p + A\. Applying
A~1to A+ BK + «lI yields the operator

I+ A'BK +kA™' : D(A+ BK) — D(A), (4.13)

where A™'B = (A~ (uy1),0)T. Let us prove that the set of k € C such that I + A™'BK + kA1 is
invertible from D(A 4+ BK) to D(A) is non-empty.
First, if K(A~1B) # —1, then the operator [ + A~*BK : D(A+ BK) — D(A) is invertible and the
proof is over. Indeed, to solve
(I+ A 'BK)y = f, (4.14)

for any f € D(A), one applies K to @I4) (K(¢)), K(A™'B) and K(f) are well-defined in this case)
leading to
K@)+ K(A™'B)) = K(f).

Since K (A™'B) # —1, we use the expression of K (¢)) in {#.14) to obtain

AT'BK(f)

Y= T RGABy

Suppose then that K(A~!B) = —1. It corresponds to the case where A~'B € D(A + BK). Notice that
0 is an eigenvalue of I + A~!BK of algebraic multiplicity 1. Then, from [47]], there exists an open set
) C Cof 0 € C such that there exist an holomorphic function x € Q — A(x) € C and an holomorphic
function k € Q — z(k) € D(A + BK) such that

2(0)= A~'B = (A_lf)“‘pl)) :
(I+A7'BK + kA (k) = M)z (k). (4.15)

If A(k) # 0 in a small neighborhood of 0, then I + A BK + xA~! is invertible for « close to 0 and the
proof is over. Suppose then that A(x) = 0 in a small neighborhood of 0. In this case, consider the power

serie expansion of z around 0
AL - xh
. < 8#@1)) Jrk 1Hk <x§) _

Notice that since z € D(A + BK) and A~'B € D(A + BK), we obtain that (z},2%)" € D(A). At the
zeroth order, {@.13) writes

(A‘lé/wl)) N (A‘léﬂwl)) K <A‘1(Ou<p1)> _ (8) ’

from the hypothesis K (A~!B) = —1. At the higher order, we have

T A=Y (upr) xh 1zt )\ (0
(é)*( 0 K x% + KA w’%_i ={g) (4.16)

where (2§, 73)T := (A7 (uep1),0) 7. Taking K of {@#.16) yields

1
K (Al (ig)) =0, Vk>0.
k

By successively taking A~! and K of (@.16)), we obtain

1
K (A" @5)) =0, Vk>0, Vn>l1. 4.17)
k
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Therefore from @.16) and
KA 12 < >> [e% nA 1=2n y Pn
( () Z (101)s Pn)

~3 (-1 1 {191, n)
- j 1+27
jEN Aj '

=0. (4.18)

Consider the entire function
—z/ )\?

_ 1 (o1, pn)e
= Z%‘#-

JEN J

From (#.18), we obtain that H(P)(0) = 0 and therefore H = 0. By letting = — —oo and by Hypothesis
we deduce that
al=0, Vj>1

In the same fashion,

K <A‘2” ( (01) )) DA (=" AT (1) on)

JEN

=3 (ot B

JEN J

=0. 4.19)

Consider the entire function

From (@.19), we obtain that H (P)(0) = 0 and therefore H = 0. By letting z — —oo and by Hypothesis
[T1] we deduce that

af =0, Vj>1.
From Proposition we know that ajz- # 0, Vj > 1. Hence a contradiction either with K(A~'B) = —1,
which implies the invertibility of I + A~'BK + kA1 for all k € C, or with the fact that A\(x) = O in a
small neighborhood of 0, which implies that I + A~! BK + kA~" is invertible in a small neighborhood of

0. Since (A+ pI) has discrete eigenvalues, it is possible in those two cases to choose p such that (@.6)-(&.7)
are satisfied.

5 Well-posedness of the closed-loop linear system and rapid stabi-
lization

This section ends the proof of Theorem [I.5] Due to Remark [{.3] the feedback K is not well defined for
functions in X g’o). In subsection we give a meaning to the solution (U!, ¥2)T of the closed-loop
system

! 0 —A\ (¥ ! 0
o (xp?): A0 (@2>+K<\Iﬂ> <(usol)(x)>’ () & 01X 0., 5.0

1 , \IJZ(t, 0) = \1’2(t, 1) =0, te (O,T),
\Ill(()vx) = \Il(l)(x), \IIQ(O,;c) - \P%(I)v T e (07 1)

by proving that A+ BK generates a C°—semigroup. Finally we conclude to the exponential stability using
the operator equality of Proposition[4.5]and the invertibility of the transformation 7.
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5.1 Well-posedness of the closed-loop linear system
Let us first show,
Proposition 5.1 The operator (A + BK) defined on D(A + BK) generates a C°—semigroup on X (30).

