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Aims and Scope 

Neutrosophic theory and applications have been expanding in all directions at an 
astonishing rate especially after the introduction the journal entitled “Neutrosophic Sets 
and Systems”. New theories, techniques, algorithms have been rapidly developed. One 
of the most striking trends in the neutrosophic theory is the hybridization of 
neutrosophic set with other potential sets such as rough set, bipolar set, soft set, hesitant 
fuzzy set, etc. The different hybrid structure such as rough neutrosophic set, single 
valued neutrosophic rough set, bipolar neutrosophic set, single valued neutrosophic 
hesitant fuzzy set, etc. are proposed in the literature in a short period of time. 
Neutrosophic set has been a very important tool in all various areas of data mining, 
decision making, e-learning, engineering, medicine, social science, and some more. 

The Book “New Trends in Neutrosophic Theories and Applications” focuses on 
theories, methods, algorithms for decision making and also applications involving 
neutrosophic information. Some topics deal with data mining, decision making, e-
learning, graph theory, medical diagnosis, probability theory, topology, and some more. 

Florentin Smarandache, Surapati Pramanik 
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Preface 

Neutrosophic set has been derived from a new branch of philosophy, namely Neutrosophy. 
Neutrosophic set is capable of dealing with uncertainty, indeterminacy and inconsistent 
information. Neutrosophic set approaches are suitable to modeling problems with uncertainty, 
indeterminacy and inconsistent information in which human knowledge is necessary, and human 
evaluation is needed.  

Neutrosophic set theory was proposed in 1998 by Florentin Smarandache, who also developed 
the concept of single valued neutrosophic set, oriented towards real world scientific and 
engineering applications. Since then, the single valued neutrosophic set theory has been extensively 
studied in books and monographs introducing neutrosophic sets and its applications, by many 
authors around the world. Also, an international journal - Neutrosophic Sets and Systems started its 
journey in 2013.  

Single valued neutrosophic sets have found their way into several hybrid systems, such as 
neutrosophic soft set, rough neutrosophic set, neutrosophic bipolar set, neutrosophic expert set, 
rough bipolar neutrosophic set, neutrosophic hesitant fuzzy set, etc. Successful applications of 
single valued neutrosophic sets have been developed in multiple criteria and multiple attribute 
decision making. 

The present book starts by proposing an approach for data mining with single valued 
neutrosophic information from large amounts of data and then progresses to topics in decision 
making in neutrosophic environment and neutrosophic hybrid environment, e-learning, graph 
theory, medical diagnosis, neutrosophic models in sociology, topology, and some more.  

The book collects thirty original research and application papers from different perspectives 
covering different areas of neutrosophic studies, such data mining, decision making, e-learning, 
graph theory, medical diagnosis, probability theory, topology, and some theoretical papers. This 
book shows examples applications of neutrosophic set and neutrosophic hybrid set in multiple 
criteria and multiple attribute decision making, medical diagnosis, etc.  

The first chapter presents the two essential pillars of data mining: similarity measures and 
machine learning in single valued neutrosophic environment. It shows that neutrosophic logic can 
perform an important role in data mining method.  It defines single valued neutrosophic score 
function (SVNSF) to aggregate attribute values of each alternative. It also presents an approach of 
data mining with single valued neutrosophic information from large amounts of data, and furnishes 
a numerical example for the proposed approach. 

The second, third, and fourth chapter deal with decision making in neutrosophic hesitant fuzzy 
information.  

The second chapter presents a class of distance measures for single-valued neutrosophic hesitant 
fuzzy sets and discusses their properties with parameter changing. It also provides multi-attribute 
decision making (MADM), an illustrative example, and a comparison with other existing methods. 
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The third chapter presents an axiomatic system of distance and similarity measures between 
single-valued neutrosophic hesitant fuzzy sets. It also proposes a class of distance and similarity 
measures based on three basic forms: the geometric distance model, the set-theoretic approach, and 
the matching functions. The distance measure between each alternative and the ideal alternative is 
used to establish a multiple attribute decision making method under single-valued neutrosophic 
hesitant fuzzy environment. It provides a numerical example of investment alternatives to show 
the effectiveness and the usefulness of the proposed approach.  

The fourth chapter extends grey relational analysis (GRA) method for MADM by defining score 
value, accuracy value, certainty value, and normalized Hamming distance of single-valued 
neutrosophic hesitant fuzzy set (SVNHFS). It also defines the positive ideal solution (PIS) and the 
negative ideal solution (NIS) by score value and accuracy value. It proposes GRA method for 
multi-attribute decision making under single valued neutrosophic hesitant fuzzy set environment. 
It also provides an illustrative example to demonstrate the validity and the effectiveness of the 
proposed method. 

The fifth chapter exposes TOPSIS method for MADM problems with bipolar neutrosophic 
information. The Hamming and the Euclidean distance functions are defined in order to determine 
the distance between bipolar neutrosophic numbers. The bipolar neutrosophic relative positive 
ideal solution (BNRPIS) and bipolar neutrosophic relative negative ideal solution (BNRNIS) are 
also characterized. The applicability of the proposed method is verified and a comparison with 
other existing methods is provided. 

The sixth chapter presents TOPSIS approach for multi-attribute decision making in refined 
neutrosophic environment.  An illustrative numerical example of tablet selection is provided to 
show the applicability of the proposed TOPSIS approach. 

The seventh chapter presents several new similarity measures based on trigonometric Hamming 
similarity operators of rough neutrosophic sets and their applications in decision making. Some 
properties of the proposed similarity measures are established. Also, a numerical example is given 
to illustrate the applicability of the proposed similarity measures in decision making. 

The eighth chapter develops a fuzzy single valued neutrosophic set with entropy weight based 
MADM technique. Its feasibility for automated guided vehicle (AGV) selecting and ranking of 
material handling systems for a given industrial application is examined. 

The ninth chapter makes a connection between decision making in game and real life. 
The tenth chapter develops two new methods for solving multiple attribute decision making 

(MADM) problems with interval valued neutrosophic assessments. It also discusses an alternative 
method to solve MADM problems based on the combination of angle cosine and projection method. 
Finally, an illustrative numerical example in Khadi institution is provided to verify the 
effectiveness of the proposed methods. 

The eleventh chapter introduces improved weighted average geometric operator and define new 
score function. It establishes a multiple-attribute decision-making method based the proposed 
operator and newly defined score function. 

The twelfth chapter presents modeling of logistics center location problem using the score and 
accuracy function, hybrid-score-accuracy function of SVNNs and linguistic variables under single-
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valued neutrosophic environment, where weight of the decision makers are completely unknown 
and the weight of criteria are incompletely known. 

The thirteenth chapter reports about current trends to enhance e-learning process by using 
neutrosophic techniques to extract useful knowledge for selecting, evaluating, personalizing, and 
adapting the eLearning process.  

The fourteenth chapter introduces certain types of single valued neutrosophic graphs, such as 
strong single valued neutrosophic graph, constant single valued neutrosophic graph and complete 
single valued neutrosophic graphs. It investigates some of their properties with proofs and 
examples. 

The fifteenth chapter combines the concept of bipolar neutrosophic set and graph theory. It 
introduces the notions of bipolar single valued neutrosophic graphs, strong bipolar single valued 
neutrosophic graphs, complete bipolar single valued neutrosophic graphs, and regular bipolar 
single valued neutrosophic graphs. It also investigates some of their related properties. 

The sixteenth chapter expounds two ways of determining the neutrosophic distance between 
neutrosophic vertex graphs. It proposes two neutrosophic distances based on the Haussdorff 
distance, and a robust modified variant of the Haussdorff distance. These distances satisfy the 
metric distance measure axioms. Furthermore, a similarity measure between neutrosophic edge 
graphs is explained, based on a probabilistic variant of Haussdorff distance. 

The seventeenth chapter describes operations on interval valued neutrosophic graphs. It presents 
operations of Cartesian product, composition, union and join on interval valued neutrosophic 
graphs. It investigates some of their properties with proofs and examples. 

The eighteenth chapter conveys the usefulness of neutrosophic theory in medical imaging, e.g. 
denoising and segmentation.  

The nineteenth chapter delivers a theoretical framework of love dynamics in neutrosophic 
environment. 

The twentieth chapter emphasizes the neutrosophic crisp probability theory and the decision 
making process by presenting some fundamental definitions and operations. 

The 21st and 22nd chapters devote to study neutrosophic sets and neutrosophic topology. 
Chapters from 23rd to 30th present theoretical improvements of neutrosophic set and its variants. 
We hope that this book will offer a useful resource of ideas, techniques, methods, and 

approaches for additional researches on applications in different fields of neutrosophic sets and 
various neutrosophic hybrid sets.  

We are grateful to our referees, whose valuable and highly appreciated reviews guided us in 
selecting the chapters in the book. 

 
Florentin Smarandache, Surapati Pramanik 
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Role of Neutrosophic Logic in Data Mining 

Abstract 
This paper presents a data mining process of single valued neutrosophic information. This 

approach gives a presentation of data analysis common to all applications. Data mining depends 
on two main elements, namely the concept of similarity and the machine learning framework. It 
describes a lot of real world applications for the domains namely mathematical, medical, 
educational, chemical, multimedia etc. There are two main types of indeterminacy in supervised 
learning: cognitive and statistical. Statistical indeterminacy deals with the random behavior of 
nature.  All existing data mining techniques can handle the uncertainty that arises (or is assumed 
to arise) in the natural world from statistical variations or randomness. Cognitive uncertainty deals 
with human cognition. In real world problems for data mining, indeterminacy components may 
arise. Neutrosophic logic can handle this situation. In this paper, we have shown the role of single 
valued neutrosophic set logic in data mining. We also propose a data mining approach in single 
valued neutrosophic environment.  

Keywords 

Data mining, single valued neutrosophic set, single valued neutrosophic score value. 

1. Introduction
Data mining [1] is actually assumed as “knowledge mining” from data. Data mining is an

essential process where intelligent methods are applied to extract data patterns [2]. Data mining is 
a process that analyzes large amounts of data to find new and hidden information. In other words; 
it is the process of analyzing data from different perspectives and summarizing it into some useful 
information. The following are the different data mining techniques [3]: association, classification, 
clustering, and sequential patterns. E.Hullermeier [4] proposed fuzzy methods in data mining. 

This paper focuses on real-world applications of single valued neutrosophic set [5] for data 
mining. Data mining decomposes into two main elements: the notion of similarity and the single 
valued neutrosophic machine learning techniques that are applied in the described applications. 
Indeed, similarity, or more generally comparison measures are used at all levels of the data mining 

mailto:sura_pati@yahoo.co.in
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and information retrieval tasks. At the lowest level, they are used for the matching between a query 
to a database and the elements it contains, for the extraction of relevant data. Then similarity and 
dissimilarity measures can be used in the process of cleaning and management of missing data to 
create a reasonable set of data. To generalize particular information contained in this reasonable 
set, dissimilarity measures are used in the case of inductive learning and similarity measures for 
case-based reasoning or clustering tasks. Eventually, similarities are used to interpret results of the 
learning process into an expressible form of knowledge through the definition of prototypes. Most 
of collective data for an investigation involves indeterminacy. Single valued neutrosophic set can 
handle his situation. So, there is an important role of single valued neutrosophic set in data mining. 

This paper is arranged as follows. Section 2 presents some basic knowledge of single valued 
neutrosophic set. Section 3 considers the component of similarity, and machine learning techniques. 
Section 4 describes a methodical approach of data mining under single valued neutrosophic 
environment. Section 5 presents a numerical example for data mining. Section 6 presents 
concluding remarks. 

2. Neutrosophic Preliminaries

2.1 Definition on neutrosophic sets [6] 

The concept of neutrosophic set is originated from neutrosophy [6], a new branch of philosophy. 

Definition 1:[6] Let ξ be a space of points (objects) with generic element in ξ denoted by x. 
Then a neutrosophic set α in ξ is characterized by a truth membership function Tα an indeterminacy 
membership function Iα and a falsity membership function Fα. The functions Tα and Fα are real 
standard or non-standard subsets of   1,0 that is Tα:   1,0 ; Iα:   1,0 ; Fα:   1,0 .

It should be noted that there is no restriction on the sum of  xT  ,  xI ,  xF  i.e. 
      30 


  xFxIxT  

Definition 2: [6] The complement of a single valued neutrosophic set α is denoted by c  and is 
defined by  

     xTxT c 


  1 ;      xIxI c 


  1  

     xFxF c 


  1

Definition 3: (Containment) [6] A single valued neutrosophic set α is contained in the other 
single valued neutrosophic set β,  if and only if the following result holds. 

   ,infinf xTxT      xTxT   supsup

   ,inf≥inf xIxI      xIxI   supsup

   ,infinf xFxF      xFxF   supsup

for all x in ξ. 

Definition 4: (Single-valued single valued neutrosophic set)[5] . 

Let ξ be a universal space of points (objects) with a generic element of ξ denoted by x. 
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A single-valued single valued neutrosophic set S is characterized by a true membership function 
),(xT s an indeterminacy membership function ),(xI s a falsity membership function )(xF s with )(xT s , 
)(xI s , )(xF s [0, 1] for all x in  . When  is continuous a SNVS can be written as   

      
x

sss xxxIxFxTS ,,,                    

and when   is discrete a SVNSs S can be written as: 

       xxxIxFxTS SSS ,,,  

It should be noted that for a SVNS S, 
       xxIxFxT SSS ∀,3≤supsupsup≤0

    
                                                                                            

and for a single valued neutrosophic set, the following relation holds: 
       xxIxFxT SSS ∀,3≤supsupsup≤0

      
                                                                                        

Definition 5: The complement of a single valued neutrosophic set S is denoted by Sc and is 
defined by 

   xFxT S
c

S  ;    xIxI S
c

S 1 ;    xTxF S
c

S   

Definition 6: A SVNS Sα is contained in the other SVNS Sβ , denoted as Sα   Sβ iff,    xTxT SS 
 ; 

   xIxI SS 
 ;    xFxF SS 

 , x . 

Definition 7: Two single valued single valued neutrosophic sets Sα and Sβ are equal, i.e. Sα = 
Sβ , if and only if  Sα  Sβ and Sα  Sβ 

Definition 8: (Union) The union of two SVNSs Sα and Sβ is a SVNS S , written as   SSS . 

Its truth membership, indeterminacy-membership and falsity membership functions are related 
to those of S and S by 

    xTxTxT SSS 
 ,max)( ; 

      xIxIxI SSS 
 ,max ; 

      xFxFxF SSS 
 ,min  for all x in ξ  

Definition 9: (intersection) The intersection of two SVNSs, Sα and Sβ is a SVNS S , written as
  SSS . Its truth membership, indeterminacy-membership and falsity membership functions are 

related to those of Sα an Sβ as follows: 
       ;,min xTxTxT SSS 

  

      ;,max xIxIxI SSS 
  

       


xxFxFxF SSS ,,max  
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3. Data Mining [2] 

In this section, we discuss the theoretical background common to the applications, considering 
successively the notion of similarity and machine learning techniques under single valued 
neutrosophic environment. 

3.1 Similarity [2]  

The notion of similarity or more generally of comparison measures, is central for all real-world 
applications: it aims at quantifying the extent to which two objects are similar, or dissimilar, one 
to another, providing a numerical value for this comparison. Similarities and dissimilarities 
between objects are generally evaluated from values of their attributes or variables characterizing 
these objects. Dissimilarities are classically defined from distances. Similarities and dissimilarities 
are often expressed from each other: the more similar two objects are, the less dissimilar they are, 
the smaller their distance. Weights can be associated with variables, according to the semantics of 
the application or the importance of the variables. It appears that some quantities are used in various 
environments, with different forms, based on the same principles. Most of the classic dissimilarity 
measures between two objects with continuous numerical attributes are the Euclidian distance, the 
Manhattan distance, and more generally Minkowski distances.  

3.2 Neutrosophy Machine Learning [2] 

The second part of the theoretical background common to all applications concerns the 
neutrosophy machine learning techniques that use the previous similarity measures. Machine 
learning is an important way to extract knowledge from sets of cases, especially in large scale 
databases. In this section, we consider only the neutrosophy machine learning methods (involving 
indeterminacy) that are used in the applications, leaving aside other techniques as for neutrosophy 
case-based reasoning or neutrosophy association rules. Three methods are successively considered: 
neutrosophy decision trees, neutrosophy prototypes and neutrosophy clustering. The first two 
belong to the supervised learning framework, i.e. they consider that each data point is associated 
with a category. Single valued neutrosophic set clustering belongs to the unsupervised learning 
framework, i.e. no decomposition of the data set with indeterminacy into categories is available. 

3.2.1. Single valued neutrosophic set Decision Trees [2] 

Neutrosophy decision trees (NDT) particularly can be interesting for data mining and 
information retrieval because they enable the user to take into account indeterminacy descriptions 
of the cases, or heterogeneous values (symbolic, numerical, or neutrosophical) [5]. Moreover, they 
are appreciated for their interpretability, because they provide a linguistic description of the 
relations between descriptions of the cases and decision to make or class to assign. The rules 
obtained through NDT make it easier for the user to interact with the system or the expert to 
understand, confirm or amend his own knowledge. Another quality of NDT is their robustness, 
since a small variation of descriptions does not drastically change the decision or the class 
associated with a case, which guarantees a resistance to measurement errors and avoids sharp 
differences for close values of the descriptions. 
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3.2.2. Single valued neutrosophic set Prototype Construction [2] 
Neutrosophy prototypes are another approaches to the characterization of data categories: they 

provide descriptions or interpretable summarizations of data sets, so as to help a user to better 
apprehend their contents: a prototype is an element chosen to represent a group of data, to 
summarize it and underline its most characteristic features. It can be defined from a statistical point 
of view, for instance as the data mean or the median; more complex representatives can also be 
used as the most typical value [7] for instance. The prototype notion was also studied from a 
cognitive science point of view, and specific properties were pointed out in [8]: it was shown that 
a prototype underlines the common features of the category members, but also their distinctive 
features as opposed to other categories, underlining the specificity of the group. Furthermore, 
prototypes were related to the typicality notion, i.e. the fact that all data do not have the same status 
as regards the group: some members of the group are better examples, more representative or more 
characteristic than others. It was also shown that the typicality of a point depends both on its 
resemblance to other members of the group (internal resemblance), and on its dissimilarity to 
members of other groups (external dissimilarity). More precisely, the method consists of computing 
internal resemblance and external dissimilarity for each data point. Internal resemblance and 
external dissimilarity are respectively defined as the aggregation (mean or median) of the 
resemblance to the other members of the group, and as the aggregation of the dissimilarity to 
members of other groups, for a given choice of the resemblance and dissimilarity measures.  

4. Single Valued Neutrosophic Logic in Data Mining  
The tools that have been proposed in single valued neutrosophic set (SVNS) have the potential 

to support all of the steps that neutralized a process of knowledge discovery.  SVNS can be used 
in the data selection and preparation phase for data modeling. For any data analysis associated with 
an experiment or investigation, it is observed that much information involve indeterminacy. Single 
valued neutrosophic set logic is capable of dealing with this situation. So, for the case of data 
mining single valued neutrosophic set logic has an important role.  

Standard methods of data analysis can be extended in a rather generic way by means of an 
extension principle. For example, the functional relation between the data points and the decision 
making function can be extended to the case of single valued neutrosophic data, where the 
observations are described in terms of single valued neutrosophic sets. If single valued 
neutrosophic data is not used in the data preparation phase, they can still be employed in a later 
stage in order to analyze the original data.  

Various techniques are widely used for data mining from gathering data within a domain of 
expertise. Delphi method [9] and BIRCH method [10] are very popular for data mining. Rekha and 
Swapna [2] studied the role of fuzzy logic in data mining.  Literature review reflects that there is 
no single valued neutrosophic approach for data mining till now.  

4.1. Neutrosophic data mining method 

Generally, there are many attributes in decision making problems, where some of them are 
important and others may not be so important. So it is crucial to select the proper attributes for 
decision-making situation. Now, we shall propose a methodical approach for data mining with 
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single valued neutrosophic information to prepare a panel of attributes which are technically sound. 
All steps of this proposed approach are given as follows. 

 Step 1: Problem field selection 

Consider a multi-attribute decision making problem with m alternatives and n attributes (large 
numbers of data). Let A1, A2, ..., Am and C1, C2, ..., Cn denote the alternatives and attributes 
respectively. In decision making process, we have to select a finite but more important attributes 
from given n attributes. All attributes are expressed in single valued neutrosophic number. 

Table 1: Single valued neutrosophic set decision matrix 

 nmijdD  

dddA

dddA
dddA
CCC

mnmmm

n

n

n

...
.............
.............

...

...

21

222212

112111

21 

                                                                                                                  (1) 

Here, d ij (i = 1, 2, …, m and j = 1, 2, …, n) are all single valued neutrosophic numbers. 

Step 2: Single valued neutrosophic set score matrix 

Definition 10: Single valued neutrosophic score function (SVNSF)  

Single valued neutrosophic score function (SVNSF) corresponding to each attribute is defined 
as follows. 




 
m
r

rjrjrj
j

FIT
m

CSVNSF 1 3
21)(                                                                                                          (2) 

Where,  j = 1, 2, …, n 

Using equation (2) we calculate single valued neutrosophic score matrix as follows. 

Table: Single valued neutrosophic score matrix 

)( jCSVNSF   

)(

)(
)(

22

11

nn CSVNSFC

CSVNSFC
CSVNSFC

valuescoreicneutrosophvaluedSingleattributes



                                                     (3)        

Step 3: Selection zone 
Single valued neutrosophic score values are classified into three zones. These are described as 

follows. 

Definition 11: SVNSF of all the attributes are classified in three categories and it is defined as 
follows  

Highly acceptable zone: 0.50   SVNSF(Cj)  1 
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Tolerable acceptable zone: 0.25   SVNSF(Cj)  0.50 

Unacceptable acceptable zone: 0.00   SVNSF(Cj)  0.25 

Step 4: Ranking of attributes
According to the single valued neutrosophic score values, we can set up a panel of all attributes 

in descending order and we can choose important attributes from large number of attributes into 
decision making process considering highly acceptable zone and tolerable acceptable zone 

Step 5: End 

5. Numerical Example
In this section we demonstrate a numerical problem for applicability and effectiveness of this

proposed approach. The methodical steps are as follows. 
Step 1: Problem field selection 

Suppose a person who wants to purchase a SIM card for mobile connection. So, it is necessary 
to select suitable SIM card for his/her mobile connection. There is a panel with four possible 
alternatives (SIM cards) for mobile connection. The alternatives (SIM cards) are presented as 
follows: 

A1: Airtel 

A2: Vodafone 

A3: BSNL 

A4: IDEA. 

For this purpose, the following attributes about SIM cards may be arise in decision making 
process. These are stated as follows. 

1. Service quality of the corresponding company (C1)

2. Cost (C2)

3. Call rate per second (C3)

4. Internet facilities (C4)

5. Tower facility (C5)

6. Call drops (C6)

7. Risk factor (C7)

Table3: Single valued neutrosophic decision matrix 

 74ijdD

4.0,5.0,1.03.0,3.0,2.03.0,3.0,3.02.0,3.0,8.04.0,1.0,7.02.0,0.0,7.02.0,1.0,8.0
3.0,6.0,1.05.0,1.0,2.06.0,5.0,3.02.0,2.0,8.04.0,4.0,7.01.0,3.0,7.02.0,2.0,8.0
5.0,4.0,1.06.0,5.0,2.05.0,4.0,3.01.0,1.0,8.04.0,3.0,7.02.0,1.0,7.03.0,3.0,8.0
5.0,6.0,1.06.0,3.0,2.05.0,5.0,3.02.0,1.0,8.04.0,2.0,7.02.0,3.0,7.02.0,3.0,8.0

4

3

2

1

7654321

A
A
A
A

CCCCCCC

(4) 
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Step 2: Single valued neutrosophic score matrix 

Using equation (2) we calculate single valued neutrosophic score matrix as follows. 

Table 4: Single valued neutrosophic set score matrix 

)( jCSVNSF

3833.0
4667.0
4667.0
8167.0
6833.0
7833.0
7833.0

7

6

5

4

3

2

1

C
C
C
C
C
C
C

valuescoreicneutrosophvaluedSingleattributes

                                                                    (5) 

 
Step 3: Selection zone 
Single valued neutrosophic score values are classified into three zones. These are described as 

follows. 

Definition 11: SVNSF of all the attributes are classified in three categories and it is defined as 
follows  

Highly acceptable zone: 0.50   SVNSF(Cj)  1 

Tolerable acceptable zone: 0.25   SVNSF(Cj)  0.50 

Unacceptable acceptable zone: 0.00   SVNSF(Cj)  0.25 

Step 4: Ranking of attributes 
From equation (5) we can write single valued neutrosophic score values of all attributes in 

descending order as follows.  

)( 4CSVNSF )( 1CSVNSF )( 2CSVNSF )( 3CSVNSF )( 5CSVNSF )( 6CSVNSF )( 7CSVNSF  

So, attributes corresponding to single values neutrosophic score values (highly acceptable and 
tolerance zone) can be chosen as important attributes for decision making process.  

Step 5: End 

6. Conclusion 

In this paper we briefly present first two of the essential pillars of data mining: similarity 
measures and machine learning in single valued neutrosophic environment. We showed that 
neutrosophic logic can perform an important role in data mining method.  We define single valued 
neutrosophic score function (SVNSF) to aggregate attribute values of each alternative. We also 
propose an approach for data mining with single valued neutrosophic information from large 
amounts of data and furnish a numerical example for the proposed approach. In future this method 
can be extended in interval neutrosophic environment for data mining. 
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Some Distance Measures of Single Valued Neutrosophic Hesitant 

Fuzzy Sets and Their Applications to Multiple Attribute Decision 

Making 

Abstract  
Single-valued neutrosophic hesitant fuzzy set is a merged form of single-valued neutrosophic 

sets and hesitant fuzzy sets. This set is a useful tool to handle imprecise, incomplete and 
inconsistent information existing in multi-attribute decision making problems. In multi-attribute 
decision making, distance measures play an important role to take a decision regarding alternatives. 
In this paper we propose a variety of distance measures for single valued neutrosophic sets. 
Furthermore, we apply these measures to multi-attribute decision making problem with single-
valued neutrosophic hesitant fuzzy set environment to find out the best alternative. We provide an 
illustrative example to validate and to show fruitfulness of the proposed approach. Finally, we 
compare the proposed approach with other existing methods for solving multi-attribute decision 
making problems. 

Keywords 
Hesitant fuzzy sets, single-valued neutrosophic set, single-valued neutrosophic hesitant fuzzy 

set, distance measure, multi-attribute decision making problem. 
 

1. Introduction 
Distance and similarity measures are significant in a variety of scientific fields such as decision 

making, pattern recognition, and market prediction. Lots of studies have been done on fuzzy sets 
[1], intuitionistic fuzzy sets [2], and neutrosophic sets [3]. Among them the most widely used 
distance measure are Hamming distance and Euclidean distance. Generally when people make 
decision, they often hesitate to select for one thing or another to reach the final decision. Tora and 
Narukawa [4], Tora [5] introduced hesitant fuzzy set (HFS), an extension of fuzzy set, which allows 
the membership degree to assume a set of possible values. HFS can express the hesitant information 
compressively than other extensions of fuzzy sets. Xu and Xia [6] defined some distance measures 
on the basis of well-known Hamming distance and Euclidean distance and the Housdroff metric. 
They developed a class of hesitant distance measures and discussed some of their properties. Peng 
et al. [7] proposed the generalised hesitant fuzzy synergetic weighted distance measure and applied 

mailto:sura_pati@yahoo.co.in
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it to multi-attribute decision making (MADM) problem, where the best alternative. Having defined 
hesitancy degree, Li et al. [8] proposed some distance and similarity measures on HFSs and 
developed a TOPSIS method for MADM. 

On the other hand, Zhu et al. [9] proposed a dual hesitant fuzzy set (DHFS) which consists of 
two parts one is the membership hesitancy function and another is the non-membership hesitancy 
function. DHFS generalises fuzzy set (FS), intuitionistic fuzzy set (IFS), hesitant fuzzy set (HFS), 
and its membership degree and non-membership degree are presented by two set of possible values. 
Consequently, DHFS can represent imprecise and uncertain information existing in real decision 
making problem in more flexible way than FS, IFS, HFS. Singh [10] defined some distance and 
similarity measures of DHFSs on the basis of the geometric distance model, the set theoretic 
approach and the matching functions to study MADM with DHFSs. 

However, HFSs and DHFSs cannot represent indeterminacy hesitant function for incomplete or 
inconsistent information. This type of function is an another issue to be considered in decision 
making and thus it should be included with membership hesitant and non-membership hesitant 
function to catch up imprecise, incomplete, inconsistent information found in decision making 
process. Ye [11] introduced single-valued neutrosophic hesitant fuzzy set (SVNHF) which consists 
of three parts  the truth membership hesitancy function, the indeterminacy membership hesitancy 
function, and falsity membership hesitancy function. This set can express imprecise, incomplete, 
inconsistent information with these three kinds of hesitancy functions in a more flexible way. In 
same discussions [11], Ye developed two aggregation operators for SVNHFS information and 
applied these operators to MADM problems. Sahin and Liu [12] defined correlation coefficient of 
SVNHFSs to solve MADM with SVNHFSs. Literature review suggests that the distance measures 
and similarity measures have not been studied, therefore we need to develop distance measures for 
SVNHFSs.  

In this paper, we propose a class of distance measures for single-valued neutrosophic hesitant 
fuzzy sets and study their properties with variational parameters. We apply the weighted distance 
measures to calculate the distances between each alternative and ideal alternative in the MADM 
problems. With these distance values, we present the ranking order of alternatives for selecting the 
best one. We present an illustrative example to verify the proposed approach and to show its 
fruitfulness. Finally, we compare the proposed method with other existing methods for solving 
MADM under SVNHF environment. 

The rest of the paper is organised as follows: Section 2 presents some basics of single-valued 
neutrosophic set and hesitant fuzzy sets and the existing distance measures for HFSs. Section 3 
proposes Hamming distance measure, Euclidean distance measure, generalised distance measure, 
and Hausdroff distance. Section 4 devotes application of proposed distance measure to MADM 
with SVNHFS information. In Section 5, an illustrative example is given to validate and show 
effectiveness of the proposed approach. In Section 6, we present concluding remarks and future 
scope of research. 

2. Preliminaries 
In this section we review some basic definitions regarding single-valued neutrosophic sets and 

hesitant fuzzy sets to develop the present paper. 
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2.1. Single valued neutrosophic set 

Definition 1. [13]  
Let X  be a space of points (objects) with a generic element in X denoted by .x  A SVNS A in X 

is characterized by a truth membership function (x),AT  an indeterminacy membership function 
(x),AI  and a falsity membership function (x)AF  and is denoted by 
  , (x), (x), (x) | .A A AA x T I F x X   
Here (x)AT , (x)AI and (x)AF  are real subsets of [0,1]  that is (x) : X [0,1]AT   , (x) : X [0,1]AI   and
(x) : X [0,1]AF  . The sum of (x)AT , (x)AI and (x)AF lies in [0,3] that is 0 (x) (x) (x) 3.A A AT I F    For 

convenience, SVNS A  can be denoted by (x), (x), (x)A A AA T I F  for all x  in X .  
Now we mention some commonly used distance measures for two SNVS A  and B on 

1 2{ , ,..., }nX x x x .   
1. Normalized Hamming distance measure [14]: 

 
1

1( , ) ( ) ( ) ( ) ( ) ( ) ( )
3

n
N
Ham A i B i A i B i A i B i

i
D A B T x T x I x I x F x F x
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          (1) 

2. Normalized Euclidean distance measure [14]: 

      2 2 2

1
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         (2) 

3. The Hausdroff metric [15]: 

 
1

1( , ) max ( ) ( ) , ( ) ( ) , ( ) ( )
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        (3) 

2.2. Hesitant fuzzy sets 

Definition 2. [4, 5, 16]  
Let X  be a fixed set. A hesitant fuzzy set A  on X  is presented in terms of a function such that 

when applied to X  returns a subset of[0,1] , i.e. 
 , ( ) |AA x h x x X  , where ( )Ah x is a set of some different values in [0,1] , representing the 

possible membership degrees of the element x X  to .A  For convenience, ( )Ah x  is called a hesitant 
fuzzy element (HFE). 

We have some well-known distance measures for two SNVS A  and B on 1 2{ , ,..., }nX x x x .   
1. Generalized hesitant normalized distance: 

1/

( ) ( )

1 1

1 1( , )
xi

i

ln
N j j
G A B

i jx

D A B h h
n l




 

 

  
   

    
  , 0         (4) 

2. Generalized hesitant normalized Hausdorff distance:  
1/

( ) ( )

1

1( , ) max , 0.
n

N j j
Hau A B

i j

D A B h h
n




  



 
   
  
        (5) 

 max ( ( )), ( ( ))
ix A i B il l h x l h x for each ix  in X ; ( ) ( )i

A ih x  and ( ) ( )i
B ih x are the thj largest values in ( )A ih x  

and ( )B ih x , respectively. ( ( ))A il h x and ( ( ))B il h x are the number of values in  ( )A ih x  and ( )B ih x , respectively. 

Definition 3. [16]  
Let 1A , 2A and 3A be three HFSs on 1 2{x , x ,..., x }nX  , then the distance measure between 1A and 

2A  is defined as  1 2,d A A , which satisfies the following properties: 
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1.  1 20 , 1d A A  ; 
2.  1 2, 0d A A  if and only if 1 2A A ; 
3.  1 2,d A A =  2 1,d A A ; 

The similarity measure between 1A and 2A  is defined as  1 2,s A A , which satisfies the following 
properties: 

1.  1 20 , 1s A A  ; 
2.  1 2, 1s A A  if and only if 1 2A A ; 
3.  1 2,s A A =  2 1,s A A . 

If  1 2,d A A be the distance measure between two HFSs 1A  and 2A , then    1 2 1 2, 1 ,s A A d A A   is 
the similarity measure between two HFSs 1A  and 2A . Similarly, if  1 2,s A A be the similarity 
measure between two HFSs 1A  and 2A , then    1 2 1 2, 1 ,d A A s A A   is the distance measure between 
two HFSs 1A  and 2A . 

3. Distance measure of single valued neutrosophic sets 
The neutrosophic set  [3] theory pioneered by Smarandache has emerged as one of the research 

focus in many branches such as management sciences, engineering, applied mathematics. 
Neutrosophic set generalizes the concept of the crisp set, fuzzy set [1], interval valued fuzzy set 
[17], intuitionistic fuzzy set [2], and interval valued intuitionistic fuzzy set [18].  
Definition 4. [11] 

Let X  be a fixed set, then a single valued neutrosophic hesitant fuzzy set N  on X   is defined 
as follows: 

 , ( ), ( ), ( ) |N x t x i x f x x X  , where, ( )t x , ( ),i x ( )f x  are three sets of some values in [0,1] , 
denoting the respectively the possible truth, indeterminacy and falsity membership degrees of the 
element x X to the set N . The membership degrees ( ),t x ( )i x  and ( )f x  satisfy the following 
conditions: 

0 , , 1,    0 3       
where, ( ),t x  ( ),i x  ( ),f x

( )

( ) max ( ),
t x

t x t x


  



 

( )

( ) max ( )
i x

i x i x


  



 

 
and 

( )

( ) max ( )
i x

f x f x


 



  for all x X . 

For convenience of notation, the triple ( ) ( ), ( ), ( )n x t x i x f x  is called a single valued 
neutrosophic hesitant fuzzy element (SVNHFE) and is denoted by , ,n t i f . It is to be noted that 
the number of values for possible truth, indeterminacy and falsity membership degrees of the 
element in different SVNHFEs may be different. 
Definition 5. [11]  

Let  1 1 1 1, ,n t i f  and 2 2 2 2, ,n t i f be two SVNHFEs, the following operational rules are defined as 
follows: 

1.  
1 1 1 1 1 1 2 2 2 2 2 2

1 2 1 2 1 2 1 2 1 2
, , , , ,

{ },{ },{ , } ;
t i f t i f

n n t t t t i i f f
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2.  
1 1 1 1 1 1 2 2 2 2 2 2

1 2 1 2 1 2 1 2 1 2 1 2
, , , , ,

{ },{ },{ } ;
t i f t i f

n n t t i i i i f f f f
          

       

3.  
1 1 1 1 1 1

1 1 1 1
, ,

{1 (1 ) },{ },{ } , 0
t i f

n t i f  

  

 
  

    ; 

4.  
1 1 1 1 1 1

1 1 1 1
, ,

{ },{1 (1 ) },{1 (1 ) } , 0.
t i f

n t i f   

  


  

       

Motivating from the concept provided by Xu and Xia [16], we define a generalized single valued 
neutrosophic hesitant normalized distance: 

1/
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1 1 1 1
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     (6) 

where # # #
i i i ix x x xl h g m   ; #

ixh , #
ixg and #

ixm are the number of elements ,t ,i  and ,f  respectively. 
If 1,   Eq.(9) reduces to single valued neutrosophic hesitant normalized Hamming distance: 

# # #
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3
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      (7) 

If 2,   Eq.(9) reduces to single valued neutrosophic hesitant normalized Euclidean distance: 
1/2
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      (8) 

However, if we consider, Hausdroff metric to the distance measure, then the generalized single 
valued neutrosophic hesitant normalized Hausdorff distance can be defined as follows: 

1/
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For 1,   Eq.(12) reduces to single valued neutrosophic hesitant normalized Hamming 
Hausdorff distance: 

( ) ( ) ( ) ( )
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For 2,   Eq.(12) reduces to single valued neutrosophic hesitant normalized Euclidean 
Hausdorff distance: 
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In some situations, we need weight of each element ix X , and then we present the following 
weighted distance measures for SVNHFs. Assume that the weight of the element ix X  is 

( 1,2,..., )iw i n  with [0,1]iw   and 
1

1,n
ii

w


  then we have a generalized SVNHF weighted distance: 
1/
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and a generalized SVNH weighed Hausdroff distance: 
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1/
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4. Application of proposed distance measure in multi-attribute decision making 
In this section we use the proposed distance measures to find out the best alternative in multi-

attribute decision making with single valued neutrosophic hesitant fuzzy environment. 
For a multi-attribute decision making problem, assume that   1 2, ,..., mA A A A  be the set of m 

alternatives, 1 2{ , ,..., }nC C C C be the set of n attributes, whose weight vector 1 2( , ,..., )T
nw w w w , satisfies 

0( 1,2,..., )jw j n   and 
1

1,n
jj

w


  where jw  denotes the weight of the attribute .jC  The performance of 
the alternative iA  with respect to the attribute jC  is measured by an SVNHFE { , , }ij ij ij ijn t i f , where 

{ | ,0 1},ij ij ij ij ijt t      { | ,0 1},ij ij ij ij iji i      and { | ,0 1}ij ij ij ij ijf f      are the possible truth, 
indeterminacy and falsity membership degree, respectively such that 0 3,ij ij ij        where, 

max{ }
ij ij

ij ij
t

 



 , max{ }
ij ij

ij ij
i

 



 , and max{ }
ij ij

ij ij
f

 



 .  

All { , , }( 1,2,..., ; 1,2,..., )ij ij ij ijn t i f i m j n   are contained in SVNHF decision matrix ( )ij m nN n   (See Table 
1.) 

Table 1. SVNHF decision matrix 
 1C  1C  … nC  
1A  11n  11n  … 11n  
1A  11n  11n  … 11n  
     

mA  1mn  1mn   1mn  
 
Basically attributes are two types: 

1. benefit type attributes, 
2. cost type attributes. 

In such cases, we propose the rating values of ideal alternatives *
jA  as * * * *{ , , }j j j jn t i f for 1,2,...,j n , 

where, 
* {{1},{0},{0}}jn  for benefit type attributes and * {{0},{1},{1}}jn  for cost type attributes. 

 Then to determine the best alternatives, we propose the following steps: 
Step 1. Determine the distance between an alternative ( 1,2,..., )jA j n  and the ideal alternative *A  

using proposed distance measure according to the nature of attributes. 
Step 2. Rank the alternative on the basis of distance measure values. 
Step 3. Obtain the best alternative according to the minimum value of distance measure. 

5. Numerical example 
In this section we consider the example adopted from Ye [11] to illustrate the application of the 

proposed GRA method for MADM proposed in Section 4. Consider an investment company that 
wants to invest a sum of money in the best option. There is a panel with four possible alternatives: 
(1) 1A  is the car company; (2) 2A  is the food company; (3) 3A  is the computer company; (4) 4A is 
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the arms company. To take a decision, the investment company consider three attributes: (1) 1C  is 
the risk analysis; (2) 2C  is the growth analysis; (3) 3C  is the environmental impact analysis.  

The attribute weight vector is given as (0.35,0.25.0.40)TW  . The four possible alternatives 
1 2 3 4{ , , , }A A A A  are evaluated by using SVNHFEs under three attributes ( 1,2,3).jC j  We can arrange the 

rating values in a matrix form namely a SVNHF decision matrix 4 3( )ijX x  that is shown in Table-
1. 

Table 1. Single valued neutrosophic hesitant fuzzy decision matrix 
 1C  2C  3C  

       0.3,0.4,0.5 , 0.1 , 0.3,0.4        0.5,0.6 , 0.2,0.3 , 0.3,0.4        0.3,0.4,0.5 , 0.1 , 0.3,0.4  

       0.6,0.7 , 0.1,0.2 , 0.2,0.3  
      0.6,0.7 , 0.1 , 0.3        0.3,0.4,0.5 , 0.1 , 0.3,0.4  

       0.5,0.6 , 0.4 , 0.2,0.3        0.6 , 0.3 , 0.4        0.5,0.6 , 0.1 , 0.3  

       0.7,0.8 , 0.1 , 0.1,0.2        0.6,0.7 , 0.1 , 0.2        0.3,0.5 , 0.2 , 0.1,0.2,0.3  

 
Now we consider the following steps, described in Section-4, to find the best alternatives. 
Step 1.Using Eq.(14), we calculate the SVNH weighted distance measure between alternatives 

( 1,2,3,4)iA i   and ideal alternative *A for 1,2,5,10  which are shown in Table 2.: 
Table 2. Weighted distant measures for different values of  ’s 

  1A  2A  3A  4A  Ranking 



=1 
0.136

1 
0.0810 0.1089 0.0816 2 4 3 1A A A A  



=2 
0.268

7 
0.1531 0.2065 0.1738 2 4 3 1A A A A  



=5 
0.448

7 
0.2469 0.3192 0.3462 2 3 4 1A A A A  



=10 
0.567

7 
0.3059 0.3841 0.4802 2 3 4 1A A A A  

 
Step 2.Rank the alternative according to the value of SVNH weighted distance measure. 
Step 3. Based on the minimum value of SVNH weighted distance measures for different values 

of 1,2,5,10  , we conclude that 2A  as the best alternative, which is same as the results obtained in 
Ye [11] and Sahin and Liu [12]. 

From Table-2, we observe that ranking results change with different values of  .Therefore 
taking the values of  according to decision maker’s preference play a crucial role in ranking 
process. Ye [11] considered weighted cosine similarity measure of SVNHFs and Sahin and Liu 
[12] proposed weighted correlation co-efficient to determine the ranking order of alternatives. In 
both studies, we see that there is no option to consider different values of the attitudinal character 
  that can change the ranking result as we have seen in our study. Thus our method is more realistic 
and flexible over these two methods, furthermore our method is simple and effective. 

6. Conclusion 
 In this paper, we develop a class of distance measures for single-valued neutrosophic hesitant 

fuzzy sets and discussed their properties with variational parameters. We apply the weighted 
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distance measures to calculate the distances between each alternative and ideal alternative in the 
MADM problems. With these distance values, we obtain the ranking order of alternatives for 
selecting the best one. We provide an illustrative example to verify the proposed approach and to 
show its fruitfulness. Finally, we compared the proposed method with other existing methods for 
solving MADM under SVNHF environment. The proposed method is simple and effective to 
handle MADM under SVNHF. We hope that the proposed distance measures can be extended to 
interval neutrosophic hesitant fuzzy set, and can be applied in medical diagnosis, pattern 
recognition, and personal selection under neutrosophic hesitant fuzzy environment. 
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Distance and Similarity Measures for Multiple Attribute Decision 

Making with Single-Valued Neutrosophic Hesitant Fuzzy 

Information 

Abstract 
With respect to a combination of hesitant sets, and single-valued neutrosophic sets which are a 

special case of neutrosophic sets, the single valued neutrosophic hesitant sets (SVNHFS) have been 
proposed as a new theory set that allows the truth-membership degree, indeterminacy membership 
degree and falsity-membership degree including a collection of crisp values between zero and one, 
respectively. There is no consensus on the best way to determine the order of a sequence of single-
valued neutrosophic hesitant fuzzy elements. In this paper, we first develop an axiomatic system 
of distance and similarity measures between single-valued neutrosophic hesitant fuzzy sets and 
also propose a class of distance and similarity measures based on three basic forms such that the 
geometric distance model, the set-theoretic approach, and the matching functions. Then we utilize 
the distance measure between each alternative and ideal alternative to establish a multiple attribute 
decision making method under single-valued neutrosophic hesitant fuzzy environment. Finally, a 
numerical example of investment alternatives is provided to show the effectiveness and usefulness 
of the proposed approach. The advantages of the proposed distance measure over existing measures 
have been discussed. 

Keywords 
Single-valued neutrosophic set, hesitant fuzzy set, single-valued neutrosophic hesitant fuzzy set, 

distance measure, similarity measure, multiple attribute decision making. 
 

1. Introduction 
Most of our traditional tools for formal modeling, reasoning and computing are crisp, 

deterministic and precise in character. However, there are many complicated problems in 
economics, engineering, environment, social science, medical science, etc., that involve data which 
are not always all crisp. Classical methods cannot successfully handle uncertainty, because the 
uncertainties appearing in these domains may be of various types. Zadeh (1965) introduced fuzzy 
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sets (FS) and applied them in many fields including uncertainty. As a generalization of the fuzzy 
sets, Atanassov (1986) introduced the concept of intuitionistic fuzzy set (IFS). Then Atanassov and 
Gargov (1989) extended the concept of IFS to interval-valued intuitionistic fuzzy set (IVIFS). 
Current literature has very large number of distance and similarity measures for FSs and IFSs 
(Atanassov 1986; Xuecheng 1992; Chen et al. 1995; Liu et al. 2015; Farhadinia 2014; Wang 1997; 
Szmidt and Kacprzyk 2000; Khaleie and Fasanghari 2012; Grzegorzewski 2004; Wang and Xin 
2005; Xu 2007; Hung and Yang 2007; Li 2007; Şahin 2015; Tan 2011). 

Torra and Narukawa (2009) and Torra (2010) proposed the concept of hesitant fuzzy set (HFS), 
discussed the relationship between hesitant fuzzy set and intuitionistic fuzzy set and showed that 
the envelope of hesitant fuzzy set is an intuitionistic fuzzy set. The membership degree of an 
element in hesitant fuzzy set includes a set of possible values between zero and one. Since its 
appearance, the hesitant fuzzy information has been used to solve multiple attribute decision 
making problems. Xia and Xu (2011) defined some techniques for aggregating hesitant fuzzy 
information and utilized their performances in decision making. Based on the relationship between 
HFS and IFS, they proposed the set-theoretic laws of HFSs. Xu and Xia (2011) defined a collection 
of distance measures for HFSs and generated the similarity measures associated with the proposed 
distance measures.  

Furthermore, Zhu et al. (2012) introduced dual hesitant fuzzy set (DHFS) as a generalization of 
FSs, IFSs, HFSs, and fuzzy multisets (FMSs) and presented some basic operations of DHFSs. A 
DHFS are characterized by two class of possible values, the membership degrees and 
nonmembership degrees. Therefore, DHFSs include FSs, IFSs, HFSs, and FMSs under certain 
conditions, and so they have the desirable performances and advantages of its own and appear to 
be a more favorable method than aforementioned sets because of considering much more 
information given by decision makers. Singh (2013) introduced a comprehensive family of distance 
measures and related similarity measures for DHFSs. 

As a new branch of philosophy that combines the knowledge of logics, philosophy, set theory, 
and probability, Smarandache (1999, 2005) proposed the concept of neutrosophic sets (NSs) as a 
further generalization of uncertainty modeling tools. Unlike the aforementioned sets, a 
neutrosophic set consists of three membership functions such that the truth-membership function, 
the indeterminacy-membership function and the falsity membership function. Additionally, the 
uncertainty presented here, i.e. the indeterminacy factor, is independent on the truth and falsity 
values, whereas the incorporated uncertainty is dependent on the degrees of belongingness and 
non-belongingness of existing sets. The structure of NSs is not appropriate to apply to real-life 
situations. Therefore, Wang et al. (2005, 2010) developed single-valued neutrosophic sets (SVNSs) 
and interval neutrosophic sets (INSs), which are an extension of NSs. Şahin (2014) proposed a 
neutrosophic hierarchical clustering algorithm based on relationship between SVNSs. Şahin and 
Küçük (2014) defined a subsethood measure for SVNSs and applied it in a decision making 
problem. The correlation coefficients of SVNSs as well as a decision-making method using SVNSs 
were proposed by Ye (2013). In addition, Ye (2014b) investigated the concept of simplified 
neutrosophic sets (SNSs), which can be expressed by three real numbers in the real unit interval 
[0,1], provided the set-theoretic operators of SNSs, and developed a multi criteria decision making 
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(MCDM) method based on the aggregation operators of SNSs. But, Peng et al. (2015) showed that 
some operations of Ye (2014b) may also be unrealistic in special cases, and defined the novel 
operations and aggregation operators and applied them to MCDM problems. Also, Ye (2014a) 
proposed the single valued neutrosophic cross-entropy for solving multicriteria decision making 
(MCDM) problems with single valued neutrosophic information. Broumi and Smarandache (2013) 
extended the correlation coefficient to INSs. Zhang et al. (2014) developed a MCDM method based 
on aggregation operators within an interval neutrosophic environment. Furthermore, Majumdar 
and Samanta (2014) proposed the distance and similarity measures between SVNSs. Ye (2014d) 
extended these measures to INSs as based on the relationship between similarity measures and 
distances. Liu and Wang (2014) discussed a single-valued neutrosophic normalized weighted 
Bonferroni mean (SVNNWBM) operator based on Bonferroni mean, the weighted Bonferroni 
mean (WBM), and the normalized WBM. Peng et al. (2015) introduced the multi-valued 
neutrosophic sets (MVNSs) and developed the operations of multi-valued neutrosophic numbers 
(MVNNs) based on Einstein operations. 

Recently, Ye (2015c) proposed the concept of single valued neutrosophic hesitant fuzzy set 
(SVNHFS) as a generalization of FSs, IFSs, HFSs, FMSs, and also SVNSs and discussed the basic 
operations and properties of SVNHFSs. SVNHFSs consist of three parts, first is the truth-
membership hesitancy function, second is the indeterminacy-membership hesitancy function, and 
third is the falsity-membership hesitancy function. The current sets, including FSs, IFSs, HFSs, 
FMSs, and SVNSs can be regarded as special cases of SVNHFSs. In a SVNHFS, the truth-
membership hesitancy degrees, indeterminacy-membership hesitancy degrees and falsity-
membership hesitancy degrees are represented by three sets of possible values between zero and 
one, respectively. Therefore, it is not only more general than aforementioned set but only more 
suitable for solving MADM problems due to considering much more information provided by 
decision makers. 

