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Extended Abstract

The 4 th Joint International Conference on Multibody System Dynamics May 29 -June 2, 2016, Montréal, Canada Nonsmooth modal analysis for a one-dimensional finite bar subject to unilateral contact using the Wave Finite Element Method Carlos Yoong 1 , Anders Thorin 1 and Mathias Legrand 1 1 Department of Mechanical Engineering, McGill University, carlos.yoong@mail.mcgill.ca, anders.thorin@mcgill.ca, mathias.legrand@mcgill.ca This contribution suggests a numerical procedure, involving the Wave Finite Element Method (WFEM), able to perform nonsmooth modal analysis [START_REF] Nonsmooth | Nonlinear modal analysis of mechanical systems with frictionless contact interfaces[END_REF] of a frictionless unilateral contact problem defined on a finite one-dimensional domain, as depicted in Fig 1.

The WFEM is a shock-fitting method which consists in locating and tracking shock waves propagating in a mechanical system [START_REF] Shorr | The Wave Finite Element Method[END_REF]. In this approach, the space domain is discretized into cells of length x D x iC1 x i and time is discretized into intervals of length t D t nC1 t n , where i is the index of the cell interface and n is the index of the time step. Then, a system of equations is derived for the calculation of the state (defined here by the stress and velocity v) of the cells at each time step t n . The simulation of an elastic wave propagating with a given finite speed c is performed by iterating these relations in discrete time with a prescribed time interval t D x=c. This method accurately captures potentially discontinuous wave fronts propagating at a finite speed. For an unforced system without unilateral constraints, the WFEM yields the typical system of equations

Q .nC1/ D AQ .n/ (1) 
where Q .n/ D OE .n/ v .n/ > is the state of the system at time step t n . The matrix A 2 R 2N 2N , where N is the number of cells, embeds the dynamics of the system. Using Eq. ( 1), Q .n/ can be directly expressed in terms of the initial conditions

Q .0/ Q .n/ D A n Q .0/ (2)
where A n is the matrix A to the power of n. Consider the free-fixed bar in Fig. 1: it is subject to a unilateral contact constraint. Once the WFEM discretization is performed, the contact constraints are enforced using the concept of floating boundary conditions [START_REF] Shorr | The Wave Finite Element Method[END_REF], which loosely speaking, can be regarded as a conditional switch between free and fixed boundary conditions when a penetration is detected during the iterative process. From Eq. ( 2), two types of matrices A shall then be distinguished: A f for the free-fixed condition (no contact) and A c for fixed-fixed condition (contact). T -periodic solutions are sought using the condition Q .n T / D Q .0/ where n T t D T . The solution is assumed to be composed by r consecutive steps in the free phase and p consecutive steps in the contact phase, leading to the following periodicity condition

Q .n T / D A p c A r f Q .0/ (3) 
where n T D r C p. The durations of free and contact phases corresponding to periodic motions are not known a priori; therefore, the values of r and p leading to solutions are unknowns. Also, note that periodic solutions with more than one contact phase per period are not targeted with the proposed formulation. Periodicity condition in Eq. ( 3) simplifies to

A p c A r f I Q .0/ D 0: (4) 
The initial condition Q .0/ satisfying Eq. ( 4) is called a "potential solution". Potential solutions are admissible solutions of the formulation if they satisfy the following additional conditions:

COND1: Point of contact must not penetrate the wall during periodic motion: x

.n/ 1 6 d; n D 0; 1; : : : ; r COND2: Point of contact cannot separate from the wall during contact: x

.n/ 1 D d; n D r C 1; r C 2; : : : ; r C p COND3: Contact interaction must be compressive: .n/ 6 0; n D r C 1; r C 2; : : : ; r C p In the above conditions, x

.n/ 1 is the displacement of the contact node at time step t n , d is the initial gap between the bar tip and the rigid wall, and is the contact force.

As seen from Eq. (4), a periodic solution is necessarily an element of the kernel of the matrix S T D A p c A r f I, i.e. Q .0/ 2 ker S T . The dimension m of ker S T depends on the combinations of r and p. A non-trivial solution may exist only if det.S T / D 0, hence only the combinations of r and p that correspond to m > 1 are of interest. Given a basis fe 1 ; e 2 ; : : : ; e m g of ker S T , Q .0/ reads

Q .0/ D ˛1e 1 C ˛2e 2 C : : : C ˛me m (5) 
Initial state Q .0/ is completely determined by the unknown coefficients ˛1; ˛2; : : : ; ˛m. The state Q .n/ is calculated at each time step through Eq. ( 2); hence this state can be expressed in terms of the coefficients ˛1; ˛2; : : : ; ˛m. A solution is obtained by calculating the coefficients that satisfy the above necessary conditions. It has been observed that when dim.ker S T / D 1, only one solution satisfies all the conditions. Additionally, by changing r and p, it is possible to find other admissible solutions in the vicinity of an existing solution. A continuum of periodic orbits then emerges: it defines a nonsmooth mode of vibration (NSM) [START_REF] Thorin | Nonsmooth modal analysis: Investigation of a 2-dof spring-mass system subject to an elastic impact law[END_REF]. The displacement x 1 is represented in Fig. 2 

Fig. 1 :

 1 Fig. 1: Elastodynamic problem with unilateral contact constraints and free-fixed boundary conditions

  (a) for three solutions belonging to the first NSM (continuation of the first linear modeshape of the bar) whose Frequency-Energy branch is shown in Fig.2(b). The periodic solutions are traveling waves with discontinuous wave fronts interacting with each other and the boundaries.
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 1a Periodic displacements of the contacting node

Fig. 2 :

 2 Fig.2: First nonsmooth mode of the free-fixed bar subjected to unilateral contact constraints. Energy is normalized with respect to the energy of the grazing solution