1
Thus, there exists a unique solution C([0, T}; Xg’o)) of (L29) withv(t) = K (328’ ;)

Proof: We prove that (A + BK) is the infinitesimal generator of a C®—semigroup on X (30).
First step. The density of D(A + BK) in X (30) was proven in Lemma
Second step. Let us prove that (A + BK) is closed. Let (v},%2)T € D(A + BK) such that

1 1 )
(98) e (02) - inxi,

1 1
(A+ BK) @’g) R (22) , in Xgo).

wl _Aw%
n _ 1
(4+BK) (uéi) “law+x <w2> ner

We have

Hence

—AYZ — — AY? in H}

n—4oo

A2 1 g3
Ay n_>—+>ooq5 , in Hig),

1
and, consequently, —Ay? = ¢!, y? € HJ and 9?2 - Y2 in H(50). Therefore, K (¢ ) is well-
n—-—+0o0o

(0) P>
defined and
Z aj (b, — Pt or) + (Wi — 9%, o)

i) - ()| -
K ( - K =
‘ vn v keN*

1/2 1/2
< 04,1C ? 1 1. Ozi ’ 2 2 0
<[> (% lon ="z, + | D (5 ln =N, 532 0

keN* keN*

‘We obtain

1
Ay, + K (55‘) per —o 6% in Hig),

1 1
Ayl + K (%) por — A+ K (52) jpr in HE.

1
We conclude that Ayt + K <z2
Third step. Let us now prove the dissipativity of (A + BK). Since T is invertible from X ?0) into itself,

we define the norm || - |7 := ||T - HX?O)’ which is equivalent to the X(30) norm. We denote (-, )7 the

) pp1 = @2 and therefore (¢!, 2)T € D(A + BK).

associated inner product.

Consider (1/!,4?)T € D(A + BK). From Proposition we have, since T’ (Z;) € X{py»
1 1 1 1
(a+85) () (52 e =ras 51 (52) 7 (12 ),
1 1 1
-r (2). 7 (32w, =2 ()

2

11[})
—_)\ 2
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Consider now the dissipativity of (4 + BK)*. First, let (¢!,4?)T € D(A + BK) and (¢!, ¢*)7

X3 . We have
(A+ BK) (i;) , (2;) )r =(T'(A + BK) (;‘;) T (23) )xs,

(0):
~(52) = an ()

which implies that D((A + BK)*) = {((bl )T < ) € X5 . Then, for (¢', )T
D((A+ BK)*), we have

(B8 () (5 e =t an (%) (5 )
e (2) @,

<0.

U)

Thus from the Lumer-Philipps theorem (see e.g. [43] Corollary 4.4]) we obtain that A + BK generates
a C°—semigroup on X7
d

5.2 Proof of the rapid stabilization

This section is dedicated to the proof of the main result, the rapid stabilization stated in Theorem [I.3]
Proof:  To begin, let us assume that (U}, ¥2)T € D(A + BK). Then, from Proposition we get that
the associated solution of (1.29) with the feedback law v(t) = K(W!(¢,.), ¥2(¢,.))T is given by

Ul(t,. vl
(3aly ) = e (3h). 52)

1 1
Let (22 Ei’ ;) =T (52 Ei’ g) . Using the equality of operators given in Proposition it comes that

i (@6) =75 (w0)

Thus, we obtain the following exponential stability of (£1(¢,.), £2(¢,.))T
|(&6) (©) r(ud)
£ (t7 ) X3 EO X3 ‘1/0
From the continuity and invertibility of 7" in X (see Proposmon it comes that

|G, =1l

) (0)

1
< T I e (‘I’)
o X0y

_ e—At

3
X{o)

(5.3)
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Finally, let Wo € H{ . Then, (R(¥o)
IJ(U))T € X (30). The stability estimate |b and the density proved in Lemma ends the proof of
Theorem

U
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A Simplified Saint-Venant Equation Example