From above analysis, we cannot utilize the current measures for dealing with distance and 
similarity measure between SVNHFSs. Therefore, we need to develop new distance and similarity 
measures for SVNHFSs, because a SVNHFS consists of three basic membership function such that 
the truth-membership hesitancy function and indeterminacy-membership hesitancy function and 
falsity-membership hesitancy function. In this paper, we first define a compressive class of distance 
measures between SVNHFSs and then proposed the similarity measures based on the geometric 
distance model, the set-theoretic approach and the matching functions. Also, we show that the 
proposed measures satisfies the axiom definition of distance and similarity measures developed for 
SVNHFSs. Finally, we utilize the proposed distance measure to solve a MADM problem with 
single valued neutrosophic hesitant fuzzy information. The rest of this paper is organized as follows. 
In section 2, we introduce some basic concepts related to HFS, SVNS and SVNHFS, and some 
operational and theoretical laws. In Section 3, we propose a variety class of distance measures of 
SVNHFSs as a further generalization of the existing distance measure for HFSs, DHFSs, IFSs, and 
SVNSs. Based on the geometric distance model, the set-theoretic approach and the matching 
functions, we present some similarity measures between SVNHFSs. Section 4 develops a MADM 
method with single valued neutrosophic hesitant fuzzy information based on the proposed distance 
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measure for SVNHFSs. In Section 6, an illustrative example is provided to demonstrate the 
application and effectiveness of the developed method. Section 7 gives related comparative 
analysis. Finally, conclusions and future work are given in Section 8. 

2. Preliminaries 
In this subsection, we give some concepts related to NSs and SVNSs. 
2.1 Neutrosophic set 
Definition 1. (Smarandache 2005) Let 𝑋 be a universe of discourse, then a neutrosophic set is 
defined as: 

𝐴 = {〈𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉: 𝑥 ∈ 𝑋},                                                             (1) 

which is characterized by a truth-membership function 𝑇𝐴: 𝑋 → ]0−, 1+[, an indeterminacy-
membership function 𝐼𝐴: 𝑋 → ]0−, 1+[and a falsity-membership function 𝐹𝐴: 𝑋 → ]0−, 1+[. 

There is not restriction on the sum of 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) and 𝐹𝐴(𝑥), so 0− ≤ sup𝑇𝐴(𝑥) + sup 𝐼𝐴(𝑥) +
sup𝐹𝐴(𝑥) ≤ 3

+.  

In the following, we adopt the representations 𝑡𝐴(𝑥), 𝒾𝐴(𝑥) and 𝑓𝐴(𝑥) instead of 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) and 
𝐹𝐴(𝑥), respectively. 
Wang et al. (2010) defined the single valued neutrosophic set which is an instance of 
neutrosophic set. 

2.2.Single valued neutrosophic sets 
Definition 2. Wang et al. (2010) Let 𝑋 be a universe of discourse, then a single valued 
neutrosophic set is defined as: 

𝐴 = {〈𝑥, 𝑡𝐴(𝑥), 𝒾𝐴(𝑥), 𝑓𝐴(𝑥)〉: 𝑥 ∈ 𝑋},                                                         (2) 

where 𝑡𝐴: 𝑋 → [0,1], 𝒾𝐴: 𝑋 → [0,1] and 𝑓𝐴: 𝑋 → [0,1] with 0 ≤ 𝑡𝐴(𝑥) + 𝒾𝐴(𝑥) + 𝑓𝐴(𝑥) ≤ 3 for all 
𝑥 ∈ 𝑋. The values 𝑡𝐴(𝑥), 𝒾(𝑥) and 𝑓𝐴(𝑥) denote the truth-membership degree, the indeterminacy-
membership degree and the falsity membership degree of 𝑥 to 𝐴, respectively. 
2.3.Hesitant fuzzy sets 
Definition 3. (Torra 2010) A hesitant fuzzy set 𝑀 on 𝑋 is defined in terms of a function ℎ𝑀 when 
applied to 𝑋, which returns a finite subset of [0,1], i.e.,  

𝑀 = {〈𝑥, ℎ𝑀(𝑥)〉: 𝑥 ∈ 𝑋},                                                                              (3) 

where ℎ𝑀(𝑥) is a set of some different values in [0,1], representing the possible membership 
degrees of the element 𝑥 ∈ 𝑋 to 𝑀. 
2.4.Single-valued neutrosophic hesitant sets 
Definition 4. (Ye 2014c) Let 𝑋 be a fixed set, then a single-valued neutrosophic hesitant fuzzy 
set 𝐴 on 𝑋 is defined as,  

𝐴 = {〈𝑥, (�̃�𝐴(𝑥), �̃�𝐴(𝑥), 𝑓𝐴(𝑥))〉: 𝑥 ∈ 𝑋}                                                              (4) 

in which �̃�𝐴(𝑥), �̃�𝐴(𝑥), and 𝑓𝐴(𝑥) are  three sets of some different values in [0,1], denoting the 
truth-membership hesitant degrees, indeterminacy-membership hesitant degrees, and falsity-
membership hesitant degrees of the element 𝑥 ∈ 𝑋 to 𝐴, respectively, with the conditions 0 ≤
𝛾, 𝛿, 𝜂 ≤ 1 and 0 ≤ 𝛾+ + 𝛿+ + 𝜂+ ≤ 3, where 𝛾 ∈ �̃�𝐴(𝑥), 𝛿 ∈ �̃�(𝑥), 𝜂 ∈ 𝑓𝐴(𝑥), 𝛾+ ∈ �̃�𝐴+(𝑥) =
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⋃ max{𝛾}𝛾∈�̃�𝐴(𝑥) , 𝛿+ ∈ �̃�𝐴+(𝑥) = ⋃ max{𝛿}𝛿∈�̃�𝐴(𝑥) , and 𝜂+ ∈ 𝑓𝐴+(𝑥) = ⋃ max{𝜂}𝜂∈�̃�𝐴(𝑥)
 for 𝑥 ∈

𝑋. 
For convenience, the three tuple 𝐴 =  { (�̃�𝐴(𝑥), �̃�𝐴(𝑥), 𝑓𝐴(𝑥))} is called a single-valued 
neutrosophic hesitant fuzzy element (SVNHFE) or a triple hesitant fuzzy element, which is 
denoted by the simplified symbol 𝐴 = { (�̃�𝐴, �̃�𝐴, 𝑓𝐴)}.  

Now, we give the following definitions to propose the distance and similarity measures between 
SVNHFSs. 
Definition 5 Let 𝐴, 𝐵 and 𝐶 be three SVNHSs on 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}, then the distance measure 
between 𝐴 and 𝐵 is defined as �̃�(𝐴, 𝐵), which satisfies the following properties: 

(1) 0 ≤ �̃�(𝐴, 𝐵) ≤ 1; 
(2) �̃�(𝐴, 𝐵) = 0 if and only if 𝐴 = 𝐵; 
(3) �̃�(𝐴, 𝐵) = �̃�(𝐵, 𝐴). 
(4) �̃�(𝐴, 𝐵) ≤ �̃�(𝐴, 𝐶) and �̃�(𝐵, 𝐶) ≤ �̃�(𝐴, 𝐶), if 𝐴 ⊆ 𝐵 ⊆ 𝐶. 

Definition 6. Let 𝐴, 𝐵 and 𝐶 be three SVNHSs on 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}, then the similarity 
measure between 𝐴 and 𝐵 is defined as �̃�(𝐴, 𝐵), which satisfies the following properties: 

(1) 0 ≤ �̃�(𝐴, 𝐵) ≤ 1; 
(2) �̃�(𝐴, 𝐵) = 1 if and only if 𝐴 = 𝐵; 
(3) �̃�(𝐴, 𝐵) = �̃�(𝐵, 𝐴). 
(4) �̃�(𝐴, 𝐵) ≥ �̃�(𝐴, 𝐶) and �̃�(𝐵, 𝐶) ≥ �̃�(𝐴, 𝐶), if 𝐴 ⊆ 𝐵 ⊆ 𝐶. 

From Definitions 5 and 6, it is noted that �̃�(𝐴, 𝐵) = 1 − �̃�(𝐴, 𝐵). 
Similar to HFS, in most of the cases, the number of values in different SVNHFEs might be different, 
i.e.,  𝑙�̃�𝐴(𝑥𝑖) ≠  𝑙�̃�𝐵(𝑥𝑖) , 𝑙�̃�𝐴(𝑥𝑖) ≠  𝑙�̃�𝐵(𝑥𝑖)  and 𝑙�̃�𝐴(𝑥𝑖) ≠  𝑙�̃�𝐵(𝑥𝑖) . Let  𝑙�̃�(𝑥𝑖) =

max{𝑙�̃�𝐴(𝑥𝑖), 𝑙�̃�𝐵(𝑥𝑖)}, 𝑙�̃�(𝑥𝑖) = max{𝑙�̃�𝐴(𝑥𝑖), 𝑙�̃�𝐵(𝑥𝑖)} and 𝑙�̃�(𝑥𝑖) = max{𝑙�̃�𝐴(𝑥𝑖), 𝑙�̃�𝐵(𝑥𝑖)} for each 
𝑥𝑖 ∈ 𝑋. We can make them have the same number of elements through adding some elements to 
the SVNHFE which has less number of elements. The selection of this operation mainly depends 
on the decision makers’ risk preferences. Pessimists expect unfavorable outcomes and may add the 
minimum of the truth-membership degree and maximum value of indeterminacy-membership 
degree and falsity-membership degree. Optimists anticipate desirable outcomes and may add the 
maximum of the truth-membership degree and minimum value of indeterminacy-membership 
degree and falsity-membership degree That is, according to the pessimistic principle, if 𝑙�̃�𝐴(𝑥𝑖) <
𝑙�̃�𝐵(𝑥𝑖), then the least value of �̃�𝐴(𝑥𝑖) or �̃�𝐵(𝑥𝑖) will be added to �̃�𝐴(𝑥𝑖). Moreover, if 𝑙�̃�𝐴(𝑥𝑖) <
 𝑙�̃�𝐵(𝑥𝑖), then the largest value of 𝑙�̃�𝐴(𝑥𝑖) or 𝑙�̃�𝐵(𝑥𝑖) will be inserted in �̃�𝐴(𝑥𝑖) for 𝑥𝑖 ∈ 𝑋. Similarity, 
if 𝑙�̃�𝐴(𝑥𝑖) <  𝑙�̃�𝐵(𝑥𝑖), then the largest value of 𝑙�̃�𝐴(𝑥𝑖) or 𝑙�̃�𝐵(𝑥𝑖) will be inserted in 𝑓𝐴(𝑥𝑖) for 𝑥𝑖 ∈
𝑋.  

3. Some distance measures for SVNHFSs 
In this section, we give some distance measures between two SVNHFSs. 

Based on the geometric distance model for SVNHFSs, we define the following distance 
measures.  

(1) Generalized single valued neutrosophic hesitant normalized distance (GN), for 𝜆 > 0; 
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�̃�𝐺𝑁 = (
1

3𝑛
∑(

1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆
𝑙�̃�(𝑥𝑖)

𝑗=1

+
1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆
𝑙�̃�(𝑥𝑖)

𝑗=1

𝑛

𝑖=1

+
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐴

𝜎(𝑗)(𝑥𝑖)

𝑙�̃�(𝑥𝑖)

𝑗=1

− 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆

))

1
𝜆

,                                                                                                              (5) 

where �̃�𝐴
𝜎(𝑗)(𝑥𝑖), �̃�𝐵

𝜎(𝑗)(𝑥𝑖); �̃�𝐴
𝜎(𝑗)(𝑥𝑖), �̃�𝐵

𝜎(𝑗)(𝑥𝑖) and 𝑓𝐴
𝜎(𝑗)(𝑥𝑖), 𝑓𝐵

𝜎(𝑗)(𝑥𝑖) are the 𝑗th largest values 
of truth-membership hesitant degrees, indeterminacy-membership hesitant degrees, and falsity-
membership hesitant degrees of 𝐴 and 𝐵, respectively. 

i. If λ = 1, Eq. (5) reduces a single valued neutrosophic hesitant normalized Hamming 
distance (NH): 

�̃�𝑁𝐻 =
1

3𝑛
∑(

1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

+
1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

𝑛

𝑖=1

+
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐴

𝜎(𝑗)(𝑥𝑖)

𝑙�̃�(𝑥𝑖)

𝑗=1

− 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|).                                                                                                             (6) 

ii. If λ = 2, Eq. (5) reduces a single valued neutrosophic hesitant normalized Euclidean 
distance (NE) 

�̃�𝑁𝐸 = (
1

3𝑛
∑(

1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

2
𝑙�̃�(𝑥𝑖)

𝑗=1

+
1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

2
𝑙�̃�(𝑥𝑖)

𝑗=1

𝑛

𝑖=1

+
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐴

𝜎(𝑗)(𝑥𝑖)

𝑙�̃�(𝑥𝑖)

𝑗=1

− 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|

2

))

1
2

.                                                                                                     (7) 

Equation (5) can be viewed as a most generalized case of distance measures. We can see that if 
there is no indeterminacy in SVNHFS, then the indeterminacy-membership value of SVNHFS will 
disappear, hence, Eqs. (5), (6), and (7) are reduced to a generalized dual hesitant normalized 
distance, a dual hesitant normalized Hamming distance and a dual hesitant normalized Euclidean 
distance, respectively (i.e., the distance measures proposed by Singh 2013). In addition, if there is 
no both indeterminacy and nonmembership in SVNHFS, then both indeterminacy-membership 
value and falsity-membership value of SVNHFS will disappear, hence, Eqs. (5), (6), and (7) are 
reduced to a generalized hesitant normalized distance, a hesitant normalized Hamming distance 
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and a hesitant normalized Euclidean distance, respectively (i.e., the distance measure proposed by 
Xu and Xia 2011). 
If we apply the Hausdorff metric to the distance measure, we obtain that 

(2) Generalized single valued neutrosophic hesitant normalized Hausdorff distance (GNH): 

�̃�𝐺𝑁𝐻 = (
1

3𝑛
∑max

𝑗
(|�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆

, |�̃�𝐴
𝜎(𝑗)(𝑥𝑖) − �̃�𝐵

𝜎(𝑗)(𝑥𝑖)|
𝜆

, |𝑓𝐴
𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵

𝜎(𝑗)(𝑥𝑖)|
𝜆

)

𝑛

𝑖=1

)

1
𝜆

.   (8) 

i. If 𝜆 =  1, Eq. (6) reduces a single valued neutrosophic hesitant normalized Hamming–
Hausdorff distance (NHH): 

�̃�𝑁𝐻𝐻 = (
1

3𝑛
∑max

𝑗
(|�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)| , |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)| , |𝑓𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|)

𝑛

𝑖=1

) .          (9) 

ii. If 𝜆 =  2, Eq. (6) reduces a single valued neutrosophic hesitant normalized Euclidean–
Hausdorff distance (NEH): 

�̃�𝑁𝐸𝐻 = (
1

3𝑛
∑max

𝑗
(|�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

2

, |�̃�𝐴
𝜎(𝑗)(𝑥𝑖) − �̃�𝐵

𝜎(𝑗)(𝑥𝑖)|
2

, |𝑓𝐴
𝜎(𝑗)(𝑥𝑖)

𝑛

𝑖=1

− 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|

2

))

1
2

.                                                                                                                        (10) 

In many practical situations, the weight of each element 𝑥𝑖 ∈ 𝑋 should be taken into account. For 
instance, in MADM problems, the considered attribute usually has different importance, thus needs 
to be assigned with different weights. Since in SVNHFSs, we have three types of degree, one is 
truth-membership degree, other is indeterminacy-membership and final is falsity-membership 
degree. Since three degrees may have different importance, according to decision maker, different 
weights can be assigned to each element in each degree. Assume that the weights 𝜔 =
(𝜔1, 𝜔2, … 𝜔𝑛)

𝑇 with 𝜔𝑗 ∈ [0,1], ∑ 𝜔𝑖
𝑛
𝑖=1 = 1;  𝜓 = (𝜓1, 𝜓2, … 𝜓𝑛)𝑇 with 𝜓𝑖 ∈ [0,1], ∑ 𝜓𝑖

𝑛
𝑖=1 =

1 and 𝜙 = (𝜙1, 𝜙2, …𝜙𝑛)𝑇  with 𝜙𝑖 ∈ [0,1], ∑ 𝜙𝑖
𝑛
𝑖=1 = 1  denote the weights assigned to truth-

membership degree, indeterminacy-membership degree and falsity-membership degree, 
respectively, of SVNHFS.  

Now, we present the following weighted distance measures for SVNHFSs. 

(3) Generalized single valued neutrosophic hesitant weighted distance (GW): 

�̃�𝐺𝑊 =

(

 
 1

3
∑

(

 
 
𝜔𝑖 (

1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆
𝑙�̃�(𝑥𝑖)

𝑗=1

) + 𝜓𝑖 (
1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆
𝑙�̃�(𝑥𝑖)

𝑗=1

)

𝑛

𝑖=1

+𝜙𝑖 (
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐴

𝜎(𝑗)(𝑥𝑖)

𝑙�̃�(𝑥𝑖)

𝑗=1

− 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆

)

)

 
 

)

 
 

1
𝜆

.                                                                                      (11) 
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i. If 𝜆 =  1, then we get a single valued neutrosophic hesitant weighted Hamming distance 
(WH): 

�̃�𝑊𝐻 =
1

3
∑

(

 
 
𝜔𝑗 (

1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

) + 𝜓𝑗 (
1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

)

𝑛

𝑖=1

+𝜙𝑗 (
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐴

𝜎(𝑗)(𝑥𝑖)

𝑙�̃�(𝑥𝑖)

𝑗=1

− 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|)

)

 
 
.                                                                                               (12) 

ii. If  𝜆 =  2, then we get a single valued neutrosophic hesitant weighted Euclidean 
distance (WE): 

�̃�𝑊𝐸 =

(

 
 1

3
∑

(

 
 
𝜔𝑗 (

1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

2
𝑙�̃�(𝑥𝑖)

𝑗=1

) + 𝜓𝑗 (
1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

2
𝑙�̃�(𝑥𝑖)

𝑗=1

)

𝑛

𝑖=1

+ 𝜙𝑗 (
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐴

𝜎(𝑗)(𝑥𝑖)

𝑙�̃�(𝑥𝑖)

𝑗=1

− 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|

2

)

)

 
 

)

 
 

1
2

.                                                                                      (13) 

(4) Generalized single valued neutrosophic hesitant weighted Hausdorff distance (GWH), for 
𝜆 > 0; 

�̃�𝐺𝑊𝐻 = (
1

3
∑max

𝑗
(𝜔𝑖 |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆

, 𝜓𝑗 |�̃�𝐴
𝜎(𝑗)(𝑥𝑖) − �̃�𝐵

𝜎(𝑗)(𝑥𝑖)|
𝜆

, 𝜙𝑗 |𝑓𝐴
𝜎(𝑗)(𝑥𝑖)

𝑛

𝑖=1

− 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆

))

1
𝜆

.   

(14) 
i.  𝜆 =  1, then we get a single valued neutrosophic hesitant weighted Hamming–

Hausdorff distance (WHH): 

�̃�𝑊𝐻𝐻 = (
1

3
∑max

𝑗
(𝜔𝑖 |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)| , 𝜓𝑖 |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)| , 𝜙𝑖 |𝑓𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|)

𝑛

𝑖=1

).  

(15) 
ii. 𝜆 =  2, then we get a single valued neutrosophic hesitant weighted Euclidean–

Hausdorff distance (WEH): 
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�̃�𝑊𝐸𝐻 = (
1

3
∑max

𝑗
(𝜔𝑖 (|�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

2

) ,𝜓𝑖 (|�̃�𝐴
𝜎(𝑗)(𝑥𝑖) − �̃�𝐵

𝜎(𝑗)(𝑥𝑖)|
2

) , 𝜙𝑖 (|𝑓𝐴
𝜎(𝑗)(𝑥𝑖)

𝑛

𝑖=1

− 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|

2

)))

1
2

.                                                                                   (16) 

Next, we shall show that the proposed distance measures satisfy axiom definition of distance 
measure. 
Theorem 7. Let 𝐴, 𝐵 and 𝐶 be any SVNHFSs, then �̃�𝑁𝐻(𝐴, 𝐵) is a distance measure. 

Proof. We should prove that �̃�𝑁𝐻(𝐴, 𝐵) satisfies axioms (D1)-(D4). 

(D1) Suppose that 𝐴 and 𝐵 are two SVNHFSs with 𝑛 attributes, then  
|�̃�𝐴
𝜎(𝑗)(𝑥𝑖) − �̃�𝐵

𝜎(𝑗)(𝑥𝑖)| ≥ 0, |�̃�𝐴
𝜎(𝑗)(𝑥𝑖) − �̃�𝐵

𝜎(𝑗)(𝑥𝑖)| ≥ 0 and |𝑓𝐴
𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵

𝜎(𝑗)(𝑥𝑖)| ≥ 0  

and so 
1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

≥ 0,

1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)| ≥ 0

𝑙�̃�(𝑥𝑖)

𝑗=1

and 
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

≥ 0. 

Thus, we have that 

1

3𝑛
∑(

1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

+
1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

𝑛

𝑖=1

+
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

) ≥ 0 

and �̃�𝑁𝐻(𝐴, 𝐵) ≥ 0. 

On the other hand, since 

|�̃�𝐴
𝜎(𝑗)(𝑥𝑖) − �̃�𝐵

𝜎(𝑗)(𝑥𝑖)| ≤ 1, |�̃�𝐴
𝜎(𝑗)(𝑥𝑖) − �̃�𝐵

𝜎(𝑗)(𝑥𝑖)| ≤ 1 and |�̃�𝐴
𝜎(𝑗)(𝑥𝑖) − �̃�𝐵

𝜎(𝑗)(𝑥𝑖)| ≤ 1,  

we get 

1

3𝑛
∑(

1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

+
1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

𝑛

𝑖=1

+
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

) ≤ 1 

and so �̃�𝑁𝐻(𝐴, 𝐵) ≤ 1.  

Then it implies that 0 ≤ �̃�𝑁𝐻(𝐴, 𝐵) ≤ 1. 
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D2) 

�̃�𝑁𝐻(𝐴, 𝐵) =
1

3𝑛
∑(

1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

+
1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

𝑛

𝑖=1

+
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

) 

=
1

3𝑛
∑(

1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐵

𝜎(𝑗)(𝑥𝑖) − �̃�𝐴
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

+
1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐵

𝜎(𝑗)(𝑥𝑖) − �̃�𝐴
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

𝑛

𝑖=1

+
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐵

𝜎(𝑗)(𝑥𝑖) − 𝑓𝐴
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

) 

= �̃�𝑁𝐻(𝐵, 𝐴). 

(D3) Consider 𝐴 = 𝐵, then 

𝐴 = 𝐵 ⇔
1

𝑙�̃�(𝑥𝑖)
∑ �̃�𝐴

𝜎(𝑗)(𝑥𝑖)

𝑙�̃�(𝑥𝑖)

𝑗=1

+
1

𝑙�̃�(𝑥𝑖)
∑ �̃�𝐴

𝜎(𝑗)(𝑥𝑖)

𝑙�̃�(𝑥𝑖)

𝑗=1

+
1

𝑙𝑓(𝑥𝑖)
∑ 𝑓𝐴

𝜎(𝑗)(𝑥𝑖)

𝑙�̃�(𝑥𝑖)

𝑗=1

 

=
1

𝑙�̃�(𝑥𝑖)
∑ �̃�𝐵

𝜎(𝑗)(𝑥𝑖)

𝑙�̃�(𝑥𝑖)

𝑗=1

+
1

𝑙�̃�(𝑥𝑖)
∑ �̃�𝐵

𝜎(𝑗)(𝑥𝑖)

𝑙�̃�(𝑥𝑖)

𝑗=1

+
1

𝑙𝑓(𝑥𝑖)
∑ 𝑓𝐵

𝜎(𝑗)(𝑥𝑖)

𝑙�̃�(𝑥𝑖)

𝑗=1

 

⇔
1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

+
1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

+
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

= 0 

⇔
1

3𝑛
∑(

1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐵

𝜎(𝑗)(𝑥𝑖) − �̃�𝐴
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

+
1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐵

𝜎(𝑗)(𝑥𝑖) − �̃�𝐴
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

𝑛

𝑖=1

+
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐵

𝜎(𝑗)(𝑥𝑖) − 𝑓𝐴
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

) = 0 

⇔ �̃�𝑁𝐻(𝐴, 𝐵) = 0. 

(D4) Since 𝐴 ⊆ 𝐵 ⊆ 𝐶, we have  

1

𝑙�̃�(𝑥𝑖)
∑ �̃�𝐴

𝜎(𝑗)(𝑥𝑖)

𝑙�̃�(𝑥𝑖)

𝑗=1

≤
1

𝑙�̃�(𝑥𝑖)
∑ �̃�𝐵

𝜎(𝑗)(𝑥𝑖)

𝑙�̃�(𝑥𝑖)

𝑗=1

≤
1

𝑙𝑡(𝑥𝑖)
∑ �̃�𝐶

𝜎(𝑗)(𝑥𝑖)

𝑙�̃�(𝑥𝑖)

𝑗=1

, 

1

𝑙�̃�(𝑥𝑖)
∑ �̃�𝐶

𝜎(𝑗)(𝑥𝑖)

𝑙�̃�(𝑥𝑖)

𝑗=1

≤
1

𝑙�̃�(𝑥𝑖)
∑ �̃�𝐵

𝜎(𝑗)(𝑥𝑖)

𝑙�̃�(𝑥𝑖)

𝑗=1

≤
1

𝑙�̃�(𝑥𝑖)
∑ �̃�𝐴

𝜎(𝑗)(𝑥𝑖)

𝑙�̃�(𝑥𝑖)

𝑗=1

, 

1

𝑙𝑓(𝑥𝑖)
∑ 𝑓𝐶

𝜎(𝑗)(𝑥𝑖)

𝑙�̃�(𝑥𝑖)

𝑗=1

≤
1

𝑙𝑓(𝑥𝑖)
∑ 𝑓𝐵

𝜎(𝑗)(𝑥𝑖)

𝑙�̃�(𝑥𝑖)

𝑗=1

≤
1

𝑙𝑓(𝑥𝑖)
∑ 𝑓𝐴

𝜎(𝑗)(𝑥𝑖)

𝑙�̃�(𝑥𝑖)

𝑗=1

. 
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Then it follows that 

1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

≤
1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐶
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

, 

1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

≤
1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐶
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

, 

1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

≤
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑓𝐶
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

 

and so 

�̃�𝑁𝐻(𝐴, 𝐵) =
1

3𝑛
∑(

1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

+
1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

𝑛

𝑖=1

+
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

) 

≤
1

3𝑛
∑(

1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐶
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

+
1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐶
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

𝑛

𝑖=1

+
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑓𝐶
𝜎(𝑗)(𝑥𝑖)|

𝑙�̃�(𝑥𝑖)

𝑗=1

) 

= �̃�𝑁𝐻(𝐴, 𝐶). 

Similarly, we can prove �̃�𝑁𝐻(𝐵, 𝐶) ≤ �̃�𝑁𝐻(𝐴, 𝐶). 

Theorem 8. Let 𝐴 and 𝐵 be two SVNHSs, then �̃�𝐺𝐻(𝐴, 𝐵) and �̃�𝑁𝐸(𝐴, 𝐵) are two distance 
measures. 

Proof. By the similar proof manner of Theorem 7, we can also give the proof of Theorem 8 
(omitted). 

Theorem 9. Let 𝐴, 𝐵 and 𝐶 be any SVNHFSs, then �̃�𝐺𝑁𝐻(𝐴, 𝐵) is the distance measure. 

Proof. We should prove that �̃�𝐺𝑁𝐻(𝐴, 𝐵) satisfies axioms (D1)-(D4). 

(D1) Suppose that 𝐴 and 𝐵 are two SVNHFSs with 𝑛 attributes, then 

|�̃�𝐴
𝜎(𝑗)(𝑥𝑖) − �̃�𝐵

𝜎(𝑗)(𝑥𝑖)| ≥ 0, |�̃�𝐴
𝜎(𝑗)(𝑥𝑖) − �̃�𝐵

𝜎(𝑗)(𝑥𝑖)| ≥ 0 and |𝑓𝐴
𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵

𝜎(𝑗)(𝑥𝑖)| ≥ 0  

and so 

(
1

3𝑛
∑max

𝑗
(|�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆

, |�̃�𝐴
𝜎(𝑗)(𝑥𝑖) − �̃�𝐵

𝜎(𝑗)(𝑥𝑖)|
𝜆

, |𝑓𝐴
𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵

𝜎(𝑗)(𝑥𝑖)|
𝜆

)

𝑛

𝑖=1

)

1
𝜆

≥ 0. 

Thus, we have �̃�𝐺𝑁𝐻(𝐴, 𝐵) ≥ 0. 
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(D2)  

�̃�𝐺𝑁𝐻(𝐴, 𝐵) = (
1

3𝑛
∑max

𝑗
(|�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆

, |�̃�𝐴
𝜎(𝑗)(𝑥𝑖) − �̃�𝐵

𝜎(𝑗)(𝑥𝑖)|
𝜆

, |𝑓𝐴
𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵

𝜎(𝑗)(𝑥𝑖)|
𝜆

)

𝑛

𝑖=1

)

1
𝜆

 

= (
1

3𝑛
∑max

𝑗
(|�̃�𝐵

𝜎(𝑗)(𝑥𝑖) − �̃�𝐴
𝜎(𝑗)(𝑥𝑖)|

𝜆

, |�̃�𝐵
𝜎(𝑗)(𝑥𝑖) − �̃�𝐴

𝜎(𝑗)(𝑥𝑖)|
𝜆

, |𝑓𝐵
𝜎(𝑗)(𝑥𝑖) − 𝑓𝐴

𝜎(𝑗)(𝑥𝑖)|
𝜆

)

𝑛

𝑖=1

)

1
𝜆

 

= �̃�𝐺𝑁𝐻(𝐵, 𝐴) 

(D3) Let �̃�𝐺𝑁𝐻(𝐴, 𝐵) = 0, then 

⇔ (
1

3𝑛
∑max

𝑗
(|�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆

, |�̃�𝐴
𝜎(𝑗)(𝑥𝑖) − �̃�𝐵

𝜎(𝑗)(𝑥𝑖)|
𝜆

, |𝑓𝐴
𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵

𝜎(𝑗)(𝑥𝑖)|
𝜆

)

𝑛

𝑖=1

)

1
𝜆

= 0 

⇔ �̃�𝐴
𝜎(𝑗)(𝑥𝑖) = �̃�𝐵

𝜎(𝑗)(𝑥𝑖), �̃�𝐴
𝜎(𝑗)(𝑥𝑖) = �̃�𝐵

𝜎(𝑗)(𝑥𝑖)      and       𝑓𝐴
𝜎(𝑗)(𝑥𝑖) = 𝑓𝐵

𝜎(𝑗)(𝑥𝑖)  

⇔ 𝐴 = 𝐵. 

(D4) Since 𝐴 ⊆ 𝐵 ⊆ 𝐶, we have 

�̃�𝐴
𝜎(𝑗)(𝑥𝑖) ≤ �̃�𝐵

𝜎(𝑗)(𝑥𝑖) ≤ �̃�𝐶
𝜎(𝑗)(𝑥𝑖), �̃�𝐶

𝜎(𝑗)(𝑥𝑖) ≤ �̃�𝐵
𝜎(𝑗)(𝑥𝑖) ≤ �̃�𝐴

𝜎(𝑗)(𝑥𝑖) and 𝑓𝐶
𝜎(𝑗)(𝑥𝑖) ≤ 𝑓𝐵

𝜎(𝑗)(𝑥𝑖) ≤ 𝑓𝐴
𝜎(𝑗)(𝑥𝑖). 

Then it follows that 

max
𝑗
(|�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆

, |�̃�𝐴
𝜎(𝑗)(𝑥𝑖) − �̃�𝐵

𝜎(𝑗)(𝑥𝑖)|
𝜆

, |𝑓𝐴
𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵

𝜎(𝑗)(𝑥𝑖)|
𝜆

) 

≤ max
𝑗
(|�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐶
𝜎(𝑗)(𝑥𝑖)|

𝜆

, |�̃�𝐴
𝜎(𝑗)(𝑥𝑖) − �̃�𝐶

𝜎(𝑗)(𝑥𝑖)|
𝜆

, |𝑓𝐴
𝜎(𝑗)(𝑥𝑖) − 𝑓𝐶

𝜎(𝑗)(𝑥𝑖)|
𝜆

) 

and so  

�̃�𝐺𝑁𝐻(𝐴, 𝐵) = (
1

3𝑛
∑max

𝑗
(|�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆

, |�̃�𝐴
𝜎(𝑗)(𝑥𝑖) − �̃�𝐵

𝜎(𝑗)(𝑥𝑖)|
𝜆

, |𝑓𝐴
𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵

𝜎(𝑗)(𝑥𝑖)|
𝜆

)

𝑛

𝑖=1

)

1
𝜆

 

≤ (
1

3𝑛
∑max

𝑗
(|�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐶
𝜎(𝑗)(𝑥𝑖)|

𝜆

, |�̃�𝐴
𝜎(𝑗)(𝑥𝑖) − �̃�𝐶

𝜎(𝑗)(𝑥𝑖)|
𝜆

, |𝑓𝐴
𝜎(𝑗)(𝑥𝑖) − 𝑓𝐶

𝜎(𝑗)(𝑥𝑖)|
𝜆

)

𝑛

𝑖=1

)

1
𝜆

 

= �̃�𝐺𝑁𝐻(𝐴, 𝐶). 

Similarly, we can prove �̃�𝐺𝑁𝐻(𝐵, 𝐶) ≤ �̃�𝐺𝑁𝐻(𝐴, 𝐶). 

Theorem 10. Let 𝐴 and 𝐵 be two SVNHSs, then �̃�𝑁𝐻𝐻(𝐴, 𝐵) and �̃�𝑁𝐸𝐻(𝐴, 𝐵) are two distance 
measures. 
Proof. By the similar proof manner of Theorem 9, we can also give the proof of Theorem 10 
(omitted). 

4. Some similarity measures for SVNHFSs 
In this section, we present some similarity measures based on the proposed distance measures 
between SVNHFSs. 
4.1. The similarity measures based on geometric distance model for SVNHFSs 
With respect to Eq. (5), the similarity measure can be defined as follows: 

(1) Similarity measure based on generalized single valued neutrosophic hesitant normalized 
distance: 
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�̃�𝐺𝑁(𝐴, 𝐵) = 1 − �̃�𝐺𝑁(𝐴, 𝐵) = 1 − 

�̃�𝐺𝑁 = (
1

3𝑛
∑(

1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆
𝑙�̃�(𝑥𝑖)

𝑗=1

+
1

𝑙�̃�(𝑥𝑖)
∑ |�̃�𝐴

𝜎(𝑗)(𝑥𝑖) − �̃�𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆
𝑙�̃�(𝑥𝑖)

𝑗=1

𝑛

𝑖=1

+
1

𝑙𝑓(𝑥𝑖)
∑ |𝑓𝐴

𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵
𝜎(𝑗)(𝑥𝑖)|

𝜆

𝑙�̃�(𝑥𝑖)

𝑗=1

))

1
𝜆

           (17) 

Similarly, we give another similarity measures based on distance measure as follows: 

(i) Similarity measure based on single valued neutrosophic hesitant normalized 
Hamming distance: 

�̃�𝑁𝐻(𝐴, 𝐵) = 1 − �̃�𝑁𝐻(𝐴, 𝐵)                                                                             (18) 
(ii) Similarity measure based on single valued neutrosophic hesitant normalized 

Euclidian distance: 
�̃�𝑁𝐸(𝐴, 𝐵) = 1 − �̃�𝑁𝐸(𝐴, 𝐵)                                                                            (19) 

(2) Similarity measure based on generalized single valued neutrosophic hesitant normalized 
Hausdorff distance: 

�̃�𝐺𝑁𝐻(𝐴, 𝐵) = 1 − �̃�𝐺𝑁𝐻(𝐴, 𝐵)                                                                            (20) 
(i) Similarity measure based on single valued neutrosophic hesitant normalized 

Hamming–Hausdorff distance: 
�̃�𝑁𝐻𝐻(𝐴, 𝐵) = 1 − �̃�𝑁𝐻𝐻(𝐴, 𝐵)                                                                        (21) 

(ii) Similarity measure based on single valued neutrosophic hesitant normalized 
Euclidian–Hausdorff distance: 

�̃�𝑁𝐸𝐻(𝐴, 𝐵) = 1 − �̃�𝑁𝐸𝐻(𝐴, 𝐵)                                                                        (22) 
(3) Similarity measure based on generalized single valued neutrosophic hesitant weighted 

Hausdorff distance: 
�̃�𝐺𝑊(𝐴, 𝐵) = 1 − �̃�𝐺𝑊(𝐴, 𝐵)                                                                           (23) 

(i) Similarity measure based on single valued neutrosophic hesitant weighted Hamming 
distance: 

�̃�𝑊𝐻(𝐴, 𝐵) = 1 − �̃�𝑊𝐻(𝐴, 𝐵)                                                                          (24) 
(ii) Similarity measure based on single valued neutrosophic hesitant weighted Euclidian 

distance: 
�̃�𝑊𝐸(𝐴, 𝐵) = 1 − �̃�𝑊𝐸(𝐴, 𝐵)                                                                          (25) 

4.2. Similarity measure based on the set-theoretic approach 
Let A and B be two SVNHFSs, then we define a similarity measure from the point of set-
theoretic view as follows: 

�̃�𝑆𝑇(𝐴, 𝐵) =
1

3𝑛
∑

∑ (min∆�̃�𝐴𝐵 (𝑥𝑖)) + ∑ (min∆�̃�𝐴𝐵(𝑥𝑖)) +
𝑙�̃�(𝑥𝑖)

𝑗=1
∑ (min∆𝑓𝐴𝐵(𝑥𝑖))
𝑙�̃�(𝑥𝑖)

𝑗=1

𝑙�̃�(𝑥𝑖)

𝑗=1

∑ (max∆�̃�𝐴𝐵(𝑥𝑖)) + ∑ (max ∆�̃�𝐴𝐵(𝑥𝑖)) +
𝑙�̃�(𝑥𝑖)

𝑗=1
∑ (max∆𝑓𝐴𝐵(𝑥𝑖))
𝑙�̃�(𝑥𝑖)

𝑗=1

𝑙�̃�(𝑥𝑖)

𝑗=1

𝑛

𝑖=1

,                               (26) 

where ∆�̃�𝐴𝐵(𝑥𝑖) = (�̃�𝐴
𝜎(𝑗)(𝑥𝑖), �̃�𝐵

𝜎(𝑗)(𝑥𝑖)), ∆�̃�𝐴𝐵(𝑥𝑖) = (�̃�𝐴
𝜎(𝑗)(𝑥𝑖) − �̃�𝐵

𝜎(𝑗)(𝑥𝑖)), ∆𝑓𝐴𝐵(𝑥𝑖) = (𝑓𝐴
𝜎(𝑗)(𝑥𝑖) − 𝑓𝐵

𝜎(𝑗)(𝑥𝑖)) 

By taking into account the weight of each element 𝑥𝑖  ∈  𝑋 for truth-membership function, 
indeterminacy-membership function and falsity membership function, we define a similarity 
measure as: 
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�̃�𝑊𝑆𝑇(𝐴, 𝐵)

=
1

3𝑛
∑

∑ 𝜔𝑗(min∆�̃�𝐴𝐵(𝑥𝑖)) + ∑ 𝜓𝑗(min∆�̃�𝐴𝐵(𝑥𝑖)) +
𝑙�̃�(𝑥𝑖)

𝑗=1
∑ 𝜙𝑗(min∆𝑓𝐴𝐵(𝑥𝑖))
𝑙�̃�(𝑥𝑖)

𝑗=1

𝑙�̃�(𝑥𝑖)

𝑗=1

∑ 𝜔𝑗(max ∆�̃�𝐴𝐵 (𝑥𝑖)) + ∑ 𝜓𝑗(max∆�̃�𝐴𝐵 (𝑥𝑖)) +
𝑙�̃�(𝑥𝑖)

𝑗=1
∑ 𝜙𝑗(max ∆𝑓𝐴𝐵(𝑥𝑖))
𝑙�̃�(𝑥𝑖)

𝑗=1

𝑙�̃�(𝑥𝑖)

𝑗=1

𝑛

𝑖=1

                  (27) 

4.3. Similarity measure based on matching function 
The concept of similarity between FSs based on a matching function was defined by Chen et al. 

(1995). Then Xu (2007) extended the matching function to deal with the similarity measures for 
IFSs. In the following, we propose the similarity measure for SVNHFSs based on the matching 
function. 

Suppose that A and B are two SVNHFSs, then we define a similarity measure based on the 
matching function as follows: 

�̃�𝑀𝐹(𝐴, 𝐵) =
1

3𝑛
∑

∑ ∇�̃�𝐴𝐵(𝑥𝑖) + ∑ ∇�̃�𝐴𝐵(𝑥𝑖) +
𝑙�̃�(𝑥𝑖)

𝑗=1
∑ ∇𝑓𝐴𝐵(𝑥𝑖)
𝑙�̃�(𝑥𝑖)

𝑗=1

𝑙�̃�(𝑥𝑖)

𝑗=1

max(∑ ⊿�̃�𝐴𝐵
𝑙�̃�(𝑥𝑖)

𝑗=1
(𝑥𝑖),∑ ⊿�̃�𝐴𝐵(𝑥𝑖)

𝑙�̃�(𝑥𝑖)

𝑗=1
, ∑ ⊿𝑓𝐴𝐵(𝑥𝑖)

𝑙�̃�(𝑥𝑖)

𝑗=1
)

𝑛

𝑖=1

                                           (28) 

where ∇�̃�𝐴𝐵(𝑥𝑖) = (�̃�𝐴
𝜎(𝑗)(𝑥𝑖)×�̃�𝐵

𝜎(𝑗)(𝑥𝑖)), ∇�̃�𝐴𝐵(𝑥𝑖) = (�̃�𝐴
𝜎(𝑗)(𝑥𝑖)×�̃�𝐵

𝜎(𝑗)(𝑥𝑖)) and ∇𝑓𝐴𝐵(𝑥𝑖) = (𝑓𝐴
𝜎(𝑗)(𝑥𝑖)×

𝑓𝐵
𝜎(𝑗)(𝑥𝑖)), and ⊿�̃�𝐴𝐵(𝑥𝑖) = (�̃�𝐴

𝜎(𝑗)(𝑥𝑖))
2

+ (�̃�𝐵
𝜎(𝑗)(𝑥𝑖))

2

, ⊿�̃�𝐴𝐵(𝑥𝑖) = (�̃�𝐴
𝜎(𝑗)(𝑥𝑖))

2

+ (�̃�𝐵
𝜎(𝑗)(𝑥𝑖))

2

 and ⊿𝑓𝐴𝐵(𝑥𝑖) =

(𝑓𝐴
𝜎(𝑗)(𝑥𝑖))

2

+ (𝑓𝐵
𝜎(𝑗)(𝑥𝑖))

2

. 

If we consider weight of each 𝑥 ∈  𝑋, then we get 

�̃�𝑊𝑀𝐹(𝐴, 𝐵) =
1

3𝑛
∑

∑ 𝜔𝑗(∇�̃�𝐴𝐵(𝑥𝑖)) + ∑ 𝜓𝑗(∇�̃�𝐴𝐵(𝑥𝑖)) +
𝑙�̃�(𝑥𝑖)

𝑗=1
∑ 𝜙𝑗(∇𝑓𝐴𝐵(𝑥𝑖))
𝑙�̃�(𝑥𝑖)

𝑗=1

𝑙�̃�(𝑥𝑖)

𝑗=1

max(∑ 𝜔𝑗(⊿�̃�𝐴𝐵(𝑥𝑖))
𝑙�̃�(𝑥𝑖)

𝑗=1
, ∑ 𝜓𝑗(⊿�̃�𝐴𝐵(𝑥𝑖))

𝑙�̃�(𝑥𝑖)

𝑗=1
, ∑ 𝜙𝑗(⊿𝑓𝐴𝐵(𝑥𝑖))

𝑙�̃�(𝑥𝑖)

𝑗=1
)

𝑛

𝑖=1

                            (29) 

It is clear that �̃�𝑊𝑀𝐹(𝐴, 𝐵) satisfies all the properties described in Definition 6. 

5. Decision-making method based on the single-valued neutrosophic hesitant fuzzy 
information 

In this section, we apply the developed distance and similarity measures to a MADM problem 
with single-valued neutrosophic hesitant fuzzy information.  

For the MADM problem, let 𝐴 = {𝐴1, 𝐴2, … , 𝐴𝑚} be a set of alternatives, 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑛} be 
a set of attributes. Suppose that 𝜔 = (𝜔1, 𝜔2, …𝜔𝑛)𝑇, 𝜓 = (𝜓1, 𝜓2, …𝜓𝑛)𝑇 and 𝜙 =
(𝜙1, 𝜙2, …𝜙𝑛)

𝑇 are the potential weighting vector assigned to the truth-membership, the 
indeterminacy-membership and the falsity-membership, respectively, in each alternative, where 
𝜔𝑗 ≥ 0,𝜓𝑗 ≥ 0 and 𝜙𝑗 ≥ 0, 𝑗 = 1,2, … , 𝑛, ∑ 𝜔𝑗

𝑛
𝑗=1 = 1, ∑ 𝜓𝑗

𝑛
𝑗=1 = 1 and ∑  𝜙𝑗

𝑛
𝑗=1 = 1. If the 

decision makers provide several values for the alternative 𝐴𝑖(𝑖 = 1,2,… ,𝑚) under the attribute 
𝐶𝑗 (𝑗 = 1,2,… , 𝑛),  these values can be characterized as a SVNHFN 𝑒𝑖𝑗 = {𝑡𝑖𝑗, 𝒾𝑖𝑗, 𝑓𝑖𝑗} (𝑗 =
1,2,… , 𝑛; 𝑖 = 1,2,… ,𝑚). Assume that 𝐸 = [𝑒𝑖𝑗]𝑚×𝑛 is the decision matrix, where 𝑒𝑖𝑗 is 
expressed by a single-valued neutrosophic hesitant fuzzy element. 

In multiple attribute decision-making environments, we can utilize the concept of ideal point to 
determine the best alternative in the decision set. Although the ideal alternative does not exist in 
real world, it does provide a useful theoretical construct against which to evaluate alternatives. 
Therefore, we propose each ideal SVNHFN in the ideal alternative 𝐴∗ = {〈𝐶𝑗, 𝑒𝑗∗〉: 𝐶𝑗 ∈ 𝐶}  as 𝑒𝑗∗ =
{�̃�𝑗
∗, �̃�𝑗

∗, 𝑓𝑗
∗} = {{1}, {0}, {0}} (𝑗 = 1,2, … , 𝑛). 
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Thus, we can develop a procedure for the decision maker to select the best choice with single 
valued neutrosophic hesitant fuzzy information, which can be given as follows: 

Step1. Compute the distance (similarity) measure between an alternative 𝐴𝑖 (𝑖 =
 1,2, . . . , 𝑚) and the ideal alternative 𝐴∗ by using proposed distance (similarity) 
measure. 

Step 2. Rank all of the alternative with respect to the values of distance (similarity) measure. 
Step 3. Choose the best alternative with respect to the minimum value of distance (maximum 

value of similarity). 
Step4. End. 

6. Practical example 
Here, an example for the multicriteria decision-making problem of alternatives is used as the 
demonstration of the application of the proposed decision-making method, as well as the 
effectiveness of the proposed method. 

We take the example adopted from Ye (2014c) to illustrate the utility of the proposed distance 
and similarity measures. Also, we show that the results obtained using the proposed distance 
measure are more reasonable than the results obtained using Ye’s (2014c) cosine similarity 
measure. 

Example 11. Suppose that an investment company that wants to invest a sum of money in the best 
option. There is a panel with four possible alternatives in which to invest the money: (1) 𝐴1 is a car 
company, (2) 𝐴2 is a food company, (3) 𝐴3 is a computer company, and (4) 𝐴4 is an arms company. 
The investment company must make a decision according to the three attributes: (1) 𝐶1 is the risk 
analysis; (2) 𝐶2 is the growth analysis, and (3) 𝐶3 is the environmental impact analysis. Suppose 
that 𝜔 = (0.35, 0.25, 0.40), 𝜓 = (0.35, 0.40, 0.25), and 𝜙 = (0.30, 0.40, 0.30) are the attribute 
weight vector for truth-membership degree, the indeterminacy-membership degree and the falsity 
membership degree, respectively. The four possible alternatives are to be evaluated under these 
three attributes and are presented in the form of single valued neutrosophic hesitant fuzzy 
information by decision maker according to three attributes 𝐶𝑗 (𝑗 = 1,2,3), as expressed in the 
following single valued neutrosophic hesitant fuzzy decision matrix 𝐸: 

Table 1: Decision matrix 𝐸 

𝐸 = (

{ { 0.3, 0.4, 0.5 } , { 0.1 } , { 0.3, 0.4 } } { { 0.5, 0.6 } , { 0.2, 0.3 } , { 0.3,0.4 } } { { 0.2, 0.3 } , { 0.1, 0.2 } , { 0.5, 0.6 } }
{ { 0.6, 0.7 } , { 0.1, 0.2 } , { 0.2, 0.3 } } { { 0.6, 0.7 } , { 0.1 } , { 0.3 } } { { 0.6, 0.7 } , { 0.1, 0.2 } , { 0.1, 0.2 } }
{ { 0.5, 0.6 } , { 0.4 } , { 0.2, 0.3 } } { { 0.6 } , { 0.3 } , { 0.4 } } { { 0.5, 0.6 } , { 0.1 } , { 0.3 } }
{ { 0.7, 0.8 } , { 0.1 } , { 0.1, 0.2 } } { { 0.6, 0.7 } , { 0.1 } , { 0.2 } } { { 0.3, 0.5 } , { 0.2 } , { 0.1, 0.2, 0.3 } }

) 

To get the best alternative(s), the following steps are involved: 

Step 1. Using Eq. (12), we can compute the single valued neutrosophic hesitant weighted 
Hamming distance between the alternatives and the ideal alternative as: 

�̃�𝑁𝐻(𝐴1, 𝐴
∗) = 0.4370, �̃�𝑁𝐻(𝐴2, 𝐴

∗) = 0.2383, �̃�𝑁𝐻(𝐴3, 𝐴
∗) = 0.3679, �̃�𝑁𝐻(𝐴4, 𝐴

∗) = 0.2654. 
Step 2. With respect to the values of weighted Hamming distance, we can rank the alternatives as 
𝐴2 ≻ 𝐴4 ≻ 𝐴3 ≻ 𝐴1.   

Step 3. The alternative 𝐴2 is the optimal choice according to the minimum value among weighted 
Hamming distances, which is not in agreement with the one obtained in Ye (2014c). 
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Above example clearly shows that the developed method is effective and applicable under single-
valued neutrosophic hesitant fuzzy environment. 

7. Related comparative analysis 
Case 1. Ye (2014c) proposed a method based on single-valued neutrosophic hesitant fuzzy 
aggregation operators and cosine measure function to find the best alternative. This method lacks 
the decision makers’ risk factor, which causes the distortion of similarity between an alternative 
and the ideal alternative and makes the proposed method more realistic. Therefore, the results of 
the proposed method don’t coincide with the existing method Ye (2014c). In proposed method, we 
not only consider the decision makers’ risk case but also the individual weighting vectors of truth-
membership, indeterminacy-membership, and falsity-membership degrees of each element in 
decision space, separately. From Table 2, we can see that the rankings are changed according to 
different parameters 𝜆, consequently, the proposed distance measure can provide a more flexible 
decision and more choice for decision makers because of the decision maker’ risk factor and the 
individual weighting vector of membership degrees. Combining the analyses above, our method is 
more precise and reliable than the result produced in Ye (2014c). 
 
Table 2: Results obtained by Eq. (5) corresponding different 𝜆 values 

𝜆 𝐴1 𝐴2 𝐴3 𝐴4 Ranking 
𝜆 = 1 0.4370 0.2383 0.3679 0.2654 𝐴2 ≻ 𝐴4 ≻ 𝐴3 ≻ 𝐴1 
𝜆 = 2 0.6611 0.5256 0.5942 0.5619 𝐴2 ≻ 𝐴4 ≻ 𝐴3 ≻ 𝐴1 
𝜆 = 5 0.8683 0.8102 0.8320 0.8455 𝐴2 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴1 
𝜆 = 10 0.9395 0.9140 0.9214 0.9320 𝐴2 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴1 

Case 2. In order to validate the feasibility of the proposed decision making method, we give another 
comparative study between our method and existing methods and use the concept of weighted 
Euclidian distance. Xu and Xia’s method (2011) is used to rank the HFSs which are only 
characterized by a set of the membership degrees, whereas Singh’s method (2013) is applied to 
DHFSs which are taken into account both the membership hesitant degree and the non-membership 
hesitant degree in decision making process.  

 
Table 3: Relationships between existing methods and proposed method 

Methods Rankings 
The best 
alternative(s) 

The worst 
alternative(s) 

Xu and Xia’s method 
(2011) 

𝐴2 ≻ 𝐴3 ≻ 𝐴4
≻ 𝐴1 

𝐴2 𝐴1 

Singh’s method (2015) 
𝐴2 ≻ 𝐴4 ≻ 𝐴3
≻ 𝐴1 

𝐴2 𝐴1 

Ye’s method (2005) 
𝐴4 ≻ 𝐴2 ≻ 𝐴3
≻ 𝐴1 

𝐴4 𝐴1 

Our method 
𝐴2 ≻ 𝐴4 ≻ 𝐴3
≻ 𝐴1 

𝐴2 𝐴1 

On the other hand, we also utilize the weighted Euclidian distance to determine the final ranking 
order of all the alternatives associated with SVNHFS, which are expressed by the truth-membership 
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hesitant degree, indeterminacy-membership hesitant degree, and falsity-membership hesitant 
degree, to calculate the distance measures and to rank all of the alternatives according to these 
values. Using the MCDM problem in Example 11, the results with different methods are shown in 
Table 3. 

According to the results presented in Table 3, if the distance methods in Xu and Xia (2011) and 
the Singh (2013) are used, then the best alternatives are 𝐴2 and the worst one is 𝐴1, respectively. 
Ye’s method (2014c) say that the best ones are 𝐴4 and the worst one is 𝐴1. With respect to proposed 
method in this paper, the best one is 𝐴2  and 𝐴1  is the worst one. But, there are some small 
differences in the ranking of the alternatives due to definition of set theories. Additionally, from 
results of Table 3, we can say that the concept of distance measure is more remarkable and more 
useable than cosine measure to determine the order of the alternatives. 

As mentioned above, the single valued neutrosophic hesitant fuzzy set is a generalization of FSs, 
IFSs, HFSs, FMSs, DHFSs and also SVNSs. Therefore a SVNHFS (truth-membership hesitant 
degree, indeterminacy-membership hesitant degree, and falsity-membership hesitant degree) 
contains more information than the HFS (membership hesitant degree), the IFS (both membership 
degree and nonmembership degree), the DHFS (membership hesitant degree and nonmembership 
hesitant degree), and also SVNS (truth-membership degree, indeterminacy-membership degree, 
and falsity-membership degree). Then, the proposed distance and similarity measures of SVNHFSs 
is a further generalization of the distance and similarity measures of FSs, IFSs, HFSs, FMSs, 
DHFSs and also SVNSs. In other words, the distance and similarity measures of FSs, IFSs, HFSs, 
FMSs, DHFSs and also SVNSs are special cases of the distance and similarity measures of 
SVNHFSs proposed in this paper. Therefore, the discrimination measures for SVNHFSs can be 
used to solve not only distance and similarity measures with SVNHFSs but also the problems of 
fuzzy environment, hesitant fuzzy environment, intuitionistic fuzzy environment, dual hesitant 
fuzzy environment and single valued neutrosophic environment, whereas the methods in Xu and 
Xia (2011), Xu (2007), Singh (2013) and Majumdar and Samanta (2014) are only sustainable for 
problems with HFSs, IFSs, DHFSs, and SVNSs, respectively. Moreover, since SVNHFSs include 
the aforementioned fuzzy sets, the decision-making method using the proposed distance and 
similarity measures is more general and more feasibility than existing decision-making methods in 
fuzzy setting, intuitionistic fuzzy setting, hesitant fuzzy setting, dual hesitant fuzzy setting, and 
single-valued neutrosophic setting. 

8. Conclusions 
Based on the combination of both HFSs and SVNSs as a further generalization of fuzzy concepts, 

the SVNHFS contains more information because it takes into account the information of its truth-
membership hesitant degree, indeterminacy-membership hesitant degree, and falsity-membership 
hesitant degree, whereas the HFS only contains the information of its membership hesitant degrees 
and DHFS contains the information of its membership hesitant degree and nonmembership hesitant 
degree. Therefore, it has the desirable characteristics and advantages of its own, appears to be a 
more flexible method than the existing methods and include much more information given by 
decision makers. Based on the geometric distance model, the set-theoretic approach, and the 
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matching functions, this paper proposed some distance and similarity measures between SVHNSs 
as a new extension of discrimination measures between fuzzy sets, hesitant fuzzy sets, dual hesitant 
fuzzy sets and the single-valued neutrosophic sets. In a multiple attribute decision making process 
with single-valued neutrosophic hesitant fuzzy information, the proposed distance measure 
between each alternative and the ideal alternative was used to rank the alternatives and determine 
the best one(s) according to the measure values. Finally, a numeric example was given to verify 
the proposed approach and to show its practicality and favorable. The developed method has 
useable and effective calculation, and presents a new model for handling decision-making 
problems under the single-valued neutrosophic hesitant fuzzy environment. In the future, we shall 
further develop more discrimination measures such as correlation coefficient, entropy and cross-
entropy for SVNHFSs and apply them to solve practical applications in these areas, such as group 
decision making, expert system, clustering, information fusion system, fault diagnoses, and 
medical diagnoses. 
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GRA Method of Multiple Attribute Decision Making with Single 

Valued Neutrosophic Hesitant Fuzzy Set Information 

Abstract  
Single valued neutrosophic hesitant fuzzy set has three independent parts, namely the truth 

membership hesitancy function, indeterminacy membership hesitancy function, and falsity 
membership hesitancy function, which are in the form of sets that assume values in the unit interval 
[0, 1]. Single valued neutrosophic hesitant fuzzy set is considered as a powerful tool to express 
uncertain, incomplete, indeterminate and inconsistent information in the process of multi attribute 
decision making problems. In this paper we study multi attribute decision making problems in 
which the rating values are expressed with single valued neutrosophic hesitant fuzzy set 
information. Firstly, we define score value and accuracy value to compare single valued 
neutrosophic hesitant fuzzy sets and then define normalised Hamming distance between the single 
valued neutrosophic hesitant fuzzy sets. Secondly, we propose the grey relational analysis method 
for multi attribute decision making under single valued neutrosophic hesitant fuzzy set 
environment. Finally, we provide an illustrative example to demonstrate the validity and 
effectiveness of the proposed method. 

Keywords 
Hesitant fuzzy sets, single-valued neutrosophic hesitant fuzzy sets, score and accuracy function, 

grey relational analysis method, multi-attribute decision making. 
 

1. Introduction 
Multi-attribute decision making (MADM) used in human activities is a useful process for 

selecting the best alternative that has the highest degree of satisfaction from a set of feasible 
alternatives with respect to the attributes. Because the real world is fuzzy rather than precise in 
nature, the rating values of alternative with respect to attribute considered in MADM problems are 
often imprecise or incomplete in nature. This has led to the development of the fuzzy set theory 
proposed by Zadeh [1]. Fuzzy set theory has been proved to be an effective tool in MADM process 
[2-6]. However, fuzzy set can represent imprecise information with membership degree only. The 
intuitionistic fuzzy set (IFS) proposed by Attanasov [7], a generalisation of fuzzy sets, is 
characterized by membership and non-membership functions where non-membership is 
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independent. Recently, IFS has been successfully applied in many decision making problems, 
especially in MADM problems [8-12]. 

However IFS can handle incomplete information and but it cannot express indeterminate and 
inconsistent information with membership and non-membership functions. Smarandache [13] 
introduced the neutrosophic set (NS) from philosophical point of view to deal with uncertain, 
imprecise, incomplete and inconsistent information that exist in real world. NS is characterised 
with truth membership, indeterminacy and falsity membership degree, which are independent in 
nature. This set generalises the concept of crisp set, fuzzy set, intuitionistic fuzzy set, 
paraconsistent set, dialetheist set, paradoxist set, and tautological set. Since the introduction of NS 
and single-valued neutrosophic set proposed by Wang et al. [14] in 2010, the model of decision 
making under neutrosophic environment has been received much attention to the researchers. 
Many methods of MADM such as TOPSIS method [15, 16], grey relational analysis (GRA) 
method [17,18], distance and similarity measure method [19-23], and outranking method [24] were 
developed under neutrosophic environment.  

However, in a decision making process sometimes decision maker may feel hesitate to take 
decision among the set of possible values instead of single value. Tora [25], Tora and Narukawa 
[26] introduced the hesitant fuzzy set (HF), which permits the membership degree of an element 
to a given set to be represented by the set of possible numerical values in [0,1]. HF, an extension 
of fuzzy set, is useful to deal uncertain information in the process of MADM. Xia and Xu [27] 
proposed some aggregation operators for hesitant fuzzy information and applied them to MADM 
problem in hesitant fuzzy environment. Wei [28] studied some models for hesitant fuzzy MADM 
problem by developing some prioritized aggregation operators for hesitant fuzzy information. Xu 
and Zhang [29] developed TOPSIS method for hesitant fuzzy MADM with incomplete weight 
information. 

Decision maker does not consider the non-membership degrees of rating values in hesitant 
fuzzy MADM. However, non-membership degrees play an important role to express incomplete 
information. Zhu et al. [30] gave the idea of  the dual hesitant fuzzy set (DHFS), in which 
membership degrees and non-membership degrees are in the form of sets of values in [0,1]. DHFS 
generalizes the HF sets and expresses incomplete information effectively. Ye [31] and Chen et 
al.[32] proposed co-relation method between DHFSs and applied the method to MADM with 
hesitant fuzzy information. Singh [33] defined and applied distance and similarity measure 
between DHFSs in MADM. However in a decision making process, indeterminate type 
information cannot be captured with DHFS. 

In 2014, Ye [34] introduced single-valued neutrosophic hesitant fuzzy set (SVNHFS) by 
coordinating HFS and SVNS. SVNHFS generalises the FS, IFS, HFS, DHFS and SVNS, and can 
represent uncertain, imprecise, incomplete and inconsistent information. SVNHFSs are 
characterized by truth hesitancy, indeterminacy hesitancy and falsity-hesitancy membership 
functions which are independent. Therefore SVNHFS can express the three kinds of hesitancy 
information that exist in MADM in real situations. Ye [34] developed single valued neutrosophic 
hesitant fuzzy weighted averaging and single valued neutrosophic hesitant fuzzy weighted 
geometric operators for SVNHFS information and applied these two operators in MADM. Liu and 
Shi [35] proposed hybrid weighted average operator for interval neutrosophic hesitant fuzzy set in 
which the truth hesitancy, indeterminacy hesitancy and falsity-hesitancy membership functions are 
in the form of sets of interval values contained in [0, 1]. Sahin and Liu [36] defined co-relation co-
efficient between SVNHFSs and used it for MADM.  
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Grey relational analysis (GRA)[37], a part of grey system theory, is successfully applied in 
solving a variety of MADM problems in intuitionistic fuzzy environment [38-42], neutrosophic 
environment [43], interval neutrosophic environment [44, 45, 46], neutrosophic soft set 
environment [47-49], rough neutrosophic environment [50] respectively. However, literature 
review reflects that GRA method of MADM with SVNHFS has not been studied in the literature. 
Therefore we need attention for this issue. The aim of the paper is to extend the concept of GRA 
method for solving MADM problem in which the rating values of the alternatives over the 
attributes are considered with SVNHFSs.  

The rest of the paper is organised as follows: Section 2 presents some basic concept related to 
SVNHFSs. In Section 3, we propose GRA method for MADM problems, where rating values are 
considered with SVNHFSs. In Section 4, we illustrate our proposed method with an example. 
Section 5 presents concluding remarks of the study. 

2. Preliminaries 
In this section we recall some basic definitions of hesitant fuzzy set, single valued neutrosophic 

hesitant fuzzy set, score function accuracy function of triangular fuzzy intuitionistic fuzzy numbers. 
Definition 1. [25]Let X  be a fixed set, then a hesitant fuzzy set (HFS) A  on X  is in terms of 

a function that when applied to X  returns a subset of [0,1] , i.e.,  

 , ( ) |AA x h x x X  , where, ( )Ah x is a set of some different values in [0,1] , representing the 
possible membership degrees of the element x X  to .A  For convenience, ( )Ah x  is called a 
hesitant fuzzy element (HFE). 

Definition 2. [34] Let X be fixed set, then a single valued hesitant fuzzy element (SVHFE) N  
on X  is defined as  , ( ), ( ), ( ) |N x t x i x f x x X                     (1) 

where ( ),t x ( )i x  and ( )f x  represent three sets of values in  0,1  , denoting respectively the 
possible truth, indeterminacy and falsity membership degree of the element x X  to the set N . 
The membership degrees ( ),t x ( )i x  and ( )f x  satisfy the following conditions:  

0 , , 1;    0 3                 (2) 
where, ( ), ( ), ( )t x i x f x     , 

( )

( ) max ( ),
t x

t x t x


  



 
( )

( ) max ( ),
t x

i x i x


  



 
( )

( ) max ( )
t x

f x f x


  



  for 

all x X . 
For convenience, the triplet ( ) ( ), ( ), ( )n x t x i x f x  is called a SVNHFE denoted by , ,n t i f . Note 

that the number of values for possible truth, indeterminacy and falsity membership degrees of the 
element in different SVNHFEs may be different.  

Definition 3. [34] Let  1 1 1 1, ,n t i f  and 2 2 2 2, ,n t i f be two SVNHFEs, the following operational 
rules are defined as follows: 
7.  

1 1 1 1 1 1 2 2 2 2 2 2

1 2 1 2 1 2 1 2 1 2
, , , , ,

{ },{ },{ , } ;
t i f t i f

n n t t t t i i f f
          

     

8.  
1 1 1 1 1 1 2 2 2 2 2 2

1 2 1 2 1 2 1 2 1 2 1 2
, , , , ,

{ },{ },{ } ;
t i f t i f

n n t t i i i i f f f f
          

       

9.  
1 1 1 1 1 1

1 1 1 1
, ,

{1 (1 ) },{ },{ } , 0
t i f

n t i f  

  

 
  

    ; 

10.  
1 1 1 1 1 1

1 1 1 1
, ,

{ },{1 (1 ) },{1 (1 ) } , 0.
t i f

n t i f   
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Definition 4. Let , ,i i i in t i f ( 1,2,..., )i n  be a collection of SVNHFEs, then the score function
( )iS n , and accuracy function ( )iA n  of ( 1,2,..., )in i n  can be defined as follows: 

1. 1 1 1 1( ) 2
3i

t i ft i f

S n
l l l  

  
  

 
    

  
          (3) 

2. 1 1( ) ;i
t ft f

A n
l l 

 
 

            (4) 

where, ,tl ,il and ,fl are the numbers of values of ,it ,ii and if  respectively in .in  
Definition 5. Let  1 1 1 1, ,n t i f  and 2 2 2 2, ,n t i f be two SVNHFEs, the following rules can be 

defined for comparison purposes: 
1. If 1 2( ) ( )S n S n , then 1n  is greater than 2n and denoted by 1 2n n ; 
2. If 1 2( ) ( )S n S n and 1 2( ) ( )A n A n , then 1 2n n ; 
3. If 1 2( ) ( )S n S n  and 1 2( ) ( )A n A n , then 1 2n n . 

Definition 6. Let  1 1 1 1, ,n t i f  and 2 2 2 2, ,n t i f be two SVNHFEs, the normalised Hamming 
distance is defined as  

1 1 2 2 1 1 2 2 1 1 2 21 2 1 2 1 2

1 2 1 2 1 2 1 2
1 1 1 1 1 1 1( , )
3 t t i i f ft t i i f f

D n n
l l l l l l     

     
     

 
      
 
 
          (5) 

where ,
kt

l ,
ki

l and 
kf

l are the possible membership values in kn  for 1,2k  , respectively. 
The distance function 1 2( , )D n n  of two SVNHFEs 1n  and 2n  satisfies the following properties: 
1. 1 20 ( , ) 1;D n n   
2. 1 2( , ) 0D n n  if and only if 1 2;n n  
3. 1 2 2 1( , ) ( , );D n n D n n  
4. If 1 2 3n n n  , and 3n  is an SVNHFE on X , then  1 2 1 3( , ) ( , )D n n D n n and 2 3 1 3( , ) ( , ).D n n D n n  

3.  GRA method for multi-attribute decision making with SVNHFS information 
In this section, we propose GRA based approach to find out the best alternative in multi-

attribute decision making problem in SVNHFS environment. Assume that  1 2, ,..., mA A A A be the 
discrete set of m  alternatives and  1 2, ,..., nC C C C be the set of n  attributes for a multi-attribute 
decision making problem. Suppose that the rating values of the i  th alternative ( 1,2,..., )iA i m  over 

the attribute ( 1,2,..., )jC j n  are expressed in terms of SVNHFSs , , ,ij ij ij ijx t i f  where 
{ | ,0 1},ij ij ij ij ijt t      { | ,0 1},ij ij ij ij iji i      and { | ,0 1}ij ij ij ij ijf f      are the possible truth, 

indeterminacy and falsity membership degrees, respectively. With these rating values, we can 
construct a decision matrix ( )ij m nX x  , where the entries of this matrix are SVNHFSs. The decision 
matrix can be presented as follows:  

11 12 1

21 22 2

1 2

...
...

...

n

n

m m mn

x x x
x x x

X

x x x

 
 
 
 
 
  

          (6) 

We develop the GRA method using the following steps by considering the weight vector 

1 2( , ,..., )T
nW w w w  of attributes where [0,1]jw   and 1

1.n
jj

w
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Step 1.  Determine the single valued neutrosophic hesitant fuzzy positive ideal solution 
(SVNHFPIS) A  and  

the single valued neutrosophic hesitant fuzzy negative ideal solution (SVNHFNIS) A of 
alternatives in the decision matrix X  by the following equations, respectively: 

 

1 21 1 1

1 21 1 1

1 2

max ( ),max ( ),...,max ( )for benefit typeattribute;

min ( ),min ( ),...,min ( ) for cost typeattribute

, ,...,

i i ini m i m i m

i i ini m i m i m

i i in

x x x
A

x x x

A A A

     

     

  


 




      (7) 

 

1 21 1 1

1 21 1 1

1 2

min ( ),min ( ),...,min ( )for benefit typeattribute;

max ( ),max ( ),...,max ( ) for cost typeattribute

, ,...,

i i ini m i m i m

i i ini m i m i m

i i in

x x x
A

x x x

A A A

     

     

  


 




      (8) 

The rating values ijx  can be compared by the score function ( )ijS x  and accuracy function ( )ijA x  
defined in Definition 3. 

Step 2. Determine the grey relational co-efficient of each alternative from A  and A by the 
following equations: 

1 1 1 1

1 1

min min ( , ) max max ( , )

( , ) max max ( , )
ij j ij ji m i m i m i m

ij
ij j ij ji m i m

D x A D x A

D x A D x A




 

        

 

   





       (9) 

1 1 1 1

1 1

min min ( , ) max max ( , )

( , ) max max ( , )
ij j ij ji m i m i m i m

ij
ij j ij ji m i m

D x A D x A

D x A D x A




 

        

 

   





       (10) 

where the identification co-efficient is considered as 0.5  . 
Step 3.Calculate the degree of grey relational coefficient of each alternative ( 1,2,..., )iA i m  from  

A  and A by the following equations:  

1

n

i j ij
j

w  



            (11) 

1

n

i j ij
j

w  



            (12) 

Step 4.Calculate the relative closeness co-efficient i  for each alternative ( 1,2,.., )iA i m  with 
respect to the positive ideal solution  A  as 

i
i

i i




 



 



for 1,2,..,i m .         (13) 

Step 5.Rank the alternative according the relative closeness co-efficient ( 1,2,.., ).i i m   

4. A Numerical Example 
In this section we consider the example adopted from Ye [34] to illustrate the application of the 

proposed GRA method for MADM proposed in Section 4. Consider an investment company that 
wants to invest a sum of money in the best option. The following four possible alternatives are 
considered to invest the money: 

1. 1A  is the car company; 
2. 2A  is the food company; 
3. 3A  is the computer company; 
4. 4A  is the arms company. 

The investment company must take a decision according to the following three attributes: 
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1. 1C  is the risk analysis; 
2. 2C  is the growth analysis; 
3. 3C  is the environmental impact analysis. 

The attribute weight vector is given as (0.35,0.25.0.40)TW  . The four possible alternatives 
1 2 3 4{ , , , }A A A A  are evaluated using SVNHFEs under three attributes ( 1,2,3).jC j   We can arrange the 

rating values in a matrix form called a SVNHF decision matrix 4 3( )ijX x  (see Table-1). 
 

Table 1. Single valued neutrosophic hesitant fuzzy decision matrix 
 1C  2C  3C  

       0.3,0.4,0.5 , 0.1 , 0.3,0.4        0.5,0.6 , 0.2,0.3 , 0.3,0.4        0.3,0.4,0.5 , 0.1 , 0.3,0.4  

       0.6,0.7 , 0.1,0.2 , 0.2,0.3        0.6,0.7 , 0.1 , 0.3        0.3,0.4,0.5 , 0.1 , 0.3,0.4  

       0.5,0.6 , 0.4 , 0.2,0.3        0.6 , 0.3 , 0.4        0.5,0.6 , 0.1 , 0.3  

       0.7,0.8 , 0.1 , 0.1,0.2        0.6,0.7 , 0.1 , 0.2        0.3,0.5 , 0.2 , 0.1,0.2,0.3  

 
Now we apply the proposed method to find out the best alternative, which can be described as 

follows: 
Step 1. Comparing the attribute values by score function and accuracy function of SVNHFEs, 

we can determine the neutrosophic hesitant fuzzy positive ideal solution (SVNHFPIS) A  by the 
Eq.(7) as follows: 

                    

1 2 3

0.7,0.8 , 0.1 , 0.1,0.2 , 0.6,0.7 , 0.1 , 0.2 , 0.6,0.7 , 0.1,0.2 , 0.1,0.2

, ,

A

A A A



  

   

   

   (14) 

Similarly, we can determine the neutrosophic hesitant fuzzy negative ideal solution 
(SVNHFPIS) A by the Eq.(8) as follows: 

                    

1 2 3

0.5,0.6 , 0.4 , 0.2,0.3 , 0.6 , 0.3 , 0.4 , 0.2,0.3 , 0.1,0.2 , 0.5,0.6

, ,

A

A A A



  

   

   

   (15) 

Step 2. Calculate the grey relational co-efficient of each alternative from positive ideal solutions 
A  and negative ideal solutions A  by equations (9) and (10) for 0.5   , respectively. 

0.4218 0.5010 0.3333
0.6166 0.8018 1.0000
0.4003 0.4709 0.5717
1.0000 1.0000 0.5350

ij


 
 
 
 
 
 

        (16) 

0.4218 0.7275 1.0000
0.5329 0.5329 0.3333
1.0000 1.0000 0.4218
0.4003 0.4709 0.4218

ij


 
 
 
 
 
 

        

 (17) 
Here, we consider 1,2,3,4i   and 1,2,3.j   
Step 3.Calculate the degree of grey relational co-efficient of each alternative from A  and A  

by Eqs. (11) and (12), respectively. 
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1 2 3 40.4062 0.8162 0.4865 0.8140               (18) 
1 2 3 40.7295 0.4531 0.7687 0.4265               (19) 

Step 4.Calculate the relative closeness coefficient i  for each alternative ( 1,2,3,4)iA i   by Eq.(13). 
1 0.3577,  2 0.6430,  3 0.3875,  and 4 0.6561.   

Step 5. Rank the alternative according to the relative closeness coefficient ( 1,2,3,4)i i  .  
Therefore 4 2 3 1A A A A  indicates that the most desirable alternative is 4.A  
We notice that the ranking order obtained by the proposed method is indifferent with the ranking 

of the alternative obtained by Ye’s method [34]. 

5. Conclusions 
In general, the information of rating values considered in MADM problems is imprecise, 

indeterminate, incomplete and inconsistent in nature. SVNHFS is a useful tool that can capture all 
these type of information in MADM process. In this paper we investigate MADM problem in 
which rating values are considered with SVNHFSs. To extend the GRA method for MADM, we 
first define score value, accuracy value, certainty value, and normalised Hamming distance of 
SVNHFS. Having defined the positive ideal solution (PIS) and the negative ideal solution (NIS) 
by score value and accuracy value, we calculate the grey relational degree between each alternative 
and ideal alternatives (PIS and NIS). Then we determine a relative relational degree to obtain the 
ranking order of all alternatives by calculating the degree of grey relation to both the positive and 
negative ideal solution simultaneously. Finally, we provide an illustrative example to show the 
validity and effectiveness of the proposed approach. The proposed approach is compared with 
other existing methods to show that our approach is straightforward and can be applied effectively 
with other decision making problems under SVNHF environment. In future, we will extend the 
proposed approach to MADM under SVNHFS environment with unknown weight information 
and MADM with interval valued neutrosophic hesitant fuzzy environment. 
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TOPSIS for Solving Multi-Attribute Decision Making Problems 

under Bi-Polar Neutrosophic Environment 

Abstract  
The paper investigates a technique for order preference by similarity to ideal solution (TOPSIS) 

method to solve multi-attribute decision making problems with bipolar neutrosophic information. 
We define Hamming distance function and Euclidean distance function to determine the distance 
between bipolar neutrosophic numbers. In the decision making situation, the rating of performance 
values of the alternatives with respect to the attributes are provided by the decision maker in terms 
of bipolar neutrosophic numbers. The weights of the attributes are determined using maximizing 
deviation method. We define bipolar neutrosophic relative positive ideal solution (BNRPIS) and 
bipolar neutrosophic relative negative ideal solution (BNRNIS). Then, the ranking order of the 
alternatives is obtained by TOPSIS method and most desirable alternative is selected. Finally, a 
numerical example for car selection is solved to demonstrate the applicability and effectiveness of 
the proposed approach and comparison with other existing method is also provided. 

Keywords 

Single valued neutrosophic sets; bipolar neutrosophic sets; TOPSIS; multi-attribute decision 
making.  

 

1. Introduction 
Zadeh [1] introduced the concept of fuzzy set to deal with problems with imprecise information 

in 1965. However, Zadeh [1] considers one single value to express the grade of membership of the 
fuzzy set defined in a universe. But, it is not always possible to represent the grade of membership 
value by a single point. In order to overcome the difficulty, Turksen [2] incorporated interval 
valued fuzzy sets. In 1986, Atanassov [3] extended the concept of fuzzy sets [1] and defined 
intuitionistic fuzzy sets which are characterized by grade of membership and non-membership 
functions. Later, Lee [4, 5] introduced the notion of bipolar fuzzy sets by extending the concept of 
fuzzy sets where the degree of membership is expanded from [0, 1] to [-1, 1]. In a bipolar fuzzy 
set, if the degree of membership is zero then we say the element is unrelated to the corresponding 
property, the membership degree (0, 1] of an element specifies that the element somewhat satisfies 
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the property, and the membership degree [−1, 0) of an element implies that the element somewhat 
satisfies the implicit counter-property [6]. Zhou and Li [7] incorporated the notion of bipolar fuzzy 
semirings and investigated relative properties using positive t- cut, negative s- cut and equivalence 
relation. Smarandache [8, 9, 10, 11] incorporated indeterminacy membership function as 
independent component and defined neutrosophic set on three components truth, indeterminacy 
and falsehood.  However, from practical point of view, Wang et al. [12] defined single valued 
neutrosophic sets (SVNSs) where degree of truth membership, indeterminacy membership and 
falsity membership  [0, 1]. Deli et al. [13] introduced the notion of bipolar neutrosophic sets 
(BNSs) which is a generalization of the fuzzy sets, bipolar fuzzy sets, intuitionistic fuzzy sets, 
neutrosophic sets. Pramanik and Mondal defined rough bipolar neutrosophic set [14]. 

Zhang and Wu [15] presented a TOPSIS [16] method for solving single valued neutrosophic 
multi-criteria decision making with incomplete weight information. Chi and Liu [17] proposed an 
extended TOPSIS method for MADM problems where the attribute weights are unknown and the 
attribute values are expressed in terms of interval neutrosophic numbers. Biswas et al. [18] 
developed a new TOPSIS based approach for solving multi-attribute group decision making 
problem with simplified neutrosophic information. Broumi et al. [19] extended TOPSIS method 
for multiple attribute decision making based on interval neutrosophic uncertain linguistic variables. 
In neutrosophic hybrid environment, Pramanik et al. [20] extended TOPSIS method for singled 
valued soft expert set based multi-attribute decision making problems. Dey et al. [21] presented 
TOPSIS method for generalized neutrosophic soft multi-attribute group decision making. Mondal 
et al. [22] presented TOPSIS in rough neutrosophic environment and provided illustrative example.   

 Deli et al. [13] investigated a bipolar neutrosophic multi-criteria decision making approach 
based on bipolar neutrosophic weighted average and geometric operators and the score, certainty 
and accuracy functions. Uluçay et al. [23] studied similarity measures of bipolar neutrosophic sets 
and their application to multiple criteria decision making. Literature review suggests that TOPSIS 
method in bipolar neutrosophic environment is yet to appear. Therefore this issue needs to be 
addressed. 

In this paper, we define Hamming distances and Euclidean distances between two BNSs and 
develop a new TOPSIS based method for solving MADM problems under bipolar neutrosophic 
assessments.  

The content of the paper is organized as follows. Section 2 presents some basic definitions 
concerning neutrosophic sets, SVNSs, BNSs which are helpful for the construction of the paper.  
Hamming and Euclidean distances between two bipolar neutrosophic numbers (BNNs) are also 
defined in the Section 2. Section 3 is devoted to present TOPSIS method for MADM problems 
under bipolar neutrosophic environment. A car selection problem is solved in Section 4 to illustrate 
the applicability of the proposed method. Sectin 5 presents conclusion. 

2. Preliminaries 

In this Section, we provide basic definitions regarding neutrosophic sets, SVNSs, BNSs. 
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2.1 Neutrosophic Sets [8, 9, 10, 11] 

Consider U be a space of objects with a generic element of U denoted by x. Then, a neutrosophic 
set N on U is defined as follows: 

N = {x, )(F),(I),(T xxx NNN   xU} 

where, )(T xN , )(I xN , )(F xN : U ]-0, 1+[ represent respectively the degrees of truth-
membership, indeterminacy-membership, and falsity-membership of a point xU to the set N with 
the condition -0  )(T xN + )(I xN + )(F xN  3+. 

2.2 Single valued neutrosophic Sets [12] 

Let U be a universal space of points with a generic element of X denoted by x, then a SVNS S 
is presented as follows: 

S = {x, )(F),(I),(T xxx SSS   xU} 

where, )(T xS , )(I xS , )(F xS : U  [0, 1] and 0  )(T xS + )(I xS + )(F xS  3 for each point x U. 

2.3 Bipolar Neutrosophic Set [13] 

Definition 1. Let U be a universal space of points, then a BNS B in U is defined as follows 

B = {x, )(F ),(I ),(T),(F),(I),(T xxxxxx BBBBBB
   x U}, 

where )(T xB
 , )(I xB

 , )(F xB
 : U  [0, 1] and )(T xB

 , )(I xB
 , )(F xB

 : U  [-1, 0]. 

The positive membership degrees )(T xB
 , )(I xB

 , and )(F xB
 represent the truth membership, 

indeterminate membership, and false membership of an element x U corresponding to a bipolar 
neutrosophic set B and the negative membership degrees )(T xB

 , )(I xB
 , and )(F xB

  represent the 
truth membership, indeterminate membership, and false membership of an element x U to some 
implicit counter property corresponding to a bipolar neutrosophic set B. For convenience, a bipolar 
neutrosophic number is represented by b~ = < 

BT , 

BI , 

BF , 

BT , 

BI , 

BF >. 

Example: Consider U = {u1, u2, u3, u4}. Then 

B = {< u1, 0.6, 0.2, 0.1, -0.7, -0.1, -0.04>; < u2, 0.4, 0.3, 0.1, -0.5, -0.09, -0.4>; < u3, 0.8, 0.5, 
0.4, -0.3, -0.01, -0.5>; < u4, 0.3, 0.6, 0.7, -0.2, -0.3, -0.7>] 

is a bipolar neutrosophic subset of U. 

Definition 2. Let, B1 = {x, )(F ),(I ),(T),(F),(I),(T
111111

xxxxxx BBBBBB
   x U} and B2 = {x,

)(F ),(I ),(T),(F),(I),(T
222222

xxxxxx BBBBBB
   x U} be two BNSs. Then B1    B2 if and only 

if 

)(T
1

xB
  )(T

2
xB

 , )(I
1

xB
  )(I

2
xB

 , )(F
1

xB
  )(F

2
xB

 ; )(T
1

xB
  )(T

2
xB

 , )(I
1

xB
  )(I

2
xB

 , )(F
1

xB
 

)(F
2

xB
 for all x U. 



Florentin Smarandache, Surapati Pramanik (Editors) 

 

68 
 

Definition 3. Consider, B1 = {x, )(F ),(I ),(T),(F),(I),(T
111111

xxxxxx BBBBBB
   x U} and B2 = 

{x, )(F ),(I ),(T),(F),(I),(T
222222

xxxxxx BBBBBB
   x U} be two BNSs. Then B1 = B2 if and only 

if 

)(T
1

xB
 = )(T

2
xB

 , )(I
1

xB
 = )(I

2
xB

 , )(F
1

xB
 = )(F

2
xB

 ; )(T
1

xB
 = )(T

2
xB

 , )(I
1

xB
 = )(I

2
xB

 , )(F
1

xB
 =

)(F
2

xB
 for all x U. 

Definition 4.Consider, B = {x, )(F ),(I ),(T),(F),(I),(T xxxxxx BBBBBB
   x U} be a BNS. 

The complement of B is denoted by Bc and is defined by 

)(T c xB
 = {1+} - )(T xB

 , )(I c xB
 = {1+} - )(I xB

 , )(F c xB
 = {1+} - )(F xB

 ; 

)(T c xB
 = {1-} - )(T xB

 , )(I c xB
 = {1-} - )(I xB

 , )(F c xB
 = {1-} - )(F xB

  for all x U. 

Definition 5. Consider, B1 = {x, )(F ),(I ),(T),(F),(I),(T
111111

xxxxxx BBBBBB
   x U} and B2 = 

{x, )(F ),(I ),(T),(F),(I),(T
222222

xxxxxx BBBBBB
   x U} be two BNSs. Then their union B1B2 

is defined as follows: 

B1  B2 = {Max ( )(T
1

xB
 , )(T

2
xB

 ),
2

)(I)(I
21

xx BB
 

, Min ( )(F
1

xB
 , )(F

2
xB

 ), Min ( )(T
1

xB
 ,

)(T
2

xB
 ), 

2
)(I)(I

21
xx BB

 
, Max ( )(F

1
xB

 , )(F
2

xB
 )} for all x U. 

Definition 6. Consider, B1 = {x, )(F ),(I ),(T),(F),(I),(T
111111

xxxxxx BBBBBB
   x U} and B2 = 

{x, )(F ),(I ),(T),(F),(I),(T
222222

xxxxxx BBBBBB
   x U} be two BNSs. Then their intersection B1

B2 is defined as follows: 

B1 B2 = {Min ( )(T
1

xB
 , )(T

2
xB

 ),
2

)(I)(I
21

xx BB
 

, Max ( )(F
1

xB
 , )(F

2
xB

 ), Max ( )(T
1

xB
 ,

)(T
2

xB
 ), 

2
)(I)(I

21
xx BB

 
, Min ( )(F

1
xB

 , )(F
2

xB
 )}for all x U. 

Definition 7. Suppose 1
~b = < 

1
TB , 

1
I B , 

1
FB , 

1
TB , 

1
I B , 

1
FB > and 2

~b = < 

2
TB , 

2
I B , 

2
FB , 

2
TB , 

2
I B , 

2
FB > are 

two BNNs, then 

i. α . 1
~b = <1 – (1 - 

1
TB ) α , ( 

1
I B ) α , ( 

1
FB ) α , - (- 

1
TB ) α , - (- 

1
I B ) α , - (1 – (1 – (- 

1
FB )) α )>; 

ii. ( 1
~b ) α = < ( 

1
TB ) α , 1 - (1 - 

1
I B ) α , 1 -  (1 - 

1
FB ) α , - (1 – (1 – (- 

1
TB )) α ), - (- 

1
I B ) α ,  – (- 

1
FB )) α )>; 

iii. 1
~b + 2

~b = <


1
TB +



2
TB -



1
TB .



2
TB , 



1
I B .



2
I B ,



1
FB .



2
FB , -



1
TB .



2
TB , - (-



1
I B -



2
I B -



1
I B .



2
I B ), - (-



1
FB -



2
FB -  



1
FB .



2
FB )>; 
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iv. 1
~b . 2

~b = <


1
TB .



2
TB , 



1
I B +



2
I B -



1
I B .



2
I B ,



1
FB +



2
FB -



1
FB .



2
FB , (-



1
TB -



2
TB -



1
TB .



2
TB ), -



1
I B .



2
I B , -



1
FB .



2
FB )>, 

where α  > 0.  
2.4. The distance between two BNNs 

In this sub-section, we propose the distance between two BNNs. 

Consider 1B = 


m

1i
(xi, < 

1
TB (xi), 

1
I B (xi), 

1
FB (xi), 

1
TB  (xi), 

1
I B  (xi), 

1
FB  (xi)>) , 2B = 



m

1i
(xi, < 

2
TB (xi), 

2
I B  

(xi), 

2
FB (xi), 

2
TB  (xi), 

2
I B  (xi), 

2
FB  (xi)>) be two BNNs then, 

(1). The Hamming distance between two BNNs is defined as follows: 

DH ( 1B , 2B ) = 


m

1i
{|( 

1
TB (xi) - 

2
TB (xi))| + |( 

1
I B (xi) - 

2
I B (xi))| + |( 

1
FB (xi) - 

2
FB (xi))| + |( 

1
TB (xi)- 

2
TB  (xi))| 

+ |( 

1
I B (xi) - 

2
I B (xi))| + |( 

1
FB (xi) - 

2
FB (xi))|}                                                                                     (1) 

(2). The normalized Hamming distance between two BNNs is defined as follows: 

NDH ( 1B , 2B ) = 
m6
1 



m

1i
{|( 

iBT (xi) - 

2
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1
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I B (xi))| + |( 

1
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1
TB (xi) -



2
TB (xi))| + |( 

1
I B (xi) - 

2
I B (xi))| + |( 

1
FB (xi) - 

2
FB (xi))|}                                                                       (2) 

(3). The Euclidean distance between two BNNs is defined as follows: 

EH ( 1B , 2B ) = 
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(3) 

(4). The normalized Euclidean distance between two BNNs is defined as follows: 

NEH ( 1B , 2B ) = 
 

















m

i 2
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2
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2
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2
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2
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2
ii

))(F)(F())(I)(I())(T)(T(

))(F)(F())(I)(I())(T)(T(
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212121
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xxxxxx

xxxxxx
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(4) 

with the following properties: 

(1). 0DH ( 1B , 2B )6m 

(2). 0  NDH ( 1B , 2B ) 1 

(3). 0  EH ( 1B , 2B )  6m  

(4). 0  NEH ( 1B , 2B ) 1. 

3. TOPSIS method for MADM with bipolar neutrosophic information  

In this Section, we present an approach based on TOPSIS method to deal with MADM problems 
under bipolar neutrosophic environment.  
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Let A = {A1, A2, …, Am}, (m  2) be a discrete set of m feasible alternatives,  C = {C1, C2, …, 
Cn}, (n  2) be a set of attributes under consideration and w = (w1, w2, …, wn)T be the unknown 

weight vector of the attributes with 0wj1 and 


n

1j jw = 1. The rating of performance value of 

alternative Ai, (i = 1, 2, …, m) with respect to the predefined attribute Cj, (j = 1, 2, …, n) is presented 
by the decision maker (DM) and they can be expressed by BNNs. Therefore, the proposed 
approach is presented using the following steps: 

Step 1. Construction of decision matrix with BNNs 
The rating of performance value of alternative Ai (i = 1, 2, …, m) with respect to the attribute 

Cj, (j = 1, 2, …, n) is expressed by BNNs and they can be presented in the decision matrix as 
follows: 

nmijr~


= 























mnm2m1

2n2221

1n1211

r...rr
......
......
r...rr
r...rr

 

Here, we have rij = ( 

ijT , 

ijI , 

ijF , 

ijT , 

ijI , 

ijF ) with 

ijT , 

ijI , 

ijF , - 

ijT , - 

ijI , - 

ijF [0, 1] and 0  

ijT +


ijI + 

ijF - 

ijT - 

ijI - 

ijF 6 for i = 1, 2, …, m; j = 1, 2, …, n. 

Step 2. Determination of weights of the attributes 
We assume that the weights of the attributes are not equal and they are fully unknown to the 

DM. Therefore, in this paper, maximizing deviation method [24] is used to find the unknown 
weights. The main idea of maximizing deviation method can be expressed as follows. If the 
attribute values rij (j = 1, 2, …, n) in the attribute Cj have small differences between the alternatives, 
then Cj has a small significance in ranking of all alternatives and a small weight is assigned for the 
attribute. If the attribute values rij (j = 1, 2, …, n) in the attribute Cj are same, then Cj has no effect 
in the ranking results and zero is assigned to the weight of the attribute. However, if the attribute 
values rij (j = 1, 2, …, n) over the attribute Cj have big differences, then Cj will play a key role in 
ranking of all alternatives and we will allocate a big weight for the attribute. The deviation values 
of alternative Ai (i = 1, 2, …, m) to all other alternatives under the attribute Cj (j = 1, 2, …, n) can 

be defined as Zij (wj) = jkj
m

1k ij )wr,(rz


, then Zj (wj) = j
m

1i ijwZ


= jkj

m

1i

m

1k
ij )wr,(rz 

   
presents the total 

deviation values of all alternatives to the other alternatives for the attribute Cj (j = 1, 2, …, n). Now 

Z (wj) = )w(Z j
n

1j j


= jkj
m

1i

m

1k ij
n

1j
)wr,(rz






  

presents the total deviation of all attributes to the other 

alternatives with respect to all alternatives. Now we construct the non-linear optimizing model 
based on above analysis to obtain unknown attribute weight wj as follows: 

Max Z (wj) = jkj
m

1i

m

1k ij
n

1j
)wr,(rz






                                                                                                   

(5) 

Subject to 


n

1j

2
jw = 1, wj  0, j = 1, 2, …, n.  
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We now formulate the Lagrange multiplier function, and obtain 

L (wj, ρ ) = jkj
m

1i

m

1k ij
n

1j
w)r,(rz








+ρ  ( 


q

1j

2
jw -1) 

whereρ is the Lagrange multiplier. 

Then, we calculate the partial derivatives of L with respect to wj andρ respectively as follows: 

j

j

w
ρ),(wL




= jkj

m
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1k ij w)r,(rz





+ρ  ( 


n
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2
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= 



n

1j

2
jw -1 = 0. 

Therefore, the weight of the attribute Cj is obtained as 

wj =
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2

kj
m
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m

1k ij

kj
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1i

m

1k ij
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(6) 

and the normalized weight of the attribute Cj is given by  

*
jw =

 














n

1j kj
m

1i

m

1k ij

kj
m

1i

m

1k ij

)r,(rz

)r,(rz

 

.                                                                                                              (7) 

Step 3. Construction of weighted decision matrix 
We find aggregated weighted decision matrix by multiplying weights [25] of the attributes and 

the aggregated decision matrix
nm

w
ij

jr


is constructed as follows: 

nmijr

  wj =

nm
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ij
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jw
ijr  = ( jw

ijT , jw
ijI , jw

ijF , jw
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ijI , jw
ijF ) with w

ijT , w
ijI , w

ijF , w
ijT , w

ijI , w
ijF [0, 1] and 0

w
ijT + w

ijI + w
ijF - w

ijT - w
ijI - w

ijF 6 for i = 1, 2, …, m; j = 1, 2, …, n. 

Step 4. Identify the bipolar neutrosophic relative positive ideal solution (BNRPIS) and 
bipolar neutrosophic relative negative ideal solution (BNRNIS) 

In real life decision making, we confront two types of attributes namely, benefit type attributes 
( 1β ) and cost type attributes ( 2β ). In bipolar neutrosophic environment, assume that w

BNRPISQ and
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w
BNRNISQ be the bipolar neutrosophic relative positive ideal solution (BNRPIS) and bipolar 

neutrosophic relative negative ideal solution (BNRNIS). Then, w
BNRPISQ and w

BNRNISQ  are   defined as 
follows: 

w
BNRPISQ =( ,F,I,T,F,I,T 111111 w
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w
BNRNISQ = ( ,F,I,T,,-FI,T 111111 w

1
w
1

w
1

w
1

w
1

w
1

 ,  222222 w
2

w
2

w
2

w
2

w
2

w
2 F,I,T,F,I,T , …,

 nnnnnn w
n

w
n

w
n

w
n

w
n

w
n F,I,T,F,I,T )                                                                           (9) 
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Step 5. Calculation of distance of each alternative from BNRPIS and BNRNIS 

The normalized Euclidean distance of each alternative  jjjjjj w
ij

w
ij

w
ij

w
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w
ij

w
ij F,I,T,F,I,T  from 
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defined as follows: 

i
NEuc  = 

 



















n

1j 2w
ij

w
ij

2w
ij

w
ij

2w
ij

w
ij

2w
ij

w
ij

2w
ij

w
ij

2w
ij

w
ij

)FF()II()TT

)FF()II()TT(

6n
1

jjjjjj

jjjjjj

                              

(10)

 
Similarly, normalized Euclidean distance of each alternative  jjjjjj w
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written as follows: 
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i
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Step 6. Evaluate the relative closeness co-efficient 
The relative closeness co-efficient of each alternative Ai, (i = 1, 2, …, m) with respect to the 

BNRPIS w
BNRPISQ is defined as follows: 

*
icc  =





 i
N

i
N

i
N

EucEuc
Euc

                                                                                                                   (12) 

where, 0
*
icc 1, i = 1, 2, …, m.  

Step 7. Rank the alternatives 
Rank the alternatives according to the descending order of the alternatives and select the best 

alternative with maximum value of *
icc . 

4. A numerical example 

We consider the problem [13] where a customer wants to buy a car. There are four types cars 
(alternatives) Ai, i = 1, 2, 3, 4 are available. The customer considers four attributes namely Fuel 
economy (C1), Aerod (C2), Comfort (C3), Safety C4 to assess the alternatives.  Now we solve the 
problem with bipolar neutrosophic information based on TOPSIS method to select most desirable 
car for the customer. Then, the proposed TOPSIS approach for solving the problem is presented 
in the following steps: 

Step 1: Formulation of decision matrix 
We construct the decision matrix with bipolar neutrosophic information presented by the DM 

as given below (see Table 1). 

 

Table 1. The decision matrix provided by the DM 

                       C1                                     C2                                         C3                                      C4 

A1   (0.5, 0.7, 0.2, -0.7, -0.3, -0.6)       (0.4, 0.4, 0.5, -0.7, -0.8, -0.4)        (0.7, 0.7, 0.5, -0.8, -
0.7, -0.6)         (0.1, 0.5, 0.7, -0.5, -0.2, -0.8) 

A2   (0.9, 0.7, 0.5, -0.7, -0.7, -0.1)       (0.7, 0.6, 0.8, -0.7, -0.5, -0.1)        (0.9, 0.4, 0.6, -0.1, -
0.7, -0.5)         (0.5, 0.2, 0.7, -0.5, -0.1, -0.9) 

A3   (0.3, 0.4, 0.2, -0.6, -0.3, -0.7)       (0.2, 0.2, 0.2, -0.4, -0.7, -0.4)        (0.9, 0.5, 0.5, -0.6, -
0.5, -0.2)         (0.7, 0.5, 0.3, -0.4, -0.2, -0.2) 

A4   (0.9, 0.7, 0.2, -0.8, -0.6, -0.1)       (0.3, 0.5, 0.2, -0.5, -0.5, -0.2)        (0.5, 0.4, 0.5, -0.1, -
0.7, -0.2)         (0.4, 0.2, 0.8, -0.5, -0.5, -0.6) 
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Step 2. Calculation of the weights of the attributes 
We use normalized Hamming distance and obtain the weights of the attributes by maximizing 

deviation method as follows: 

w1 = 0.2585, w2 = 0.2552, w3 = 0.2278, w4 = 0.2585, where 


4

1j jw = 1. 

Step 3. Construction of weighted decision matrix 
The weighted decision matrix is obtained by multiplying weights to decision matrix as given 

below (see Table 2) 

Table 2. The weighted decision matrix  

         C1                                              C2                                             C3                                       

A1   (0.164, 0.912, 0.66, -0.912, -0.732, -0.211)     (0.122, 0.791, 0.838, -0.913, -0.945, -0.122)     
(0.24, 0.922, 0.854, -0.95, -0.922, -0.208)      

A2   (0.488, 0.912, 0.836, -0.912, -0.912, -0.027)   (0.264, 0.874, 0.945, -0.913, -0.838, -0.026)     
(0.408, 0.812, 0.89, -0.592, -0.922, -0.162)     A3   (0.088, 0.789, 0.66, -0.876, -0.732, -0.267)     
(0.055, 0.663, 0.663, -0.791, -0.913, -0.122)      (0.408, 0.854, 0.854, -0.89, -0.854, -0.055)      

A4   (0.448, 0.912, 0.66, -0.944, -0.876, -0.027)     (0.087, 0.838, 0.663, -0.838, -0.838, -0.055)      
(0.146, 0.812, 0.854, -0.592, -0.922, -0.055)      

______________________________ 
    C4 

______________________________ 
A1   (0.027, 0.836, 0.912, -0.836, -0.66, -0.337) 
A2   (0.164, 0.66, 0.912, -0.836, -0.551, -0.444) 
A3   (0.267, 0.836, 0.088, -0.789, -0.66, -0.055) 
A4   (0.124, 0.66, 0.944, -0.836, -0.836, -0.208) 

_______________________________ 

 
Step 4. Recognize the BNRPIS and BNRNIS 

The BNRPIS ( w
BPRPISR ) and BNRNIS ( w

BPRNISR ) are obtained from the weighted decision matrix 
as follows: 

w
BPRPISR = < (0.448, 0.789, 0.66, -0.944, -0.732, -0.027); (0.264, 0.663, 0.663, -0.913, -0.838, -

0.026); (0.408, 0.812, 0.854, -0.89, -0.854, -0.055); (0.267, 0.66, 0.88, -0.836, -0.551, -0.055) >;  
w

BPRNISR = < (0.088, 0.912, 0.836, -0.876, -0.912, -0.267); (0.055, 0.878, 0.945, -0.791, -0.945, -
0.122); (0.146, 0.922, 0.89, -0.592, -0.922, -0.208); (0.027, 0.836, 0.912, -0.789, -0.836, -0.444) 
>. 

Step 5. Distance measures of each alternative from the BNRPISs and BNRNISs  
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The normalized Euclidean distances of each alternative from the BNRPISs are computed as 
follows: 

1
NEuc = 0.0479, 2

NEuc = 0.0161, 3
NEuc = 0.013, 4

NEuc = 0.0469. 

Similarly, the normalized Euclidean distances of each alternative from the BNRNISs are 
computed as follows: 

1
NEuc = 0.0123, 2

NEuc = 0.0247, 3
NEuc = 0.0548, 4

NEuc = 0.0192. 