Let us provide an explicit transformation (7', K') which allows to stabilize exponentially rapidly the sim-
plified Saint-Venant equation

hy + v, =0, (t,z) € (0,7) x (0,1),

ve + hy = —ul(t), (z,t) € (0,T) x (0,1), A1)
h(t,0) =v(t,1) =0, te(0,7T),

h(0,z) = ho(z), ©(0,z) =vo(z), =z €(0,1),

which is controllable in time 7" > 2.
Let H := hy and V := v,. Then, the equation on (H, V') writes

H +V, =0, (t,z) € (0,T) x (0,1),
Vi+ H, =0, (t,z) € (0,T) x (0,1),
H(t,1) = —u(t), te (0,7),
V(t,0) =0, te (0,7),
H(0,2) = Ho(z), V(0,2)="Vo(x), z€(0,1),

(
with Hy = (hg). and Vg = (vg),. Consider now R' := H + V and R? := H — V. Then

R} + R =0, (x,t) € (0,T) x (0,1),
R? — R2 =0, (x,t) € (0,T) x (0,1),
(R + R2)(t,1) = —2u(t), t e (0,7),
(R' — R?)(,0) = 0, t € (0,T),
RY0,2) = Ri(z), R?*(0,z) = R%(z), z€(0,1),

with R} := Hg + Vp and R3 := Hp — Vj. Let us consider a transformation which maps (R!, R?) to a
solution of a target stable system, that is, R' := e~** R/ cosh(\) and R? := e** R?/ cosh()\), for A > 0.
A straightforward computation leads to

R+ R+ AR' =0, (z,t) € (0,T) x (0,1),
R2—R2 4+ AR*=0, (z,t) € (0,T) x (0,1),

(R' + R2)(t,1) = —2e~*(u(t)/ cosh()\)) + 2 tanh(A\)R2(t, 1), t € (0,7T) (A.2)
(R — R2)(t,0) =0, te (0,7),

RY0,2) = R{(z), R?*(0,x) = Ri(z), z € (0,1).

Hence, the exponential stability of (A.2) is obtained if —2e~*u(t)/ cosh(\) + 2tanh(\)R?(t,1) = 0. In
terms of the original variables, it implies that

0 = — 2e *u(t)/ cosh(\) + 2tanh(A\) R?(t, 1)
= —2e*u(t)/ cosh(A) + 2 tanh(\) (g (t, 1) — v,(t, 1))
= —2eMu(t)/ cosh(\) — 2tanh(N\) (v (t, 1) + u(t)),
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that is, u(t) = — tanh(\)v, (¢, 1).
The target system of (A.T) is given by
hy + Ty + A = 0, (z,t) € (0,T) x (0,1),
Uy + o + AT =0, (z,t) € (0,T) x (0,1), (A3)
h(t,0) = (t,1) = 0, te (0,7),
1(0,2) = ho(z), 5(0,x) = Ty(x), x € (0,1),

One can recover an explicit expression of the transformation (T, K') leading to this target system using

ho + Uy = (hy + vy)/ cosh()),

(A.4)
hy — Uy =€ (hy — ;) / cosh(),
which boils down to

he = (cosh(Az)hy — sinh(Az)vg) / cosh())
Uy = (—sinh(Ax)h, + cosh(Az)v,) / cosh(A).

Using the boundary conditions, one obtains the explicit transformation 7'

%(z) :@ {cosh()\x)h(x) - A /090 sinh(Ay)h(y) dy — sinh(Ax)v(x) + A /01’ cosh(Ay)v(y) dy
= m { /0 (02=y cosh(Ay) — AL,z (y) sinh(Ay)) h(y) dy

1
+ [ (N0 ) costiO) = 6oy sinh ) o) dy} ,
0

v(x) {sinh(/\)h(l) — sinh(Az)h(z) — / A cosh(Ay)h(y) dy

1
~ cosh()\)

+ cosh(Az)v(z) + )\/ sinh(Ay)v(y) dy}

:WI()\) {/0 (6y=1 sinh(A) — 0y, sinh(Ay) — )\]1($71)(y) Cosh(/\y)) h(y) dy

1
+ /0 (ML (z,1)(y) sinh(Ay) + 65—y cosh(Ay)) v(y) dy} .

Moreover, the explicit transformation K writes

u(t) = tanh(\) /O 5 _yo(t,y) dy.

If one writes, in the same spirit as (2.6)), the kernels equation for (A-T)), then one obtains that the kernels of
the transformations (7', K') exhibited here are the solution of this system. One also verifies that, thanks to
the factor 1/ cosh(\), the TB = B condition is verified by the transformation 7". Getting back to (A-4)
one sees that the inverse of 7" can be computed explicitly performing similar computations.