Step 6. Calculation of the relative closeness coefficient  

We determine the relative closeness co-efficient *
icc , (i = 1, 2, 3, 4) using Eq. (12). 

*
1cc = 0.2043, *

2cc = 0.6054, *
3cc = 0.8082, *

4cc = 0.2905. 

Step 7. Rank the alternatives 

The ranking order of the cars is presented according to the relative closeness coefficient as given 
below. 

A3   A2   A4  A1 
Consequently, A3 is the most preferable alternative. 

Note 1: Deli et al. [13] consider the weight vector of the attributes as w = (
2
1 ,

4
1 ,

8
1 ,

8
1 ) for 

car selection. However, if we take weight vector of the attributes as w = (
2
1 ,

4
1 ,

8
1 ,

8
1 ), then 

relative closeness co-efficient *
icc , (i = 1, 2, 3, 4) are computed as given below. 

*
1cc = 0.3746, *

2cc = 0.5761, *
3cc = 0.4716, *

4cc  = 0.6944.  

Therefore, the ranking order of the cars can be represented as follows: 

A4   A2   A3  A1 
So, A4 would be the most suitable alternative. 

5. Conclusion 

In this paper, we present a TOPSIS method for solving MADM problem with bipolar 
neutrosophic information. We define Hamming distance function and Euclidean distance function 
to determine the distance between BNNs. In the decision making situation, the rating of 
performance values of the alternatives with respect to the attributes are provided by the DM in 
terms of BNNs. The weights of the attributes are obtained by maximizing deviation method and 
we construct the weighted decision matrix. We also define BNRPIS and BNRNIS. Euclidean 
distance measure is employed to compute the distances of each alternative from BNRPISs as well 
as BNRNISs. Relative closeness coefficients are calculated to rank the alternative and to obtain 
the best alternative. Finally, the proposed method is applied to solve a car selection problem to 
verify the applicability of the proposed method and comparison with other existing method is also 
provided. 
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TOPSIS Approach for Multi Attribute Group Decision Making 

in Refined Neutrosophic Environment  

Abstract 
This paper presents TOPSIS approach for multi attribute decision making in refined 

neutrosophic environment. The weights of each decision makers are considered as a single valued 
neutrosophic numbers. The attribute weights for every decision maker are also considered as a 
neutrosophic numbers. Aggregation operator is used to combine all decision makers’ opinion into 
a single opinion for rating between attributes and alternatives. Euclidean distances from positive 
ideal solution and negative ideal solution are calculated to construct relative closeness coefficients. 
Lastly, an illustrative example of tablet selection is provided to show the applicability of the 
proposed TOPSIS approach. 

Keywords 
Neutrosophic set, single valued neutrosophic set, neutrosophic refined set, TOPSIS, 

aggregation operator.  

 

1. Introduction 
Decision making in neutrosophic environment is a developing area of research. Florentin 

Smarandache [1] introduced neutrosophic set which is the generalization of fuzzy set (FS) 
introduced by L.A. Zadeh  [2] and intuitionistic fuzzy set (IFS) proposed by K. T. Atanassov [3]. 
Florentin Smarandache and his colleagues [4] presented an instance of single valued neutrosophic 
set called single valued neutrosophic set (SVNS) and their set theoretic operations. FS only 
considers membership function to represent imprecise data. IFS is characterized by membership 
and non-membership degrees, which are independent but the sum of degrees of membership and 
non-membership is less than unity. Both FS and IFS are unable to deal with indeterminacy in real 
decision making problem. Indeterminacy plays an important role in decision making situation. For 
example, in an application form there are three options ‘YES / NO/ N. A.’ for gender M / F / Others. 
So, different kinds of uncertainty and vagueness with indeterminacy cannot be explained by the 
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fuzzy concept or intuitionistic fuzzy concept. Florentin Smarandache [1] first focused on 
indeterminacy of the imprecise data and introduced the concept of neutrosophic set consisting of 
three membership functions  namely truth, indeterminacy and falsity membership functions which 
are independent.  

Hawang and Yoon [5] introduced a technique for order preference by similarity to ideal solution 
(TOPSIS). TOPSIS for multi criteria decision making (MCDM) problem in fuzzy environment 
has been proposed by Chen [6]. Boran et al. [7] applied TOPSIS approach to multi attribute group 
decision making (MAGDM) in intuitionistic fuzzy environment. Multicriteria decision - making 
method using the correlation coefficient under single valued neutrosophic environment has been 
proposed by Ye [8]. Ye [9] further established single valued neutrosophic cross entropy for 
MCDM. Biswas et al. [10] presented entropy based grey relational analysis method for multi-
attribute decision - making under single valued neutrosophic assessments. Biswas et al. [11] 
proposed MCDM with unknown weight information. Pramanik et al. [12] developed hybrid vector 
similarity measures and their applications to multi-attribute decision making under neutrosophic 
environment. Zhang et al. [13] presented interval neutrosophic MCDM. Pramanik and Mondal 
[14] presented interval neutrosophic multi-attribute decision-making based on grey relational 
analysis. Ye [15] applied aggregation operator for MCDM problem for simplified neutrosophic 
sets.  Some important approaches in neutrosophic decision making problems can be found in [16-
32]. Biswas et al. [33] proposed TOPSIS method for MAGDM for under single valued 
neutrosophic environment. Chai and Liu [34] applied TOPSIS method for MCDM with interval 
neutrosophic set. Broumi et al. [35] presented extended TOPSIS method for multiple attribute 
decision making based on interval neutrosophic uncertain linguistic variables. In neutrosophic 
hybrid environment, Pramanik et al. [36] presented TOPSIS for singled valued soft expert set 
based multi-attribute decision making problems. Dey et al. [37] studied generalized neutrosophic 
soft multi-attribute group decision making based on TOPSIS. Dey et al. [38] proposed TOPSIS for 
solving multi-attribute decision making problems under bi-polar neutrosophic environment. 
Mondal et al. [39] presented TOPSIS in rough neutrosophic environment and provided an 
illustrative example.   

Yager [40] introduced the concept of multiset in 1986. Sebastian and Ramakrishnan [41] 
developed the concept of multi fuzzy set and studied some of their properties. Shinoj and John 
[42] presented intuitionistic fuzzy multiset. Ye and Ye [43] presented Dice similarity measure 
between single valued neutrosophic multisets and its application in medical diagnosis 
Smarandache [44] proposed n- valued refined neutrosophic logic and its application. Broumi and 
Smarandache [45] defined neutrosophic refined similarity measure based on cosine function. 
Mondal and Pramanik [46] proposed neutrosophic refined similarity measure using tangent 
function and applied it to multi attribute decision making. Mondal and Pramanik [47] also defined 
neutrosophic refined similarity measure and its application based on cotangent function. Pramanik 
et al. [48] recently presented MCGDM in neutrosophic refined environment and its application in 
teacher selection. Nadaban and Dzitac [49] discussed the general view in neutrosophic TOPSIS 
and presented a very brief survey on the applications of neutrosophic sets in MCDM problems. 
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The present paper is devoted to extend TOPSIS approach for MAGDM in refined neutrosophic 
environment. An aggregation operator due to Jun Ye [15] is used in refined neutrosophic 
environment. The relative closeness coefficients for all attributes are calculated and the alternative 
with least value of relative closeness coefficient is selected as the best alternative. 

The rest of the paper has been framed as follows: 
In section 2, we recall some relevant definitions and properties. General TOPSIS approach is 

discussed in section 3. TOPSIS for MAGDM is stepwise proposed in section 4. A numerical 
example is described and solved in section 5. Section 6 presents conclusions and future scope of 
research. 

2. Some well established definitions and properties 
In this section, we recall some established definitions and properties which are connected in the 

present article. 
2.1.Neutrosophic set (NS)[1] 

Let Y be a space of points (objects) with generic element y in Y. A neutrosophic set A in Y is 
denoted by 

 A= {<y: TA(y), IA(y), FA(y)>: Yy } where AT , AI , AF  represent membership, indeterminacy 
and non-membership function respectively. AT , AI , AF are defined as follows: 

AT : Y →]  0, 1+ [  

AI : Y →]  0, 1+ [  

AF : Y →]  0, 1+ [ 

Here, TA(y), IA(y), FA(y) are the real standard or non-standard subset of]  0, 1+ [ and   
 0≤ TA(y)+IA(y)+FA(y) ≤ 3+ 
2.2. Single valued neutrosophic set (SVNS) [4] 

Let Y be a space of points with generic element in yY. A single valued neutrosophic set A in 
Y is characterized by a truth-membership function TA(y), an indeterminacy-membership function 
IA (y) and a falsity-membership function FA(y), for each point y in Y, TA(y), IA (y), FA(y)[0, 1], 
when Y is continuous then single-valued neutrosophic set A can be written as  

A =  
A

AAA Yy,y/)y(F),y(I),y(T  

When A is discrete, single-valued neutrosophic set can be written as
 


n

1i
iiiAiAiA Yy,y/)y(F),y(I),y(T  

2.3. Complement of neutrosophic set [1] 
The complement of a neutrosophic set A is denoted by Aand defined as 
A= {<y: TA(y), IA(y), FA(y)>, Yy } 
TA(y) ={1+} - TA(y) 
IA(y) =1+} - IA(y) 
FA(y) ={1+} - FA(y) 
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2.4 Properties 
Let A and B be two SVNSs, then the following properties [1] hold good: 

Xx,)x(F.)x(F),x(I).x(I),x(T).x(T)x(T)x(TBA.1 BABABABA   
Xx,)x(F.)x(F)x(F)x(F),x(I)..x(I)x(I).x(I),x(T).x(TBA.2 BABABABABA   

 ))x(F),x(Fmin()),x(I),x(Imin()),x(T),x(Tmax(BA.3 BABABA  
 ))x(F),x(Fmax()),x(I),x(Imax()),x(T),x(Tmin(BA.4 BABABA  

2.5 Euclidean distance between two SVNSs [50] 
Let  n,...,2,1i,)x(F),x(I),x(T:xA iAiAiAi  , and  n...,,2,1i,)x(F),x(I),x(T:xB iBiBiBi   be 

SVNSs. Then the Euclidean distance between two SVNSs A and B can be defined as follows: 

 


n

1i

2
iBiA

2
iBiA

2
iAiA )))x(F)x(F())x(I)x(I())x(T)x(T(()B,A(E

                                         (1)
 

The normalized Euclidean distance between two SVNSs A and B can be defined as follows: 

 


n

1i

2
iBiA

2
iBiA

2
iAiAN )))x(F)x(F())x(I)x(I())x(T)x(T((

n3
1)B,A(E

                                  (2)
 

2.6 Neutrosophic refined set [44] 
Let A be a neutrosophic refined set. 

A= {<x, )x(T i
1
A , )x(T i

2
A ,..., )x(T i

m
A ), ( )x(I i

1
A , )x(I i

2
A ,..., )x(I i

m
A ),( )x(F i

1
A , )x(F i

2
A ,..., )x(F i

m
A ))>: xX}where, 

)x(T i
j
A : X  [0 ,1], )x(I i

j
A : X  [0 ,1], )x(F i

j
A : X  [0 ,1], j = 1, 2, …,m such that 

3)x(Fsup)x(Isup)x(Tsup0 i
j
Ai

j
Ai

j
A  , for j = 1, 2, …, m  for  any  xX. Now, ( )x(T i

j
A , )x(I i

j
A , ))x(F i

j
A  

is the truth-membership sequence, indeterminacy-membership sequence and falsity-membership 
sequence of the element x, respectively. Also, m is called the dimension of neutrosophic refined 
sets A.  

2.7 Crispfication of a Neutrosophic set [33] 

Let  n,...,2,1j,)x(F),x(I),x(T:xA ijAijAijAij  be n SVNSs. The equivalent crisp number of each 

jA can be defined as
  






n

1j

2
ijA

2
ijA

2
ijA

2
ijA

2
ijA

2
ijAc

j
3/)))x(F())x(I())x(T1((1

3/)))x(F())x(I())x(T1((1
A .                      (3) 

2.8 Aggregation operator [15]  
In the present problem, there are p alternatives. The aggregation operator [15] applied to 

neutrosophic refined set is defined as follows:
 




iw
r

1i

k
ij

iw
r

1i

k
ij

iw
r

1i

k
ijr21 )F(,)I(,)T()D...,,D,D(F  




iw
r

1i

k
ij

iw
r

1i

k
ij

iw
r

1i

k
ijkj )F(,)I(,)T(d

~
,                                                                                         (4) 

 kjkjkjkj F~,I~,T~d
~

or p...,,2,1kandq...,,2,1j;r...,,2,1iwhere   
Proof: For the proof see [15]. 
Properties 

The three main properties of aggregation operator are given below: 
i) Idempotency: 

Let D1=D2=…=Dr=D where F,I,TD  , then D)D...,,D,D(F r21   
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iw
r

1i

k
ij

iw
r

1i

k
ij

iw
r

1i

k
ijr21 )F(,)I(,)T()D...,,D,D(F

 
D1=D2=…=Dr=D in other words FF,II,TT k

ij
k
ij

k
ij 

 




 

r

1i
iw

r

1i
iw

r

1i
iw

r21 F,I,T)D...,,D,D(F)D...,,D,D(F DF,I,T  since, 


r

1i
i 1w                          (4.1)

 
ii) Boundedness: 

1)T(0and1w0,Since iwk
iji  1)I(0, iwk

ij  1)F(0, iwk
ij 

1)F(0,1)I(0,1)T(0then iw
r

1i

k
ij

iw
r

1i

k
ij

iw
r

1i

k
ij 

  
0,0,1)D...,,D,D(F1,1,0,therefore r21                                                                                 (4.2) 

iii) Monotonicity: 
.r...,,2,1jDD,posesupusLet *

jj   
iwk*

ij
iwk

ij )T()T(Then  iwk*
ij

iwk
ij )I()I(,  iwk*

ij
iwk

ij )F()F(,  which implies 


r

1i

iwk*
ij

r

1i

iwk
ij )T()T(




r

1i

iwk*
ij

r

1i

iwk
ij )I()I(, 



r

1i

iwk*
ij

r

1i

iwk
ij )F()F( )D...,,D,D(F)D...,,D,D(F.e.i *

r
*
2

*
1r21                                  (4.3) 

3. TOPSIS approach 
TOPSIS approach is employed to identify the best alternative based on the concept of 

compromise solution. The best compromise solution reflects the shortest Euclidean distance from 
the positive ideal solution and the farthest Euclidean distance from the negative ideal solution. 
TOPSIS approach can be presented as follows: 

Assume that  m21 A...,,A,AA  be the set of alternatives with the set C of q attributes, namely,
 q21 C...,,C,CC  , qmij )d(D


 be the decision matrix and  q21 w...,,w,wW  be the weight vector of 

attributes.  

3.1 Normalize and weighted normalized form of decision matrix 
i) For the profit matrix 

Let )dmax(d ij
i

j 
 and )dmin(d ij

i
j 
 , then the normalized value of ijd becomes 








jj

jijN
ij dd

dd
d

      
(5) 

ii) For the cost matrix 

Let )dmax(d ij
i

j 
 and )dmin(d ij

i
j 
 , then the normalized value of ijd becomes 








jj

ijjN
ij dd

dd
d

      
(6) 

iii) The weighted normalized decision matrix is defined as j
N
ij

W
ij wdd                     (7) 

  Here, q...,,2,1j;m...,,2,1i  ,  0w j  , and 1w
q

1j
j 


 

3.2 Positive Ideal Solution (PIS) and Negative Ideal Solution (NIS) 

i)The PIS for the profit matrix can be written as PIS =   w
ij

i

w
q

w
2

w
1 dmaxd,...,d,d   

ii) The PIS for the cost matrix can be written as PIS =   w
ij

i

w
q

w
2

w
1 dmind,...,d,d   
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iii) The NIS for the profit matrix can be written as NIS =   w
ij

i

w
q

w
2

w
1 dmind,...,d,d   

iv)The NIS for the cost matrix can be written as NIS =   w
ij

i

w
q

w
2

w
1 dmaxd,...,d,d 

q,...,2,1j;m,...,2,1i 
 

3.3 Euclidean distances from PIS and NIS 
The deviational values from PIS and NIS can be respectively calculated as: 

 



q

1j

2w
j

w
iji )dd(E m,...,2,1i                                                                                                     (8) 

 



q

1j

2w
j

w
iji )dd(E m,...,2,1i                                                                                                     (9) 

3.4 Determination of relative closeness coefficients 
The relative closeness coefficient for each alternative can be written as 








ii

i
i EE

E
E m,...,2,1i                                                                                                            (10) 

3.5 Ranking of alternatives 
Using relative closeness coefficients, the ranking has been made in the ascending order. 

4. TOPSIS approach for MAGDM with neutrosophic refined set 
A systematic approach to extend the TOPSIS to the refined neutrosophic environment has been 

proposed in this section. This method is very suitable for solving the group decision-making 
problem under the refined neutrosophic environment. 

Step 1: 
Let us consider a group of r decision makers (D1, D2…,Dr) and q attributes (C1, C2…,Cq). The 

decision matrix (see Table 1) can be presented as follows: 
 
Table 1: Decision matrix  
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AF,I,T
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A,F,I,T
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...

AF,I,T

,....................
,....................

A,F,I,T

A,F,I,T

AF,I,T
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,....................
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AF,I,T

,....................
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A,F,I,T

A,F,I,T

D

C...CC

                                                      (11) 
Step 2 
Crispfication of neutrosophic weights 
The r decision makers have their own neutrosophic decision weights )w...,w,w( r21 . Each

 kkkk F,I,Tw is represented by a neutrosophic number. The equivalent crisp weight can be 
obtained using the equation (3) 
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                                                                                                                      (12)

 Step 3 
Construction of aggregated decision matrix 
The aggregated neutrosophic decision matrix (see Table 2) can be constructed as follows: 
Table 2: Aggregated decision matrix 

pq2p1pp

q222212

q112111

q21

d
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...d
~
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~
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...............

d
~

...d
~

d
~

A
d
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...d
~

d
~

A
C...CC

                                                                                                            (13)

 

 
Step 4 
Description of weights of attributes 
In decision making situation, decision makers would not like to give equal importance to all 

attributes. Thus each DM would have different opinion regarding the weights of attribute. For 
grouped opinion, all DMs’ opinions need to be aggregated by the aggregation operator for a 
particular attribute. The weight matrix (see Table 3) can be written as follows: 

 
Table 3: Weight matrix of attributes 

rq2r1rr

q222212

q112111

q21

w...ww`D
...............

w...wwD
w...wwD
C...CC







                                                                                                                       (14)

 

Here  ijijijij F,I,Tw  
The aggregated weight [15] for the attribute Cj is defined as follows: 

   


jjj

r

1i
ij

r

1i
ij

r

1i
ijj F,I,TF,I,Tw q...,,2,1j                                                                                  (15) 

Step 5 
Construction of aggregated weighted decision matrix 
The aggregated weighted neutrosophic decision matrix (see Table 4) can be formed as: 
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Table 4: Aggregated weighted decision matrix 
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                                                                                                                      (16)
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         (18) 

.q...,,2,1jandp...,,2,1kwhere   
Step 6 
Relative positive ideal solution (RPIS) and relative negative ideal solution (RNIS) 
In this step, we find out relative positive ideal solution (RPIS) )S( N

  and the relative negative 
ideal solution (RNIS) )S( N

 for the above aggregated neutrosophic decision matrix. The RPIS is 
defined as    w

q
w
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w
1N d...,,d,dS ,   w
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j

w
j F,I,Tdwhere and 
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The RNIS is defined as    w
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Step 7 
Determination of distances of each alternative from the RPIS and the RNIS 
The normalized Euclidean distance between  w

kj
w
kj

w
kj F,I,T   w

j
w
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w
j F,I,Tand can be written as 

below: 
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                                                                   (24) 
Step 8 
Calculation of relative closeness coefficient  
The relative closeness coefficient for each alternative Ak with respect to 

NS is defined as: 








kk

k
k EuEu

Eu
R                                                                                                                     (25) 

where 1R0 k   
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Step 9 
Ranking of alternatives 
The alternative, for which the closeness coefficient is least, has become the best alternative. 

5. Numerical Example 
The stepwise description of a numerical example is presented as below:  

Step 1 
Suppose that the owner of a small shop wants to buy a tab. After initial screening,three tabs 

from three different companies A1, A2, A3 remain for further evaluation. A committee comprising 
of four decision makers, namely, D1, D2, D3, D4, has been formed in order to  buy the most suitable 
tablet with respect to five main attributes, C1, C2, C3, C4, C5.  The five attributes have been 
described below: 

i. technical specifications (C1) 
ii. quality (C2) 
iii. supply chain reliability (C3),  
iv. finances (C4)) and  
v. ecology (C5) 

 In the present problem, r = 4, q = 1, 2, …, 5, p = 1, 2, 3. 

Step 1 
The profit type decision matrix (see Table 5) can be written as: 
 
Table 5: Decision matrix 
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54321

A2.0,3.0,7.0
A4.0,2.0,6.0
A4.0,3.0,7.0

A3.0,1.0,7.0
A1.0,5.0,6.0
A3.0,4.0,7.0

A1.0,2.0,6.0
A1.0,3.0,7.0
A3.0,2.0,9.0

A2.0,1.0,6.0
A3.0,1.0,7.0
A1.0,2.0,8.0

A2.0,1.0,7.0
A1.0,2.0,7.0
A1.0,1.0,6.0

D

A2.0,1.0,6.0
A2.0,3.0,5.0
A4.0,4.0,4.0

A1.0,1.0,4.0
A1.0,2.0,4.0
A3.0,5.0,2.0

A2.0,3.0,6.0
A1.0,4.0,5.0
A1.0,4.0,6.0

A1.0,1.0,7.0
A1.0,3.0,6.0
A2.0,3.0,5.0

A2.0,1.0,8.0
A1.0,2.0,8.0
A1.0,1.0,9.0

D

A1.0,5.0,5.0
A2.0,5.0,4.0
A1.0,6.0,5.0

A1.0,1.0,7.0
A2.0,1.0,5.0
A3.0,2.0,6.0

A2.0,1.0,6.0
A3.0,2.0,6.0
A1.0,1.0,5.0

A1.0,2.0,8.0
A1.0,1.0,6.0
A2.0,1.0,7.0

A2.0,2.0,6.0
A2.0,3.0,7.0

A1.0,2.0,8.0
D

A1.0,1.0,7.0
A2.0,2.0,8.0
A1.0,4.0,6.0

A1.0,1.0,6.0
A2.0,1.0,3.0
A1.0,1.0,5.0

A4.0,4.0,4.0
A1.0,2.0,3.0
A2.0,1.0,4.0

A2.0,2.0,6.0
A2.0,4.0,7.0
A3.0,3.0,8.0

A)2.0,1.0,7.0(
A)1.0,2.0,6.0(
A1.0,2.0,7.0

D

CCCCC

 

 
Step 2 
The neutrosophic weights of decision makers are considered as {(0.8, 0.1, 0.1), (0.9, 0.2, 0.1), 

(0.5, 0.4, 0.1), (0.8, 0.2, 0.2)}. Using the equation (10), the equivalent crisp weights are {0.27317, 
0.27317, 0.19912, 0.25453}. 

Step 3 
The aggregated decision matrix can be determined by applying the aggregated operator (4) and 

calculated as below: 
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Table 6: Aggregated decision matrix 

         
         
         137.0,205.0,619.0132.0,1.0,6.0217.0,217.0,537.0144.0,146.0,669.02.0,121.0,689.0A

239.0,279.0,5603.0146.0,173.0,436.0135.0,255.0498.016.0,182.0,651.0121.0,224.0,689.0A
188.0,415.0,548.0222.0,237.0,477.016.0,157.0,567.0187.0,201.0,702.01.0,146.0,734.0A

CCCCC

3

2

1

54321

 

 
Step 4 
The weight matrix (see Table 7) of attributes as described in (14) can be displayed as follows: 
 
Table 7: Weight matrix of attributes 

         
         
         
         1.0,2.0,3.02.0,1.0,5.03.0,2.0,6.02.0,1.0,6.02.0,1.0,6.0D

4.0,4.0,4.01.0,2.0,7.01.0,2.0,8.02.0,3.0,5.02.0,3.0,6.0D
4.0,3.0,6.01.0,25.0,8.03.0,3.0,6.03.0,1.0,7.01.0,2.0,8.0D
4.0,4.0,5.015.0,2.0,5.03.0,4.0,5.03.0,2.0,8.02.0,1.0,9.0D

CCCCC

4

3

2

1

54321

 

 
The aggregated weights for all attributes are presented below: 

 )281.0,31.0,444.0(),133.0,178.0,608.0(),241.0,27.0,604.0(),25.0,15.0,653.0(),166.0,15.0,725.0(w . 
Step 5 
The aggregated weighted neutrosophic decision matrix (see Table 8) can be formed as: 
 
Table 8: The aggregated weighted neutrosophic decision matrix 

         
         
         3795.0,451.0,275.0247.0,260.0,365.0406.0,428.0,324.0358.0,274.0,437.0333.0,253.0,4995.0A

453.0,502.0,249.02596.0,32.0,265.0343.0,456.0,301.037.0,305.0,425.02669.0,340.0,4995.0A
416.0,596.0,243.0325.0,373.0,29.0362.0,385.0,342.0390.0,321.0,458.0249.0,274.0,532.0A

CCCCC

3

2

1

54321

 

 
Step 6 
Since the present problem is to make decision to buy a tablet, the decision matrix is profit type 

matrix. Using (19), the RPIS is presented below: 
          3795.0,451.0,275.0,247.0,26.0,365.0,343.0,385.0,342.0,358.0,274.0,45.0,249.0,253.0,532.0SN 

 . 
Using (21) the RNIS is presented below: 

          453.0,596.0,243.0,325.0,373.0,265.0,406.0,456.0,301.0,39.0,321.0,425.0,333.0,340.0,4995.0SN 
 . 

 
Step 7 
The normalized Euclidean distance from RPIS by using (22) is given below: 

,0588.0Eu 1 
 ,0518.0Eu 2 

 .0313.0Eu 3 
  

The normalized Euclidean distance from RNIS by using (23) is given below: 
,0401.0Eu 1 

 ,0408.0Eu 2 
 0676.0Eu 3 

 . 
 
Step 8 
The relative closeness coefficient (24) for each alternative has been presented in the table 9. 
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Table 9: Ranking of alternatives 

1316.0A
2559.0A

3594.0
A

Ranking
EuEu

EuResAlternativ

3

2

1

kk

k
k 






 
 
Step 9 
Table 9 reflects that A3 is the most suitable tablet for purchasing.  
 

6. Conclusion 
This paper presents TOPSIS approach for MAGDM for refined neutrosophic environment. This 

is the first attempt to propose TOPSIS in refined neutrosophic environment. The proposed 
approach can be applied to other real MAGDM problem in refined neutrosophic environment such 
as project management in IT sectors, banking system, etc. The Authors hope that this proposed 
approach will enlighten a new path for MAGDM in refined neutrosophic environment.  
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Several Trigonometric Hamming Similarity Measures of Rough 

Neutrosophic Sets and their Applications in Decision Making 

Abstract 
In 2014, Broumi et al. (S. Broumi, F. Smarandache, M. Dhar, Rough neutrosophic sets, Italian 

Journal of Pure and Applied Mathematics, 32 (2014), 493-502.) introduced the notion of rough 
neutrosophic set by combining neutrosophic sets and rough sets, which has been a mathematical 
tool to deal with problems involving indeterminacy and incompleteness. The real world is full of 
indeterminacy. Naturally, real world decision making problem involves indeterminacy. Rough 
neutrosophic set is capable of describing and handling imprecise, indeterminate and inconsistent 
and incomplete information. This paper is devoted to propose several new similarity measures 
based on trigonometric hamming similarity operators of rough neutrosophic sets and their 
applications in decision making. We prove the required properties of the proposed similarity 
measures. To illustrate the applicability of the proposed similarity measures in decision making, 
an illustrative problem is solved. 

Keywords 
Neutrosophic set, rough set, rough neutrosophic set, Hamming distance, similarity measure. 
 

1. Introduction 
L. A. Zadeh [1] introduced the degree of membership in 1965 and defined the concept of fuzzy 

set to deal with uncertainty. K. T. Atanassov [2] introduced the degree of non-membership as 
independent component in 1986 and defined the intuitionistic fuzzy set. F. Smarandache [3, 4] 
introduced the degree of indeterminacy as independent component and defined the neutrosophic 
set in 1998. 

To use the concept of neutrosophic set in practical fields such as real scientific and engineering 
applications, Wang et al. [5] presented an instance of neutrosophic set, called single valued 
neutrosophic set (SVNS). 

mailto:fsmarandache@gmail.com
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In many applications, due to lack of knowledge or data about the problem domains, the decision 
information may be provided with intervals, instead of real numbers. To deal with the situation 
Wang et al. [6] introduced interval valued neutrosophic sets (IVNS), which is characterized by a 
membership function, non-membership function and an indeterminacy function, whose values are 
intervals rather than real numbers. Also, the interval valued neutrosophic set can represent 
uncertain, imprecise, incomplete and inconsistent information which exist in the real world.  

In 2014, Broumi et al. [7, 8] introduced the concept of rough neutrosophic set (RNS). It is 
derived by hybridizing the concepts of rough set proposed by Pawlak [9] and neutrosophic set 
originated by F. Smarandache [3, 4]. Neutrosophic sets and rough sets are both capable of dealing 
with uncertainty and partial information. Rough neutrosophic set [7, 8] is the generalization of 
rough fuzzy sets [10], [11] and rough intuitionistic fuzzy sets [12]. 

Mondal and Pramanik [13] applied the concept of rough neutrosophic set in multi-attribute 
decision making based on grey relational analysis in 2015. S. Pramanik and K. Mondal [14] also 
studied cosine similarity measure of rough neutrosophic sets and its application in medical 
diagnosis in 2015. Mondal and Pramanik [15] proposed multi attribute decision making using 
rough accuracy score function. Pramanik and Mondal [16] proposed cotangent similarity measure 
under rough neutrosophic environment.  Pramanik and Mondal [17] further proposed some 
similarity measures namely Dice similarity measure and Jaccard similarity measure in rough 
neutrosophic environment. Mondal et al. [18] proposed rough neutrosophic variational coefficient 
similarity measure and presented its application in multi attribute decision making.  Mondal et al. 
[19] presented rough neutrosophic TOPSIS for multi-attribute group decision making problem. 
Mondal and Pramanik [20] studied tri-complex rough neutrosophic similarity measure and its 
application in multi-attribute decision making. Mondal et al. [21] further proposed rough 
neutrosophic hyper-complex set and its application to multi-attribute decision making.     

Literature review reflects that no studies have been made on multi-attribute decision making 
using trigonometric Hamming similarity measures under rough neutrosophic environment. In this 
paper, we propose cosine, sine and cotangent Hamming similarity measures under rough 
neutrosophic environment. We also present a numerical example to show the effectiveness and 
applicability of the proposed similarity measures. 

2. Mathematical Preliminaries 

2.1 Neutrosophic set [3, 4]  
Let U be a universe of discourse. Then the neutrosophic set A is presented in the form: 
A = {< x: TA(x), IA(x), FA(x)>, x  U}, where the functions T, I, F: U→]−0,1+[ represent 

respectively the degree of  membership, the degree of indeterminacy, and the degree of non-
membership of the element xU to the set P satisfying the following the condition.  

−0≤ supTA(x)+ supIA(x)+ supFA(x) ≤ 3+                                                                   
2.2 Single valued neutrosophic sets [6] 

Definition 2.2 [6]  
Wang et al. [6] mentioned that the neutrosophic set assumes the value from real standard or 

non-standard subsets of ]−0, 1+[. So instead of ]−0, 1+[  Wang et al. [6] consider the interval  [0, 1] 
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for technical applications, because ]−0, 1+[ is difficult to apply in the real applications such as 
scientific and engineering problems.  

Assume that X be a space of points (objects) with generic elements in X denoted by x. A SVNS 
A in X is characterized by a truth-membership function TA(x), an indeterminacy-membership 
function IA(x), and a falsity membership function FA(x), for each point x in X, TA(x),  IA(x), FA(x)
[0, 1]. When X is continuous, a SVNS A can be written as follows: 

Xx
x

xFxIxTA
x

AAA ∈:)(),(),(



  

 When X is discrete, a SVNS A can be written as follows: 

 Xx
x

xFxIxTA i
n
i

i

iAiAiA ∈:∑ )(),(),(
1


 . 

For two SVNSs, ASVNS = {<x: TA(x), IA(x), FA(x)> | x X} and BSVNS = {<x, TB(x), IB(x), FB(x)> | 
xX },  ASVNSBSVNS  and ASVNS = BSVNS are defined as follows: 

(1) ASVNS BSVNS if and only if TA(x)  TB(x), IA(x)  IB(x), FA(x )  FB( x) 
(2) ASVNS = BSVNS if and only if TA(x) = TB(x), IA(x) = IB(x), FA(x) = FB(x) for any xX  

2.3 Hamming distance [17] 
Hamming distance [17] between two neutrosophic sets  )(),(),( xFxIxTA AAA and 
 )(),(),( xFxIxTB BBB  is defined as  

  ))x(F)x(F)x(I)x(I)x(T)x(T(
2
1B,AH BA

n
1i BABA                                                                 

 1
 

2.4 Rough neutrosophic set (RNS) 
Definition 2.2.1 [1], [2]: Let Z be a non-null set and R be an equivalence relation on Z. Let A 

be a neutrosophic set in Z with the membership function ,AT indeterminacy function AI  and non-
membership function AF . The lower and the upper approximations of A in the approximation (Z, 

R) denoted by  AN  and  AN  are respectively defined as follows: 
    ZxxzxFxIxTxAN RANANAN ∈,∈/)(),(),(, )()()( 

                                                                                                                           
    ZxxzxFxIxTxAN RANANAN ∈,∈/)(),(),(, )()()( 

                                                            
)2(
                                                      

where,    zTxxT ARzAN ∈∧)()(  ,    zIxxI ARzAN ∈∧)()(  ,    zFxxF ARzAN  ∈∧)()(  ,  
   zTxxT ARzAN ∈∨)()(  ,    zTxxI ARzAN ∈∨)()(  ,    zIxxF ARzAN ∈∨)()(  . 

So, 3≤)()()(≤0 )()()( xFxIxT ANANAN   and 3≤)()()(≤0 )()()( xFxIxT ANANAN  hold. Here 
and   denote “max” and “min’’ operators respectively.   zT A ,  zI A  and  zF A are the 

membership, indeterminacy and non-membership degrees of z with respect to A.  AN  and  AN
are two neutrosophic sets in Z. 

Thus, NS mappings ,N N : N(Z)  N(Z) denote respectively the lower  and  upper  rough  NS  
approximation  operators,  and the pair ))(),(( ANAN is called the rough neutrosophic set in (Z, R). 

Based on the above mentioned definition, it is observed that )(AN and )(AN  have constant 
membership on the equivalence class of R, if );()( ANAN   i.e. ),()( )()( xTxT ANAN 

 
),()( )()( xIxI ANAN 

 
  xF AN )()( )()( xF AN .
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For any x belongs to Z, P is said to be a definable neutrosophic set in the approximation (Z, R). 
Obviously, zero neutrosophic set (0N) and unit neutrosophic sets (1N) are definable neutrosophic 
sets. 

Definition 2.2.2 [1], [2]:  Let N(A) = ( )(),( ANAN ) is a rough neutrosophic set in (Z, R). The 
rough complement of N(A) is denoted by ),)(,)(()(~ cc ANANAN  where cc ANAN )(,)( are the 
complements of neutrosophic sets of )(),( ANAN respectively.  

  ,∈,/)(),(1),(, )()()( ZxxTxI-xFxAN ANANAN
c  and  

  ZxxTxI-xFxAN ANANAN
c ∈,/)(),(1),(, )()()( 

     
                                                            (3)                                               

 Definition 2.2.3 [1], [2]:  Let  )(AN  and )(BN are two rough neutrosophic sets respectively in 
Z, then the following definitions hold good: 

)()(∧)()(⇔)()( BNANBNANBNAN   
)(⊆)(∧)(⊆)(⇔)(⊆)( BNANBNANBNAN  
 )()(,)()()()( BNANBNANBNAN   
 )()(,)()()()( BNANBNANBNAN   
 )()(,)()()()( BNANBNANBNAN  

 )(.)(,)(.)()(.)( BNANBNANBNAN  
If A, B, C are the rough neutrosophic sets in (Z, R), then the following propositions can be stated 

from definitions. 
Proposition 1 [1], [2]: 

AAA )(~~.1  
ABBAABBA  ,.2   

)()(,)()(.3 CBACBACBACBA    
)()()(,)()()(.4 CABACBACABACBA     

Proposition 2 [1], [2]: 
De Morgan‘s Laws are satisfied for rough neutrosophic sets N(A) and N(B) 

))((~))(~())()((~.1 BNANBNAN    
))((~))((~))()((~.2 BNANBNAN    

For the proofs of the propositions, see [1, 2]  
Proposition 3[1], [2]: 
If A and B are two neutrosophic sets in U such that thenBA ,  ⊆ )(⊆)( BNAN  

)()(⊆)(.1 BNANBAN   
)()(⊇)(.2 BNANBAN   

For the proofs of the propositions, see [1, 2]  
Proposition 4 [1], [2]: 

)(~~)(.1 ANAN   
)(~~)(.2 ANAN   

 )(⊆)(.3 ANAN  
For the proofs of the propositions, see [1, 2]  

3. Cosine Hamming Similarity Measures of RNS 
Assume that    )(),(),(,)(),(),( iAiAiAiAiAiA xFxIxTxFxIxTA  and 

   )(),(),(,)(),(),( iBiBiBiBiBiB xFxIxTxFxIxTB   in X = {x1, x2, …, xn} be any two rough 
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neutrosophic sets. A cosine Hamming similarity operator between rough neutrosophic sets A and 
B is defined as follows:  

CCHSO(A, B)= 

  













n

i
iBiAiBiAiBiA xFxFxIxIxTxT

n 1
)()()()()()(

6
cos1                                     (4)                                                                

Here,  )( iA xT 
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)()( iAiA xTxT

,  )( iB xT 











 

2
)()( iBiB xTxT

,  

 )( iA xI 











 

2
)()( iAiA xIxI

,  )( iB xI 











 

2
)()( iBiB xIxI

,  

 )x(F iA 











 

2
)()( iAiA xFxF

,  )x(F iB 











 

2
)()( iBiB xFxF

. 
Also, [ )(xT A , )(xI A , )(xF A ]  [0, 0, 0] and [ )(xT B , )(xI B , )(xF B ]  [0, 0, 0],  i = 1, 2, …, 

n. 
Proposition 3.1 

The defined rough neutrosophic cosine hamming similarity operator CCHSO(A, B) between 
RNSs A and B satisfies the following properties: 

1. 0   CRCHSO (A, B)  1 
2. CCHSO(A, B) = 1 if and only if  A = B 
3. CCHSO(A, B) = CCHSO(B, A) 

Proof of the property 1. 

Since the functions )(xT A , )(xI A , )(xF A , )(xT B , )(xI B , and )(xF B , and the value of  the 
cosine function are within [0,1], the similarity measure  based  on rough neutrosophic cosine 
hamming similarity function  also lies within [ 0,1]. 

Hence 0   CCHSO (A, B)  1. 
This completes thee proved. 

Proof of the property 2.  

For any two RNSs A and B, if A = B, then the following relations hold )()( iBiA xTxT  , 
)()( iBiA xIxI  , )()( iBiA xFxF  . Hence  

0)()(  iBiA xTxT , 0)()(  iBiA xIxI , 0)()(  iBiA xFxF .  

Thus CCHSO(A, B) = 1  

Conversely,  

If CCHSO(A, B) = 1, then 0)()(  iBiA xTxT , 0)()(  iBiA xIxI , .0)()(  iBiA xFxF
since cos(0) = 1. So we can write )()( iBiA xTxT  , )()( iBiA xIxI  , )()( iBiA xFxF   

Hence A = B. 
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4. Sine Hamming Similarity Measures of RNS 
Assume that    )(),(),(,)(),(),( iAiAiAiAiAiA xFxIxTxFxIxTA  and 

   )(),(),(,)(),(),( iBiBiBiBiBiB xFxIxTxFxIxTB   in X = {x1, x2, …, xn} be any two rough 

neutrosophic sets. A sine Hamming similarity operator between two rough neutrosophic sets A and 
B is defined as follows:  

SCHSO(A, B)= 

  







 















n

i
iBiAiBiAiBiA xFxFxIxIxTxT

n 1
)()()()()()(

6
sin11                               (4)                             

Also, [ )(xT A , )(xI A , )(xF A ]  [0, 0, 0] and [ )(xT B , )(xI B , )(xF B ]  [0, 0, 0],  i = 1, 2, …, 
n. 

Proposition 4.1 
The defined rough neutrosophic sine Hamming similarity operator SCHSO(A, B) between RNSs 

A and B satisfies the properties 4, 5, 6 as follows. 

1.     0   SCHSO (A, B)  1 
1. SCHSO(A, B) = 1 if and only if  A = B 
2. SCHSO(A, B) = SCHSO(B, A) 

Proof of the property 1. 

Since the functions )(xT A , )(xI A , )(xF A , )(xT B , )(xI B , and )(xFB , and the value of  
the sine function are within [0 ,1], the similarity measure  based  on rough neutrosophic sine 
hamming similarity function  also lies within [ 0,1]. 

Hence 0   SCHSO (A, B)  1. 

Proof of the property 2. 

For any two RNSs A and B if A = B, then the following relations hold )()( iBiA xTxT  , 
)()( iBiA xIxI  , )()( iBiA xFxF  . Hence  

0)()(  iBiA xTxT , 0)()(  iBiA xIxI , 0)()(  iBiA xFxF . Thus SCHSO(A, B) = 1  

Conversely,  

If SCHSO(A, B) = 1, then 0)()(  iBiA xTxT , 0)x(I)x(I iBiA  , .0)()(  iBiA xFxF
since sin(0) = 0. So we can write )()( iBiA xTxT  , )()( iBiA xIxI  , )()( iBiA xFxF   

Hence A = B. 
 

Proof of the property 3. 

This proof is obvious.
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5. Cotangent Hamming Similarity Measures of RNS 
Assume that    )(),(),(,)(),(),( iAiAiAiAiAiA xFxIxTxFxIxTA  and 

   )(),(),(,)(),(),( iBiBiBiBiBiB xFxIxTxFxIxTB   in X = {x1, x2, …, xn} be any two rough 

neutrosophic sets. A cotangent Hamming similarity operator between two rough neutrosophic sets 
A and B can be defined as follows:  

COTCHSO(A, B)=   
















n

i
iBiAiBiAiBiA xFxFxIxIxTxT

n 1
)()()()()()(

124
cot1   

(5)                                                         

Also, [ )x(TA , )x(IA , )x(FA ]  [0, 0, 0] and [ )x(TB , )x(IB , )x(FB ]  [0, 0, 0],  i = 
1, 2, …, n. 

Proposition 5.1   
The defined rough neutrosophic cotangent Hamming similarity operator COTCHSO(A, B) 

between RNSs A and B satisfies the properties 7, 8, 9. 

1. 0   COTCHSO (A, B)  1 
2. COTCHSO(A, B) = 1 if and only if  A = B 
3. COTCHSO(A, B) = COTCHSO(B, A) 

Proof of the property 1: 

Proof: Since the functions )(xT A , )(xI A , )(xF A , )(xT B , )(xI B , and )(xF B , and the value 
of  the cotangent function are within [0 ,1], the similarity measure  based  on rough neutrosophic 
cotangentHamming similarity function  also lies within [ 0,1]. 

Hence 0   COTCHSO (A, B)  1 

Proof of the property 2: 
For any two RNSs A and B if A = B, we have  

)()( iBiA xTxT  , )()( iBiA xIxI  , )()( iBiA xFxF  .  

Hence  

0)x(T)x(T iBiA  , 0)x(I)x(I iBiA  , 0)x(F)x(F iBiA  . Thus COTCHSO(A, B) = 1  

Conversely,  

If COTCHSO(A, B) = 1, then 0)x(T)x(T iBiA  , 0)x(I)x(I iBiA  , .0)x(F)x(F iBiA   

Since cot(
4
 ) = 1, we can write )()( iBiA xTxT  , )()( iBiA xIxI  , )()( iBiA xFxF   

Hence A = B. 
 

Proof of the property 3: 

This proof is obvious.    
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6. Decision making under trigonometric rough neutrosophic Hamming similarity 
measures 

In this section, we apply rough cosine, sine and cotangent Hamming similarity measures 
between RNSs to the multi-criteria decision making problem. Assume that S = {S1, S2, … , Sm }be 
a set of alternatives and A ={ A1, A2, … , A𝑛 }be a set of  attributes. 

The proposed decision making method is described using the following steps. 
Step 1: Construction of the decision matrix with rough neutrosophic number  
Decision maker considers the decision matrix with respect to m alternatives and n attributes in 

terms of rough neutrosophic numbers as follows. 
 
Table1: Rough neutrosophic decision matrix 

 nmijij ddD ,  

mnmnmmmmm

nn

nn

n

ddddddS

ddddddS

ddddddS
AAA

,...,,
.............
.............
,...,,

,...,,

2211

22222221212

11121211111

21 

                                                                       (6) 

Here ijij dd , is the rough neutrosophic number according to the i-th alternative and the j-th 

attribute.  
Step 2: Determination of the weights of attribute  
Assume that the weight of the attributes Aj (𝑗 = 1, 2, … , 𝑛) considered by the decision-maker 

be wj ((𝑗 = 1, 2, … , 𝑛)) such that   ∀ wj ∈  [0, 1] (j = 1, 2, …, n) and 1wn
1j j   .  

Step 3: Determination of the benefit type attribute and cost type attribute  
Generally, the evaluation attribute can be categorized into two types: benefit type attribute and 

cost type attribute. Let K be a set of benefit type attributes and M be a set of cost type attributes. 
In the proposed decision-making method, an ideal alternative can be identified by using a 
maximum operator for the benefit type attribute and a minimum operator for the cost type attribute 
to determine the best value of each criterion among all alternatives. We define an ideal alternative 
S* as follows: 

S* = {S1*, S2*, … , Sm*}, where benefit attribute is presented as  
 )()()(* min,min,max Si

A ji
Si

A ji
Si

A ji
j FITS   

and cost type attribute is presented as 
 )()()(* max,max,min Si

A ji

Si
A ji

Si
A ji

j FITS  .
 

Step 4: Determination of the overall weighted rough trigonometric neutrosophic 
Hamming similarity function (WRTNHSF) of the alternatives 

 We define weighted rough trigonometric neutrosophic similarity function as follows. 
CWCHSO(A, B) =   B) (A,Cw CHSO

n
j j 1                                                                                               (7) 

SWCHSO(A, B) =   B) (A,Sw CHSO
n
j j 1                                                                                                (8) 

COTWCHSO(A, B) =   B) (A,COTw CHSO
n
j j 1                                                                                     (9) 
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where  wn
j j 11   , j = 1, 2, …, n. 

Step 5: Ranking the alternatives 
Using the weighted rough trigonometric neutrosophic similarity measure between each 

alternative and the ideal alternative, the ranking order of all alternatives can be determined and the 
best alternative can be selected with the highest similarity value. 
Step 6: End 

7. Numerical Example 
Assume that a decision maker intends to select the most suitable smart phone for rough use 

from the three initially chosen smart phones (S1, S2, S3) by considering four attributes namely: 
features A1, reasonable price A2, customer care A3, risk factor A4. Based on the proposed approach 
discussed in section 5, the considered problem is solved using the following steps: 

Step 1: Construction of the decision matrix with rough neutrosophic numbers  
The decision maker forms a decision matrix with respect to three alternatives and four attributes 

in terms of rough neutrosophic numbers (see the Table 2). 
 
Table 2. Decision matrix with rough neutrosophic number 

 43)(),( PNPNd S  

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 2.0,1.0,8.0

,2.0,3.0,6.0
4.0,2.0,9.0

,6.0,4.0,7.0
1.0,1.0,9.0

,3.0,3.0,7.0
2.0,0.0,8.0

,2.0,2.0,6.0
3.0,3.0,9.0

,3.0,3.0,7.0
2.0,4.0,8.0

,2.0,2.0,6.0
3.0,3.0,8.0

,3.0,3.0,6.0
3.0,1.0,9.0

,3.0,3.0,7.0
2.0,2.0,9.0

,4.0,4.0,7.0
2.0,2.0,8.0

,4.0,4.0,6.0
2.0,2.0,8.0

,4.0,4.0,6.0
1.0,1.0,8.0

,3.0,3.0,6.0

3

2

1

4321

S

S

S

AAAA

                                 (10) 

 
Step 2: Determination of the weights of the attributes  
The weight vectors considered by the decision maker are 0.32, 0.28, 0.28 and 0.12 respectively.  
Step 3: Determination of the benefit attribute and cost attribute  
Here three benefit types attributes A1, A2, A3 and one cost type attribute A4. 
S* = [(0.8, 0.1, 0.2), (0.8, 0.2, 0.2), (0.8, 0.3, 0.3), (0.0.7, 0.3, 0.3)] 
Step 4: Determination of the overall weighted rough trigonometric neutrosophic 

Hamming similarity function (WRHNHSF) of the alternatives 
We calculate weighted rough trigonometric neutrosophic Hamming similarity values as follows. 
CWCHSO(S1, S*) = 0.99554, CWCHSO(S2, S*) = 0.99253, CWCHSO(S3, S*) = 0.99799 
SWCHSO(S1, S*) = 0.89455, SWCHSO(S2, S*) = 0.89233, SWCHSO(S3, S*) = 0.91729 
COTWCHSO(S1, S*) = 0.92114, COTWCHSO(S2, S*) = 0.90322, COTWCHSO(S3, S*) = 0.93009 

Step 5: Ranking the alternatives 
Ranking the alternatives is prepared based on the descending order of similarity measures. Highest 
value reflects the best alternative. 

Here,  
CWCHSO(S3, S*)   CWCHSO(S1, S*)   CWCHSO(S2, S*)  
SWCHSO(S3, S*)   SWCHSO(S1, S*)   SWCHSO(S2, S*)  
COTWCHSO(S3, S*)   COTWCHSO(S1, S*)   COTWCHSO(S2, S*)  

Hence, the smartphone S3 is the best alternative for rough use. 
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Step 6: End 
7.1 Comparison 
All the three similarity measures provided the same ranking order.  

8. Conclusion 
In this paper, we propose rough trigonometric Hamming similarity measures based multi-attribute 
decision making of rough neutrosophic environment and prove some of their basic properties. We 
provide an application, namely selection of the most suitable smart phone for rough use. We also 
present comparison with the three rough neutrosophic similarity measures. The concept presented 
in this paper can be applied other multiple attribute decision making problems in rough 
neutrosophic environment.  
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Selection of Automated Guided Vehicle using Single Valued 

Neutrosophic Entropy Based Novel Multi Attribute Decision 

Making Technique 

Abstract 
Selection of material handling equipment for typical conditions and handling environment is 

one of the multi attribute decision making problem. The objective of the research paper is to 
implement and validate multi attribute selection of automated guided vehicle for material handling 
purpose. The present paper proposes a single valued neutrosophic set with entropy weight based 
multi attribute decision making technique. A proposed technique also works with more uncertainty, 
imprecise, indeterminate and inconsistent information. The proposed methodology follows with 
the example for selection and ranking of automated guided vehicle and in validation and sensitivity 
analysis of the novel multi attribute decision making technique carried out. The result of the study 
builds assurance in suitability of single valued neutrosophic set entropy based novel multi attribute 
decision making for selection of automated guided vehicle alternatives. 

Keywords 
Multi attribute decision making, single valued neutrosophic set, material handling equipment, 

automated guided vehicle. 
 

1. Introduction 
Material Handling Equipment (MHE) is playing a vital role in today’s manufacturing system 

and also improving productivity in the small, medium or large scale manufacturing industries.  
MHE is a very essential task for the manufacturing sectors because of the considerable capital 
investment required(Onut, Kara, & Mert, 2009). Saputro et al. (2015)) reviewed 42 papers for 
MHE selection and established ranking to appropriate MHE for complex selection problems. Right 
MHE selection and good design of the MHE can increase productivity and reduce investment and 
operation’s costs.   

Karande & Chakraborty (2013) investigated the various functions performed by MHE are as 
follows: 

a. Transportation and logistics (for moving material form one point to another, i.e. conveyors, 
cranes, industrial trucks, etc.) 

b. Positioning (for aid machining operation like, robots, index tables, rotary tables, etc.) 

mailto:nirmal_nital@gtu.edu.in
mailto:mangalbhatt15@gmail.com
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c. Unit formation (for holding or carrying purpose pallets, skids, containers, bins, etc.) 
d. Storage (For store/ inventory automatic storage and retrieval system (AS/RS), pallets, etc.). 

On the real difficulties in developing and using selection methods is due to the natural 
vagueness associated with the inputs to the model (Deb, Bhattacharyya, & Sorkhel, 2002).  

2. Literature Survey  
Literature survey is carried out with two elements one for selection methodology for MHE using 

multi attribute decision making (MADM) and the other for literature on single valued neutrosophic 
set theory.  
1.1 Literature survey of selection methodology used for selection of MHE using MADM 

techniques 
Since last three decades researchers pay more attention in finding and implementing different 

MADM techniques with different criteria (attributes). Onut et al. ( 2009) implemented fuzzy 
Analytic Network Process (ANP) for assigning weights to the attributes for MHE selection and 
fuzzy Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is used to ranking 
solution. Maniya & Bhatt  (2011) implemented and validated modified grey relational analysis 
(M-GRA) method combined with AHP for multi attribute selection of Automated Guided Vehicle 
(AGV) for the material handling. Sawant et al.(2011) worked on Preference Selection Index (PSI) 
method for AGV selection in manufacturing environment. Chakraborty & Banik (2006) worked 
on Analytic Hierarchy Process (AHP) for material handling equipment selection model. Kulak 
(2005) investigated a fuzzy multi attribute selection of material handling equipment which consist 
of a database, rule based system and multi attribute fuzzy information axiom approach for selecting 
MHE. Nguyen et al. (2016) worked for fuzzy AHP and fuzzy additive ratio assessment for 
conveyor evaluation ranking and selection process. Mirhosseyni & Webb, (2009) presents fuzzy 
knowledge based expert system and then genetic algorithm (GA) for efficient selection and 
assignment of MHE. Eko Saputro & Daneshvar Rouyendegh (2016) investigated a hybrid 
approach for selecting MHE in a ware house by using entropy based hierarchical fuzzy TOPSIS 
and Multi Objective Mixed Integer Linear Programming (MOMILP) for ranking and selecting best 
alternatives. Anand et al. (2011) investigated MHE selection with ANP for complex decision 
making problem. Biswas et al. (2016) proposed TOPSIS approach to SVNS and applied the 
approach for multi attribute group decision making problem. 
1.2 Literature survey of single valued neutrosophic set 

In classical MADM approach, input variables are crisp sets but in the real world decision 
problem input variables are expressed in terms of qualitative information.  Qualitative information 
provided by decision makers (DMs)/experts can be easily expressed by linguistic variables.  

Sometimes due to lack of time-pressure, limited knowledge about public domain, decision 
maker may prefer linguistic variables (Zadeh (1975)) to deal with imprecise data.   To cover up 
the limitation of fuzzy set, Atanassov (1986) proposed the Intuitionistic Fuzzy Set (IFS) by adding 
truth membership Ta (x) and falsity Membership Fa (x). Further Atanassov (1986) proposed the 
Interval Valued Intuitionistic Fuzzy Set (IVIFS). However, drawback of IFS and IVIFS is that they 
cannot handle indeterminate and inconsistent information. In real application, information of input 
data is often incomplete, indeterminate and inconsistent       ( Chi & Liu (2013)). The limitation of 
above sets is covered up with Neutrosophic Set (NS) (Smarandache (2002)) with degree of truth, 
indeterminacy and falsity, where all membership function is completely independent.  Single 
Valued Neutrosophic Set (SVNS) is an instance of NS, which can handle uncertainty, imprecise, 
indeterminate and inconsistent information (Wang et al. (2010). Majumdar (2015) established 
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uncertain data processing with NS and further generalized and combined with soft sets in decision 
making process. Ye (2013) worked on correlation and correlation coefficient of SVNS based on 
the extension of the correlation of IFS. Ye (2014a) worked on single valued neutrosophic cross-
entropy for MADM techniques. Zhang et al. (2014) applied interval neutrosophic set applied to 
multi criteria decision making for investment problem. Biswas et al. (2014) presented neutrosophic 
MADM with unknown weight information methodology. Pramanik et al. (2015) presented hybrid 
vector similarity measures and their applications to multi-attribute decision making under 
neutrosophic environment. Ye (2014b) worked on vector similarity measures of simplified NS 
with investigating money case study. 

3. SVNS Entropy based MADM Methodology 
Steps of SNVS entropy based novel MADM as follows.  

Step 1:  Define the goal of MADM problem such as ranking/ evaluation/ sorting/ selection 
of various alternatives involved in decision making procedure.  
Step 2:  Identify the possible alternative with attributes (criteria’s). 
Step 3:  Prepare the decision matrix.  

Let, 𝐴 = {𝐴𝑖 , 𝑓𝑜𝑟 𝑖 = 1, 2, 3, …… . . 𝑚}  be a set of alternative while, 𝐶 =  {𝐶𝑖 , 𝑓𝑜𝑟 𝑗 =
1, 2, 3, …… . . 𝑛} be a set of attributes (criteria). The different values of criteria’s may be 
quantitative and/or qualitative in nature. 
Step 4:  Convert qualitative information into fuzzy numbers. Normalization of matrix is 
shown in Table 1. 

Table 1: Matrix Normalization Techniques 

Name of Normalization Methods 
Normalized Value 

Benefit Values Non- Beneficial Values 

Linear Scale Transformation, Max Method 
(LSTMM) 

  

Linear Scale Transformation, Max-Min Method 
(LSTMMM) 

 
 

Linear Scale Transformation Sum Method 
(LSTSM) 

  

Vector Normalization Method 
(VNM) 

  

 
Step 5:  Conversion classic set/ fuzzy set to SVNS 
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To validate proposed MADM method with other MADM techniques, we propose the 
conversion rule to use the input matrix in classic or fuzzy set to SVNS for beneficial and non-
beneficial criteria.  
(i) Beneficial criteria: (higher value of performance measures of selection criteria is desirable 

i.e., profit, quality, etc.): Considering positive ideal solution (PIS) as <
𝑇max

∗(𝑥), 𝐼min
∗
(𝑥), 𝐹min

∗(𝑥) >; normalized input matrix beneficial criteria are considered 
as degree of truthness  𝑇A(𝑥), while degree of indeterminacy and degree of falsehood as 
𝐼A(𝑥) = 𝐹A(𝑥) = 1 − 𝑇A(𝑥) respectively.  

(ii) Non beneficial criteria: (Lower value of performance measure of selection criteria is 
desirable i.e. cost): Considering negative ideal solution (NIS) as <
𝑇min

∗(𝑥), 𝐼max
∗
(𝑥), 𝐹max

∗(𝑥) > ; normalized input matrix non beneficial criteria are 
considered as degree of indeterminacy and falsehood as 𝐼A(𝑥) =  𝐹A(𝑥) while degrees of 
truthness is  considered as  𝑇A(𝑥) = 1 − 𝐼A(𝑥) = 1 − 𝐹A(𝑥) . 

(iii) Find the entropy value for attribute with equation no (1). 

𝐸𝑗 = 1 −
1
𝑛⁄ ∑ (𝑇ij(𝑥𝑖) + 𝐹ij(𝑥𝑖)) |2(𝐼ij(𝑥𝑖)) − 1|

𝑚

𝑖=1
     (1) 

Step 6:  We find entropy weight for attribute using the method proposed by Wang and 
Zhang (2009).     
𝑊𝑗 =  

1−𝐸𝑗

∑ (1−𝐸𝑗 )
𝑛
𝑗=1

          (2) 

We get weight vector 𝑊 = (𝑤1, 𝑤2,𝑤3,…………………𝑤𝑛)
𝑇 of attributes,  

𝐶 = {𝐶𝑗𝑓𝑜𝑟𝑗 = 1, 2, 3, …… . . 𝑛} with 𝑊𝑗 ≥ 0 and ∑ 𝑊𝑗 = 1.
𝑛

𝑗=1
 

Step 7:  Calculate the alternative value with following equation (3). 

𝐴𝑤 =∑ 𝑊j ∗  ((𝑇ij(𝑥) ∗ 𝑇ij
∗(𝑥)) + (𝐼ij(𝑥) ∗ 𝐼ij

∗(𝑥) + (𝐹ij(𝑥) ∗ 𝐹ij
∗(𝑥))

𝑛

𝑗=1
  (3) 

Where, beneficial attribute PIS=< 𝑇max∗(𝑥)𝐼min
∗
(𝑥), 𝐹min

∗(𝑥) > = < 1, 0, 0 >,  
For non-beneficial attribute NIS=< 𝑇min∗(𝑥)𝐼max

∗
(𝑥), 𝐹max

∗(𝑥) > = < 0, 1, 1 >. 
Step 8:  Ranking of alternatives after calculation is performed according to ascending 
order. 

 

4. Case Study 
An example is considered to show and validate the SVNS entropy based novel MADM method 

for selection of an AGV for an industrial application. The detailed rationalization of steps involved 
in the application of novel MADM for section of AGV is explained below. 
Step 1:  The objective is to ranking and selection of the best AGV for a given industrial 
application.  
Step 2:   In the present work eight alternatives of AGV and six attributes (Criteria) are 
considered, the same as (K. D. Maniya & Bhatt, 2011). Criteria are: controllability (C1), accuracy 
(C2), cost (C3), range (C4), reliability (C5) and flexibility (C6).  Here cost (C3) from the given 
attributes is given as non-beneficial attribute indicate with (-) sign in decision matrix; while other 
attributes are the beneficial attribute indicate with (+) sign in decision matrix.  
Step 3:  Here, in the AGV alternative and attributes and their values are presented in matrix 
format. The crisp data for AGV selection adopted from (K. D. Maniya & Bhatt, 2011) is shown in 
Table 2.  
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Table 2:  The crisp data for AGV selection attributes (decision matrix)[adopted from (K. D. 
Maniya & Bhatt, 2011)] 

  C1 (+) C2 (+) C3 (-) C4 (+) C5 (+) C6 (+) 

A1 0.895 0.495 0.695 0.495 0.895 0.295 
A2 0.115 0.895 0.895 0.895 0.495 0.495 
A3 0.115 0.115 0.895 0.115 0.695 0.895 
A4 0.295 0.895 0.115 0.495 0.495 0.895 
A5 0.895 0.495 0.115 0.695 0.295 0.495 
A6 0.495 0.495 0.895 0.115 0.695 0.695 
A7 0.115 0.295 0.895 0.115 0.895 0.895 
A8 0.115 0.495 0.695 0.495 0.495 0.695 

 
Step 4:   Normalization of decision matrix  

In the proposed case study we use Linear Scale Transformation, Max Method (LSTMM) as 
shown in Table 3. 

Table 3: Normalized decision matrix with (linear scale transformation, max method) 
 C1 (+) C2 (+) C3 (-) C4 (+) C5 (+) C6 (+) 

A1 1.0000 0.5531 0.1655 0.5531 1.0000 0.3296 
A2 0.1285 1.0000 0.1285 1.0000 0.5531 0.5531 
A3 0.1285 0.1285 0.1285 0.1285 0.7765 1.0000 
A4 0.3296 1.0000 1.0000 0.5531 0.5531 1.0000 
A5 1.0000 0.5531 1.0000 0.7765 0.3296 0.5531 
A6 0.5531 0.5531 0.1285 0.1285 0.7765 0.7765 
A7 0.1285 0.3296 0.1285 0.1285 1.0000 1.0000 
A8 0.1285 0.5531 0.1655 0.5531 0.5531 0.7765 

 
Step 5: Convert crisp normalized matrix into SVNS decision matrix with  

 < 𝑇ij(𝑥), 𝐼ij(𝑥), 𝐹ij(𝑥) > degree of truthness, indeterminate and falsehood. As shown 
in Table 4. 

Step 6:  Find the entropy weight using equation (2) with 𝑊𝑗 ≥ 0 and ∑ 𝑊𝑗 = 1
𝑛

𝑗=1
 as shown in 

Table 4. 
 

Step 7:  Calculate the alternative value with following equation (3) as shown in Table 4. 
 

Step 8: Ranking or selections of alternative:  The alternatives are ranked according to ascending 
order as shown in Table 4. 
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Table 4: SVNS entropy based decision matrix 
 C1 

(+) 
C2 

(+) C3 (-) C4 
(+) 

C5 
(+) 

C6 
(+) 𝐀𝐰 Ra

nk 

A
1 

<1.00
00, 
0.000
0, 
0.000
0> 

<0.55
31, 
0.446
9, 
0.446
9> 

<0.83
45, 
0.165
5, 
0.165
5> 

<0.55
31, 
0.446
9, 
0.446
9> 

<1.00
00, 
0.000
0, 
0.000
0> 

<0.32
96, 
0.670
4, 
0.670
4> 

0.62
35 3 

A
2 

<0.12
85, 
0.871
5, 
0.871
5 > 

<1.00
00, 
0.000
0, 
0.000
0> 

<0.87
15, 
0.128
5, 
0.128
5> 

<1.00
00, 
0.000
0, 
0.000
0> 

<0.55
31, 
0.446
9, 
0.446
9> 

<0.55
31, 
0.446
9, 
0.446
9> 

0.53
54 4 

A
3 

<0.12
85, 
0.871
5, 
0.871
5> 

<0.12
85, 
0.871
5, 
0.871
5> 

<0.87
15, 
0.128
5, 
0.128
5> 

<0.12
85, 
0.871
5, 
0.871
5> 

<0.77
65, 
0.223
5, 
0.223
5> 

<1.00
00, 
0.000
0, 
0.000
0> 

0.39
69 8 

A
4 

<0.32
96, 
0.670
4, 
0.670
4> 

<1.00
00, 
0.000
0, 
0.000
0> 

<0.00
00, 

1.0000, 
1.000
0> 

<0.55
31, 
0.446
9, 
0.446
9> 

<0.55
31, 
0.446
9, 
0.446
9> 

<1.00
00, 
0.000
0, 
0.000
0> 

0.93
13 2 

A
5 

<1.00
00, 
0.000
0, 
0.000
0> 

<0.55
31, 
0.446
9, 
0.446
9> 

<0.00
00, 

1.0000, 
1.000
0> 

<0.77
65, 
0.223
5, 
0.223
5> 

<0.32
96, 
0.670
4, 
0.670
4> 

<0.55
31, 
0.446
9, 
0.446
9> 

0.93
35 1 

A
6 

<0.55
31, 
0.446

9,0.4469
> 

<0.55
31, 
0.446
9, 
0.446
9> 

<0.87
15, 
0.128
5, 
0.128
5> 

<0.12
85, 
0.871
5, 
0.871
5> 

<0.77
65, 
0.223
5, 
0.223
5> 

<0.77
65, 
0.223
5, 
0.223
5> 

0.49
96 5 

A
7 

<0.12
85, 

0.8715, 
0.8715> 

<0.32
96, 
0.670
4, 
0.670
4> 

<0.87
15, 
0.128
5, 
0.128
5> 

<0.12
85, 
0.871
5, 
0.871
5> 

<1.00
00, 
0.000
0, 
0.000
0> 

<1.00
00, 
0.000
0, 
0.000
0> 

0.45
47 7 



New Trends in Neutrosophic Theory and Applications 

111 
 

A
8 

<0.12
85, 

0.8715, 
0.871
5 > 

<0.55
31, 
0.446
9, 
0.446
9> 

<0.83
45, 
0.165
5, 

0.1655> 

<0.55
31, 
0.446
9, 
0.446
9> 

<0.55
31, 
0.446
9, 
0.446
9> 

<0.77
65, 
0.223
5, 
0.223
5> 

0.46
19 6 

A∗ <1,0,
0> 

<1,0,0
> 

<0,1,1
> 

<1,0,0
> 

<1,0,0
> 

<1,0,
0>  

𝐄𝐣 
0.322
6 

0.561
5 

0.336
2 

0.487
4 

0.529
3 

0.417
6 

𝐖j 
0.202
5 

0.131
1 

0.198
4 

0.153
2 

0.140
7 

0.174
1 

∑ Wj
n

j=1
=1 

 

5. Validation with Sensitivity Analysis 
 
Sensitivity analysis of proposed methodology regarding ranking of alternatives with various 

normalization methods for same input data is shown in Table 5.  
The graphical representation of sensitivity analysis for mentioned MADM techniques has been 

shown in the figure 1. It proves that SVNS entropy based novel MADM technique with different 
normalizing techniques shows negligible effect on final ranking order of AGV as compared to 
with PSI technique. 

 
Table: 5 Ranking comparison with different normalization methods for F-SVNS Novel 

MADM and PSI MADM Technique. 

 

F-SVNS Entropy based Novel 
MADM Technique PSI  (K. D. Maniya & Bhatt, 2011) 

LST 
MM 

LST 
MMM 

LST 
SM VNM LST 

MM 
LST 

MMM 
LST 
SM VNM 

A1 3 3 3 3 4 4 4 4 
A2 4 6 4 4 3 3 5 5 
A3 8 8 8 8 8 8 8 8 
A4 2 1 2 2 1 1 3 1 
A5 1 2 1 1 6 6 1 2 
A6 5 5 6 5 7 7 2 3 
A7 7 7 7 7 5 5 6 6 
A8 6 4 5 6 2 2 7 7 
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Figure 1: Graphic representation of Sensitivity Analysis with different Normalization Method 
F-SVNS Entropy based Novel MADM and PSI Method 

 

 
 
 

6. Result and Discussions 
In this paper, SVNS entropy weight MADM technique is developed and implemented to 

examine its feasibility for selecting and ranking of AGV for material handling system for a given 
industrial application. The main concluding remarks of proposed technique are listed below:  

 The proposed methodology of ranking or selection of alternatives is suitable to decision 
making under incomplete information, indeterminate and inconsistent information. 

 The proposed SVNS entropy weight MADM technique gives more efficient and 
compromise selection of best alternative.  

 During calculation and normalization there is no loss of information; no single attribute 
has become zero. 

 A sensitivity analysis also shows negligible effect on final ranking order and selection of 
AGV. 

 Proposed methodology is capable to converting decision maker’s crisp information or 
fuzzy information into SVNS form, which makes more efficient ranking solution. 
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From Linked Data Fuzzy to Neutrosophic Data Set Decision 

Making in Games vs. Real Life 

Abstract 

In our lives, reality becomes a game, and in the same way, the game becomes reality, the game 
is an exercise, simulation of real life on a smaller scale, then it extends itself into reality. This 
article aims to make a connection between decision making in game which comprises all the issues 
that intervene in the process and further making a connection with real life. The method for 
identification involved, detected or induced uncertainties is a jointing process from linked data 
fuzzy to neutrosophic data set on a case study, EVE Online game. This analysis is useful for 
psychologists, sociologists, economic analysis, process management, business area, also for 
researchers of games domain. 

Keywords 

Game theory, real life, decision making, neutrosophic theory, uncertainty. 

 

1. Introduction 
The aim of this study is to offer a method of refining the uncertainties, neutral states appeared 

in a process being a game reflected in the real life, through neutrosophic theory. 
In higher forms concerning us, we can associate the function of play as derived from two basic 

aspects met by us: “as a contest for something or a representation of something”, as asserts 
Huizinga (Huizinga,1980, p.13). 

The games, in their configuration, structure, follow the rules, procedures, concepts defined by 
game theory.  There are three categories of games: games of skills, games of chance and games of 
strategy. 

Games of chance type face uncertainty and risk in decision making process (Janis, Mann, 1977). 
These decisions are evaluated, analyzed and taken in accordance with game theory, according to 
the social system involved. 

Neutrosophic theory applied in decision making for solving the uncertainties matches with 
game theory requirements (Von Neumann, Morgenstern, 1944). 
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From the multitude of games we chose to study neutrosophic making decisions, for the case of 
the EVE online, a complex game both as structure and players, involving complex criteria of the 
decisions making mechanism.  

We have to take into consideration that Dr. Eyjólfur Guðmundsson as economist of the game 
EVE Online, applied the concept of Vernon Smith, Nobel Laureate for experimental economics, 
asserting: "This would be any economist's dream, because this is not just an experiment, this is 
more like a simulation. More like a fully-fledged system where you can input to see what happens" 
(http://www.ibtimes.co.uk/eve-online-meet-man-controlling-18-million-space-economy-
1447437). 

Our opinion is that the game is a precious source of ideas, energy, adrenaline, a simulator, an 
exercise for real life that promotes success but also decay through addiction, tolerance and thus it 
can be treated just like drugs. But we want to discuss only the positive side of the game. 

This game covers both linked data and social media practices, in this context, social media 
representing computer-mediated tools that allow people or entities to create, share, or exchange 
information, emotions, feelings, ideas, pictures/videos in virtual communities and networks and 
on the other side, to provide linked data as method of publishing structured data, interlinked and 
to become more useful through semantic queries.  It builds upon standard Web technologies (such 
as HTTP, RDF and URIs). It extends them to share information in a way that can be read 
automatically by computers.  

2. Background 
We are surrounded by data characterized by the performance of our activities, the fuel efficiency 

of our cars, a multitude of products from different vendors, the values of the air parameters, or the 
way our taxes are spent.  It helps us to make better decision; this data is playing an increasingly 
central role in our lives, driving the emergence of data economy. Increasing numbers of individuals 
and organizations are contributing to this deluge by choosing to share their data with others. 
Availability of data is very important in evaluating, analysis, making decision process (Heath, 
Bizer, 2011). 

2.1 Fundamentals of  Neutrosophic Theory 
Uncertainty represents an unsolved situation, it defines a fuzziness state. Uncertainty is an 

actant’s subjective state related to a phenomenon, or decision making, and it becomes objective 
when it is inserted in a probability calculus system or into an algorithm. 

It is mentioned in specialty literature that Zadeh introduced the degree of membership/truth (t), 
the rest would be (1-t) equal to f, their sum being 1, so he defined the fuzzy set in 1965 (Zadeh, 
1965). Further, Atanassov introduced the degree of non- membership /falsehood (f) and he defined 
the intuitionistic fuzzy set (Atanassov, 1986), asserting: if 0<= t + f<= 1 and 0<= 1 – t – f, it would 
be interpreted as indeterminacy t + f <= 1. In this case, the indeterminacy state, as proposition, 
cannot be described in fuzzy logic, is missing the uncertainty state; the neutrosophic logic helps to 
make a distinction between a “relative truth” and an “absolute truth”, while fuzzy logic does not.  
As novelty to previous theory, Smarandache introduced and defined explicitly the degree of 
indeterminacy/ neutrality (i) as independent component 0 <= t+ i +f<= 3 . In neutrosophy set, the 
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three components t, i, f are independent because it is possible from a source to get (t), from another 
independent source to get (i) and from the third source to get (f). Smarandache goes further; he 
refined the range (Smarandache, 2005). 

Neutrosophic Set:  Let U be a universe of discourse, and M a set included in U.  An element x 
from U is noted with respect to the set M as x(T, I, F) and belongs to M in the following way:  it 
is t% true in the set, i% indeterminate (unknown if it is) in the set, and f% false, where t varies in 
T, i varies in I, f varies in F (Smarandache, 2005). 

Statically T, I, F are subsets, but dynamically T, I, F are functions/operators depending on many 
known or unknown parameters. Neutrosophic set generalizes the fuzzy set (especially intuitionistic 
fuzzy set), paraconsistent set, intuitionistic set, etc. 

2.2 Applicability of Neutrosophic Theory 
Applicability of neutrosophic theory is large, from social sciences such as sociology, 

philosophy, literature, arts (Smarandache, Vlăduțescu, 2014; Smarandache, 2015; Păun, 
Teodorescu, 2014; Opran, Voinea, Teodorescu,2014; Smarandache, Gîfu, Teodorescu, 2015 ) to 
sciences such as physics, artificial intelligence, mathematics (Smarandache, Vlădăreanu, 2014). 

There are some remarkable results of netrosophic theory applied in practical applications such 
as artificial intelligence (Gal et al, 2014), in robotics there are confirmed results of neutrosofics 
logics applied to make decisions for uncertainty situations  (Okuyama  el al 2013; Smarandache, 
2011), also for the real-time adaptive networked control of the robot movement on surface with 
uncertainties (Smarandache, 2014). 

Athar Kharal has also a contribution to multi criteria making decision (MCDM) developing an 
algorithm of uncertainty criteria selection using neutrosophic sets. The proposed method allows 
the degree of satisfiability (t), non-satisfiability (f) and indeterminacy (i) mentioning a set of 
criteria represented by neutrosophic sets (Kharal, 2014).  

There is no instant game, or instant action; if they existed, it would involve a very limited time 
fund, if they were instant, we could calculate the uncertainty, we should not have too many 
variables. If the time is longer, more variables appear, more uncertainties. We evaluate the situation 
“1” according to what every social actor wants, it is the sustained decision. The state "0" represents 
the decision that is rejected by social actors. Between “0” and “1” remain states of uncertainty, 
neutrality, uncertain decisions. In this manner we extend the fuzzy theory to neutrosophic theory. 
In fact, the novelty of neutrosophy consists of approaching the indeterminacy status. (Smarandahe, 
2005). 

Starting of this point, we are confidence that neutrosophic theory can help to analyze, evaluate 
and make the right decision in process analysis taking into account all sources that can generate 
uncertainty, from human being (not appropriate skill), logistics concept, lack of information, 
programming automation process according to requirements, etc.   
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3. Games, elements of culture, double articulated 

Probably, Ludwig Wittgenstein was the first academic philosopher who addressed the definition 
of the word game. In his work, Philosophical Investigations, Wittgenstein argued that the 
“elements of games, such as play, rules, and competition”, all contribute to define what games are, 
but not totally (Wittgenstein, 1953).  

Jean Piaget suggested in his work, Genetic Epistemology, “that children think differently than 
adults and proposed a stage theory of cognitive development”. He was the first one to note that 
children play an active role in gaining knowledge of the world, playing games; children can be 
thought of as "little scientists" who are actively constructing their knowledge and understanding 
of the world (Piaget, 1970; Piaget, 1983). 

Argument 1. 
Games are culture related, everything is repeated by as many people as possible, and it becomes 

acceptable to most, spread and cultivated (e.g. internet; it shows a minimal know-how). Culture is 
a complex principle of behavior, spiritual and material values created by mankind, beliefs, tradition 
and art, passed down from generation to generation. The sense of culture finds its significance in 
the life of an individual and society. In this context, "any authentic creation is a gift to the future." 
– asserts Albert Camus. 

For humans, culture is the specific environment of existence. It defines an existential field, 
characterized by a synthesis between objective and subjective, between real and ideal. Culture 
defines a synthetic human way of existence and it is the symbol of man's creative force. It 
represents a real value system. 

Argument 2. 
Games produce culture, the Internet being unlimited, is a huge catalyst of desire. It is a sublime 

achievement in economic terms. For example, the Internet can offer so many texts about Kant that 
you never got around to finish in silence any of his “Critiques”. The time of assimilation is now 
dedicated to search. More than ever, McLuhan's equation says it all about the Internet: “The 
medium is the message”, says a voice that is heard beyond any meaning of utterances made. Only 
the pleasure, the voice, the search on Internet are now authentic. Time is limited, not space. From 
time only desire can provide the intensity necessary to forget this ontological asymmetry (Luhan, 
1967). 

The Internet allows many people to discover their identity more easily. Some people who were 
shy or lonely or feel unattractive, discover that they can socialize more successfully and express 
themselves more freely in an online environment. 

Being able to pretend you are someone else is an important mental skill that the child acquires if 
he is involved in such games. The same thing is experienced by an adult on Internet games, on 
Facebook, for example, a doubling of personality, a place where you can be different, without 
constraints, where you are at your own free will, where decision belongs entirely to you, where 
only uncertainties hinder you. You can think what you want but you can never think of everything 
that can be thought. If it were possible for every man to think all that is conceivable and with a 
consistent content, there would be no freedom of thought or thoughts individualized particular to 
each topic. Mentally anticipating the future, one can access one’s individual mental states of the 
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distant future; one can get art work depicting thoughts, theories or advanced and complicated 
scientific technologies, currently unimaginable. 

4. Case study 
EVE Online is a “massively multiplayer online game set 23,000 years in the future. As an elite 

pilot of one of the four controlling races, the player will explore, build, and dominate across an 
universe of over 7,000 star systems”1, see Figure 1. In EVE Online the possibilities are endless. 
Eve Online is a peculiar concept, it is a simulation, it is an experiment which mirrors the social 
interactions and communications of the real world, just like the real world, it has a fully functioning 
economy. In fact, “it has an economy which could be used and studied in order to help what we 
do in the real world, according to the man charged with overseeing how the $18 million economy 
operates”2. 

 

 
 

Figure 1.Very real implications 

While what is happening in universe environment of EVE planets in the far off star systems 
may not have much relevance in today's world, but the way the EVE economy functions could 
have very real implications: "We try to have a relative balance of money coming in and money 
coming out and the increase per month should represent the net increase in economic value”; “We 
function as a national economics institute, statistics office and central bank giving advice to 
government, with the government being the developers and us being the monitoring authority"3. 

Considering data of EVE Online game, the complexity of environment, we can estimate some 
causes that can generate uncertainties such as: unknown universe; cohesion of the team members; 
alliance trust; financial system crisis; equipment reliability. 

                                                 
1 https://www.eveonline.com 
2 David Gilbert, Eve Online: Meet the Man Controlling the $18 Million Space Economy, International 
Business Time, May 6, 2014 
3 http://www.ibtimes.co.uk/eve-online-meet-man-controlling-18-million-space-economy-1447437 
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For each of these causes the occurrences in a time unit are analyzed (e.g.: 1 week), the space M 
assimilated to the environment of universe, the governance is poorly defined in this space: the 
control of universe, defeat the forces of evil, building a stable system. According to this conditions 
we can simulate the situation by a Pareto Chart, see Figure 2: 

 

 
Figure 2. Pareto Chart Step 1 

 

Pareto analysis is a creative way of evaluation causes of problems because it helps to stimulate 
the processes, thinking and organize thoughts,  assessing the causes that lead to system instability 
through neutrosophic theory. 

In this context, we define a space M consisting of 5 elements, where t means true, i means 
uncertainty and f means false: 

 M = { a1 (t1, i1, f1), a2 (t2, i2, f2), a3 (t3, i3, f3), a4 (t4, i4, f4), a5 (t5, i5, f5)} 

 Unknown universe: a1(t1, i1, f1)  

 Team cohesion: a2(t2, i2, f2)  

 Alliance trust: a3(t3, i3, f3)  

 Financial stability: a4(t4, i4, f4)  

 Equipment reliability: a5 (t5, i5, f5)  
 

According to Pareto Chart, we established the rate for each space element percentage for the 
set (t, i, f). 

Analyzing the content of elements data, we can establish that relative frequency of events  
means uncertainty and events solving means true, respectively non solving, false. The process is 
revealed in Table 1.  
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Table 1. Determination of T, I, F consistency - Step 1 

Neutrosophic interpretation gives an ordered list of alternatives of uncertainties, depending on 
us, which is the most preferred element.  

We will stop at a2component that generates uncertainty for the cause of “team cohesion”.  Pareto 
Chart says that by addressing the cause 20%, it determines 80% uncertainty and can also solve 
80% of problems of the system stability. We have to concentrate on uncertainty of a2 component, 
to reduce its value, 

a21(t21, i21, f21)  a21(53,85%, 25,49%, 46,15%) in the first step of the process. 
The refining process, step 2, can be seen in the next set of data presented in Figure 3. 

 
Figure 3. Pareto Chart Step 2 

 

The relative dataset for the step 2 is shown in Table 2, where we follow up the element a22. 

 
Table 2. Determination of T, I, F consistency - Step 2 
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a22(t22, i22, f22)  a22(66,67%,  15,38%, 33,33%) the second step of the process. 

On the third step of the refining process, the data set is presented in Table 3. 

 
Table 3. Determination of T, I, F consistency - Step 3 

 

a23(t23, i23, f23)  a23(75%,  10.81%, 25%) the third step of the process. 

a24(t24, i24, f24)  a24(100%,  8,33%, 0%) the last step of the process. 

The data set of last step of the refining process, is shown in Table 4. 

 
Table 4. Determination of T, I, F consistency - Step 4 

We show below the effects of refining process in 4 steps, until the value of F is zero. The 
representation of “team cohesion” evolution is shown in Figure 4. 

 
Figure 4. Refining the process for “Team cohesion”, element of space M 
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The process of The Uncertainty Risk Management will take into consideration: 
 Uncertainty management is a creative process, it involves identifying, evaluation

and mitigation of the impact of the uncertainties in the process;
 Uncertainty management can be very formal with defined work process, or

informal with no defined processes or methods;
 Uncertainty evaluation prioritizes the identified uncertainties by the likelihood and

the potential impact if the event happens;
 Uncertainty mitigation is the development and deployment of a plan to avoid,

transferring, sharing and reducing the process uncertainties.
When we try to make a good decision, a person must weigh the positives, negatives and 

uncertainty of each option, and to consider all the alternatives. For effective decision making, a 
person must be able to forecast the outcome of each option as well, and based on all these items, 
to determine which option is the best for that particular situation. 

Decision-making is identified as a cognitive process that results in the selection of a belief or 
an action among several alternative possibilities. Decision-making is a complex process of 
identifying, analyzing and choosing alternatives based on the values and preferences of the 
decision maker. Decision-making is one of the central activities of management and it is an 
important part of any implementation process (Kahneman, Tversky, 2000). 

Usually, in our daily lives, we implicitly compare multiple criteria and we want to be 
comfortable with the consequences of such decisions that are mostly made based only on intuition. 
On the other hand, when we confront with high stakes, it is important to structure the problem and 
to evaluate multiple criteria. In decision making process based on multiple criteria (Multi Criteria 
Decision Making) of whether to do an important issue or not, there are involved not only very 
complex multiple criteria, there are also inferred multiple parties who are deeply affected from the 
consequences, because present decisions, act in the future. 

Decisions making related to games area, shows its similitude with real life, can be easily 
transferred to the real world. It is our choice whether to do this or not.  

5. Conclusions
Decisions making is a complex act including variables related to uncertainty, with implications

for the future work.  Uncertainty, in turn, involves classification criteria based on methods that 
may be applied for determining the degree of uncertainty and settlement. Establishing the types of 
variables that influence uncertainty, it makes possible the identification of the decisions that we 
are referring, that will influence, will constrain the process on the one hand, and will be influenced 
and constrained by a specific decision on the other hand.  

Problem solving and decision-making are important skills for business and life. Problem-
solving often involves decision-making, and decision-making is especially important for 
management and leadership. Between them there is the correspondence: identification of the 
problem vs. frame of the decision; exploring the alternatives vs. improve to address needs and 
identify alternatives; select an alternative vs. decision and commitment to act; implementation of 
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the solution vs. management of the consequences; evaluation of the situation vs. management of 
the consequences and frame the related decisions. 

What we deduced on the basis of this study is that the game is reality and reality is game. We 
build reality through the game, we take risks that include uncertainties, the game becomes a 
training and an experimentation place for many specialists, proving that the school becomes life. 
Here is how the neutrosophic theory, guide us to be closer to solve uncertainties, transforming 
them into true or false, stable and controllable states of the systems. 
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Extended Projection Based Models for Solving Multiple Attribute 

Decision Making Problems with Interval Valued Neutrosophic 

Information  

Abstract 
The paper develops two new methods for solving multiple attribute decision making 

problems with interval – valued neutrosophic assessments. In the decision making situation, 
the rating of alternatives with respect to the predefined attributes is described by linguistic 
variables, which can be represented by interval - valued neutrosophic sets. We assume that the 
weight of the attributes are not equal in the decision making process and they are obtained by 
using maximizing deviation method. We define weighted projection measure and propose a 
method to rank the alternatives. Furthermore, we also develop an alternative method to solve 
multiple attribute decision making problems based on the combination of angle cosine and 
projection method. Finally, an illustrative numerical example in Khadi institution is solved to 
verify the effectiveness of the proposed methods. 

Keywords 
Interval-valued neutrosophic sets; projection measure; weighted projection measure; angle 

cosine; multiple attribute decision making.  
 

1. Introduction 
Multiple attribute decision making (MADM) is one of the most significant parts of modern 

decision science and it is a well known method for selecting the most desirable alternative from a 
set of all feasible alternatives with respect to some predefined attributes. However, the information 
about the attributes is generally incomplete, indeterminate and inconsistent in nature due to the 
complexity of real world problems. Smarandache [1-4] grounded the concept of neutrosophic sets 
(NSs) from philosophical point of view by incorporating the degree of indeterminacy or neutrality 
as independent component to deal with problems involving imprecise, indeterminate and 
inconsistent information and the concept of NSs has been applied to different fields such as 
decision sciences, social sciences, humanities, etc. From scientific and realistic point of view, 
Wang et al. [5] defined single valued NSs (SVNSs) and then presented the set theoretic operators 
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and various properties of SVNSs. Wang et al. [6] also developed the notion of interval 
neutrosophic sets (INSs) characterized by membership, non-membership and falsity-membership 
functions, whose values are interval rather than real numbers. 

In 2013, Chi and Liu [7] first discussed a novel approach for solving MADM problems based 
on extended TOPSIS method under interval neutrosophic environment. Zhang et al. [8] defined 
some operators for INSs and established a multi-criteria decision making method. Broumi and 
Smarandache [9] defined cosine similarity measure between two INSs and applied the concept to 
medical diagnosis problem. Ye [10] proposed some similarity measures between two IVNSs based 
on the relationship of similarity measures and distance measures and utilized the developed method 
to solve a multi-criteria decision making problem. Sahin and Liu [11] developed maximizing 
deviation method for solving MADM problems having incomplete weight information. They 
employed single valued neutrosophic weighted averaging operator and interval neutrosophic 
weighted averaging operator in order to aggregate the neutrosophic information corresponding to 
each alternative and the most desirable alternatives are obtained based on score and accuracy 
functions. Pramanik and Mondal [12] discussed interval neutrosophic MADM based on grey 
relational analysis (GRA) method where the unknown attribute weights are derived from 
information entropy method. Later, Dey et al. [13] studied an extended GRA based interval 
neutrosophic MADM for weaver selection in Khadi institution. Mondal and Pramanik [14] 
proposed cosine, Dice and Jaccard similarity measures of interval rough neutrosophic set for 
solving MADM problems. Recently, Dey et al. [15] investigated an extended GRA method for 
MADM problem with interval neutrosophic uncertain linguistic information. 

Projection measure is useful device for solving decision making problems because it takes into 
account the distance as well as the included angle between points evaluated [16]. Xu and Hu [17] 
provided projection models for dealing with intuitionistic fuzzy MADM problems.  Zeng et al. 
[18] demonstrated weighted projection algorithms for multiple arttribute group decision problems 
under intuitionistic fuzzy and interval – valued intuitionistic fuzzy environment. Yue [19-20] 
presented a projection method to obtain weights of the experts in a group decision making problem. 
Yue [21] proposed a projection based approach for partner selection in a group decision making 
problem with linguistic values and intuitionistic fuzzy information. Ju and Wang [22] investigated 
a methodology to multicriteria group decision problems with incomplete weight information in 
linguistic setting based on projection method. Yang and Du [23] developed a straightforward 
method for obtaining the weights of the decision makers based on angle cosine and projection 
method. Ye [24] discussed a simplified neutrosophic harmonic averaging projection based method 
to solve MADM problems. Ye [25] provided a decision making method based on credibility-
induced interval neutrosophic weighted arithmetic averaging operator and credibility-induced 
interval neutrosophic weighted geometric averaging operator  and the projection measure-based 
ranking method to solve MADM problems with interval neutrosophic information and credibility 
information. 

In this paper, we define weighted projection measure for interval – neutrosophic information 
and develop a method for solving MADM problems based on weighted projection method. We 
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also investigate a method for MADM under interval - valued neutrosophic environment based on 
the combination of angle cosine and projection method.  

Rest of the paper is prepared as follows: Sec. 2 presents several definitions. An interval - valued 
neutrosophic MADM based on weighted projection method is discussed in Sec. 3. Subsection 3.1 
presents the algorithm for MADM problems with interval valued neutrosophic information based 
on weighted projection method. Subsection 3.2 presents the approach for solving interval - valued 
neutrosophic MADM problems based on angle cosine and projection method. Subsection 3.3 
presents the algorithm for MADM problem with interval valued neutrosophic information based 
on angle cosine and projection method In Sec. 4, we solve a numerical example to show the 
applicability and feasibility of the proposed method. Sec. 5 provides conslusion and future scope 
of research.  

2. Preliminaries 
In this Section, we briefly present some basic definitions which will be useful for the 

formulation of the paper. 
2.1 Neutrosophic set 

Definition 2.1.1 [1-4]: Consider U be a universal space of points with generic element in U 
denoted by x. Then a NS A is defined as follows: 

A = {x, )(F),(I),(T xxx AAA   x U}                                                                (2.1) 
where, )(T xA , )(I xA , )(F xA : U  ]-0, 1+[ are the truth-membership, indeterminacy-

membership, and falsity-membership functions, respectively with -0  sup )(T xA + sup )(I xA + sup
)(F xA
 3+. 

Definition 2.1.2. [5] Let U be a universal space of points with generic element in U represented 
by x. Then, a SVNS S    U is defined as follows: 

S = {x, )(F),(I),(T xxx SSS   x U}                                                                 (2.2) 

where )(T xS , )(I xS  and )(F xS  denote truth-membership, indeterminacy-membership and 

falsity-membership functions, respectively. For each point x U, we have, )(T xS , )(I xS , )(F xS : U 

 [0, 1] and 0  sup )(T xS + sup )(I xS + sup )(F xS  3. 
Definition 2.1.3. [6] Let U be a universe of discourse, with a generic element in U represented 

by x. An interval valued neutrosophic set N is represented as follows: 
 N = {x, )(F),(I),(T xxx NNN   x U}                                                              (2.3) 

where )(T xN , )(I xN , )(F xN are the  truth-membership function, indeterminacy-membership 

function, and falsity-membership function, respectively. For each point x U, )(T xN , )(I xN , )(F xN

 [0, 1] and 0  sup )(T xN + sup )(I xN + sup )(F xN  3. 

For convenience, if )(T xN = [ )(TL xN , )(TU xN ]; )(I xN = [ )(IL xN , )(IU xN ]; )(F xN = [ )(FL xN , )(FU xN ], 
then 

N = {x, )],(F),([F)],(I),([I)],(T),([T ULULUL xxxxxx NNNNNN   x U}                      (2.4) 
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with the condition 0  sup )(TU xN + sup )(IU xN + sup )(FU xN  3. 
For convenience, an interval valued neutrosophic number (IVNN) p~ is represented by  

p~ = ]F,[F],I,[I],T,[T ---  .                                                                          (2.5) 
 

2.2 Projection method 
Definition 2.2.1 [16, 26]: Let e = (e1, e2, …, eq) be a vector, then norm of e is defined by 
|| e || = 



q

1j

2
je                                                                                                                                          (2.6) 

Definition 2.2.2 [16, 26]: Let e = (e1, e2, …, eq) and f = (f1, f2, …, fq) be two vectors, then angle 
cosine between e and f is defined as follows: 

Cos (e, f) = 










q

1j

2
j

q

1j

2
j

q

1j jj )(

fe

fe
                                                                                                  (2.7) 

Obviously, 0 < Cos (e, f) 1, and Cos (e, f) denotes the closeness between e and f only in 
direction. 

Definition 2.2.3 [27]: Consider p1 = ]F,[F],I,[I],T,[T 1
-

11
-
11

-
1

 and p2 =

]F,[F],I,[I],T,[T 2
-
22

-
22

-
2

  be two IVNNs. Then the angle cosine of the included angle between 
p1 and p2 is defined as follows: 

Cos (p1, p2) = 
))(F)(F)(I)(I)(T)((T))(F)(F)(I)(I)(T)((T

)FFFFIIIITTT(T
2

2
2-

2
2

2
2-

2
2

2
2-

2
2

1
2-

1
2

1
2-

1
2

1
2-

1

21
-
2

-
121

-
2

-
121

-
2

-
1







        

(2.8) 
Definition 2.2.4 [16, 26]: Let e = (e1, e2, …, eq) and f = (f1, f2, …, fq) be two vectors, then the 

projection of vector e onto vector f can be defined as follows: 

Proj (e)f = || e || Cos (e, f) = 


q

1j

2
je 











q

1j

2
j

q

1j

2
j

q

1j jj )(

fe

fe
=







q

1j

2
j

q

1j jj )(

f

fe
                       (2.9) 

where, Proj (e)f indicates that the closeness of e and f in magnitude. 
Definition 2.2.5 [25]: Consider U = (u1, u2, …, um) be a finite universe of discourse and A, B 

be two IVNSs in U, then 

Proj (A)B = 
||||

1
B

 


q

1j jj )( fe =
||||

1
B

 


 
q

1j βα
--

β
-
αβα

-
β

-
αβα

-
β

-
α )FFFFIIIITTT(T

jjjjjjjjjjjj
         

(2.10) 

is called the projection of A on B, where jα = ]F,[F],I,[I],T,[T
jjjjjj α

--
αα

-
αα

-
α

 and jβ = 

]F,[F],I,[I],T,[T
jjjjjj β

--
ββ

-
ββ

-
β

  are the i-th IVNNs of A and B respectively. Especially, when q = 1, 

we obtain the projection of 1α on 1β as follows: 

Proj 
1β1)(α =

||β||
1

1

 )FFFFIIIITTT(T
jjjjjjjjjjjj βα

--
β

-
αβα

-
β

-
αβα

-
β

-
α

                             (2.11) 
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Definition 2.2.6: Consider U = (u1, u2, …, um) be a finite universe of discourse and A be an 
IVNS in U, then 

|| A || = 


m

1j

2
jα                                                                                            (2.12) 

is called the modulus of A, where jα = ]F,[F],I,[I],T,[T
jjjjjj α

--
αα

-
αα

-
α

  . 

Definition 2.2.7: Consider U = (u1, u2, …, um) be a finite universe of discourse and A be an 
IVNS in U, then 

|| A ||w = 


m

1j

2
jj )α(w                                                                                       (2.13) 

is said to be the weighted modulus of A, where jα = ]F,[F],I,[I],T,[T
jjjjjj α

--
αα

-
αα

-
α

  and w = {w1, 

w2, …, wm} be the weight vector assigned for jβ , where 0  wj 1with 


m

1j jw = 1. 

Definition 2.2.8: Consider U = (u1, u2, …, um) be a finite universe of discourse and A, B be any 
two IVNSs in U, then 

Proj w(A)B = 
wB ||||

1
 



q

1j jj )( fe =
wB ||||

1



 
q

1j βα
--

β
-
αβα

-
β

-
αβα

-
β

-
α )FFFFIIIITTT(T

jjjjjjjjjjjj
   

(2.14) 

is said to be the weighted projection of A on B, where jα = ]F,[F],I,[I],T,[T
jjjjjj α

--
αα

-
αα

-
α

 and jβ

= ]F,[F],I,[I],T,[T
jjjjjj β

--
ββ

-
ββ

-
β

  are the i-th IVNNs of A and B respectively. Consider w = {w1, w2, 

…, wq} be the weight vector assigned for jβ , where 0  wj 1with 


q

1j jw = 1. 

Definition 2.2.7 [28]: Consider α  = ([ -
1T , 

1T ], [ -
1I , 

1I ],[ -
1F , 

1F ]) and β  = ([ -
2T , 

2T ], [ -
2I ,



2I ],[ -
2F , 

2F ]) be any two IVNNs, then Hamming distance between α and β is defined as follows: 

Ham ( α ,β ) = 1/6(| -
1T - -

2T | + | 

1T - 

2T | + | -
1I - -

2I | + | 

1I - 

2I | + | -
1F - -

2F | + | 

1F - -
2F |).               (2.15) 

Definition 2.2.8 [28]: Consider α  = ([ -
1T , 

1T ], [ -
1I , 

1I ],[ -
1F , 

1F ]) and β  = ([ -
2T , 

2T ], [ -
2I ,



2I ],[ -
2F , 

2F ]) be any two IVNNs, then the Euclidean distance between α and β  is defined as given 
below. 

Euc ( α , β ) =  2
21

2-
2

-
1

2
21

2-
2

-
1

2
21

2-
2

-
1 )F(F)F(F)I(I)I(I)T(T)T(T1/6      

(2.16) 
Definition 2.2.9 [28]: Let A = ([ -

iT , 

iT ], [ -
iI , 

iI ], [ -
iF , 

iF ]), (i = 1, 2, ..., m) and B = ([ -
iT̂ , 

iT̂ ], 

[ -
iÎ , 

iÎ ], [ -
iF̂ , 

iF̂ ]), (i = 1, 2, ..., m)  be any two IVNSs, then the Hamming distance between A and 
B is presented as given below. 

Ham (A, B) = 
m6
1




m

1i
(| -

iT - -
iT̂ | + | 

iT - 

iT̂ | + | 

iI - -
iÎ | + | 

iI - 

iÎ | + | -
iF - -

iF̂ | + | 

iF - 

iF̂ |)         (2.17) 
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Definition 2.2.10 [28]: Consider A = ([ -
iT , 

iT ], [ -
iI , 

iI ], [ -
iF , 

iF ]), (i = 1, 2, ..., m) and B = 

([ -
iT̂ , 

iT̂ ], [ -
iÎ , 

iÎ ], [ -
iF̂ , 

iF̂ ]), (i = 1, 2, ..., m)  be any two IVNSs, then the Euclidean distance 
between A and B is defined as given below. 

Euc (A, B )=  2
ii

2-
i

-
i

2
ii

2-
i

-
i

2
ii

2-
i

-
i

m

1i
)F̂F()F̂F()ÎI()ÎI()T̂T()T̂T(1/6m 




    (2.18) 

2.3 Conversion between linguistic variables and IVNNs  
A variable whose values can be represented in terms of words or sentences in a natural language 

is said to be a linguistic variable. The performance values of the alternatives with respect to 
attributes can be expressed by linguistic variables such as extreme good, very good, good, and 
medium good, etc. Linguistic variables can be transformed into IVNNs as given below [15]. 

 
Table 1. Transformation between the linguistic variables and IVNNs 

        
Linguistic variables      IVNNs 

___________________________________________________________________________ 
     Extreme good (EG)       ([0.95, 1], [0.05, 0. 1], [0, 0.1])  
     Very good (VG)        ([0.75, 0.95], [0.1, 0.15], [0.1, 0.2]) 
     Good (G)         ([0.6, 0.75], [0.1, 0.2], [0.2, 0.25]) 
     Medium Good (MG)       ([0.5, 0.6], [0.2, 0.25], [0.25, 0.35]) 
     Medium (M)                  ([0.4, 0.5], [0.2, 0.3], [0.35, 0.45]) 
     Medium low (ML)        ([0.3, 0.4], [0.15, 0.25], [0.45, 0.5]) 
     Low (L)         ([0.2, 0.3], [0.1, 0.2], [0.5, 0.65]) 
    Very low (VL)        ([0.05, 0.2], [0.1, 0.15], [0.65, 0.8]) 
    Extreme low (EL)        ([0, 0.05], [0.05, 0. 1], [0.8, 0.95])  
___________________________________________________________________________ 
 

3. An interval - valued neutrosophic MADM based on weighted projection method  
Assume that H = {h1, h2, …, hm}, (m  2) be a discrete set of alternatives and K ={k1, k2, …, kn}, 

(n  2) be a set of attributes under consideration in a MADM problem. The rating of performance 
value of alternative hi, i = 1, 2, …, m with respect to the predefined attribute kj, j = 1, 2, …, n is 
represented by linguistic variables. The linguistic variables can be expressed by IVNNs. Assume 

w = {w1, w2, …, wn} be the unknown weight vector of the attributes, where 0  wj 1with 


n

1j jw = 1. 