Moreover, the Fourier coefficients of the kernels system associated to (A.T) have the same expression
as (2.13), where the eigenvalues/eigenfunctions are replaced by those associated with (A.T)) and the Fourier
coefficients of the control operator pup; are replaced by the one of (A1), that is 1.

It is also noticeable that the Fourier coefficients of the kernel a2 are

a? = (=1)"(wn) tanh()),
which is adequate with the perturbation argument used in Proposition[3.7]to obtain the Fourier coefficients
from the B = B condition. One notice that, for (A1), o' = 0. Whether ! = 0 or not in the case of the
linearized Schrodinger equation cannot be verified with our analysis.
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B Quadratically close families

This section is devoted to the proof of Lemma3.5]
Proof: Lets =2 or 3. To simplify the notations, let,

C = CuBulmer on), = Al Ba e, en),
where ¢/ and d*, are defined by (Z.16) and 3/, are defined by (3-1).

First step: let us prove that

3 ( on/ N ) ( g2 AT ) :
o 22 /4 (s—2)/2
neN- 0 G [ X0y

First, by denoting & = m + n, we have using in particular (T.3), (T.3), (Z:13) and 2:13)

< +00.

2 s/2 2
gl KT S o
)\5/2 )\(572)/2 )\(s 2)/2
neN* n n neN* keN*\{n}

-y (X +x ) o

neN* 0<|m|<n  n<m
meZz meN*

2 2
— )\ Z ( Z Z > n+m ‘ )‘2 +4)‘$L))‘n+m‘ ’</“P17(Pn+m>’
nel No<lml<n  n<m Onn-+m(A) A (o1s on)
meZ m

oo (Z o2 )(%e)

neN* 0<|m|<n n<m
mez meN™

A2 4422 |2

§nn+m(>‘)

The two sums of (B.T) are dealt with separately.

Consider first the case where 0 < |m| < n and m € Z. We have, using in particular (2.14)

(A2 4+422) 1 A4 4nt
) 2 2
Onn+m(X)  m*n <:‘721 + (72 + 72 (1+12)) ) ((mn)z + (272 + 272) )
1 A4 4nt

- m2n2 7-[-8 ?
and ,
/\n+m = (1 + ﬂ) /\n < 4/\n-
n

Thus, for the first term of the right-hand side of (BT))

> 2 (n+m> ’(/\ +4>\ <cy N m4n4<+oo

é§
nEN* 0<|m|<n e nEN* 0<|m|<n
meZ meZ

Consider now the case where m > n. We have

(A2 +4X2)  nt A%+ 4r

Spntm(A) md <>\2 + ((1 + %)27r2 + (2)2W2)2) (T”\Ti + (7r2 + 2%7‘(2)2)

m2

Sﬁ/\2+4ﬂ4

m8 w8

and ) ) )
2

b _ ()t g g2t
m

A, n2 n2 n2’
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Thus, for the second term of the right-hand side of @) yields,

- 2 8—2(s—1) 1
>y () [l eey y (1)
me
neN* n<m ( O (A neN* n<m m
meN* meN*
11
neN* nim
meN”
Then inequalities (B:1), (B:4) and (B.7) imply that
122
SIS - | <o (B.8)
A A s
neN* n n Heyy

S/2~22 2

)\(S 2)/2

2

The other sum is treated in a similar way. Indeed,
932

S ey

neN~ |l An H{,y  neN* keN~

Y () (Rm) el s el

neEN* *0<|m|<n n<m neN*
me7z meN

X ) ( DS ) ( n+m>s N2 PN =2+ A2 2‘<U‘P17§0n+m>'2
neN* No<|m|<n  n<m Onntm(A) An (11, on)
meZ meN
()
neN*
n+m STEINZ 4 ANZ PN =2, A2)

neN* 0<\m|<n n<m
me7z meN

Consider first the case where 0 < |m| < n. We have

)\ /\2 )\2 3 2 3
‘ ntm T An < o |;n| . 4 (4 + 6 +4 (@) 4 <@> >’ < Cn|m)| (>\2 + 157T4) .
An n n3m n n n

Using (B.2), it comes that
2

s—3 | \2 2 212 s—3
A2 4402 17 N2 + Az 1
n+m + § § n+m
Z Z ( > ) (\) 7;\ - ¢ < ) n2m?2’
n€EN* 0<|m|<n nnm " n€EN* 0<|m|<n
meZ meZ

This sum is clearly finite for s = 3. For s = 2, we notice that the previous series is the general term of a
Cauchy product. Indeed,

ZAHms_gl_Zil
An n2m? m? (n+m)?