The weighted projection method for solving MADM problem with interval -valued neutrosophic 
information is described by using the following steps: 

Step 1. Formulation of decision matrix with IVNNs 
The evaluation value of the alternative hi, i = 1, 2, …, m with respect to the attribute kj, j = 1, 2, 

…, n is presented by the expert in terms of linguistic variables that can be expressed by IVNNs. 
Therefore, interval – valued neutrosophic decision matrix ND ~ is presented as given below. 
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ND ~  =
nmN~ ij 

r = 























mnm2m1

2n2221

1n1211

r...rr
......
......
r...rr
r...rr

                                                                                 (3.1) 

Here rij = <[ -
ijT , 

ijT ], [ -
ijI , 

ijI ], [ -
ijF , 

ijF ]>; -
ijT , 

ijT , -
ijI , 

ijI , -
ijF , 

ijF [0, 1] and 0  sup 

ijT + sup 

ijI + 

sup 

ijF  3, i = 1, 2, …, m; j = 1, 2, …, n. Here, [ -
ijT , 

ijT ] represents the degree that the alternative hi 

satisfies the attribute kj.  [ -
ijI , 

ijI ] denotes the degree that the alternative hi is indeterminacy on the 

attribute kj. [ -
ijF , 

ijF ] indicates the degree that the alternative hi does not satisfies the attribute kj. 
Step 2. Standardize the decision matrix 
Generally, two types of attributes are encountered in practical decision making problems such 

as benefit type attribute where bigger value of the attribute reflects better alternative and cost type 
attribute where bigger value of the attribute reflects worse alternative. However, in order to remove 
the influence of different physical dimensions to decision results, we require to standardize the 
decision matrix. The standardize decision matrix S = [sij]m  n owing to Chi and  Liu [7] is 
formulated as follows:  

SD ˆ =
nmŜij 

t =























mnm2m1

2n2221

1n1211

t...tt
......
......
t...tt
t...tt

                                                                        (3.2) 

where tij = ([ -
ijT , 

ijT ], [ -
ijI , 

ijI ],[ -
ijF , 

ijF ]), (i = 1, 2, ..., m; j = 1, 2, ..., n). Here, we have  
tij = rij, if j is benefit type,                                                                                     (3.3) 
tij = ijr , if j is cost type                                                                                        (3.4) 

where, ijr is the complement of tij.                                                                                                  
Step 3. Determination of unknown weights of the attributes 
In the decision making environment, we assume that the weights of the attributes are unknown 

to the expert and generally they are not identical. We use maximizing deviation method of Wang 
[29] to derive unknown attribute weights. The concept of maximizing deviation method is 
presented as follows. If an attribute has a small effect on the alternatives then the attribute value 
should be assigned with a small weight and the attribute which creates bigger deviation should be 
assigned with a bigger weight. However, if an attribute has very small or no effect on the 
alternatives then the weight of such attribute may be taken as zero [29]. 

The deviation values of alternatives hi to all other alternatives with respect to attribute kj can be 
formulated as ij (wj) = )t,t( sjij

m

1s


 wj, then j (wj) = 




m

1i ij (wj) = 






m

1i

m

1s jsjij )t,(t w represents total 

deviation of all alternatives to the other alternatives for the attribute kj.  (wj) = )(n

1j jj

 w = 
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n

1j

m

1i jsjij
m

1s
)t,(t w denotes the deviation of all attributes for all alternatives to the other 

alternatives. Now we construct the optimization model [29] as given below. 

Maximize  (wj) = 









n

1j

m

1i jsjij
m

1s
)t,(t w  

Subject to 


n

1j

2
jw = 1, wj0, j = 1, 2, …, n.                                                                            (3.5) 

Solving the above model, we obtain attribute weight [29] as follows: 

wj = 
















n

1j

m

i

m

1s sjij
2

m

i

m

1s sjij

)t,(t

)t,(t
, j = 1, 2, …, n.                                                                                   (3.6) 

Then, the normalized attribute weight is obtained as  

wj = 
















n

1j

m

i

m

1s sjij

m

i

m

1s sjij

)t,(t

)t,(t
, j = 1, 2, …, n.                                                                                   (3.7) 

Step 4. Determination of interval - valued neutrosophic ideal solution 

We determine the interval - valued neutrosophic ideal solution *Z = ( *
1z , *

2z , ..., *
nz ) [7] as given 

below. 
*
jz = ([1, 1], [0, 0], [0, 0]), j = 1, 2, …, n.                                                                         (3.8) 

The virtual interval - valued neutrosophic ideal solution *Z = ( *
1μ , *

2μ , ..., *
nμ ) [7] can also be 

obtained by identifying the best values for each attribute from all alternatives as shown below. 
*
jμ = ( *

j , *
j , *

j )                                                                                                             (3.9) 

where, *
j = [ *L

j , *U
j ] = [

i
Max -

ijT ,
i

Max 

ijT ]; *
j = [ *L

j , *U
j ] = [

i
Min -

ijI ,
i

Min 

ijI ]; *
j = [ *L

j ,
*U

j ] = [
i

Min -
ijF ,

i
Min 

ijF ]. 

Step 5. Calculation of the weighted projection 
The weighted projection of the alternative hi (i = 1, 2, …, m) on the ideal solution *Z is defined 

as follows: 

Proj *)( Ziw g  =
wZ ||||

1
*
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ij
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)FFIITT(





w

w 

                     (3.10) 

Step 6. Ranking of the alternatives 
Rank the alternatives hi ( i = 1, 2, …, m) according to the weighted projection Proj *)( Ziw h and 

bigger value of Proj *)( Ziw h reflects the better alternative.  



New Trends in Neutrosophic Theory and Applications 

135 
 

3.1 Algorithm 1. 
An algorithm for MADM problems with interval valued neutrosophic information based on 

weighted projection method is provided in the following steps: 
Step 1. The expert provides his/ her interval – valued neutrosophic decision matrix ND ~ by Eq. 

(3.1). 

Step 2. The decision matrix ND ~ , in Eq. (3.1) is standardized as shown, SD ˆ = 
nmŜij 

t in Eq. 

(3.2) by using Eqs. (3.3) – (3.4). 
Step 3. The unknown weight of the attribute wj, (j = 1, 2, …, n) is obtained by utilizing Eq. 

(3.7). 
 Step 4. The interval – valued neutrosophic ideal solution *Z is determined from the standardize 

decision matrix in Eq. (3.2). 
Step 5. Determine the weighted projection Proj *)( Ziw h  using Eq. (3.10). 

Step 6. Rank the alternatives hi (i = 1, 2, …, m) based on Proj *)( Ziw h  and select the best one. 
Step 7. End. 

3.2 Extension 
An approach for solving interval - valued neutrosophic MADM problems based on angle 

cosine and projection method 
The angle cosine [27] between the alternative hi (i = 1, 2, …, m) and the ideal solution *Z is 

defined as follows: 
Cos (hi, *Z ) =
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      (3.11) 

Now we propose the direction indicator   (0    1) to convert the direction closeness and 

magnitude closeness into relative closeness i . If the DM gives more interest on direction, then he 
or she provides bigger value to . Otherwise, smaller value of  is provided if the magnitude is 
much more important to the DM [23]. 

Therefore, the relative closeness [23] for selecting the best alternative is given as follows: 

i =   Cos (hi, *Z ) + (1-  ) Proj *)( Zih                                 (3.12) 

The bigger value of i gives the better alternative. 

3.3 Algorithm 2. 
An algorithm for MADM problem with interval valued neutrosophic information based on 

angle cosine and projection method can be demonstrated as follows: 
Step 1. The expert presents the decision matrix ND ~ as shown in Eq. (3.1). 

Step 2. Utilize Eqs. (3.3) – (3.4) to standardize ND ~ into SD ˆ =
nmŜij 

t . 

Step 3. Define the ideal solution *Z . 
Step 4. Determine the angle cosine between the individual decision and the ideal decision *Z by 

utilizing Eq. (3.11). 
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Step 5. Find the projection measure of individual decision and the ideal decision *Z  by using 
Eq. (3.10). 

Step 6. Calculate the relative closeness i in Eq. (3.12) by combining angle cosine and 
projection with direction indicator .   

Step 7. Rank the alternatives according to the decreasing order of the relative closeness i and 
choose the most suitable alternative (s). 

Step 8. End. 

4. A numerical example 
In this Section, we adapt an illustrative example from Dey et al. [13] for weaver selection in 

Khadi Institution where the information about attributes is expressed by linguistic variables. 
Consider a Khadi Institution wants to recruit two most competent weavers from a panel of three 
weavers h1, h2, h3. Seven main attributes for weaver selection are: Skill (k1); Previous experience 
(k2); Honesty (k3); Physical fitness (k4); Locality of the weaver (k5); Personality (k6); Economic 
condition of the weaver (k7) [30]. The Khadi Institution hire a Khadi expert to choose the desirable 
weavers based on the seven attributes. The evaluation information of an alternative hi (i = 1, 2, 3) 
with respect to seven attributes are provided by the Khadi expert in terms of linguistic variables as 
shown in the Table 2. It is to be noted that the seven attributes are of benefit type and the weights 
of the attributes are calculated by using maximizing deviation method. 
4.1 Method 1  

The procedure for weaver selection based on weighted projection method is presented by the 
following steps: 
Step 1: We transform the linguistic decision matrix as shown in Table 2 into interval – valued 
neutrosophic decision matrix by means of Table 1. 

 

Table 2. Linguistic decision matrix 
________________________________________________ 

k1 k2 k3 k4 k5 k6 k7 
______________________________________________ 

h1 G G VG VG VG M MG 
 

h2 VG VG MG G VG MG ML 
 

h3 G VG G MG G G G 
________________________________________________ 

 
Step 2:   Then the linguistic decision matrix is transformed into interval – valued neutrosophic 
decision matrix by using Table 1 as given below (see Table 3). 
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______________________________________________________________________________ 
Table 3. Interval – valued neutrosophic decision matrix 

C= 

       

       

       










350250[]25020[]6050[]25020[]2010[]75060[]2010[]15010[]950750[]25020[]2010[]75060[

]25020[]2010[]75060[35.0250[]25020[]6050[]2010[]15010[]950750[]2010[]15010[]950750[

2010[]15010[]950750[]2010[]15010[]950750[]25020[]2010[]75060[]25020[]2010[]75060[

.,.,.,.,.,..,.,.,.,.,..,.,.,.,.,..,.,.,.,.,.

.,.,.,.,.,.,.,.,.,.,..,.,.,.,.,..,.,.,.,.,.

.,.,.,.,.,..,.,.,.,.,..,.,.,.,.,..,.,.,.,.,.
 

              

     

     

      










]25020[]2010[]75060[]25020[]2010[]75060[]25020[]2010[]75060[

550450[]20150[]40,30[]35.0250[]25020[]6050[]2010[]15010[]950750[

]35.0250[]2502.0[],6050[[]450350[]3020[]5040[2010[]15010[]950750[

.,.,.,.,.,..,.,.,.,.,..,.,.,.,.,.

.,.,.,.,..,.,.,.,.,..,.,.,.,.,.

.,.,.,..,..,.,.,.,.,..,.,.,.,.,.

   

 

Step 3:   We employ Euclidean distance measure to get  ( )t,t sjij , i = t = 1, 2, …, m; j = 1, 2, …, 
n and the normalized weights of the attributes are obtained as given below. 

w1 = w2 = 0.096, w3 = w4 = 0.176, w5 = 0.096, w6 = 0.151, w7 = 0.207 such that 


7

1j jw = 1, wj

0, j = 1, 2, …, 7. 
Step 4: The virtual interval - valued neutrosophic ideal solution are obtained as given below.  



1 = ([0.75, 0.95], [0.1, 0.15], [0.1, 0.2]); 

2 = ([0.75, 0.95], [0.1, 0.15], [0.1, 0.2]); 

3 = ([0.75, 

0.95], [0.1, 0.15], [0.1, 0.2]); 

4 = ([0.75, 0.95], [0.1, 0.15], [0.1, 0.2]); 

5 = ([0.75, 0.95], [0.1, 

0.15], [0.1, 0.2]); 

6 = ([0.6, 0.75], [0.1, 0.2], [0.2, 0.25]); 

7 = ([0.6, 0.75], [0.1, 0.2], [0.2, 0.25]). 

Step 5: The weighted projection Proj *)( Ziw h of the alternative hi (i = 1, 2, 3) on *Z is calculated 
as follows: 

Proj *)( 1 Zw h = 0.4255, Proj *)( 2 Zw h = 0.3730, Proj *)( 3 Zw h = 0.3972. 

Step 6: We rank the alternatives (weavers) according to the descending order of Proj *)( Ziw h (i 
= 1, 2, 3). Here, we observe that 

Proj *)( 1 Zw h  > Proj *)( 3 Zw h  > Proj *)( 2 Zw h  
Consequently, h1, h3 are the most desirable alternatives for the Khadi Institution. 
Note 1: We now compare our proposed weighted projection method with the methods 

investigated by Ye [25], Dey et al. [13], and Chi and Liu [7] and the obtained results are presented 
in the Table below. 
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Table Results of different measure methods 
Method    Measure value    Ranking order 

Proposed method      Proj *)( 1 Zw h = 0.4255,                                 h1> h3> h2 

                                                  Proj *)( 2 Zw h = 0.3730, 

                                                  Proj *)( 3 Zw h = 0.3972   

Ye [25]          Proj *)( 1 Zh = 2.87,                                      h1> h2> h3 

            Proj *)( 2 Zh = 2.777, 

           Proj *)( 3 Zh = 2.739 
Dey et al. [13]          R1 = 0.077209,                                           h1> h3> h2 
              R2 = 0.056516, 
                                                  R3 = 0.056571 
Chi and Liu [7]                   RCC1 = 0.6119,                                         h1> h3> h2 
                                                  RCC2 = 0.4231, 
                                                  RCC3 = 0.4621 
 

4.2 Method 2 
  The procedure to get most desirable weaver(s) based on the combination of angle cosine and 

projection method is described by the following steps: 
Step 1: Same as Step 1 of Method 1. 
Step 2: Same as Step 2 of Method 1.    
Step 3: Same as Step 3 of method 1.    
Step 4: Same as Step 4 of method 1.    
Step 5: The angle cosine between the alternative hi (i = 1, 2, 3) and the ideal solution *Z  is 

calculated using Eq. (3.11) as given below. 
Cos (h1, *Z ) = 0.981, Cos (h1, *Z ) = 0.962, Cos (h1, *Z ) = 0.98. 

Step 6: The projection measure between the alternative hi (i = 1, 2, 3) and the ideal solution *Z  
is calculated as follows. 

Proj *)( 1 Zh = 2.87, Proj *)( 2 Zh = 2.777, Proj *)( 3 Zh = 2.739.  
Step 7.  Combining angle cosine and projection measure with direction indicator = 0.5, the 

relative closeness i (i = 1, 2, 3) is obtained as  

1 = 1.926, 2 = 1.87, 3 = 1.86. 
Step 8: The ranking order of the alternatives (weavers) is obtained as given below. 

1 > 2 > 3  
Therefore, h1, h2 are the most desirable weavers for Khadi Institution. 
Note 2: However, if we take different direction indicators, the ranking order of the alternatives 

are obtained as given in Table 5. 
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Table 5. Ranking order of the alternatives based on different direction indicators 
Alternative      = 0      = 0.25      = 0.5     = 0.75      = 1 

______________________________________________________________________________ 
i    Ranking  i     Ranking  i     Ranking  i     Ranking    i    Ranking 

h1 2.870     1         2.398     1         1.926      1       1.453    1          0.981     1 
h2 2.777     2         2.323     2         1.870      2       1.416    3          0.962     3 
h3 2.739     3         2.299     3         1.860       3      1.420    2          0.980     2 

5. Conclusion
The paper is devoted to propose two new models for MADM problems with interval – valued

neutrosophic information. In the decision making process, the rating of alternatives with respect 
to attributes are described by linguistic variables that can be represented by IVNNs. Since the 
weights of the attributes are fully unknown to the expert, we use maximization deviation method 
to find them. Then, we determine interval - valued neutrosophic ideal solutions.  Finally, we 
develop weighted projection method to rank the alternatives. In this paper, we also propose an 
algorithm for MADM problems under interval neutrosophic environment via angle cosine and 
projection method. An illustrative example for weaver selection is solved to demonstrate the 
applicability of the proposed models. We also compare the obtained results with other existing 
approaches. In future, we will extend the concept to solve multi-attribute group decision making 
problems with interval – valued neutrosophic assessment. The authors hope that the proposed 
approach can be effective for dealing with diverse practical problems such as medical diagnosis, 
pattern recognition, management system, school choice, teacher selection, etc. 
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1 INTRODUCTION

Neutrosophic set (NS), the generalization of classic set, fuzzy set, intutionis-
tic fuzzy set, was first introduced by Smarandache. Smarandache [1] defined the
degree of indeterminacy/neutrality as independent component in 1995 (published
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Abstract 
Neutrosophic sets, being generalization of classic sets, fuzzy sets and intuitionistic fuzzy sets, 

can simultaneously represent uncertain, imprecise, incomplete, and inconsistent information 
existing in the real world. Neutrosophic theory has been developed in twenty first century and not 
much of arithmetic has been developed for this set. To solve any problem using neutrosophic data, 
it is desirable to have suitable operators, score function etc. Some operators like single valued 
neutrosophic weighted averaging (SVNWA) operator, single valued neutrosophic weighted 
geometric (SVNWG) operator are already defined in neutrosophic set (NS). In this paper an 
improved weighted average geometric (IWAG) operator which produces more meaningful results 
has been introduced to aggregate some real numbers and the same has been extended in 
neutrosophic environment. We further generalize this to include a wide range of aggregation 
operators for both real numbers and neutrosophic numbers. A new score function and certainty 
function have been defined which have some benefit compared to the existing ones. Further 
comparative study highlighting the benefit of this new approach of ranking in neutrosophic set has 
been presented. A multiple-attribute decision-making method is established on the basis of the 
proposed operator and newly defined score function. 

Keywords 
Fuzzy critical path, crashing. probability factor, neutrosophic set, aggregation Operator, score 

function, certainty function, and Decision Making. 



in 1998). NS can express uncertain, imprecise, incomplete and inconsistent infor-
mation more precisely. How to aggregate information is an important problem
in real management and decision process. Due to the complexity of management
environments and decision problems, decision makers may provide their ratings
or judgments to some certain degree, but it is possible that they are not so sure
about their judgments. Namely, there may exist some uncertain, imprecise, in-
complete, and inconsistent information, which are very important factors to be
taken into account when trying to construct really adequate models and solutions
of decision problems. Such kind of information is suitably expressed with neutro-
sophic fuzzy sets rather than exact numerical values, fuzzy or intuitionistic fuzzy.
Thus, how to aggregate neutrosophic fuzzy information becomes an important
part of multi-attribute decision-making with neutrosophic fuzzy sets.

In [17] Zhang-peng Tian et al. solved green product design selection problems
using neutrosophic linguistic information. Xiao-hui Wu et al. [13] established
ranking methods for simplified neutrosophic sets based on prioritized aggrega-
tion operators and cross-entropy measures to solve multi criteria decision making
(MCDM) problem. Interval neutrosophic linguistic aggregation operators were
developed and applied to the medical treatment selection process [16] by Yin-
xiang Ma et al. In [20] Hong-yu Zhang, Jian-qiang Wang and Xiao-hong Chen
defined some reliable operations for interval-valued neotrosophic sets. Based on
those operators they also developed two aggregation operators which were applied
to solve a MCDM problem. Jun Ye introduced in [4] single-valued neutrosophic
hesitant fuzzy weighted averaging (SVNHFWA) operator and a single-valued
neutrosophic hesitant fuzzy weighted geometric (SVNHFWG) operator and us-
ing those operator a multiple-attribute decision-making method was established.
Peide Liu, Yanchang Chu, Yanwei Li, and Yubao Chen [7] presented some oper-
ational laws for neutrosophic numbers (NNs) based on Hamacher operations and
proposed several averaging operators and applied them to group decision mak-
ing. Broumi, Smarandache defined operations based on the arithmetic mean,
geometrical mean and harmonic mean on interval-valued neutrosophic sets in [8].

In this paper we introduce an improved aggregating operator named improved
weighted averaging geometric mean (IWAGM) for real numbers which produces
more meaningful results and extend it for single valued neutrosophic set (SVNS)
as improved single valued weighted averaging geometric (ISVWAG) operator.
We further generalize the IWAGM operator and introduce generalized improved
weighted averaging geometric mean (GIWAGM) which includes a wide range of
weighted average geometric operators. Also we extend the GIWAGM for single
valued neutrosophic numbers. We introduce a new score function and certainty
function which are illustrated using simple examples and applied to numerical
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example. A comparative study highlighting the benefit of this new approach of
ranking in NS has been discussed. An algorithm has been given to find optimum
solution of multi-criteria decision making problem and a numerical illustration
for a network problem has been presented.

The operators developed in this paper are original and have been developed
for SVNS for the first time. Very few works have been done on averaging op-
erator in SVNS. The score function and certainty function newly introduced in
this paper have some benefits compared to the existing ones. The score function
and certainty function defined earlier give same score function value for differ-
ent neutrosophic numbers easily. But the newly proposed ones can remove this
difficulty.

The rest of the paper is structured as follows: Section 2 introduces some con-
cepts of neutrosophic sets and simplified neutrosophic sets. Section 3 describes
weighted average mean (WAM) and weighted geometric mean (WGM) for real
numbers and their limitations. In section 4, we define a new IWAGM for real
numbers and compare the results with the existing ones highlighting the improve-
ment over the WAM and WGM. IWAGM has been extended in neutrosophic
environment in section 5. In section 6, we generalize the IWAGM introduced
in section 4 and extend the generalization for neutrosophic numbers. Section
7 introduces a new approach defining a new score function and certainty func-
tion to compare the neutrosophic numbers. Why the approach is more realistic
and meaningful is discussed in this section. Section 8 presents the algorithm for
finding optimum alternative among alternatives in a decision making problem
in neutrosophic environment using the introduced operator IWAG in subsection
5.2 and the comparison approach defined in section 7. In section 9, a numerical
example demonstrates the application and effectiveness of the proposed aggrega-
tion operator and comparison rules in decision-making problems. We conclude
the paper in section 10.

2 NEUTROSOPHIC SETS

2.1 Definition

Let U be an universe of discourse then the neutrosophic set A is defined
as A = {〈x : TA(x), IA(x), FA(x)〉 , x ∈ U}, where the functions T, I, F: U →
]−0, 1+[ define respectively the degree of membership (or Truth), the degree of
indeterminacy and the degree of non-membership (or falsehood) of the element
x ∈ U to the set A with the condition −0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.
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To apply neutrosophic set to science and technology, we consider the neutro-
sophic set which takes the value from the subset of [0, 1] instead of ]−0, 1+[; i.e.,
we consider SNS as defined by Ye in [3].

2.2 Simplified Neutrosophic Set

Let X be a space of points (objects) with generic elements in X denoted by x.
A neutrosophic set A in X is characterized by a truth-membership function TA(x),
an indeterminacy membership function IA(x), and a falsity-membership function
FA(x), if the functions TA(x), IA(x), FA(x) are singleton subintervals/subsets in
the real standard [0, 1], i.e., TA(x) : X → [0, 1], IA(x) : X → [0, 1] and FA(x) :
X → [0, 1]. Then a simplification of the neutrosophic set A is denoted by A =
{〈x, TA(x), IA(x), FA(x)〉 , x ∈ X}.

2.3 Simplified neutrosophic set(SVNS)

Let X be a space of points (objects) with generic elements in X denoted by x.
A SVNS A in X is characterized by a truth-membership function TA(x), an inde-
terminacy membership function IA(x) and a falsity-membership function FA(x),
for each point x ∈ X, TA(x), IA(x), FA(x) ∈ [0, 1]. Therefore, a SVNS A can be
written as ASV NS = {〈x, TA(x), IA(x), FA(x)〉 , x ∈ X}. For two SVNS, ASV NS =
{〈x, TA(x), IA(x), FA(x)〉 , x ∈ X} andBSV NS = {〈x, TB(x), IB(x), FB(x)〉 , x ∈ X},
the following expressions are defined in [12] as follows:
ANS ⊆ BNS if and only if TA(x) ≤ TB(x), IA(x) ≥ IB(x), FA(x) ≥ FB(x).
ANS = BNS if and only if TA(x) = TB(x), IA(x) = IB(x), FA(x) = FB(x).
Ac = 〈x, FA(x), 1− IA(x), TA(x)〉.

For convenience, a SVNS A is denoted by A = 〈TA(x), IA(x), FA(x)〉 for any x
in X. For two SVNSs A and B, the operational relations (1), (2), (3) are defined
by [3] and (4) by [2]
(1) A+B = 〈 TA(x) + TB(x)− TA(x)TB(x), IA(x) + IB(x)− IA(x)IB(x),FA(x) +
FB(x)− FA(x)FB(x) 〉.
(2) A.B = 〈TA(x).TB(x), IA(x).IB(x), FA(x).FB(x)〉
(3) Aλ =

〈
T λA(x), IλA(x), F λ

A(x)
〉
.

(4) For any scalar λ > 0, λA = 〈min(λTA(x), 1),min(λIA(x), 1),min(λFA(x), 1)〉.

3 AGGREGATION OPERATORS

Aggregation operators are mathematical functions that are used to combine
information. That is, they are used to combine N data (for example, N numerical
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values) in a single datum. In classical algebra WAM and WGM are very useful
to combine n real numbers a1, a2, . . . , an.
The WAM of n real numbers a1, a2, . . . , an with associated weights w1, w2, . . . , wn
respectively, wi ∈ [0, 1] and

∑
wi = 1, is defined by

∑n
i=1 aiwi.

The WGM of n real numbers a1, a2, . . . , an with associated weights w1, w2, . . . , wn
respectively, wi ∈ [0, 1] and

∑
wi = 1, is defined by

∏n
i=1 a

wi
i .

3.1 Some limitations of WAM and WGM

The result of an aggregation operator is meaningful if its value tends to one or
some number(s) (among those to be combined) whose weight(s) is on the higher
side. They do not correctly aggregate the information, if the aggregated value
does not tend towards maximum arguments or does not lie between the maximum
and minimum arguments. Let us consider some cases.
Example. Case 1: Take two real numbers 0.0001 and 1 with their weights
w1 = 0.9, w2 = 0.1 respectively. Then WAM = 0.10009, WGM = 0.000251.
Case 2: Again take 0.0001 and 1 with their weights w1 = 0.1, w2 = 0.9 respec-
tively. Then WAM = 0.90001, WGM = 0.398107.
From these results we observe that from the first case the value of WGM is more
close to the number whose weight is maximum than WAM . So in this case,
WGM aggregates the numbers more close to the highest weighted number. On
the other side in the second case the value of WAM is nearest to the maximum
weighted number whereas WGM is close to 0.0001, the minimum weighted num-
ber. Here WAM value is more meaningful. The examples show that WAM and
WGM operators may not simultaneously give meaningful result while aggregat-
ing the information. Now we propose a new aggregation operator that always
gives a moderate value close to the maximum weighted number.

4 THE NEWLY PROPOSED WEIGHTED MEAN

Let a1, a2, . . . , an are n real numbers with associated weights w1, w2, . . . , wn
respectively, wi ∈ [0, 1] and

∑
wi = 1. Then we define improved weighted average

geometric mean (IWAGM) as

IWAGM(a1, a2, . . . , an) =
n∑
i=1

a
1
2
i wi

n∏
i=1

a
wi
2
i (1)
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4.1 Properties

Let a1, a2, . . . , an are n real numbers. Then the aggregated result of the
IWAGM operator clearly satisfies desired properties of an aggregation operator :

(1). Idempotency: let ai (i = 1, 2, . . . , n) be a collection of real numbers. If all
ai (i = 1, 2, . . . , n) are equal, that is, ai = a, for all(i = 1, 2, . . . , n), then

IWAGM(a1, a2, . . . , an) = a
1
2

∑n
i=1wi

∏n
i=1 a

wi
2 = a

(2). Boundedness: If a− = mini ai and a+ = maxi ai,
∑n

i=1(a
−)

1
2wi

∏n
i=1(a

−)
wi
2 ≤∑n

i=1 a
1
2
i wi

∏n
i=1 a

wi
2
i ≤

∑n
i=1(a

+)
1
2wi

∏n
i=1(a

+)
wi
2 ,

i.e. a− ≤ IWAGM(a1, a2, . . . , an) ≤ a+.

(3). Symmetry or commutativity: The order of the arguments has no influ-
ence on the result. For every permutation σ of 1, 2, . . . , n the operator
satisfies IWAGM(aσ(1), aσ(2), . . . , aσ(n)) = IWAGM(a1, a2, . . . , an)

(4). Monotonicity : If ai ≤ a∗i for all (i = 1, 2, . . . , n),∑n
i=1 a

1
2
i wi

∏n
i=1 a

wi
2
i ≤

∑n
i=1(a

∗
i )

1
2wi

∏n
i=1(a

∗
i )

wi
2 .

So IWAGM(a1, a2, . . . , an) ≤ IWAGM(a∗1, a
∗
2, . . . , a

∗
n).

4.2 Theorem

For n real numbers a1, a2, . . . , an,
WGM(a1, a2, . . . , an) ≤ IWAGM(a1, a2, . . . , an) ≤ WAM(a1, a2, . . . , an).

Proof: We know WAM of some real numbers always greater than or equal to
WGM of those real numbers.
So if we consider n numbers a

1
2
1 , a

1
2
2 , . . . , a

1
2
n with their weights w1, w2, . . . , wn re-

spectively, then∑n
i=1 a

1
2
i wi ≥

∏n
i=1 a

wi
2
i .

Now,
∑n

i=1 a
1
2
i wi

∏n
i=1 a

wi
2

i∏n
i=1 a

wi
i

=
∑n

i=1 a
1
2
i wi∏n

i=1 a
wi
2

i

≥ 1.

i.e.,
WGM(a1, a2, . . . , an) ≤ IWAGM(a1, a2, . . . , an) (2)

Again we know if a1, a2, . . . , an be positive real numbers, not all equal,
w1, w2, . . . , wn be positive real numbers such that

∑n
i=1wi = 1 and m is rational,
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lies between 0 and 1,
∑n

i=1wia
m
i ≤ (

∑n
i=1wiai)

m.
Taking m = 1

2
,

n∑
i=1

wia
1
2
i ≤ (

n∑
i=1

wiai)
1
2 (3)

Also,
∏n

i=1 a
wi
i ≤

∑n
i=1 aiwi

Taking square root in both side,

n∏
i=1

a
wi
2
i ≤ (

n∑
i=1

aiwi)
1
2 (4)

Multiplying (3) and (4), we get

IWAGM(a1, a2, . . . , an) ≤ WAM(a1, a2, . . . , an) (5)

So combining (2) and (5), we get our proposed result.

4.3 Meaningful advantage of the proposed operator

Using the newly introduced operator, the aggregated results of the num-
bers with their weightage given in subsection 3.1, are given below: For case 1,
IWAGM(0.0001, 1) = 0.001728 , and for case 2, IWAGM(0.0001, 1) = 0.5684.
So in both the cases the newly introduced operator gives a moderate value close
to the maximum weighted number. WAM and WGM may not simultaneously
give meaningful result for all the numbers; but result from the proposed operator
is meaningful since it holds the relation (2) and (5). In fact the new operator
improves both the WAM and WGM and gives a moderate, meaningful value.

5 WEIGHTED AGGREGATION OPERATORS

IN NEUTROSOPHIC ENVIRONMENT

5.1 Extension of WAM and WGM of classical algebra in
neutrosophic set

In neutrosophic environment SV NWA and SV NWG, the most well known
aggregation operators, are the extension of WAM and WGM of classical algebra.
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5.1.1 Definition I

Let Ai = (TAi
(x), IAi

(x), FAi
(x)) (i = 1, 2, . . . , n) be a collection of SVNSs. A

mapping Fw : SV NSn → SV NS is called single valued neutrosophic weighted
averaging operator of dimension n if it satisfies Fw(A1, A2, . . . , An) =

∑n
i=1wiAi,

where w = (w1, w2, . . . , wn)T is the weight vector of Ai (i = 1, 2, . . . , n), wi ∈ [0, 1]
and

∑
wi = 1.

5.1.2 Definition II

Let Ai = (TAi
(x), IAi

(x), FAi
(x)) (i = 1, 2, . . . , n) be a collection of SVNSs. A

mapping Fw : SV NSn → SV NS is called SVNG operator of dimension n if it
satisfies Fw(A1, A2, . . . , An) =

∏n
i=1A

wi
i .

5.2 Extension of proposed aggregation operator in neu-
trosophic set

Let Ai = (TA(i), IA(i), FA(i)) (i = 1, 2, . . . , n) be a collection of SVNSs. Then
we define improved single valued weighted averaging geometric (ISVWAG) op-
erator as

ISVWAG(A1, A2, . . . , An) =
n∑
i=1

A
1
2
i wi

n∏
i=1

A
wi
2
i (6)

5.2.1 Properties

Let Ai = (TAi
(x), IAi

(x), FAi
(x)) (i = 1, 2, . . . , n) be a collection of SVNSs.

Then the aggregated result of the ISV NWAG operator is also a single valued
neutrosophic number (SVNN) and satisfies the desired properties of an aggrega-
tion operator.
To prove the properties we first prove a lemma.

5.2.2 Lemma 1

Let A1 = (TA1(x), IA1(x), FA1(x)), A2 = (TA2(x), IA2(x), FA2(x)),
B1 = (TB1(x), IB1(x), FB1(x)), B2 = (TB2(x), IB2(x), FB2(x)) are SVNNs such
that A1 ⊇ B1, A2 ⊇ B2. Then (A1 + A2) ⊇ (B1 + B2). i.e., (TA1 + TA2 −
TA1TA2) ≥ (TB1 + TB2 − TB1TB2), (IA1 + IA2 − IA1IA2) ≤ (IB1 + IB2 − IB1IB2),
(FA1 + FA2 − FA1FA2) ≤ (FB1 + FB2 − FB1FB2).
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Proof: Let X be the universe. For each point x ∈ X, TA(x), IA(x), FA(x) ∈ [0, 1].
Now it is given that A1 ⊇ B1, A2 ⊇ B2, i.e., for each value of x ∈ X, TA1(x) ≥
TB1(x) and TA2(x) ≥ TB2(x). Let x1 be an arbitrary point in X. So TA1(x1) ≥
TB1(x1) and TA2(x1) ≥ TB2(x1). Also TA1(x1), TA2(x1), TB1(x1), TB2(x1) ∈ [0, 1].
cosx for x ∈ [0, π

2
] is a continuous function. i.e., cos x assumes every value in

[0, 1]. So we can consider TA1(x1) = cosφ1, TA2(x1) = cosφ2, TB1(x1) = cos θ1,
TB2(x1) = cos θ2, for some φ1, φ2, θ1, θ2 ∈ [0, π

2
].

Now TA1(x1)+TA2(x1)−TA1(x1)TA2(x1) = cosφ1+cosφ2−cosφ1 cosφ2 = cosφ1+
(1 − cosφ1) cosφ2 = 1 − 2 sin2 φ1

2
+ 2 sin2 φ1

2
cosφ2 = 1 − 2 sin2 φ1

2
(1 − cosφ2) =

1− 2 sin2 φ1
2
.2 sin2 φ2

2
= 1− 4 sin2 φ1

2
sin2 φ2

2
.

Similarly, TB1(x1) + TB2(x1)− TB1(x1)TB2(x1) = 1− 4 sin2 θ1
2

sin2 θ2
2

.
Since TA1(x1) ≥ TB1(x1), TA2(x1) ≥ TB2(x1),
cosφ1 ≥ cos θ1. i.e., − cosφ1 ≤ − cos θ1, 1 − cosφ1 ≤ 1 − cos θ1, i.e., 2 sin2 φ1

2
≤

2 sin2 θ1
2

.

Similarly, 2 sin2 φ2
2
≤ 2 sin2 θ2

2
.

i.e., 4 sin2 φ1
2

sin2 φ2
2
≤ 4 sin2 θ1

2
sin2 θ2

2
.

i.e., 1− 4 sin2 φ1
2

sin2 φ2
2
≥ 1− 4 sin2 θ1

2
sin2 θ2

2
.

i.e.,

TA1(x1) + TA2(x1)− TA1(x1)TA2(x1) ≥ TB1(x1) + TB2(x1)− TB1(x1)TB2(x1) (7)

Since (7) is true for any x1 ∈ X, TA1(x) + TA2(x) − TA1(x)TA2(x) ≥ TB1(x) +
TB2(x)− TB1(x)TB2(x).
So it has been shown that TA1 ≥ TB1 and TA2 ≥ TB2 imply [TA1 +TA2−TA1TA2 ] ≥
[TB1 + TB2 − TB1TB2 ]. In the same way,
IA1 ≤ IB1 and IA2 ≤ IB2 imply (IA1 + IA2 − IA1IA2) ≤ (IB1 + IB2 − IB1IB2)
also FA1 ≤ FB1 and FA2 ≤ FB2 imply (FA1 + FA2 − FA1FA2) ≤ (FB1 + FB2 −
FB1FB2). The proof is generic as it is true for each and every value of the truth,
indeterminacy and falsity membership functions and does not depend on the
types of the functions (triangular, trapezoidal, piecewise linear or Gaussian).

On the basis of the basic operations of SVNSs described in subsection 2.3, the
value of the truth, indeterminacy and falsity membership function in aggregated
result belongs to [0, 1]. So the aggregated operator is also a SVNN. We will prove
that the ISV NWAG operator has the following desired properties:

(1) Idempotency: let Ai (i = 1, 2, . . . , n) be a collection of SVNNs. If all
Ai (i = 1, 2, . . . , n) are equal, that is, Ai = A, for all(i = 1, 2, . . . , n), then
ISVWAG(A1, A2, . . . , An) = A
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(2) Boundedness: Let A− = (TA−(x), IA−(x), FA−(x)), and
A+ = (TA+(x), IA+(x), FA+(x)), where TA−(x) = mini TAi

(x), IA−(x) = maxi IAi
(x),

FA−(x) = maxi FAi
(x) and TA+(x) = maxi TAi

(x), IA+(x) = mini IAi
(x), FA+(x) =

mini FAi
(x). So A− ⊆ Ai ⊆ A+ for all (i = 1, 2, . . . , n). Also (TA−(x))0.5wi ≤

(TAi
(x))0.5wi ≤ (TA+(x))0.5wi, (IA−(x))0.5wi ≥ (IAi

(x))0.5wi ≥ (IA+(x))0.5wi and
(FA−(x))0.5wi ≥ (FAi

(x))0.5wi ≥ (FA+(x))0.5wi. So (A−)0.5wi ⊆ (Ai)
0.5wi ⊆

(A+)0.5wi. By using lemma 1,
∑n

i=1(A
−)0.5wi ⊆

∑n
i=1A

1
2
i wi ⊆

∑n
i=1(A

+)0.5wi,
i.e.,

(A−)
1
2 ⊆

n∑
i=1

A
1
2
i wi ⊆ (A+)

1
2 (8)

Again similarly, (A−)
wi
2 ⊆ A

wi
2
i ⊆ (A+)

wi
2 , i.e.,

(A−)
1
2 ⊆

n∏
i=1

A
wi
2
i ⊆ (A+)

1
2 (9)

From (8)
T
(A−)

1
2
≤ T∑n

i=1 A
1
2
i wi

≤ T
(A+)

1
2

(10)

From (9)
T
(A−)

1
2
≤ T∏n

i=1 A
wi
2

i

≤ T
(A+)

1
2

(11)

Multiplying (10) and (11) we get, TA− ≤ TISVWAG(A1,A2,...,An) ≤ TA+ .
similarly, IA− ≥ IISVWAG(A1,A2,...,An) ≥ IA+ and FA− ≥ FISVWAG(A1,A2,...,An) ≥
FA+ .
Thus A− ⊆ ISVWAG(A1, A2, . . . , An) ⊆ A+.

(3) Symmetry or commutativity: The order of the arguments has no influ-
ence on the result. For every permutation σ of 1, 2, . . . , n the operator satisfies
ISVWAG(Aσ(1), Aσ(2), . . . , Aσ(n)) = ISVWAG(A1, A2, . . . , An)

(4) Monotonicity :Let Ai ⊆ A∗i for all (i = 1, 2, . . . , n), then TAi
(x) ≤ TA∗

i
(x),

IAi
(x) ≥ IA∗

i
(x) and FAi

(x) ≥ FA∗
i
(x). i.e., (TAi

(x))0.5wi ≤ (TA∗
i
(x))0.5wi,

(IAi
(x))0.5wi ≥ (IA∗

i
(x))0.5wi and (FAi

(x))0.5wi ≥ (FA∗
i
(x))0.5wi. So (Ai)

0.5wi ⊆
(A∗i )

0.5wi. Therefore from the lemma 1
∑n

i=1A
0.5
i wi ⊆

∑n
i=1(A

∗
i )

0.5wi and also

since
∏n

i=1A
wi
2
i ⊆

∏n
i=1A

∗
i

wi
2 , ISVWAG(A1, A2, . . . , An)

⊆ ISVWAG(A∗1, A
∗
2, . . . , A

∗
n).
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6 GENERALIZATION OF IWAGM AND ITS

EXTENSION IN NEUTROSOPHIC ENVI-

RONMENT

We formulate a general operator in case of real numbers and extend it to
neutrosophic set also.
Let a1, a2, . . . , an are n real numbers with associated weights w1, w2, . . . , wn re-
spectively, wi ∈ [0, 1] and

∑
wi = 1. Then we define generalized improved

weighted averaging geometric mean (GIWAGM) as

GIWAGM(a1, a2, . . . , an) = (
n∑
i=1

a
1
k
i wi

n∏
i=1

a
wi
k
i )k/2 (12)

where k is any real number. The equation (12) satisfy the desired properties of
aggregation operator:

(1) Idempotency: let ai (i = 1, 2, . . . , n) be a collection of real numbers. If
all ai (i = 1, 2, . . . , n) are equal, that is, ai = a, for all(i = 1, 2, . . . , n), then

GIWAGM(a1, a2, . . . , an) = (a
1
k

∑n
i=1wi

∏n
i=1 a

wi
k )k/2 = a

(2) Boundedness: If a− = mini ai and a+ = maxi ai,

(
∑n

i=1(a
−)

1
kwi

∏n
i=1(a

−)
wi
k )k/2 ≤ (

∑n
i=1 a

1
k
i wi

∏n
i=1 a

wi
k
i )k/2 ≤ (

∑n
i=1(a

+)
1
k

wi
∏n

i=1(a
+)

wi
k )k/2, i.e. a− ≤ GIWAGM(a1, a2, . . . , an) ≤ a+.

(3) Symmetry or commutativity: The order of the arguments has no influ-
ence on the result. For every permutation σ of 1, 2, . . . , n the operator satisfies
GIWAGM(aσ(1), aσ(2), . . . , aσ(n)) = GIWAGM(a1, a2, . . . , an)

(4) Monotonicity :If ai ≤ a∗i for all (i = 1, 2, . . . , n),

(
∑n

i=1 a
1
k
i wi

∏n
i=1 a

wi
k
i )k/2 ≤ (

∑n
i=1(a

∗
i )

1
kwi

∏n
i=1(a

∗
i )

wi
k )k/2.

So GIWAGM(a1, a2, . . . , an) ≤ GIWAGM(a∗1, a
∗
2, . . . , a

∗
n).

And for neutrosophic sets let Ai = (TA(i), IA(i), FA(i)) (i = 1, 2, . . . , n) be a
collection of SVNSs with associated weights w1, w2, . . . , wn respectively, wi ∈ [0, 1]
and

∑
wi = 1.. Then we define generalized improved single valued weighted

averaging geometric (GISVWAG) operator as

GISVWAG(A1, A2, . . . , An) = (
n∑
i=1

A
1
k
i wi

n∏
i=1

A
wi
k
i )k/2 (13)
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where k is any real number. The equation (13) satisfy the desired properties of
aggregation operator:

(1) Idempotency: let Ai (i = 1, 2, . . . , n) be a collection of SVNNs. If all
Ai (i = 1, 2, . . . , n) are equal, that is, Ai = A, for all(i = 1, 2, . . . , n), then
ISVWAG(A1, A2, . . . , An) = A

(2) Boundedness: Let A− = (TA−(x), IA−(x), FA−(x)), and
A+ = (TA+(x), IA+(x), FA+(x)), where TA−(x) = mini TAi

(x), IA−(x) = maxi IAi
(x),

FA−(x) = maxi FAi
(x) and TA+(x) = maxi TAi

(x), IA+(x) = mini IAi
(x), FA+(x) =

mini FAi
(x). So A− ⊆ Ai ⊆ A+ for all (i = 1, 2, . . . , n). Also (TA−(x))1/kwi ≤

(TAi
(x))1/kwi ≤ (TA+(x))1/kwi, (IA−(x))1/kwi ≥ (IAi

(x))1/kwi ≥ (IA+(x))1/kwi
and (FA−(x))1/kwi ≥ (FAi

(x))1/kwi ≥ (FA+(x))1/kwi. So (A−)1/kwi ⊆ (Ai)
1/kwi ⊆

(A+)1/kwi. By using lemma 1,
∑n

i=1(A
−)1/kwi ⊆

∑n
i=1A

1/k
i wi ⊆

∑n
i=1(A

+)1/kwi,
i.e.,

(A−)1/k ⊆
n∑
i=1

A
1/k
i wi ⊆ (A+)1/k (14)

Again similarly, (A−)
wi
k ⊆ A

wi
k
i ⊆ (A+)

wi
k , i.e.,

(A−)
1
k ⊆

n∏
i=1

A
wi
k
i ⊆ (A+)

1
k (15)

From (14)
T
(A−)

1
k
≤ T∑n

i=1 A
1
k
i wi

≤ T
(A+)

1
k

(16)

From (15)
T
(A−)

1
k
≤ T∏n

i=1 A
wi
k

i

≤ T
(A+)

1
k

(17)

Multiplying (16) and (17) we get, T
(A−)

2
k
≤ T∑n

i=1 A
1
k
i wi

T∏n
i=1 A

wi
k

i

≤ T
(A+)

2
k
.

i.e., TA− ≤ TGISVWAG(A1,A2,...,An) ≤ TA+ .
similarly, IA− ≥ IGISVWAG(A1,A2,...,An) ≥ IA+ and FA− ≥ FGISVWAG(A1,A2,...,An) ≥
FA+ . So A− ⊆ GISVWAG(A1, A2, . . . , An) ⊆ A+.

(3) Symmetry or commutativity: The order of the arguments has no influ-
ence on the result. For every permutation σ of 1, 2, . . . , n the operator satisfies
GISVWAG(Aσ(1), Aσ(2), . . . , Aσ(n)) = GISVWAG(A1, A2, . . . , An)
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(4) Monotonicity :Let Ai ⊆ A∗i for all (i = 1, 2, . . . , n), then TAi
(x) ≤ TA∗

i
(x),

IAi
(x) ≥ IA∗

i
(x) and FAi

(x) ≥ FA∗
i
(x). i.e., (TAi

(x))1/kwi ≤ (TA∗
i
(x))1/kwi,

(IAi
(x))1/kwi ≥ (IA∗

i
(x))1/kwi and (FAi

(x))1/kwi ≥ (FA∗
i
(x))1/kwi. So (Ai)

1/kwi ⊆
(A∗i )

1/kwi. Therefore from the lemma 1,
∑n

i=1A
1/k
i wi ⊆

∑n
i=1(A

∗
i )

1/kwi and also

since
∏n

i=1A
wi
k
i ⊆

∏n
i=1A

∗
i

wi
k , GISVWAG(A1, A2, . . . , An) ⊆

GISVWAG(A∗1, A
∗
2, . . . , A

∗
n).

Now if we put k = 2, (12) and (13) reduce to (1) and (6) respectively, i.e.,
the newly proposed operator for real numbers given in (1) is one of the particular
cases of generalized operator (12) and similar for the case (6) and (13) also. For
different values of k it is possible to study these families individually.

7 COMPARISON APPROACH

7.1 Definition [20], [7]

Let A and B are two SVNN. Then the comparison approach based on score
function (s), accuracy function (a) and certainty function (c) is given as follows:
(1) If s(A) > s(B), then A > B.
(2) If s(A) = s(B) and a(A) > a(B), then A > B.
(3) If s(A) = s(B) also a(A) = a(B), but c(A) > c(B), then A > B.
(4) If s(A) = s(B), a(A) = a(B) and c(A) = c(B), then A = B.

7.2 Proposed score and certainty function

We introduce a new score function, accuracy function and certainty func-
tion to compare neutrosophic fuzzy numbers. According to the definition of
score function as defined in [20], the larger the TA is, the greater the neu-
trosophic number is; the smaller the IA is, the greater the neutrosophic num-
ber is and the same holds for FA also. Based on the definition we give a
new score function. Let A = (TA(x), IA(x), FA(x)) be a neutrosophic num-
ber. The score function of A is given by s(A) = TA(x)(1 + sin(TA(x)π

2
)) +

1
2(1+IA(x))

(cos(IA(x)π
2
)) + 1

1+FA(x)
(cos(FA(x)π

2
)). The accuracy function as defined

in [7] is a(A) = TA(x)− FA(x).

We define a new certainty function c(A) = |cosTA(x)π|+|cosIA(x)π|+|cosFA(x)π|
3

. In
[7] Liu et al. gave the formula of score, accuracy function for a SVNN, A, as
follows: Score function s1(A) = 2 + TA(x) − IA(x) − FA(x), accuracy function
a1(A) = TA(x)− FA(x). With these formulas in [20] Hong-yu Zhang, Jian-qiang
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Wang, and Xiao-hong Chen added certainty function as c1(A) = TA(x). The
score function in [7] gives same value when IA(x) and FA(x) of a neutrosophic
number is interchanged, i.e., different neutrosophic numbers can exist easily for
which the given score function gives same value. For example (0.2, 0.9, 0.1) and
(0.2, 0.1, 0.9) have same score function according [7] and [20]. But the newly
introduced score function based on trigonometric function does not give same
value for these neutrosophic sets. From another point of view as discussed in [5]
the uncertainty is maximum (=1) at (0.5, 0.5, 0.5), i.e., the certainty should be
minimum (=0) at (0.5, 0.5, 0.5) and the value of certainty increases if we increase
or decrease any of truth, indeterminacy and falsity membership grade. But this
property is not satisfied by the certainty function given in [20], whereas the newly
proposed certainty function in sec 7 gives realistic result.

7.3 Comparison analysis using different examples

Table 1: Comparison analysis using different examples
Neutrosophic Method Score Accuracy Certainty Ranking
numbers value value V alue order
A = (0.4, 0.3, 0.2) Existing s1(A) = 1.9 A > B
B = (0.4, 0.5, 0.6) s1(B) = 1.3

Proposed s(A) = 1.77 A > B
s(B) = 1.23

A = (1, 0, 1) Existing s1(A) = 2 A > B
B = (1, 1, 0.473) s1(B) = 1.527

Proposed s(A) = 2.5 − A < B
s(B) = 2.5 a(B) = 0.527

A = (0.0867, 0.2867, 0.0867) Existing s1(A) = 1.7133 A > B
B = (0.3096, 0.5096, 0.0.3096) s1(B) = 1.4904

Proposed s(A) = 1.3599 − c(A) = 0.8491 A > B
s(B) = 1.3599 − c(B) = 0.38548

8 ALGORITHM FOR FINDING OPTIMUM

ALTERNATIVE IN A MULTI-CRITERIA DE-

CISION MAKING PROBLEM

Let Ai, (i = 1, 2, . . . ,m) be m alternatives and Cj, (j = 1, 2, . . . , n) are n
criteria. Assume that the weight of the criteria Cj(j = 1, 2, . . . , n), given by the
decision-maker, is wj, wj ∈ [0, 1] and

∑n
j=1wj = 1. The m options according to

the n criterion are given below:
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C1 C2 C3 . . . Cn
A1 C1

1 C1
2 C1

3 . . . C1
n

A2 C2
1 C2

2 C2
3 . . . C2

n

A3 C3
1 C3

2 C3
3 . . . C3

n
...

...
...

...
...

...
Am Cm

1 Cm
2 Cm

3 . . . Cm
n

where each Ci
j, (i = 1, 2, . . . ,m) and (j = 1, 2, . . . , n) are in neutrosophic form

and Ci
j =

{
T iCj

, I iCj
, F i

Cj

}
We propose a method to derive optimum alternative

among the given alternatives through the algorithm given below:
Step 1: use the ISVWAG operator given in (6) to combine n criteria for

each alternative.
Step 2: calculate the score, accuracy and certainty function to compare the

neutrosophic number as defined in section 7.
Step 3: Rank the alternatives.

9 NUMERICAL EXAMPLE

In a certain network, there are four options to go from one node to the other.
Which path to be followed will be impacted by two benefit criteria C1, C2 and one
cost criteria C3 and the weight vectors are 0.35, 0.25 and 0.40 respectively. A de-
cision maker evaluates the four options according to the three criteria mentioned
above. We compare the proposed method with the existing methods in table 3
using the newly introduced approach to obtain the most desirable alternative
from the decision matrix given in table 2.

Table 2: Decision matrix (information given by DM)
c1 c2 c3

A1 (0.4,0.2,0.3) (0.4,0.2,0.3) (0.2,0.2,0.5)
A2 (0.6,0.1,0.2) (0.6,0.1,0.2) (0.5,0.2,0.2)
A3 (0.3,0.2,0.3) (0.5,0.2,0.3) (0.5,0.3,0.2)
A4 (0.7,0,0.1) (0.6,0.1,0.2) (0.4,0.3,0.2)

9.1 Comparison of aggregation operators using cosine sim-
ilarity measure

To measure the similarity between two neutrosophic numbers we consider the
cosine similarity measure as discussed by Jun Ye in [9] as follows:
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Table 3: Result Comparison: the proposed method with the existing methods
Aggregation Aggregated Score using Score Ranking order
Operator Result existing using proposed in both

method formula approach

SVWA(C
(1)
1 , C

(1)
2 , C

(1)
3 ) s1(A1) = 1.76 s(A1) = 1.46

= (0.287, 0.187, 0.337)

Single valued SVWA(C
(2)
1 , C

(2)
2 , C

(2)
3 ) s1(A2) = 2.14 s(A2) = 2.007 A4 > A2

weighted = (0.462, 0.134, 0.187) > A3 > A1

average SVWA(C
(3)
1 , C

(3)
2 , C

(3)
3 ) s1(A3) = 1.912 s(A3) = 1.716

= (0.373, 0.222, 0.238)

SVWA(C
(4)
1 , C

(4)
2 , C

(4)
3 ) s1(A4) = 2.16 s(A4) = 2.03

= (0.460, 0.142, 0.156)

SVWG(C
(1)
1 , C

(1)
2 , C

(1)
3 ) s1(A1) = 1.735 s(A1) = 1.450532

= (0.303143, 0.2, 0.368011)

Single valued SVWG(C
(2)
1 , C

(2)
2 , C

(2)
3 ) s1(A2) = 2.22 s(A2) = 2.211256 A4 > A2

weighted = (0.5578, 0.131951, 0.2) > A3 > A1

geometric SVWG(C
(3)
1 , C

(3)
2 , C

(3)
3 ) s1(A3) = 1.92 s(A3) = 1.7845

= (0.418141, 0.235216, 0.255085)

SVWG(C
(4)
1 , C

(4)
2 , C

(4)
3 ) s1(A4) = 2.38 s(A4) = 2.2798

= (0.538451, 0, 0.156917)

ISVWAG(C
(1)
1 , C

(1)
2 , C

(1)
3 ) s(A1) = 1.77 s(A1) = 1.44

Improved = (0.254226, 0.172108, 0.303)

single valued ISVWAG(C
(2)
1 , C

(2)
2 , C

(2)
3 ) s1(A2) = 2.14 s(A2) = 1.96 A4 > A2

weighted = (0.432056, 0.118963, 0.17) > A3 > A1

average ISVWAG(C
(3)
1 , C

(3)
2 , C

(3)
3 ) s1(A3) = 1.92 s(A3) = 1.68

geometric = (0.338061, 0.201253, 0.21)

ISVWAG(C
(4)
1 , C

(4)
2 , C

(4)
3 ) s1(A4) = 2.28 s(A4) = 2.03

= (0.421219, 0, 0.13)

Let X be the universe and A = {〈xi, TA(xi), IA(xi), FA(xi)〉 /xi ∈ X} and B =
{〈xi, TB(xi), IB(xi), FB(xi)〉 /xi ∈ X} are two SVNSs, then cosine similarity mea-
sure between A and B is
C(A,B) = 1

n

∑n
i=1

TA(xi)TB(xi)+IA(xi)IB(xi)+FA(xi)FB(xi)√
(TA(xi))2+IA(xi))2+FA(xi))2

√
(TB(xi))2+IB(xi))2+FB(xi))2

Using the similarity measure formula comparison of aggregation operators are
given in table 4:

9.2 Result discussion

The results given in table 4 show that all the aggregated results are more or less
close to the corresponding maximum weighted neutrosophic number as similarity
measure values are nearer to 1. Also it is observed that the proposed method gives
almost same similarity measure value as the other existing methods as discussed
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Table 4: Comparison of aggregation operators using similarity measure
Alternative Aggregation Aggregated Corresponding maximum Similarity

operator result weighted number measure value

SVWA (0.287, 0.187, 0.337) 0.978
A1 SVWG (0.303143, 0.2, 0.368011) (0.4, 0.2, 0.3) 0.975

ISVWAG (0.254226, 0.172108, 0.303) 0.977

SVWA (0.46, 0.13, 0.18) 0.993
A2 SVWG (0.55, 0.13, 0.2) (0.6, 0.1, 0.2) 0.997

ISVWAG (0.43, 0.11, 0.17) 0.995

SVWA (0.373, 0.222, 0.238) 0.9806
A3 SVWG (0.418, 0.23, 0.25) (0.3, 0.2, 0.3) 0.974

ISVWAG (0.33, 0.2, 0.21) 0.9803

SVWA (0.46, 0.14, 0.15) 0.946
A2 SVWG (0.54, 0, 0.16) (0.7, 0, 0.1) 0.989

ISVWAG (0.42, 0, 0.13) 0.987

in table 4. In other words, the newly introduced operator gives moderate and
meaningful value similar to existing methods and close to the maximum weighted
neutrosophic number.

10 CONCLUSION

At first we introduced a new aggregation operator (IWAGM) to combine n
real numbers. We proved that the result using this operator always lies between
WAM and WGM operator and the result will be meaningful in all the cases.
Then we extended the operator in neutrosophic environment and it has also
been shown that the extended operator (ISVWAG) gives meaningful result in
neutrosophy. Next we introduced a trigonometric function based score function.
Further we proposed a certainty function as well which gives realistic results
comparison to the existing ones. A numerical problem has been solved using the
proposed operator and the newly defined score function.
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Logistics Center Location Selection Approach Based on 

Neutrosophic Multi-Criteria Decision Making 

Abstract 
 As an important and interesting topic in supply chain management, the concept of fuzzy set 

theory has been widely used in logistics center location in order to improve the reliability and 
suitability of the logistics center location with respect to the impacts of both qualitative and 
quantitative factor. However fuzzy set cannot deal with the indeterminacy involving with the 
problem. So the concept of single – valued neutrosophic set due to Wang et al. (2010) is very 
helpful to deal with the problem. A neutrosophic approach is a more general and suitable approach 
in order to deal with neutrosophic information than fuzzy set. Logistics center location selection 
is a multi-criteria decision making process involving subjectivity, impresion and fuzziness that can 
be easily represented by single-valued neutrosophic sets. In this paper, we use the score and 
accuracy function and hybrid score accuracy function of single- valued neutrosophic number and 
ranking method for single- valued neutrosophic numbers to model logistics center location 
problem. Finally, a numerical example has been presented to illustrate the proposed approach.  

Keywords 
Logistic center, multi-criteria group decision making, hybrid score-accuracy function, single 

valued neutrosophic set, single valued neutrosophic number. 
 

1. Introduction  
Logistics systems have become essential for economic development and the normal function of 

the society, and suitable site selection for the logistics center has direct impact on the efficiency of 
logistics systems. So it is necessary to adopt a scientific approach for site selection. The logistic 
center location selection problem can be considered as multi-criteria decision making (MCDM) 
problem.  Classical MCDM [1, 2, 3] problems deal with crisp numbers that is the ratings and the 
weights of the criteria are represented by crisp numbers. However, it is not always possible to 
present the information by crisp numbers. In order to deal this situation fuzzy set (FS) introduced 
by Zadeh [4] in 1965 can be used.  It is very useful for many real life problems involving 
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uncertainty. In 1986, Atanassov [5] grounded the notion of intuitionistic fuzzy set (IFS) by 
introducing non-membership function as independent component. However, it cannot handle 
indeterminacy part of the real life problems that exist in many real applications. Then in 1998, 
Smarandache proposed the neutrosophic set (NS) theory [6,7, 8, 9] which is the generalization of 
FS and IFS.  

 From scientific or engineering point of view, the neutrosophic set and set- theoretic view, 
operators need to be specified. Otherwise, it will be difficult to apply in the real applications. 
Therefore, Wang et al. [10] defined a single valued neutrosophic set (SVNS) and then provided 
the set theoretic operations and various properties of SVNS. The works on SVNS and their hybrid 
structure in theories and application have been progressing rapidly. Hence it is most important to 
conduct researches on MCDM approach based on SVNS environment. Biswas et al. [11] presented 
entropy based grey relational analysis method for multi-attribute decision making under SVNS. 
Ye [12] proposed the co-relation co-efficient of SVNSs for single-valued neutrosophic MCDM 
problem. While selecting the location for the logistics center not only quantitative factors likes 
costs, distances but also qualitative factors. Such as environmental impacts and governmental 
regulations should be taken into consideration. Tuzkaya et al. [13] presented an analytic network 
process approach to deal locating undesirable facilities.  Badri [14] studied  a method combinjing 
analytical hierarchy process (AHP) and goal programming model approach for international 
facility location problem. Chang and Chung [15] proposed a multi-criteria genetic optimization 
for distibution network problems. Liang and Wang [16] proposed a fuzzy multicriteria decision  
making method for facility site selection. Chu [17] proposed facility location selection using fuzzy 
TOPSIS under group decision.  Recently, Pramanik and Dalapati [18] presented generalized 
neutrosophic soft multi criteria decision making based on grey relational analysis by introducing 
generalized neutrosophic soft weighted average operator.  In this paper we present logistic center 
location model using score and accuracy function and hybrid score accuracy function of single- 
valued neutrosophic number due to Ye [19]. Finally, a numerical example has been provided to 
illustrate the proposed approach.  

Rest of the paper has been organized in the following way. Section 2 presents preliminaries of 
neutrosophic sets and section 3 presents criteria for logistic center location selection. Section 4 is 
devoted to present modeling of logistic center location seclection problem. Section 5 presents a 
numerical example of the logistic center location selection problem. In Section 6 we presents 
conclusion.  

2. Mathematical preliminaries  
In this section, we will recall some basic definitions and concepts that are useful to develop the 

paper. 
Definition 1: Neutrosophic sets [6, 7, 8, 9] 
Let P be a universe of discourse with a generic element in P denoted by p. A neutrosophic set 

Z in P is characterized by a truth-membership function t Z (p), an indeterminacy-membership 
function i Z (p) and a falsity-membership function f Z (p) and defined by  
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Z = { p, t Z (p), i Z (p), f Z (p): pP}.The function t Z (p) , i Z (p) and f Z (p) are real standard 
or nonstandard subsets of ]  0, 1  [  i.e., t Z (p) : P →]  0, 1+ [, 

i Z (u): P →]  0, 1+ [, and f Z (u) : P →]  0, 1+ [ Hence, there is no restriction on the sum of t Z

(p), i Z (p) and f Z (p) and  0 ≤ t Z (p) + i Z (p) + f Z (p) ≤ 3+. 
Definition 2: Single valued neutrosophic sets [10]. 
Let P be a universe of discourse with a generic element in P denoted by   p. A single valued 

neutrosophic set M in P is characterized by a truth-membership function t M (p), an 
indeterminacy-membership function i M (p) and a falsity-membership function f M (p). It can be 
expressed as   M = {< p, (t M (p), i M (p), f M (p)) >: p ∈ P, t M (p), i M (p), f M (p) ∈ [0, 1]}. It should 
be noted that there is no restriction on the sum of t M (p), i M (p) and f M (p). Therefore, 0 ≤ t M (p)+ 
i M (p) + f M (p)≤ 3. 

Definition 3: Single valued neutrosophic number (SVNN) [19] 
Let P be a universe of discourse with generic element in P denoted by p. A SVNS M in P is 

characterized by a truth-membership function t M (p), a indeterminacy-membership function i M (p) 
and a falsity-membership function f M (p). Then, a SVNS M can be written as follows: M = {p, t

M (p), i M (p), f M (p): p P}, where t M (p), i M (p), f M (p)  [0, 1] for each point p in P.  Since no 
restriction is imposed in the sum of t M (p), i M (p) and f M (p), it satisfies 0 ≤ t M (p) + i M (p) + f M

(p) ≤3. For a SVNS M in P the triple  t M (p), i M (p), f M (p)  is called single valued neutrosophic 
number (SVNN).  

Definition 4: Complement of a SVNS [10] 
The complement of a single valued neutrosophic set M is denoted by Mand defined as 
M= {<p: tM(p), iM(p), fM(p)>, p P },  
where tM(p)= f M (p), iM(p) = {1} - i M (p),fM(p) = t M (p). 
For two SVNSs M1 and M2 in P, M1 is contained in the M2, i.e. M1  M2, if and only if t M1 (p) 

≤ t M2 (p), i M1 (p) ≥ i M2 (p), f M1 (p) ≥ f M2 (p) for any p in P. 
Two SVNSs M1 and M2 are equal, written as M1 = M2, if and only if M1   M2 and M2   M1. 

2.1. Conversion between linguistic variables and single valued neutrosophic numbers 
A linguistic variable simply presents a variable whose values are represented by words or 

sentences in natural or artificial languages. Importance of the decision makers may be differential 
in the decision making process. Ratings of criteria can be exressed by using linguistic variables 
such as very poor (VP), poor (P), good (G), very good (VG), excellent (EX), etc. Linguistic 
variables can be transformed into single valued neutrosophic numbers as given in the Table- 1. 

2.2 Ranking methods for SVNNs 
 Now we recall the definition of the score function, accuracy function, and hybrid score-

accuracy function of a SVNN, and the ranking method for SVNNs. 
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Definition 5: Score function and accuracy function [19] 
The score function and accuracy function of the SVNN b= t(b), i(b), f(b)) can be expressed as 

follows: 
S(b) = (1+t(b) – f(b))/2 for s(b)  [0, 1]                                                          (1) 
ac(b) = (2 + t(b) – f(b) – i(b))/3 for h(b)  [0, 1]                                             (2) 
For the score function of a SVNN b, the truth membership t(b) is bigger and the falsity-

membership f(b) are smaller, than the score value of the SVNN a is greater. For the accuracy 
function of a SVNN b if the sum of t(b), 1-i(b) and 1-f(b) is bigger, then the statement is more 
affirmative, i.e., the accuracy of the SVNN b is higher. Based on score and accuracy functions for 
SVNNs, two theorems are stated below. 

Theorem 1. 
For any two SVNNs b1 and b2, if b1 > b2, then s(b1) > s(b2). 
Proof: See [19]. 
Theorem 2. 
For any two SVNNs b1 and b2, if s(b1) = s(b2) and b1 ≥b2, then ac(b1) ≥ ac(b2). 
Prof: See [19] 
Based on theorems 1 and 2, a ranking method between SVNNs can be given by the following 

definition. 
Definition 6: [19] 
Let b1 and b2 be two SVNNs. Then, the ranking method can be defined as follows: 
1.  If s(b1) > s(b2), then b1 > b2;  
2.  If s(b1) = s(b2) and ac(b1) ≥ ac(b2), then b1 ≥b2; 

3.  Criteria for logistics center location selection 
We choose the most appropriate location on the basis of six criteria adapted from the study [20], 

namely, cost (K1), distance to suppliers (K2), dsistance to customers (K3), conformance to 
governmental regulations and laws (K4), quality of service (K5) and environmental impact (K6). 

4.  MCGDM method based on hybrid – score accuracy functions under single-
valued neutrosophic environment 

Assume that B = {B1, …, B n }(n  2) be the set of logistics centers, K = {K1, K2, ..., K  }(  

2) be the set of criteria and E = {E1, E2, ..., Em} (m  2) be the set of decision makers or experts. 
The weights of the decision makers and criteria are not previously assigned, where the information 
about the weights of the decision- makers is completely unknown and information about the 
weights of the criteria is incompletely known in the group decision making problem. In such a 
case, we develop a method based on the hybrid score – accuracy function for MCDM problem 
with unknown weights under single-valued neutrosophic environment using linguistic variables. 
The steps for solving MCGDM by proposed approach have been presented below.  
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Step – 1 
 Formation of the decision matrix  
In the group decision process, if m decision makers or experts are required in the evaluation 

process, then the s-th (s = 1, 2,…, m) decision maker can provide the evaluation information of 
the alternative B i  (i = 1, ..., n) on the criterion K j  (j = 1, ...,  ) in linguistic variables that can be 
expressed by the SVNN ( see Table 1). A MCGDM problem can be expressed by the following 
decision matrix: 

 

M s = (b s
ij ) n  = 

































s
n

s
2n

s
n1n

s
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s
22

s
212

s
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s
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                                                                       (3) 

B s
ij = { K j , t s

Bi
(K j ), i s

Bi
 (K j ), f s

Bi
 (K j ) ∕ K j   K} 

Here 0 ≤ t s
Bi

(K j ) + i s
Bi

(K j ) + f s
Bi

(K j ) ≤ 3 

t s
Bi

 (K j )  [0, 1], i s
Bi

 (K j )  [0, 1], f s
Bi

 (K j )  [0, 1] 

For s = 1, 2, ..., m, j =1, 2, …  , i = 1, 2, …n, 
For convenience b s

ij  = t s
ij  , i s

ij  , f s
ij ) is denoted as a SVNN in the SVNS B s

ij  (s =1, 2, ..., m, i = 

1, ..., n, j = 1, ...,  ) 
 
Step – 2 
Calculate hybrid score – accuracy matrix 
The hybrid score – accuracy matrix H s  = (h s

ij ) n  (s = 1, 2……, m; i = 1, 2, ..., n; j = 1, 2,  …, 

 ) can be obtained from the decision matrix M s = (b s
ij ) n . The hybrid score-accuracy matrix H s  

expressed as 

H s  = (h s
ij ) n  = 
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h s
ij  = 

2
1
  (1+ t s

ij  - f s
ij ) + 

3
1  (1- ) (2 + t s

ij  – i s
ij - f s

ij )                                                 (5) 

Where   [0, 1]. When  = 1 the equation (3) reduces to equation (1) and when  = 0, the 
equation reduces to equation (2).  
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Step – 3 
Calculate the average matrix  
Form the obtained hybrid-score–accuracy matrix, the average matrix 
H*= (h *

ij ) n   (s =1, 2, ..., m; i = 1, 2, ..., n; j = 1, 2, ...,  ) is  

expressed by H* = (h *
ij ) n  = 
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K
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h
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2n1n

222212

112111

21

                                                   (6) 

Here    h *
ij = m

1 ∑ m
s 1 (h s

ij )                                                                                             (7) 

                                                                                            
Ye [19] defined the collective correlation co-efficient between H s  (s = 1, 2, ..., m) and H* as 

follows. 
 

s = 

n

i 1












1
2*

1
2

*
1

)()( j ijj
s
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ijj
s
ij

hh

hh                                                                                                                      (8)      

 

Step – 4 
Determination decision maker’s weights 
 In decision making situation, the decision makers may exhibit personal biases and offer unduly 

high or low preference values with respect to their preferred or repugnant objects. In order to deal 
such cases, very low weights to these false or biased opinions can be assigned. Since the “mean 
value” reflects the distributing center of all elements of the set, the average matrix H* represents 
the maximum compromise among all individual decisions of the group. In this sense, a hybrid 
score accuracy matrix Hs is closer to the average one H*. Then the preference value of the s-th 
decision maker is closer to the average value and his/her evaluation is more reasonable and more 
important. Therefore, the weight of the s-th decision maker is bigger.  Ye [19] defined weight 
model for decision maker as follows:  

 

    s  = 
 



 s
m

1s

s ,  0≤ s  ≤ 1, ∑ m
s 1 s = 1 for s = 1, 2, . . ., m.                                             (9)       

 
Step – 5 
Calculate collective hybrid score – accuracy matrix 
For the weight vector  = (  1,  2, . . .,  m)T of decision makers obtained from equation (6), 
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Ye [19] accumulates all individual hybrid score – accuracy matrix Hs = (h s
ij ) n   (s = 1, 2,..., m; 

i = 1, 2, ..., n; j = 1, 2, ...,  ) into a collective hybrid score accuracy matrix  

H=(h ij ) n  = 
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                                                                             (10) 

Here  h ij  = Σ m
s 1  s h s

ij                                                                                                 (11) 
 
Step – 6 
Weight model for criteria 
To deal decision making problem, the weights of the criteria can be given in advance in the 

form of partially known subset corresponding to the weight information of the criteria.  
To determine weights of the critria Ye [19]  introduced the following optimization model :  

Max 𝜔 =
n
1

 Σ n
i 1  Σ 

1j  𝜔 j  h ij                                                                                         (12)  

Subject to 

 Σ 
1j  𝜔 j  = 1 

 𝜔 j  > 0                                                                                                       
Solving the linear programming problem (12), the weight vector of the criteria  
 𝜔 = (𝜔 1, 𝜔 2, ..., 𝜔 n )T can be easily determined. 

 
Step 7 

Ranking of alternatives 
In order to rank alternatives, all values can be summed in each row of the collective hybrid 

score-accuracy matrix corresponding to the criteria weights by the overall weight hybrid score-
accuracy value of each alternative Bi (i = 1, 2, . . . , n): 

   )( iB  = Σ 
1j  𝜔 j

 h ij                                                                                                (13) 

Based on the values of )B( i  (i = 1, 2, ...., n), we can rank alternatives Bi (i = 1, 2, ..., n) in 
descending order and choose the best alternative. 

 
Step – 8  
End   
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5. Example of the Logistics Center Location Selection Problem 
Assume that a new modern logistic center is required in a town. There are four location B1 , B2 , 

B3 , B4. A committee of four decision makers or experts namely, E1 , E2 , E3 , E4 has been formed 
to select the most appropriate location on the basis of six criteria adopted from the study [20], 
namely, cost (K1), distance to suppliers (K2), distance to customers (K3), conformance to 
government regulation and laws (K4), quality of service (K5) and environmental impact (K6). Thus 
the four decision makers use linguistic variables (see Table 1) to rate the alternatives with respect 
to the criterion and construct the decision matrices ( see Table 2-5) as follows:  

 
 

Table 1: Conversion between linguistic variable and SVNNs 
 
                                              Linguistic term                     SVNNs 

1 
 
2 
 
3 
 
4 
 
5 

  Very Poor(VP) 
 
   Poor (P) 
 
   Good (G) 
 
   Very Good (VG) 
 
    Excellent (EX) 

      (.05,.95,.95) 
 
      (.25,.75,.75) 
 
      (.50,.50,.50) 
 
      (.75,.25,.25) 
 
       (.95,.05,.05) 

 
 
 
 

Table 2: Decision matrix for E1  in the form of linguistic term. 
 

Bi K1 K2 K3 K4 K5 K6 

B1 VG EX VG G G P 

B2 VG G G EX VG VG 

B3 G EX EX G  VG G 

B4 EX VG G EX VG VG 
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Table  3: Decision matrix for E2  in the form of linguistic term. 
 

Bi K1 K2 K3 K4 K5 K6 

B1 VG VG VG G VG P 

B2 EX VG VG VG P P 

B3 P EX EX VG G G 

B4 G G EX VG EX EX 

 
Table  4:  Decision matrix for E3  in the form of linguistic term. 

Bi K1 K2 K3 K4 K5 K6 

B1 VG VG EX VG VG G 

B2 EX G EX VG EX VG 

B3 P EX EX VG G VG 

B4 G G VG EX EX EX 

 
 

Table  5: Decision matrix for E4  in the form of linguistic term. 
Bi K1 K2 K3 K4 K5 K6 

B1 EX VP P VG VG VG 

B2 G G EX VG G EX 

B3 P EX VG G VG VG 

B4 VG VG G G VG G 

 
 
Step-1 
Formation of the decision matrix   
  Decision matrix for E1 in the form of  SVNN 
M1 = 























 .25)  .25,  (.75,   .25)  .25,  (.75,  .05)  .05,  (.95,  .50)  .50,  (.50,  .25)  .25,  (.75,  .05)  .05,  (.95,   B4
.50)  .50,  (.50,   .25)  .25,  (.75,  .50)  .50,  (.50,  .05)  .05,  (.95,  .05)  .05,  (.95,  .50)  .50,  (.50,   B3
.25)  .25,  (.75,   .25)  .25,  (.75,  .05)  05, . (.95,  .50)  .50,  (.50,  .50)  .50,  (.50,  .25)  .25,  (.75,   B2

.75) .75, (.25,   .50)  .50,  (.50,  .50)  .50,  (.50,  .25)  .25,  (.75,  .05)  .05,  (.95,  .25)  .25,  (.75,   B1
K6                  K5                   4K                 K3                          K2                  K1                
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 Decision matrix for E2 in the form of  SVNN 
M2 = 























.05) .05, (.95,     .05) .05, (.95, .25) .25, (.75, .05) .05, (.95, .50) .50, (.50,  .50) .50, (.50,   B4

.50) .50, (.50,   .50) .50, (.50,   .25) .25, (.75,  .05) .05, (.95, .25) .05, (.95, .75) .75, (.25,   B3
.75 .75, (.25,    .75) .75, (.25,  .25) .25, (.75, .25) .25, (.75,  .25) .25, (.75,  .05) .05, (.95,   B2
.75) .75, (.25,  .25) .25, (.75,  .50) .50, (.50,  .25) .25, (.75,   .25) .25, (.75,  .25) .25, (.75,   B1

K6                  K5                     K4                K3                    K2                 K1                

 

   Decision matrix for E3 in the form of  SVNN 
M3 = 























.05) .05, (.95,  .05) .05, (.95,  .05) .05, (.95,  .25) .25, (.75,  .50) .50, (.50,  .50) .50, (.50,    B4

.25) .25, (.75,  .50) .50, (.50,  .25) .25, (.75,  .05) .05, (.95,  .05) .05, (.95,  .75) .75, (.25,    B3

.25) .25, (.75,  .05) .05, (.95,  .25) .25, (.75,  .05) .05, (.95,  .50) .50, (.50,  .05) .05, (.95,    B2
.50) .50, (.50,  .25) .25, (.75,  .25) .25, (.75,  .05) .05, (.95,  .25) .25, (.75,  .25) .25, (.75,    B1

K6               K5                  K4                   K3                  K2                  K1                

 

 Decision matrix for E4  in the form of  SVNN 
M4 = 



























  .50) .50, (.50,  .25) .25, (.75,  .50) .50, (.50,  .50) .50, (.50,  .25) .25, (.75,  .25) .25, (.75,    B4
.25) .25, (.75,  .25) .25, (.75,  .50) .50, (.50,  .25) .25, (.75,  .05) .05, (.95,  .75) .75, (.25,    B3
.05) .05, (.95,  .50) .50, (.50,  .25) .25, (.75,  .05) .05, (.95,  .50) .50, (.50,  .50) .50, (.50,    B2
.25) .25, (.75,  .25) .25, (.75,  .25) .25, (.75,  .75) .75, (.25,  .95) .95, (.05, .05) .05, (.95,     B1

K6                 K5                 K4                  3K                    K2                  K1            

 

Now we use the above method for single valued neutrophic group decision making to choice 
appropriate location. We take   = 0.5 for demonstrating the computing procedure 

 
Step 2 
Calculate hybrid score – accuracy matrix 
Hybrid score- accuracy matrix can be obtained from above decision matrix using equation (5) 

are given below respectively.  
 
 Hybrid score-accuracy matrix for M1 

H1 = 























.75  .75  .95  .50  .75  .95    B4
 .50  .75   .50 .95  .95  .50    B3

.75  .75  .95  .50  .50  .75    B2
.25  .50  .50  .75  .95  .75    B1

  K6  K5  K4  K3   K2   K1        
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 Hybrid score-accuracy matrix for M2 

H2 = 























.95  .95  .75  .95  .50  .50   B4

.50  .50  .75  .95  .95  .25   B3

.25  .25  .75  .75  .75  .95   B2

.25  .75  .50  .75  .75  .75   B1
K6  K5  K4  K3  K2   K1       

 

 Hybrid score-accuracy matrix for M3 

H3 = 























.95  .95  .95  .75  .50  .50   B4

.75  .50  .75  .95  .95  .25   B3

.75  .95  .75  .95  .50  .95   B2
.50  .75  .75  .95  .75  .75   B1
K6  K5  K4  K3  K2  K1        

 

Hybrid score-accuracy matrix for M4 

H4 = 























.50  .75  .50  .50  .75  .75   B4

.75  .75  .50  .75  .95  .25   B3
.95  .50  .75  .95  .50  .50   B2
.75  .75  .75  .25  .05  .95   B1

 K6  K5  K4  K3  K2   K1       

 

Step – 3 
Calculate the average matrix  
Form the above hybrid score-accuracy matrix by using euation(7). We form the average matrix 

H* 

 The average matrix 

H*=    























.7875    .8500    .7875  .6750  .6250  .6750  B4
  0.6250  .6250    .6250  .9000  .9500  .3125  B3

0.6750  0.6125  .8000  .7875  .5625  .7875  B2
0.4375  0.6875  0.625  0.675  0.625  .8000  B1

K6       K5       K4      K3      K2      K1         

 

The collective correlation co-efficent between Hs and H* express follows by equation (8) :- 

s =  

4

1i 26
1

*6
1

2

*6
1

)()( 







j ijj
s
ij

ijj
s
ij

hh

hh    

 1 = 3.907  
2  = 3.964 
3  = 4.124 
4  = 3.800 
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Step – 4 
Determination decision maker’s weights 
From the equation (9) we determine the weight of the four decision makers as follows :- 

1  + 2
 + 3  + 4    = 15.79509754 

 1 = 4321

1





 

        = 79509754.15
90705306.3

      = .247 
 
 2  = .251  
 3 = .261 
  4  = .240 
Step – 5 
Calculate collective hybrid score – accuracy matrix 
Hence the hybrid score-accuracy values of the different decision makers choice are aggregated 

by eq.  (11) and the collective hybrid score-accuracy matrix can be formulated as follows: 
H =  

 

 

 
         
 
 

Step – 6 
Weight model for criteria  
Assume that the information about criteria weights is incompletely known given as follows: 

weight vectors, 
0.1≤ 𝜔 1 ≤  0.2,                      0.1 ≤   𝜔 2 ≤  0.2,   
0.1 ≤   𝜔 3 ≤  0.25,                  0.1 ≤   𝜔 4 ≤   0.2, 
0.1 ≤   𝜔 5 ≤   0.2,                   0.1 ≤   𝜔 6 ≤  0.2 
Using the linear programming model (12), we obtain the weight vector of the criteria as 

𝜔 =[0.1, 0.1, 0.25, 0.2, 0.15, 0.2]T. 
Step 7 

Ranking of alternatives 
 Using  euation (13) we calculate the over all hybrid score-accuracy values  

)B( i  (i = 1, 2, 3, 4): 
)B( 1 = .06288 
)B( 2 = .7193 























.792  .852  .792  .678  .622  .671   B4   

.625  .622  .628  .902  .950  .312   B3   
.673  .616  .799  .788  .563  .792   B2  

.436  .688  .625  .682  .631  .798  B1  
K6    K5    K4   K3    K2    K1          
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)B( 3 = .6956 
)B( 4 = .7434 

Based on the above values of )B( i  (i = 1, 2, 3, 4) the ranking order of the locations are as 
follows: 

B4 > B2 > B3 > B1 
Therefore the location B4 is the best location.   
Step – 8  
End   
 

6. Conclusion 
In this paper we have presented  modeling of logistics center location problem using the score 

and accuracy function, hybrid-score-accuracy function of SVNNs and linguistic variables under 
single-valued neutrosophic environment, where weight of the decision makers are completely 
unknown and the weight of criteria are incompletely known.  
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Neutrosophic Applications in E-learning: Outcomes, Challenges 

and Trends 

Abstract 
There has been a sudden increase in the usage of elearning to support learner's learning process 

in higher education. Educational institutions are working in an increasingly competitive 
environment as many studies in elearning are implemented under complete information, while in 
the real world many uncertainty aspects do exist. This has resulted in emerging various approaches 
to handle uncertainty. Neutrosophic logic has been used to overcome the uncertainty of concepts 
that are associated with human expert judgments. This paper presents current trends to enhance 
elearning process by using neutrosophic to extract useful knowledge for selecting, evaluating, 
personalizing, and adapting elearning process.  

Keywords 
E-learning, neutrosophic logic, neutrosophic logic based systems. 
 

1. Introduction 
The word uncertainty is dealing with vague data, incomplete information, and imprecise 

knowledge regardless of what is the reason [1]. One of the significant problems of artificial 
intelligence is modeling uncertainty for solving real life situations [2]. Previous researches 
presented various models that handle uncertainty by simulating the process of human thinking 
[3,4]. Managing uncertainties is a goal for decision makers including indefinite cases where it is 
not true or false [5]. This leads to emerging approaches such as fuzzy, intuitionistic fuzzy, vague 
and neutrosophic models to give better attribute interpretations. Fuzzy, intuitionistic fuzzy, and 
vague models are limited as they cannot represent contradiction which are a feature of human 
thinking [6].  

Smarandache [7] proposed neutrosophic logic as an extension of fuzzy logic of which variable 
x is described by triple values x= (t, i, f) where t is the degree of truth, f is the degree of false and 
i is the level of indeterminacy. Neutrosophic logic is capable to deal with contradictions which are 
true and false as the sum of components any number between 0 and 3+. An example of neutrosophic 
logic is as following; the argument "Tomorrow it will be sunny" does not mean a constant-valued 

mailto:radwannouran@yahoo.com
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components structure; this argument may be 60% true, 40% indeterminate and 35% false at a time; 
but at in a second time may change at 55% true, 40% indeterminate, and 45 % false according to 
new indications, provenances, etc. [8].  

The usage of elearning has been increased in the last recent years in which learners have started 
using smart devices to access eLearning content. Also many elearning applications have been 
emerged to support universities in spreading educational resources to the learners [9]. Previous 
studies [10] in e-learning are implemented under complete information, while the real environment 
has uncertainty aspects. That is why traditional evaluation methods may not be virtuous. This leads 
us to suggest neutrosophic logic to give better attribute interpretations to enhance elearning.  

Considering the above facts, this paper is organized as follows: Related work is described in 
Section 2. In Section 3, the need and outcome of using neutrosophic logic is discussed. Section 4 
gives the trends and challenges of applying Neutrosophic to elearning.  

2. Related Work 
Neutrosophy is originated from "neuter" and "Sophia".  Neuter means neutral in Latin and 

Sophia means wisdom in Greek. Neutrosophy means neutral thought knowledge [7]. Neutrosophic 
Logic was developed to represent mathematical model of uncertainty including vagueness, 
ambiguity, imprecision, and inconsistency. Expert systems, decision support system, belief system, 
and information fusion tend to depend not only on truth value, but also on false and indeterminacy 
values. So current systems which are dedicated to simulate human brain are constrained with strict 
conditions, whereas, Neutrosophic logic has its chance to simulate human thinking and to be 
utilized for real environment executions [8].  

Aggarwal et al. in 2010 [11] propose block diagram of neutrosophic inference system to 
illustrate designing of neutrosophic classifier which is more flexible to get more accurate results. 
Aggarwal et al. in 2011 [12] suggest the possibility of extending the capabilities of the fuzzy 
systems by applying neutrosophic systems and incorporating neutrosophic logic in medical domain. 
Vagueness, imprecision, ambiguity, and inconsistency, should be presented in medical systems as 
medical diagnosis depends on available data and expert recognition, and avoiding uncertainty leads 
to misplaced accurate interpretation. Neutrosophic Cognitive Maps (NCM) for investigating the 
effect of critical factors of breast cancer is presented in [13]. A neutrosophic lung segmentation 
method was developed by [14] to improve the expectation-maximization analysis and 
morphological operations for our computer-aided detection segmentation. This method facilitates 
image analysis tasks and computer aided applications for lung abnormalities and improve the 
accuracy of lung segmentation, mostly for the cases affected by lung diseases. 

Neutrosophic is used in many multiple criteria decision-making problems in real life such as 
personal choice in academia, project assessment, supplier selection, industry systems, and others 
areas of management systems [15] [16] [17] to support taking a correct decision from the available 
alternatives in uncertain environment. Researchers tend to use neutrosophic sets in various 
decision making applications as traditional crisp multiple criteria decision-making methods are not 
enough to handle uncertainty in real world cases because of the ambiguity of people thinking, it is 
more reasonable to simulate human thinking with handling contradictions which are true and false 
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at the same time [18]. In 2016, Ye [19] suggests computation of trust value by integrating a 
neutrosophic logic with the proposed fuzzy based trust model that considers all the factors 
affecting the trust in ecommerce. As traditional models of trust fall in representing the 
indeterminacy values involved while capturing the perception of human. As it is concluded that 
imprecision of systems could be due to the deficiency of knowledge that received from human in 
the real world.  

A proposed social Learning Management System (LMS) that integrates social activities in e-
learning, and utilize a new set theory called the neutrosophic set to analyze social networks data 
conducted through learning activities is presented in [20]. A new approach based on neutrosophy 
is presented to provide better interpretation of the assessment results of the e-learning systems that 
are described by uncertainty aspects [21].  

Another study [22] concerns the importance of social networks in e-learning systems. 
Recommender system has a significant role in e-learning as it supports e-learners in choosing 
among different learning objects and activities using different algorithms: C4.5, K-Means, support 
vector machine, and Apriori algorithms.  

Neutrosophic sets [23] is proposed in order to evaluate the quality of learning objects based on 
the multi-criteria approach. Neutrosophic way of thinking help experts to represent their opinion 
in degrees of truth, false, and indeterminacy.  

3. Outcomes of using Neutrosophic Logic 
Neutrosophic idea is based on indeterminacy set that can deal with vagueness, imprecision; 

ambiguity and inconsistent information existing in real world. An example of neutrosophic 
problems is as follows: a vote with three symbols which are A, B and D ballots is occurred, in 
which some votes are indistinct, and it can’t be determined if it is A, B or D. These indeterminate 
votes can be expressed with neutrosophic logic.  

Therefore, indeterminacy can be handled by neutrosophic logic while other approaches neglect 
this point [7]. 

Fuzzy sets represent the membership without expressing the corresponding degree of non-
membership so it provides an imperfect expression of uncertain information. The degree of non-
membership in fuzzy sets is the complement of membership for fuzzy sets, Therefore the non-
membership is not independent.   

Intuitionistic fuzzy sets, as well as vague sets, are suitable in simulating the impreciseness of 
human understanding in decision making by representing degree of membership and non-
membership, but it also cannot express indeterminacy degree which is the ignorance value between 
truth and false.  

Indeterminate can be handled by neutrosophic logic which has the truth, indeterminacy and 
false membership functions as shown in Table 1[6].  
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Table 1. Multivalued Logic Membership Function 

 
A better understanding of the need and the outcome of using neutrosophic logic is presented in 

this section. The uncertainties types include vagueness, imprecision, ambiguity, and inconsistency. 
Vagueness when available information is normally having a degrees of attribute; for example: 
"This man is nearly tall". Imprecision when information is not a definite value; for example: "The 
student performance for a task is between 80-85% ".   when available information has more than 
one meaning or refer to more than one subject; for example: "The flower color may be yellow or 
red". Inconsistency when obtainable information is conflicted or contradicted; for example:"the 
chance of raining tomorrow is 80%”, it does not mean that the chance of not raining is 20%, since 
there might be hidden weather factors that is not aware of.  

Fuzzy set describes vagueness, Intuitionistic fuzzy set is an extension of fuzzy sets which 
describes vagueness and imprecision by a range of membership values. Neutrosophic set describes 
vagueness, imprecision; ambiguity and inconsistent information that exists in real environment. 
Therefore, Neutrosophic logic handles indeterminacy of information while other approaches 
neglect this point.  
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Figure 3. Vague 

Set [24] 
 

 
Figure 2. 

Intuitionistic Fuzzy Set 
[24] 
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4. Challenges and Trends of Neutrosophic Applications in E-learning 
In the recent years, there has been increasing demand in incorporating of new technologies into 

educational processes. Effectiveness of elearning becomes a big challenge as elearning process is 
currently conducted in highly controlled way. Elearning challenges can be categorized according 
to their focus into: individual, course, technology and contextual as shown in Figure 5[9]. It is 
expected that neutrosophic logic utilized for enhancing eLearning environment as following: 

 
 

 
Figure 5. E-Learning Challenges 

 

4.1 Neutrosophic Cognitive Map for E-learning Success Factors 
According to the researchers’ insights in the matter, elearning offer advantages over the 

traditional learning methods. The study of critical success factors helps decision makers to extract 
from the learning process the core activities that are essential for success. The investigation of the 
success factors from different perspectives such as learner's, instructor's and organization is needed 
[25]. Previous researches presented fuzzy cognitive maps and intuitionistic fuzzy logic by 
considering the expert’s hesitancy in the determination of the relations between the concepts of a 
domain [26]. Further studies are needed to analyze and build a neutrosophic cognitive map for 
modelling critical success factors in elearning. Neutrosophic cognitive map extends the 
aggregation of the information from different resources under uncertain environment. 
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4.2 Neutrosophic Multi-Criteria Decision Making Methods for Elearning Software Selection 
There are hundreds of elearning software available in the marketplace. Selecting the most 

suitable elearning that meets specific requirements is a problem of decision making. Many studies 
in elearning selection are implemented under complete information, while in the real world many 
uncertainty aspects do exist. As these systems were described by decision makers with vague, 
imprecise, ambiguous and inconsistent terms, it is understandable that traditional multi criteria 
decision making methods may not be effective [27] [28]. Further studies deal with presenting a 
hybrid neutrosophic multi criteria decision making method to handle indeterminacy of information. 

4.3 Neutrosophic Expert System for Evaluating E-learning Applications 
Expert system aims to represent the problem of uncertainty in knowledge to draw conclusion 

with the same level of accuracy as would a human expert do. Different evaluation models for e-
learning quality attributes developed under the condition of the availability of complete 
information. Real environment is characterized by vagueness, imprecision, ambiguity, and 
inconsistency information, this problem leads researchers to use approaches that deals with 
uncertainty like fuzzy logic, intuitionistic fuzzy logic. This section suggests neutrosophic expert 
system for evaluation of elearning applications [6], [29].  

4.4 Neutrosophic Logic Based System for E-learning Personalization 
Generating the content according to learner's intellect is a current challenge in e-learning 

systems. Most of the e-learning systems evaluate the learner’s intellect level according to tests 
crisp responses that are taken during the learning process. However, many factors lead to 
uncertainty about the evaluation process. Further work will present a novel approach using 
neutrosophic logic to build an intelligent system that handles imprecision, vagueness, ambiguity, 
and inconsistence information about the learner’s assessment to personalize the learning material 
according to learner’s level is needed [30].  

4.5 Adaptive test sheet generation in e-learning 
Successful test sheet refers to the ability of questions to check the learner's cognitive skills in 

the most efficient manner. Designing and developing a test assignment for an adaptive e-learning 
system depends on organization of questions, concept, activity and learner level. Test adaptation 
can be done by utilizing one of learning styles models like Myers Brigs Type Indicator, Bloom’s 
Taxonomy, and David Kolb’s Model e-test classify in an e-learning environment. Adaptive test 
works toward providing electronic test sheet generation according to learner’s style in a 
customized surroundings. The incorporation of neutrosophic logic and learning style model 
provides a suitable way of assessment that has an important role in enhancing learner recognition, 
and performance.  Traditional test includes questions with different difficulty levels to get the 
overall view about the learner’s ability despite of adaptive test that designed to ensure that learner 
is above a special ability value as it includes questions with definite difficulty level [31]. 

5. Conclusion 
With the major changes in e-learning technology, there is a need to take into considerations the 

current trends and challenges of neutrosophic logic in elearning to add benefits to learners.  
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The chapter presents recent challenges and trends in neutrosophic applications. The 
neutrosophic logic has many achievements in different applications such as medical, decision 
making, ecommerce, and elearning. The outcome of neutrosophic logic is handling different 
uncertainty types vagueness, imprecision; ambiguity and inconsistent information exist in real 
world. Therefore, human thinking indeterminacy can be handled by neutrosophic logic while other 
approaches neglect this point. Furthermore, the study provides insights of neutrosophic 
applications challenges and trends in elearning. Future work will deal with talent elearning system 
to recommend training courses suitable for learner's talent in which neutrosophic is needed to 
identify learner’s needs and skills. The integration of talent management and elearning system, 
improve the learner’s task related skills.  
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Single Valued Neutrosophic Graphs 

Abstract 

 The notion of single valued neutrosophic sets is a generalization of fuzzy sets, intuitionistic 
fuzzy sets. We apply the concept of single valued neutrosophic sets, an instance of neutrosophic 
sets, to graphs. We introduce certain types of single valued neutrosophic graphs (SVNG) and 
investigate some of their properties with proofs and examples. 

Keywords 

Single valued neutrosophic set, single valued neutrosophic graph, strong single valued 
neutrosophic graph, constant single valued neutrosophic graph, complete single valued 
neutrosophic graph. 

 

1. Introduction 
Neutrosophic sets (NSs) proposed by Smarandache [12, 13] is a powerful mathematical tool for 

dealing with incomplete, indeterminate and inconsistent information in real world. they are a 
generalization of the theory of fuzzy sets [24], intuitionistic fuzzy sets [21, 23] and interval valued 
intuitionistic fuzzy sets [22]. The neutrosophic sets are characterized by a truth-membership 
function (t), an indeterminacy-membership function (i) and a falsity-membership function (f) 
independently, which are within the real standard or nonstandard unit interval ]−0, 1+[. In order to 
practice NS in real life applications conveniently, Wang et al. [16] introduced the concept of a 
single-valued neutrosophic sets (SVNS), a subclass of the neutrosophic sets. The SVNS is a 
generalization of intuitionistic fuzzy sets, in which three membership functions are independent 
and their value belong to the unit interval [0, 1]. Some more work on single valued neutrosophic 
sets and their extensions may be found on [2, 3, 4, 5,15, 17, 19, 20, 27, 28, 29, 30]. 

Graph theory has now become a major branch of applied mathematics and it is generally 
regarded as a branch of combinatorics. Graph is a widely used tool for solving a combinatorial 
problem in different areas such as geometry, algebra, number theory, topology, optimization, and 
computer science. Most important thing which is to be noted is that, when we have uncertainty 
regarding either the set of vertices or edges or both, the model becomes a fuzzy graph. 

mailto:1broumisaid78@gmail.com
mailto:assiabakali@yahoo.fr
mailto:fsmarandache@gmail.com
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 Lots of works on fuzzy graphs and intuitionistic fuzzy graphs [6, 7, 8, 25, 27] have been carried 
out and all of them have considered the vertex sets and edge sets as fuzzy and /or intuitionistic 
fuzzy sets. But, when the relations between nodes (or vertices) in problems are indeterminate, the 
fuzzy graphs and intuitionistic fuzzy graphs are failed. For this purpose, Samarandache [9, 10, 11, 
14, 34] have defined four main categories of neutrosophic graphs, two based on literal 
indeterminacy (I), which called them; I-edge neutrosophic graph and I-vertex neutrosophic graph, 
these concepts are studied deeply and has gained popularity among the researchers due to its 
applications via real world problems [1, 33, 35]. The two others graphs are based on (t, i, f) 
components and called them; The (t, i, f)-Edge neutrosophic graph and the (t, i, f)-vertex 
neutrosophic graph, these concepts are not developed at all. In the literature the study of single 
valued neutrosophic graphs (SVN-graph) is still blank, we shall focus on the study of single valued 
neutrosophic graphs in this paper.   

In this paper, some certain types of single valued neutrosophic graphs are developed and some 
interesting properties are explored. 

2. Preliminaries  

In this section, we mainly recall some notions related to neutrosophic sets, single valued 
neutrosophic sets, fuzzy graph and intuitionistic fuzzy graph relevant to the present work. See 
especially [6, 7, 12, 13, 16] for further details and background. 

Definition 2.1 [12]. Let X be a space of points (objects) with generic elements in X denoted by 
x; then the neutrosophic set A (NS A) is an object having the form A = {< x: TA(x), IA(x), FA(x)>, 
x ∈ X}, where the functions T, I, F: X→]−0,1+[  define respectively the a truth-membership 
function, an indeterminacy-membership function, and a falsity-membership function of the 
element x ∈ X to the set A with the condition: 

  −0 ≤ TA(x)+ IA(x)+ FA(x)≤ 3+.                                                                                      (1)             

The functions TA(x), IA(x) and FA(x) are real standard or nonstandard subsets of ]−0,1+[. 
 Since it is difficult to apply NSs to practical problems, Wang et al. [16] introduced the concept 

of a SVNS, which is an instance of a NS and can be used in real scientific and engineering 
applications. 