0<|m|<n 0<|m|<n
meZ meZ
n—1 1
<2 —
<2y (n e DO
m=1 mGN*
Thus, for s € {2, 3},
s—3 2 2
N2 AN TN =2 4+ N2
n+m n+m n
. B.10
2 2 ( ) Sumem (V) Ao e 10

neN* 0<|m|<n
meZL
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Consider now the case where m > n. We have

oz ezl mt (- T+ (@) Comt
An - n2m? = p2
and
/\n+m 7
e <1
(5) <
Using (B-3), it then comes that,
> ¥ () R et se s 3 ()
nEN* n<m Onn+m () An - neEN* n<m n? m®
meN® meN™
11
<c> > —— <+ (BN
=
Then, inequalities (B29), (B10) and (B:1T)) imply that
g22 2
Sl < +o0. (B.12)
(s—2)/2
neN* An HFO)
Together with (B:8) it ends the first step.
Second step: let us prove that
S [t ) - (i )|
s/2 | 7| 22, (-2)/2 < +oo.
nEN* Son/)\n hn />\TL

X{oy

This proof is very similar to the first step. Thus we give the expressions of the different sums but we
do not detail every computation:
2

neN* HE)  neN* keN*

-2z Z)("*"‘)

neN* Mo<|m|<n 7'<m
mEZ

B2 3/2d12 2

e

52/2

nner ‘ E

neN*

2 2 2
=\ ( > > ) e | X4 A0 1) e X 4 g = ) ‘<M<P1a<ﬂn+m>‘
neN* *0<|m|<n n<m nn+m()\) A2+ 2A?L </—“1017 @n>
meZ me
A2\, |
+ Z )\2 + )\2
neN*
< +o00,
and
2 s/2 7 2
3 || e DY NP
)\s/2 )\(3—2)/ /\(3—2)/2
neN* n n neN* keN*\{n} | 7'1
-y (¥ +¥ ) M|
neN* 0<|m|<n n<m
meZ meN
2 2 2
=\ Z < Z Z > n+m A 44X, PN A An o 40 ‘<H8017<Pn+m>
nel* No<iml<n  n<m Onntm(A) A2+ 207 (1p1, on)

meZ meN
< +o0.
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This completes the proof of Lemma 3.3]

C Rapid stabilization of the linearized system

In this section we detail how Theorem|[I.4]can be obtained from the results developed in this article.
Let ¥y € Ho and ¥ the associated solution for a control u. Then, if we define, W(t,-) := W(¢,-)eM,
it comes that W satisfies

0,0 = —AV — \U — u(t)pgr, ()€ (0,T) % (0,1)
W(t,0)=U(t,1) =0, te(0,7) (C.1)

\II(O’ ) = Vo, HARS (0, 1)
and [9(¢..) 15, = 906, s,

Rapid stabilization of (C.I). Notice that system (C.IJ) is almost identical to (I.10) except that the spec-
trum of the underlying operator is shifted by A;. This modifies the state space. Indeed, for every ¢t > 0,
0= R(U(t,.), 2u(t,.)) = ROV(E,.), o).

Thus, ¥ € Ho. Notice that due to Theorem one gets that system (C.1)) is exactly controllable in H,.
The rest of the analysis is barely modified. For instance, the Riesz bases have instead the form

12 h12
s={(8) =2t { ) =

where, for example,

2, = N 20 = A)(An — M) :
9n (33) = kX::l ()\2 ¥ ()\k _ )\n)g)()\z + ()\k + )\n — 2)\1)2),8n<,u§01,§0k>§0k(x)7

with 8% chosen such that (g}, 0, = 1/A,.

This leads to the existence of a feedback law K <%(\E)> such that, for the closed-loop system

(D)
<o (B

X(30) (0)

Rapid stabilization of 1| Due to the previous relation, W(¢,.) = (¢, .)e’ 1 it comes that if W is the
solution of (1.8)) with the feedback law

ot) = (cos()\lt)?R(\I!(t, ) — sm(Alt)g(\y(t, :))> ’
then
1t s, < Ce_)\t”\IJOHH(SO)’
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