Definition 2.2 [16]. Let X be a space of points (objects) with generic elements in X denoted by 
x. A single valued neutrosophic set A (SVNS A) is characterized by truth-membership function 
TA(x), an indeterminacy-membership function IA(x), and a falsity-membership function FA(x). 
For each point x in X  TA(x), IA(x), FA(x) ∈ [0, 1]. A SVNS A can be written as  

 A = {< x: TA(x), IA(x), FA(x)>, x ∈ X}                                                                            (2) 
Definition 2.3[6]. A fuzzy graph is a pair of functions G = (σ, µ) where σ is a fuzzy subset of a 
non empty set V and  μ  is a symmetric fuzzy relation on σ. i.e σ: V → [ 0,1] and  

 μ: VxV→[0,1] such that    μ(uv) ≤ σ(u) ⋀ σ(v) for all u, v ∈ V where uv denotes the edge between 
u and v and σ(u) ⋀ σ(v) denotes the minimum of σ(u) and σ(v). σ is called the fuzzy vertex set of 
V and  μ is called the fuzzy edge set of E. 
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 Figure 1: Fuzzy Graph 

Definition 2.4 [6]. The fuzzy subgraph H = (τ, ρ) is called a fuzzy subgraph of G = (σ, µ) 

If τ(u) ≤ σ(u) for all u ∈ V and ρ (u, v) ≤  μ(u, v)  for all u, v ∈ V. 
Definition 2.5 [7]. An Intuitionistic fuzzy graph is of the form G = (V, E) where 

i. V={v1, v2,…., vn} such that 𝜇1: V→ [0,1] and 𝛾1: V → [0,1] denote the degree of
membership and nonmembership of the element vi ∈ V, respectively, and 0 ≤ 𝜇1(vi) +
𝛾1(vi)) ≤ 1   for every   vi ∈ V, (i = 1, 2, ……. n),

ii. E   ⊆  V x V where  𝜇2: VxV→[0,1] and  𝛾2: VxV→ [0,1] are such that

𝜇2(vi, vj) ≤ min [𝜇1(vi), 𝜇1(vj)] and 𝛾2(vi, vj) ≥ max [𝛾1(vi), 𝛾1(vj)]

and 0 ≤ 𝜇2(vi, vj) + 𝛾2(vi, vj) ≤ 1 for every (vi, vj) ∈ E, (i, j = 1,2, ……. n)

Figure 2: Intuitionistic Fuzzy Graph 

Definition 2.6 [31]. Let A = (𝑇𝐴,  𝐼𝐴, 𝐹𝐴) and B = (𝑇𝐵,  𝐼𝐵, 𝐹𝐵)  be single valued neutrosophic
sets on a set X. If A = (𝑇𝐴,  𝐼𝐴, 𝐹𝐴) is a single valued neutrosophic relation on a set X, then A = (𝑇𝐴,
 𝐼𝐴, 𝐹𝐴) is called a single valued neutrosophic relation on B = (𝑇𝐵,  𝐼𝐵, 𝐹𝐵) if

TB(x, y) ≤ min(TA(x), TA(y))
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IB(x, y) ≥ max(IA(x), IA(y)) and

FB(x, y) ≥ max(FAx), FA(y)) for all x, y ∈ X.

A single valued neutrosophic relation A on X is called symmetric if 𝑇𝐴(x, y) = 𝑇𝐴(y, x), 𝐼𝐴(x, y)
= 𝐼𝐴(y, x), 𝐹𝐴(x, y) = 𝐹𝐴(y, x) and 𝑇𝐵(x, y) = 𝑇𝐵(y, x), 𝐼𝐵(x, y) = 𝐼𝐵(y, x) and 𝐹𝐵(x, y) = 𝐹𝐵(y, x), for
all x, y ∈ X. 

3. Single Valued Neutrosophic Graphs

Throught this paper, we denote 𝐺∗ = (V, E) a crisp graph, and G = (A, B) a single valued
neutrosophic graph 

Definition 3.1. A single valued neutrosophic graph (SVN-graph) with underlying set V is 
defined to be a pair G= (A, B) where  

1.The functions 𝑇𝐴 :V→[0, 1], 𝐼𝐴 :V→[0, 1] and 𝐹𝐴 :V→[0, 1] denote the degree of truth-
membership, degree of indeterminacy-membership and falsity-membership of the element 𝑣𝑖 ∈ V,
respectively, and 

0≤ 𝑇𝐴(𝑣𝑖) + 𝐼𝐴(𝑣𝑖) +𝐹𝐴(𝑣𝑖) ≤3 for all  𝑣𝑖 ∈ V (i=1, 2, …, n)

2. The functions   𝑇𝐵: E ⊆ V x V →[0, 1],  𝐼𝐵:E ⊆ V x V →[0, 1] and 𝐹𝐵: E ⊆ V x V →[0, 1]
are defined by 

𝑇𝐵({𝑣𝑖 , 𝑣𝑗}) ≤ min [𝑇𝐴(𝑣𝑖), 𝑇𝐴(𝑣𝑗)],

𝐼𝐵({𝑣𝑖 , 𝑣𝑗}) ≥ max [𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗)] and

𝐹𝐵({𝑣𝑖 , 𝑣𝑗}) ≥ max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)]

Denotes the degree of truth-membership, indeterminacy-membership and falsity-membership 
of the edge (𝑣𝑖, 𝑣𝑗) ∈ E respectively, where

0≤ 𝑇𝐵({𝑣𝑖 , 𝑣𝑗}) + 𝐼𝐵({𝑣𝑖, 𝑣𝑗})+ 𝐹𝐵({𝑣𝑖 , 𝑣𝑗}) ≤3 for all  {𝑣𝑖 , 𝑣𝑗} ∈ E (i, j = 1, 2, …, n)

We call A the single valued neutrosophic vertex set of V, B the single valued neutrosophic edge 
set of E, respectively, Note that B is a symmetric single valued neutrosophic relation on A. We use 
the notation (𝑣𝑖 , 𝑣𝑗) for an element of E Thus, G = (A, B) is a single valued neutrosophic graph of
G∗= (V, E) if

𝑇𝐵(𝑣𝑖 , 𝑣𝑗) ≤ min [𝑇𝐴(𝑣𝑖), 𝑇𝐴(𝑣𝑗)],

𝐼𝐵(𝑣𝑖, 𝑣𝑗) ≥ max [𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗)] and

𝐹𝐵(𝑣𝑖, 𝑣𝑗) ≥ max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)]     for all  (𝑣𝑖 , 𝑣𝑗) ∈ E

Example 3.2. Consider a graph 𝐺∗ such that V= {𝑣1, 𝑣2, 𝑣3, 𝑣4}, E={𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4, 𝑣4𝑣1}.
Let A be a single valued neutrosophic subset of V and let B a single valued neutrosophic subset of 
E denoted by  
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𝑣1 𝑣2 𝑣3 𝑣4 𝑣1𝑣2 𝑣2𝑣3 𝑣3𝑣4 𝑣4𝑣1

 TA 0.5 0.6 0.2 0.4 TB 0.2 0.3 0.2 0.1 

 IA 0.1 0.3 0.3 0.2  IB 0.3 0.3 0.3 0.2 

FA 0.4 0.2 0.4 0.5 FB 0.4 0.4 0.4 0.5 

Figure 3: G: Single valued neutrosophic graph 

In figure 3, (i) (v1,0.5, 0.1,0.4) is a single valued neutrosophic vertex or SVN-vertex

(ii) (v1v2, 0.2, 0.3, 0.4) is a single valued neutrosophic edge or SVN-edge

(iii) (v1, 0.5, 0.1, 0.4) and (v2, 0.6, 0.3, 0.2) are single valued neutrosophic adjacent vertices.

(iv) (v1v2, 0.2, 0.3, 0.4) and (v1v4, 0.1, 0.2, 0.5)   are a single valued neutrosophic adjacent
edge. 

Note 1. (i) When  TBij = IBij = FBij  for some i and j, then there is no edge between vi and vj .

Otherwise there exists an edge between vi and vj .

(ii)If one of the inequalities is not satisfied in (1) and (2), then G is not an SVNG 

The single valued neutrosophic graph G depicted in figure 3 is represented by the following 
adjacency matrix 𝑴𝑮

𝑴𝑮 = [

(𝟎. 𝟓, 𝟎. 𝟏 , 𝟎. 𝟒) (𝟎. 𝟐, 𝟎. 𝟑 , 𝟎. 𝟒) (𝟎, 𝟎, 𝟎) (𝟎. 𝟏, 𝟎. 𝟐, 𝟎. 𝟓)

(𝟎. 𝟐, 𝟎. 𝟑 , 𝟎. 𝟒) (𝟎. 𝟔, 𝟎. 𝟑 , 𝟎. 𝟐) (𝟎. 𝟑, 𝟎. 𝟑 , 𝟎. 𝟒) (𝟎, 𝟎, 𝟎)

(𝟎, 𝟎, 𝟎) (𝟎. 𝟑, 𝟎. 𝟑 , 𝟎. 𝟒) (𝟎. 𝟐, 𝟎. 𝟑 , 𝟎. 𝟒) (𝟎. 𝟐, 𝟎. 𝟑 , 𝟎. 𝟒)

(𝟎. 𝟏, 𝟎. 𝟐 , 𝟎. 𝟓) (𝟎, 𝟎 , 𝟎) (𝟎. 𝟐, 𝟎. 𝟑 , 𝟎. 𝟒) (𝟎. 𝟒, 𝟎. 𝟐 , 𝟎. 𝟓)
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Definition 3.3. A partial SVN-subgraph of SVN-graph G= (A, B) is a SVN-graph H = ( 78, 98) such that  

(i)  78 ⊆ 7, where  :;<′ ≤ :;<,  =;<′ ≥ =;<,  >;<′  ≥ >;< for all  ?< ∈ 7. 

(ii)   98 ⊆ 9, where  :@<A′ ≤ :@<A,  =@<A′ ≥ =@<A,  >@<A′  ≥ >@<A for all (?< ?A) ∈ 9. 

Definition 3.4. A SVN-subgraph of SVN-graph G= (V, E) is a SVN-graph H = ( 78, 98) 
such that  

(i)  78 = 7, where  :;<′ = :;<,  =;<′ = =;<,  >;<′  = >;< for all  ?<	in the vertex 
set of   78. 
(ii)   98 = 9, where  :@<A′ = :@<A,  =@<A′ = =@<A,  >@<A′  = >@<A for every (?< ?A) ∈ 9 
in the edge set of  98. 

Example 3.5. 	C0 in Figure 4   is a SVN-graph. D0 in Figure 5 is a partial SVN-subgraph and 

D2 in Figure 6 is a SVN-subgraph of C0 

 Figure 4:	G�, a single valued neutrosophic graph 

 

Figure 5:	H�, a partial SVN-subgraph of  G� 

 Figure 6:	H�, a SVN-subgraph of  G�. 
Definition 3.6. The two vertices are said to be adjacent in a single valued neutrosophic 
graph  G= (A, B) if ��(�# , �') = min [��(�#), ��(�')], ��(�#, �') = max [��(�#), ��(�')] and 
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��(�# , �') = max [��(�#), ��(�')]. In this case, �# and �' are said to be neighbours and (�#, �') is incident at �# and �' also. 

Definition 3.7. A path  P  in a single valued neutrosophic  graph G= (A, B) is a sequence of 
distinct vertices �F , �� , 	�� ,… 	�G  such that   ��(�#H�, �#)  	>  0,  ��(�#H�, �#)  	>  0 and ��(�#H�, �#) 	> 0  for  0 ≤i ≤ 1. Here n ≥ 1 is called the length of the path P. A single node 
or vertex �# may also be considered as a path. In this case the path is of the length (0, 0, 0). 
The consecutive pairs (�#H�, �#) 	are called edges of the path. We call P a cycle if �F=	�G 
and n	≥3. 

Definition 3.8. A single valued neutrosophic graph G= (A, B) is said to be connected if 
every pair of vertices has at least one single valued neutrosophic path between them, 
otherwise it is disconnected. 

Definition 3.9. A vertex v� ∈ V of single valued neutrosophic graph G= (A, B) is said to be 
an isolated vertex if there is no effective edge incident at v�. 

Figure 7: Example of single valued neutrosophic graph 

In figure 7, the single valued neutrosophic vertex   v� is an isolated vertex. 

Definition 3.10. A vertex in a single valued neutrosophic G= (A, B) having exactly one 
neighbor is called a pendent vertex. Otherwise, it is called non-pendent vertex. An edge in 
a single valued neutrosophic graph incident with a pendent vertex is called a pendent edge. 
Otherwise it is called non-pendent edge. A vertex in a single valued neutrosophic graph 
adjacent to the pendent vertex is called a support of the pendent edge 

Definition 3.11. A single valued neutrosophic graph G= (A, B) that has neither self loops 
nor parallel edge is called simple single valued neutrosophic graph. 

 Definition   3.12. When a vertex 6J is end vertex of some edges (6J, 6K)  of any SVN-graph 
G = (A, B). Then  6J and (6J, 6K) are said to be incident to each other. 

 Figure 8:  Incident SVN-graph. 
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In	this	graph	v�v�,	v�v�	and		v�vL	are	incident	on	v�.	
Definition 3.13. Let G= (A, B) be a single valued neutrosophic graph. Then the degree of 
any vertex v is sum of degree of truth-membership, sum of degree of indeterminacy-
membership and sum of degree of falsity-membership of all those edges which are incident 
on vertex v denoted by d(v)= (Z[(�), Z\(�),	Z](�)) where Z[(�)=∑ ��(_, �)`ab  denotes degree of truth-membership vertex.Z\(�)=∑ ��(_, �)`ab  denotes degree of indeterminacy-membership vertex.Z](�)=∑ ��(_, �)`ab  denotes degree of falsity-membership vertex.

Example 3.14. Let us consider a single valued neutrosophic graph G= (A, B) of  !∗ = (V, 
E) where V = {v�, v�, v�, v�} and E= {v�v�,	v�v�, v�v�	,	v�v�}.

Figure 9: Degree of vertex of single valued neutrosophic graph 

We have, the degree of each vertex as follows: Z(v�)=	( 0.3, 0.5, 0.9), Z(v�)=	( 0.5, 0.6, 0.8), Z(v�)=	( 0.5, 0.6, 0.9), Z(v�)=	( 0.3, 0.5, 1) 

Definition 3.15. A single valued neutrosophic graph G= (A, B) is called constant if degree 
of each vertex is k = (c�, c�, c�). That is, d (�) = (c�, c�, c�) for all � ∈ V.  

Example 3.16. Consider a single valued neutrosophic graph G such that V ={v�, v�, v�, v�} and E={v�v�,	v�v�, v�v�	,	v�v�}.  

Figure 10: Constant SVN-graph. 

Clearly, G is constant SVN-graph since the degree of  60, 62, 63 and 61 is (0.4, 0.6, 0.8). 
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Definition 3.17. A single valued neutrosophic graph G = (A, B) of !∗= (V, E) is called 
strong single valued neutrosophic graph if  ��(�# , �') = min [��(�#),  ��(�')] 
 ��(�#, �') = max [��(�#),  ��(�')] 
 ��(�# , �') = max [��(�#), ��(�')] 
For all (�# , �') ∈ E. 

Example 3.18. Consider a graph !∗ such that V= {��, ��, ��, ��}, E= {����, ����, ����,���� }. Let A be a single valued neutrosophic subset of V and let B a single valued 
neutrosophic subset of E denoted by  

�� �� �� �� ���� ���� ���� ���� 
	T� 0.5 0.6 0.2 0.4 T  0.5 0.2 0.2 0.4 

	I� 0.1 0.3 0.3 0.2 	I  0.3 0.3 0.3 0.2 

F� 0.4 0.2 0.4 0.5 F  0.4 0.4 0.5 0.5 

Figure 11: Strong SVN-graph 

By routing computations, it is easy to see that G is a strong single valued neutrosophic of !∗. 
Proposition 3.19. A single valued neutrosophic graph is the generalization of fuzzy graph 
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Proof: Suppose G= (V, E) be a single valued neutrosophic graph. Then by setting the 
indeterminacy- membership and falsity- membership values of vertex set and edge set 
equals to zero reduces the single valued neutrosophic graph to fuzzy graph. 

Proposition 3.20. A single valued neutrosophic graph is the generalization of intuitionistic 
fuzzy graph. 

Proof: Suppose G = (V, E) be a single valued neutrosophic graph. Then by setting the 
indeterminacy- membership value of vertex set and edge set equals to zero reduces the 
single valued neutrosophic graph to intuitionistic fuzzy graph. 

Definition 3.21. The complement of a single valued neutrosophic graph G (A, B) on  !∗ is 
a single valued neutrosophic graph !̅ on !∗ where: 

1. e̅ =A

2.��fff(�#)= ��(�#), 	��g (�#)= ��(�#), 	��fff(�#)	= ��(�#), for all �' ∈ V.

3.��fff(�# , �')=	min	i��(�#), ��j�'kl	-��j�#, �'k��g (�# , �')=	max	i��(�#), ��j�'kl		-��j�# , �'k and��fff(�#, �')=	max	i��(�#), ��j�'kl		-��j�#, �'k,  For all (�#, �') ∈ E

Remark 3.22. if G= (V, E) is a single valued neutrosophic graph on  !∗. Then from above 
definition, it follow that !̅	g  is given by the single valued neutrosophic graph  !̅	g  =(mf	g , nf	g ) on!∗ where mf	g=V and ��ffffff(�#, �')=	min	i��(�#), ��j�'kl-��j�# , �'k,	��gg (�# , �')=	min	i��(�#), ��j�'kl-��j�#, �'k,and��ffffff(�#, �') =	min	i��(�#), ��j�'kl-��j�# , �'k For all (�# , �') ∈ E.

Thus  ��ffffff =��, 	��gg  =��,  and ��ffffff =��  on V, where E =( ��,  ��,  ��) is the  single valued
neutrosophic relation on V. For any single valued neutrosophic graph G, !̅ is strong single 
valued neutrosophic graph and G ⊆ !̅.

Proposition 3.23. G= !̅	g  if and only if G is a strong single valued neutrosophic graph.

Proof. it is obvious. 

Definition 3.24. A strong single valued neutrosophic graph G is called self complementary 
if G≅ !̅. Where !̅ is the complement of single valued neutrosophic graph G.

Example 3.25. Consider a graph !∗ = (V, E) such that V = {v�, v�, v�, v�}, E= {v�v�,v�v�, v�v�, v�v�}. Consider a single valued neutrosophic graph G. 
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Figure 12: G: Strong SVN- graph  Figure 13: !̅ Strong SVN- graph 

Figure 14: !̅	g  Strong SVN- graph

Clearly, G≅ !̅	g . Hence G is self complementary.

Proposition 3.26. Let G = (A, B) be a strong single valued neutrosophic graph. If 

 ��(�# , �') = min [��(�#), ��(�')], 
 ��(�#, �') = max [��(�#), ��(�')] and 

 ��(�# , �') = max [��(�#), ��(�')] for all �# , �' ∈ V. Then G is self complementary. 

Proof. Let G= (A, B) be a strong single valued neutrosophic graph such that ��(�# , �') = min [��(�#), ��(�')] 
 ��(�#, �') = max [��(�#), ��(�')]  
 ��(�# , �') = max [��(�#), ��(�')] 
For all �# , �' ∈  V. Then G≈  !̅	g under the identity map I: V →V. Hence G is self
complementary. 

Proposition 3.27. Let G be a self complementary single valued neutrosophic graph. Then ∑ ��(�# , �')bqabr  =
�� 	∑ min	[��(�#), ��(�')]bqabr∑ ��(�# , �')bqabr  = 
�� ∑ max	[��(�#), ��(�')]bqabr∑ ��(�# , �')bqabr  = 
��∑ max	[��(�#), ��(�')]bqabr

(0.5, 0.3 ,0.4) 

(0.2, 0.3 ,0.4) 

(0.5, 0.1 ,0.4) 

v� v�

v� v�
(0.6, 0.3 ,0.2) 

(0.2, 0.3 ,0.5) 
(0.4, 0.2 ,0.5) 

(0
.2

, 0
.3

 ,0
.4

) 

(0
.4

, 0
.2

 ,0
.5

) 

(0.2, 0.3 ,0.4) 

v�

v�

(0.2, 0.3 ,0.4) 

v�

v�

(0.4, 0.3 ,0.5) 

(0.6, 0.3 ,0.2) (0.5, 0.1 ,0.4) 

(0.4, 0.2 ,0.5) 

(0.5, 0.3 ,0.4) 

(0.2, 0.3 ,0.4) 

(0.5, 0.1 ,0.4) 

v� v�

v� v�
(0.6, 0.3 ,0.2) 

(0.2, 0.3 ,0.5) 
(0.4, 0.2 ,0.5) 

(0
.2

, 0
.3

 ,0
.4

) 

(0
.4

, 0
.2

 ,0
.5

) 

New Trends in Neutrosophic Theory and Applications 

197



Proof 

If G be a self complementary single valued neutrosophic graph. Then there exist an 
isomorphism f:	m� → m� satisfying   �uvffff(w(�#)) = �uv(w(�#))	 = 	�uv(�#)�uvfff(w(�#)) = �uv(w(�#))	 = 	 �uv(�#)�uvffffffff(w(�#)) = �uv(w(�#))	 =	�uv(�#)   for all �# ∈ m�. And�xvffff(w(�#),	w(�')) =�xv(w(�#),	w(�')) =�xv(�# , �')�xvffff(w(�#),	w(�')) =�xv(w(�#),	w(�')) =�xv(�# , �')�xvffff(w(�#),	w(�')) =�xv(w(�#),	w(�')) =�xv(�#, �')  for all (�# , �') ∈ n�
We have  �xvffff(w(�#),	w(�')) =	min	[�uvffff(w(�#)), �uvffff(w(�'))] −	�xv(w(�#),	w(�'))
i.e,  �xv(�#, �') = min	[�uv(�#), �uv(�')] −	�xv(w(�#),	w(�'))�xv(�# , �') = min	[�uv(�#), �uv(�')] −	�xv(�# , �')
That is ∑ �xv(�# , �')bqabr  +∑ �xv(�#, �')bqabr = ∑ min	[�uv(�#), �uv(�')]bqabr  ∑ �xv(�#, �')bqabr  +∑ �xv(�# , �')bqabr = ∑ max	[�uv(�#), �uv(�')]bqabr  ∑ �xv(�#, �')bqabr  +∑ �xv(�# , �')bqabr = ∑ max	[�uv(�#), �uv(�')]bqabr  

2 ∑ �xv(�# , �')bqabr  =  ∑ min	[�uv(�#), �uv(�')]bqabr  

2 ∑ �xv(�#, �')bqabr  =  ∑ max	[�uv(�#), �uv(�')]bqabr  

2∑ �xv(�#, �')bqabr  =  ∑ max	[�uv(�#), �uv(�')]bqabr  

From these equations, Proposition 3.27 holds 

Proposition 3.28. Let !�  and !�  be strong single valued neutrosophic graph, !�fff ≈  !�fff
(isomorphism) 

Proof. Assume that !�  and !�  are isomorphic, there exist a bijective map f: 	m� → m� 
satisfying   �uv(�#) =�uz(w(�#)),	�uv(�#) =�uz(w(�#)),	�uv(�#) =�uz(w(�#))    for all �# ∈ m�. And�xv(�# , �') =�xz(w(�#),	w(�')),	�xv(�#, �') =�xz(w(�#),	w(�')),	�xv(�# , �') = �xz(w(�#),	w(�'))  for all (�# , �') ∈ n�
By definition 3.21, we have  �xvffff(�# , �')= min [�uv(�#), �uv(�')] −�xv(�# , �')
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= min [�uz(w(�#)),  �uz(w(�'))]	−�xz(w(�#),	w(�')),
=�xzffff(w(�#),	w(�')),�xvffff(�# , �')= max [�uv(�#),  �uv(�')]	−�xv(�# , �')
= max [�uz(w(�#)), �uz(w(�'))]	−�xz(w(�#),	w(�')),
=�xzffff(w(�#),	w(�')),�xvffff(�# , �')= min [�uv(�#), �uv(�')]	−�xv(�# , �')
= min [�uz(w(�#)), �uz(w(�'))]	−�xz(w(�#),	w(�')),
=�xzffff(w(�#),	w(�')),

For all (�# , �') ∈ n�. Hence !�fff ≈ !�fff. The converse is straightforward.

4. COMPLETE SINGLE VALUED NEUTROSOPHIC GRAPHS

For the sake of simplicity we denote	��(�#) by ��# , ��(�#) by ��#, and ��(�#) by ��#. Also ��(�# , �') by ��#' , ��(�# , �') by ��#' and ��(�# , �') by ��#'. 
Definition 4.1.  A single valued neutrosophic graph G= (A, B) is called complete if ��#'= min (��#, ��'), 	��#'= max (��#, ��') and ��#'= max (��#, ��') for all �# , �' ∈ V. 

Example 4.2. Consider a graph !∗ = (V, E) such that V = {v�, v�, v�, v�}, E={v�v�,	v�v�
,	v�v�, v�v�, v�v�	,	v�v�}. Then G= (A, B) is a complete single valued neutrosophic graph 
of !∗. 

Figure 13: Complete single valued neutrosophic graph 

Definition 4.3. The complement of a complete single valued neutrosophic    graph G = (A, 
B) of   !∗= (V, E) is a single valued neutrosophic complete graph !̅= (e̅,	{f) on !∗= (m,	nf)
where 

1.mf =V

2.��fff(�#)= ��(�#), 	��g (�#)= ��(�#), 	��fff(�#)= ��(�#), for all �' ∈ V.

3. ��fff(�# , �')=	min	i��(�#), ��j�'kl − ��j�# , �'k��g (�# , �')=	max	i��(�#), ��j�'kl	 − ��j�#, �'k and��fff(�#, �')=	max	i��(�#), ��j�'kl 	− 	��j�#, �'k for all (�# , �') ∈ E
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Proposition 4.4: 

The complement of complete SVN-graph is a SVN-graph with no edge. Or if G is a 
complete then in !̅ the edge is empty. 

Proof 

Let G= (A, B) be a complete SVN-graph. 

So   ��#'= min (��#, ��'), 	��#'= max (��#, ��') and ��#'= max (��#, ��')  for all �# , �' ∈ V 

Hence in !̅,�f�#'=	min	i��# , ��'l − ��#' 	for all i, j, ….., n 

  =	min	i��#, ��'l − min	i��#, ��'l for all i, j,…..,n 

 = 0      for all i, j,…..,n 

and 

 ��̅#'=	max	i��# , ��'l − ��#' 	for all i, j,…..,n 

 =	max	i��# , ��'l − max	i��# , ��'l for all i, j,…..,n 

       = 0      for all i, j,…..,n 

Also �f�#'=	max	i��# , ��'l − ��#' 	for all i, j,…..,n 

  =	max	i��# , ��'l − max	i��# , ��'l for all i, j,…..,n 

 = 0      for all i, j,…..,n 

Thus (�f�#', ��̅#', �f�#') = (0 , 0, 0) 

Hence, the edge set of !̅ is empty if G is a complete SVN-graph. 

4. CONCLUSION

Neutrosophic sets is a generalization of the notion of fuzzy sets and intuitionistic fuzzy 
sets. Neutrosophic models gives more precisions, flexibility and compatibility to the 
system as compared to the classical, fuzzy and/or intuitionistic fuzzy models. In this paper, 
we have introduced certain types of single valued neutrosophic graphs, such as strong 
single valued neutrosophic graph, constant single valued neutrosophic graph and complete 
single valued neutrosophic graphs. In future study, we plan to extend our research to 
regular and irregular single valued neutrosophic graphs, bipolar single valued neutrosophic 
graphs, interval valued neutrosophic graphs, strong interval valued neutrosophic, regular 
and irregular interval valued neutrosophic. 
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On Bipolar Single Valued Neutrosophic Graphs 

Abstract 
In this article, we combine the concept of bipolar neutrosophic set and graph theory. We 

introduce the notions of bipolar single valued neutrosophic graphs, strong bipolar single valued 
neutrosophic graphs, complete bipolar single valued neutrosophic graphs, regular bipolar single 
valued neutrosophic graphs and investigate some of their related properties. 

Keywords 
Bipolar neutrosophic sets, bipolar single valued neutrosophic graph, strong bipolar single 

valued neutrosophic graph, complete bipolar single valued neutrosophic graph. 
  

1. Introduction 
Zadeh [32] coined the term ‘degree of membership’ and defined the concept of fuzzy set in 

order to deal with uncertainty. Atanassov [29, 31] incorporated the degree of non-membership in 
the concept of fuzzy set as an independent component and defined the concept of intuitionistic 
fuzzy set. Smarandache [12, 13] grounded the term ‘degree of indeterminacy as an independent 
component and defined the concept of neutrosophic set from the philosophical point of view to 
deal with incomplete, indeterminate and inconsistent information in real world. The concept of 
neutrosophic sets is a generalization of the theory of fuzzy sets, intuitionistic fuzzy sets. Each 
element of a neutrosophic sets has three membership degrees including a truth membership degree, 
an indeterminacy membership degree, and a falsity membership degree which are within the real 
standard or nonstandard unit interval]−0, 1+[. Therefore, if their range is restrained within the real 
standard unit interval [0, 1], the neutrosophic set is easily applied to engineering problems. For 
this purpose, Wang et al. [17] introduced the concept of a single valued neutrosophic set (SVNS) 
as a subclass of the neutrosophic set. Recently, Deli et al. [23] defined the concept of bipolar 
neutrosophic as an extension of the fuzzy sets, bipolar fuzzy sets, intuitionistic fuzzy sets and 
neutrosophic sets studied some of their related properties including the score, certainty and 
accuracy functions to compare the bipolar neutrosophic sets. The neutrosophic sets theory of and 
their extensions have been applied in various part [1, 2, 3, 16, 18, 19, 20, 21, 25, 26, 27, 41, 42, 
50, 51, 53].  
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A graph is a convenient way of representing information involving relationship between objects. 
The objects are represented by vertices and the relations by edges. When there is vagueness in the 
description of the objects or in its relationships or in both, it is natural that we need to designe a 
fuzzy graph Model. The extension of fuzzy graph theory [4, 6, 11] have been developed by several 
researchers including intuitionistic fuzzy graphs [5, 35, 44] considered the vertex sets and edge 
sets as intuitionistic fuzzy sets. Interval valued fuzzy graphs [32, 34] considered the vertex sets 
and edge sets as interval valued fuzzy sets. Interval valued intuitionistic fuzzy graphs [8, 52] 
considered the vertex sets and edge sets as interval valued intuitionstic fuzzy sets. Bipolar fuzzy 
graphs [6, 7, 40] considered the vertex sets and edge sets as bipolar fuzzy sets. M-polar fuzzy 
graphs [39] considered the vertex sets and edge sets as m-polar fuzzy sets. Bipolar intuitionistic 
fuzzy graphs [9] considered the vertex sets and edge sets as bipolar intuitionistic fuzzy sets. But, 
when the relations between nodes (or vertices) in problems are indeterminate, the fuzzy graphs 
and their extensions are failed. For this purpose, Samarandache [10, 11] have defined four main 
categories of neutrosophic graphs, two based on literal indeterminacy (I), which called them; I-
edge neutrosophic graph and I-vertex neutrosophic graph, these concepts are studied deeply and 
has gained popularity among the researchers due to its applications via real world problems [7, 14, 
15, 54, 55, 56]. The two others graphs are based on (t, i, f) components and called them; The (t, i, 
f)-Edge neutrosophic graph and the (t, i, f)-vertex neutrosophic graph, these concepts are not 
developed at all. Later on, Broumi et al. [46] introduced a third neutrosophic graph model. This 
model allows the attachment of truth-membership (t), indeterminacy–membership (i) and falsity- 
membership degrees (f) both to vertices and edges, and investigated some of their properties. The 
third neutrosophic graph model is called single valued neutrosophic graph (SVNG for short). The 
single valued neutrosophic graph is the generalization of fuzzy graph and intuitionistic fuzzy graph. 
Also the same authors [45] introduced neighborhood degree of a vertex and closed neighborhood 
degree of vertex in single valued neutrosophic graph as a generalization of neighborhood degree 
of a vertex and closed neighborhood degree of vertex in fuzzy graph and intuitionistic fuzzy graph. 
Also, Broumi et al. [47] introduced the concept of interval valued neutrosophic graph as a 
generalization fuzzy graph, intuitionistic fuzzy graph, interval valued fuzzy graph, interval valued 
intuitionistic fuzzy graph and single valued neutrosophic graph and have discussed some of their 
properties with proof and examples. In addition Broumi et al [48] have introduced some operations 
such as cartesian product, composition, union and join on interval valued neutrosophic graphs and 
investigate some their properties. On the other hand, Broumi et al [49] have discussed a sub class 
of interval valued neutrosophic graph called strong interval valued neutrosophic graph, and have 
introduced some operations such as, cartesian product, composition and join of two strong interval 
valued neutrosophic graph with proofs. In the literature the study of bipolar single valued 
neutrosophic graphs (BSVN-graph) is still blank, we shall focus on the study of bipolar single 
valued neutrosophic graphs in this paper.  In the present paper, bipolar neutrosophic sets are 
employed to study graphs and give rise to a new class of graphs called bipolar single valued 
neutrosophic graphs. We introduce the notions of bipolar single valued neutrosophic graphs, strong 
bipolar single valued neutrosophic graphs, complete bipolar single valued neutrosophic graphs, 
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regular bipolar single valued neutrosophic graphs and investigate some of their related properties. 
This paper is organized as follows;  

In section 2, we give all the basic definitions related bipolar fuzzy set, neutrosophic sets, bipolar 
neutrosophic set, fuzzy graph, intuitionistic fuzzy graph, bipolar fuzzy graph, N-graph and single 
valued neutrosophic graph which will be employed in later sections. In section 3, we introduce 
certain notions including bipolar single valued neutrosophic graphs, strong bipolar single valued 
neutrosophic graphs, complete bipolar single valued neutrosophic graphs, the complement of 
strong bipolar single valued neutrosophic graphs, regular bipolar single valued neutrosophic 
graphs and illustrate these notions by several examples, also we described degree of a vertex, order, 
size of bipolar single valued neutrosophic graphs. In section 4, we give the conclusion. 

2. Preliminaries  
In this section, we mainly recall some notions related to bipolar fuzzy set, neutrosophic sets, 

bipolar neutrosophic set, fuzzy graph, intuitionistic fuzzy graph, bipolar fuzzy graph, N-graph and 
single valued neutrosophic graph relevant to the present work. The readers are referred to [9, 12, 
17, 35, 36, 38, 43, 46, 57] for further details and background. 

Definition 2.1 [12]. Let U be an universe of discourse; then the neutrosophic set A is an object 
having the form A = {< x: TA(x) , IA(x) , FA(x) >, x ∈ U}, where the functions T, I, F: 
U→]−0,1+[  define respectively the degree of membership, the degree of indeterminacy, and the 
degree of non-membership of the element x ∈ U to the set A with the condition: 

                   −0 ≤ TA(x)+ IA(x)+ FA(x)≤ 3+.                        (1) 
The functions TA(x), IA(x) and FA(x) are real standard or nonstandard subsets of ]−0,1+[. 
 Since it is difficult to apply NSs to practical problems, Wang et al. [16] introduced the concept 

of a SVNS, which is an instance of a NS and can be used in real scientific and engineering 
applications. 

Definition 2.2 [17]. Let X be a space of points (objects) with generic elements in X denoted by 
x. A single valued neutrosophic set A (SVNS A) is characterized by truth-membership function 
TA(x), an indeterminacy-membership function IA(x), and a falsity-membership function FA(x). 
For each point x in X  TA(x), IA(x), FA(x) ∈ [0, 1]. A SVNS A can be written as  

          A = {< x: TA(x), IA(x), FA(x)>, x ∈ X}               (2) 
Definition 2.3 [9]. A bipolar neutrosophic set A in X is defined as an object of the form 
A= {<x, 𝑇𝑃(x),  𝐼𝑃(x),  𝐹𝑃(x), 𝑇𝑁(x),  𝐼𝑁(x),  𝐹𝑁(x)>: x ∈ X}, where  
𝑇𝑃 , 𝐼𝑃 , 𝐹𝑃:X→ [1, 0] and 𝑇𝑁 , 𝐼𝑁, 𝐹𝑁: X→ [-1, 0] .The Positive membership degree 𝑇𝑃(x), 

 𝐼𝑃(x),  𝐹𝑃(x) denotes the truth membership, indeterminate membership and false membership of 
an element ∈ X corresponding to a bipolar neutrosophic set A and the negative membership degree 
𝑇𝑁 (x),  𝐼𝑁 (x),  𝐹𝑁 (x) denotes the truth membership, indeterminate membership and false 
membership of an element ∈ X to some implicit counter-property corresponding to a bipolar 
neutrosophic set A. 

Example 2.4 Let X = {𝑥1, 𝑥2, 𝑥3} 

A={
<𝑥1,0.5,0.3,0.1,−0.6,−0.4,−0.05>

<𝑥2,0.3,0.2,0.7,−0.02,−0.3,−0.02>
<𝑥3,0.8,0.05,0.4,−0.6,−0.6,−0.03>

} 

is a bipolar neutrosophic subset of X 
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Definition 2.5[9]. Let 𝐴1={<x, 𝑇1
𝑃 (x),  𝐼1

𝑃 (x),  𝐹1
𝑃 (x), 𝑇1

𝑁 (x),  𝐼1
𝑁 (x),  𝐹1

𝑁 (x)>} and 𝐴2={<x, 
𝑇2

𝑃(x),  𝐼2
𝑃(x),  𝐹2

𝑃(x), 𝑇2
𝑁(x),  𝐼2

𝑁(x), 𝐹2
𝑁(x) >} be two bipolar neutrosophic sets . Then 𝐴1 ⊆ 𝐴2 if 

and only if 
𝑇1

𝑃(x) ≤ 𝑇2
𝑃(x) , 𝐼1

𝑃(x) ≤ 𝐼2
𝑃(x), 𝐹1

𝑃(x) ≥ 𝐹2
𝑃(x)  and  𝑇1

𝑁(x) ≥ 𝑇2
𝑁(x) , 𝐼1

𝑁(x) ≥ 𝐼2
𝑁(x) , 𝐹1

𝑁(x) ≤
𝐹2

𝑁(x)  for all x ∈ X. 
Definition 2.6[9]. Let 𝐴1={<x, 𝑇1

𝑃 (x),  𝐼1
𝑃 (x),  𝐹1

𝑃 (x), 𝑇1
𝑁 (x),  𝐼1

𝑁 (x),  𝐹1
𝑁 (x)>} and 𝐴2={<x, 

𝑇2
𝑃(x),  𝐼2

𝑃(x),  𝐹2
𝑃(x), 𝑇2

𝑁(x),  𝐼2
𝑁(x), 𝐹2

𝑁(x) >} be two bipolar neutrosophic sets . Then 𝐴1 = 𝐴2 if 
and only if 

𝑇1
𝑃(x) = 𝑇2

𝑃(x) , 𝐼1
𝑃(x) = 𝐼2

𝑃(x), 𝐹1
𝑃(x) = 𝐹2

𝑃(x)  and  𝑇1
𝑁(x) = 𝑇2

𝑁(x) , 𝐼1
𝑁(x) = 𝐼2

𝑁(x) , 𝐹1
𝑁(x) =

𝐹2
𝑁(x)  for all x ∈ X 

Definition 2.7 [9]. Let 𝐴1={<x, 𝑇1
𝑃 (x),  𝐼1

𝑃 (x),  𝐹1
𝑃(x), 𝑇1

𝑁 (x),  𝐼1
𝑁(x),  𝐹1

𝑁(x)>} and 𝐴2={<x, 
𝑇2

𝑃(x),  𝐼2
𝑃(x),  𝐹2

𝑃(x), 𝑇2
𝑁(x),  𝐼2

𝑁(x), 𝐹2
𝑁(x) >} be two bipolar neutrosophic sets . Then their union 

is defined as:  

 (𝐴1 ∪ 𝐴2)(x) =(
max(𝑇1

𝑃(x),𝑇2
𝑝

(x)),
𝐼1
𝑃(x)+ 𝐼2

𝑃(x)

2
, min(𝑇1

𝑃(x),𝑇2
𝑃(x))

min(𝑇1
𝑁(x),𝑇2

𝑁(x)),
𝐼1
𝑁(x)+ 𝐼2

𝑁(x)

2
, max(𝑇1

𝑁(x),𝑇2
𝑁(x))

)  for all x ∈ X. 

Definition 2.8 [9]. Let 𝐴1={<x, 𝑇1
𝑃 (x),  𝐼1

𝑃 (x),  𝐹1
𝑃(x), 𝑇1

𝑁 (x),  𝐼1
𝑁(x),  𝐹1

𝑁(x)>} and 𝐴2={<x, 
𝑇2

𝑃 (x),  𝐼2
𝑃 (x),  𝐹2

𝑃(x), 𝑇2
𝑁 (x),  𝐼2

𝑁 (x),  𝐹2
𝑁 (x)  >} be two bipolar neutrosophic sets . Then their 

intersection is defined as:  

 (𝐴1 ∩ 𝐴2)(x) =(
min(𝑇1

𝑃(x),𝑇2
𝑃(x)),

𝐼1
𝑃(x)+ 𝐼2

𝑃(x)

2
, max(𝑇1

𝑃(x),𝑇2
𝑃(x))

max(𝑇1
𝑁(x),𝑇2

𝑁(x)),
𝐼1
𝑁(x)+ 𝐼2

𝑁(x)

2
, min(𝑇1

𝑁(x),𝑇2
𝑁(x))

)   for all x ∈ X. 

Definition 2.9 [9]. Let 𝐴1= {<x, 𝑇1
𝑃(x),  𝐼1

𝑃(x),  𝐹1
𝑃(x), 𝑇1

𝑁(x),  𝐼1
𝑁(x),  𝐹1

𝑁(x)>: x ∈ X} be a 
bipolar neutrosophic set in X. Then the complement of A is denoted by 𝐴𝑐 and is defined by  

𝑇𝐴𝑐
𝑃 (x)={1𝑃}-𝑇𝐴

𝑃(x),   𝐼𝐴𝑐
𝑃 (x)={1𝑃}-𝐼𝐴

𝑃(x),  𝐹𝐴𝑐
𝑃 (x)={1𝑃}-𝐹𝐴

+(x) 
And 
𝑇𝐴𝑐

𝑁(x)={1𝑁}-𝑇𝐴
𝑁(x),   𝐼𝐴𝑐

𝑁 (x)={1𝑁}-𝐼𝐴
𝑁(x),  𝐹𝐴𝑐

𝑁 (x)={1𝑁}-𝐹𝐴
𝑁(x) 

 
Definition 2.10 [43]. A fuzzy graph is a pair of functions G = (σ, µ) where σ is a fuzzy subset of 
a non empty set V and  μ  is a symmetric fuzzy relation on σ. i.e σ: V → [ 0,1] and  

 μ: VxV→[0,1] such that    μ(uv) ≤ σ(u) ⋀ σ(v) for all u, v ∈ V where uv denotes the edge between 
u and v and σ(u) ⋀ σ(v) denotes the minimum of σ(u) and σ(v). σ is called the fuzzy vertex set of 
V and  μ is called the fuzzy edge set of E. 

 
Definition 2.11[38]: By a N-graph G of a graph 𝐺∗, we mean a pair G= (𝜇1, 𝜇2) where 𝜇1 is an 

N-function in V and 𝜇2 is an N-relation on E such that 𝜇2(u, v) ≥ max (𝜇1(u), 𝜇1(v)) all u, v ∈ V. 
 
Definition 2.12[35]: An Intuitionistic fuzzy graph is of the form G = (V, E) where 
iii. V= {v1, v2,…., vn} such that μ1: V→ [0,1] and γ1: V → [0,1] denote the degree of 

membership and non-membership of the element vi ∈ V, respectively, and 
0 ≤ μ1(vi) + γ1(vi)) ≤ 1   for every   vi ∈ V, (i = 1, 2, ……. n), 

iv.  E   ⊆   V x V where  μ2: VxV→[0,1] and  γ2: VxV→ [0,1] are such that 
μ2(vi, vj) ≤ min [μ1(vi), μ1(vj)] and γ2(vi, vj) ≥ max [γ1(vi), γ1(vj)] 

and 0 ≤ μ2(vi, vj) + γ2(vi, vj) ≤ 1 for every (vi, vj) ∈ E, (i, j = 1,2, ……. n) 
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Definition 2.13 [57]. Let X be a non-empty set. A bipolar fuzzy set A in X is an object having 
the form A = {(x, 𝜇𝐴

𝑃(x), 𝜇𝐴
𝑁(x)) | x ∈ X}, where 𝜇𝐴

𝑃(x): X → [0, 1] and 𝜇𝐴
𝑁(x): X → [−1, 0] are 

mappings. 
Definition 2.14[ 57] Let X be a non-empty set. Then we call a mapping A = (𝜇𝐴

𝑃, 𝜇𝐴
𝑁): X × X 

→ [−1, 0] × [0, 1] a bipolar fuzzy relation on X such that 𝜇𝐴
𝑃(x, y) ∈ [0, 1] and 𝜇𝐴

𝑁(x, y) ∈ [−1, 0]. 
Definition 2.15[36]. Let A = (𝜇𝐴

𝑃,  𝜇𝐴
𝑁) and B = (𝜇𝐵

𝑃,  𝜇𝐵
𝑁) be bipolar fuzzy sets on a set X. If A 

= (𝜇𝐴
𝑃,  𝜇𝐴

𝑁) is a bipolar fuzzy relation on a set X, then A =(𝜇𝐴
𝑃,  𝜇𝐴

𝑁) is called a bipolar fuzzy relation 
on B = (𝜇𝐵

𝑃,  𝜇𝐵
𝑁)  if 𝜇𝐵

𝑃(x, y) ≤ min(𝜇𝐴
𝑃(x), 𝜇𝐴

𝑃(y)) and 𝜇𝐵
𝑁(x, y) ≥ max(𝜇𝐴

𝑁(x), 𝜇𝐴
𝑁(y) for all x, y ∈ X.  

A bipolar fuzzy relation A on X is called symmetric if 𝜇𝐴
𝑃(x, y) = 𝜇𝐴

𝑃(y, x) and 𝜇𝐴
𝑁(x, y) = 𝜇𝐴

𝑁(y, 
x) for all x, y ∈ X. 

Definition 2.16[36]. A bipolar fuzzy graph of a graph 𝐺∗=  (V, E)  is a pair G = (A,B), where 
A = (𝜇𝐴

𝑃,  𝜇𝐴
𝑁) is a bipolar fuzzy set in V and B = (𝜇𝐵

𝑃,  𝜇𝐵
𝑁) is a bipolar fuzzy set on  E  ⊆ V x V 

such that 𝜇𝐵
𝑃(xy) ≤  min{𝜇𝐴

𝑃(x), 𝜇𝐴
𝑃(y)} for all xy ∈ 𝐸,  𝜇𝐵

𝑁(xy) ≥ min{𝜇𝐴
𝑁(x), 𝜇𝐴

𝑁(y)} for all xy ∈
𝐸 and 𝜇𝐵

𝑃(xy) = 𝜇𝐵
𝑁(xy) = 0 for all xy ∈ �̃�2 –E. Here A is called bipolar fuzzy vertex set of V, B 

the bipolar fuzzy edge set of E. 
Definition 2.17[46] A single valued neutrosophic graph (SVNG) of a graph 𝐺∗= (V, E) is a pair 

G = (A, B), where  
1.V= {𝑣1, 𝑣2,…, 𝑣𝑛} such that 𝑇𝐴:V→[0, 1], 𝐼𝐴:V→[0, 1] and 𝐹𝐴:V→[0, 1] denote the degree of 

truth-membership, degree of indeterminacy-membership and falsity-membership of the element 
𝑣𝑖 ∈ V, respectively, and 

0≤ 𝑇𝐴(𝑣𝑖) + 𝐼𝐴(𝑣𝑖) +𝐹𝐴(𝑣𝑖) ≤3 for every  𝑣𝑖 ∈ V (i=1, 2, …,n) 
2. E ⊆ V x V where  𝑇𝐵:V x V →[0, 1],  𝐼𝐵:V x V →[0, 1] and 𝐹𝐵:V x V →[0, 1] are such that 

𝑇𝐵(𝑣𝑖 , 𝑣𝑗) ≤ min [𝑇𝐴(𝑣𝑖), 𝑇𝐴(𝑣𝑗)], 𝐼𝐵(𝑣𝑖 , 𝑣𝑗) ≥ max [𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗)] and 𝐹𝐵(𝑣𝑖, 𝑣𝑗) ≥ max [𝐹𝐴(𝑣𝑖), 
𝐹𝐴(𝑣𝑗)] and 

 0≤ 𝑇𝐵(𝑣𝑖, 𝑣𝑗) + 𝐼𝐵(𝑣𝑖 , 𝑣𝑗)+ 𝐹𝐵(𝑣𝑖 , 𝑣𝑗) ≤3 for every (𝑣𝑖 , 𝑣𝑗) ∈ E (i, j = 1, 2,…, n) 
Definition 2.18[46]:  Let G = (V, E) be a single valued neutrosophic graph. Then the degree of 

a vertex v is defined by d(v)= (𝑑𝑇(𝑣), 𝑑𝐼(𝑣), 𝑑𝐹(𝑣)) where  
𝑑𝑇(𝑣)=∑ 𝑇𝐵(𝑢, 𝑣)𝑢≠𝑣 , 𝑑𝐼(𝑣)=∑ 𝐼𝐵(𝑢, 𝑣)𝑢≠𝑣  and 𝑑𝐹(𝑣)=∑ 𝐹𝐵(𝑢, 𝑣)𝑢≠𝑣  

3. Bipolar Single Valued Neutrosophic Graph 
Definition 3.1. Let X be a non-empty set. Then we call a mapping A = (x, 𝑇𝑃(x), 𝐼𝑃(x), 𝐹𝑃(x), 

𝑇𝑁(x), 𝐼𝑁(x), 𝐹𝑁(x)):X × X → [−1, 0] × [0, 1] a bipolar single valued neutrosophic relation on X 
such that 𝑇𝐴

𝑃(x, y) ∈ [0, 1], 𝐼𝐴
𝑃(x, y) ∈ [0, 1], 𝐹𝐴

𝑃(x, y) ∈ [0, 1],    and 𝑇𝐴
𝑁(x, y) ∈ [−1, 0], 𝐼𝐴

𝑁(x, y) ∈ 
[−1, 0], 𝐹𝐴

𝑁(x, y) ∈ [−1, 0]. 
Definition 3.2. Let A = (𝑇𝐴

𝑃, 𝐼𝐴
𝑃,  𝐹𝐴

𝑃, 𝑇𝐴
𝑁 , 𝐼𝐴

𝑁,  𝐹𝐴
𝑁) and B = (𝑇𝐵

𝑃, 𝐼𝐵
𝑃, 𝐹𝐵

𝑃, 𝑇𝐵
𝑁 , 𝐼𝐵

𝑁,  𝐹𝐵
𝑁) be bipolar 

single valued neutrosophic graph on a set X. If B = (𝑇𝐵
𝑃, 𝐼𝐵

𝑃,  𝐹𝐵
𝑃, 𝑇𝐵

𝑁, 𝐼𝐵
𝑁,  𝐹𝐵

𝑁)   
 is a bipolar single valued neutrosophic relation on A = (𝑇𝐴

𝑃, 𝐼𝐴
𝑃, 𝐹𝐴

𝑃, 𝑇𝐴
𝑁 , 𝐼𝐴

𝑁,  𝐹𝐴
𝑁) then 

  
𝑇𝐵

𝑃(x, y) ≤ min(𝑇𝐴
𝑃(x), 𝑇𝐴

𝑃(y)),   𝑇𝐵
𝑁(x, y) ≥ max(𝑇𝐴

𝑁(x), 𝑇𝐴
𝑁(y)) 

𝐼𝐵
𝑃(x, y) ≥ max(𝐼𝐴

𝑃(x), 𝐼𝐴
𝑃(y)), 𝐼𝐵

𝑁(x, y) ≤ min(𝐼𝐴
𝑁(x), 𝐼𝐴

𝑁(y)) 
𝐹𝐵

𝑃(x, y) ≥ max(𝐹𝐴
𝑃(x), 𝐹𝐴

𝑃(y)),  𝐹𝐵
𝑁(x, y) ≤ min(𝐹𝐴

𝑁(x), 𝐹𝐴
𝑁(y))  for all x, y ∈ X. 

 
A bipolar single valued neutrosophic relation B on X is called symmetric if 𝑇𝐵

𝑃(x, y) = 𝑇𝐵
𝑃(y, 

x), 𝐼𝐵
𝑃(x, y) = 𝐼𝐵

𝑃(y, x), 𝐹𝐵
𝑃(x, y) = 𝐹𝐵

𝑃(y, x) and 𝑇𝐵
𝑁(x, y) = 𝑇𝐵

𝑁(y, x), 𝐼𝐵
𝑁(x, y) = 𝐼𝐵

𝑁(y, x), 𝐹𝐵
𝑁(x, y) = 

𝐹𝐵
𝑁(y, x),  for all x, y ∈ X. 
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 Definition 3.3. A bipolar single valued neutrosophic graph of a graph 𝐺∗=  (V, E)  is a pair G 
= (A, B), where A = (𝑇𝐴

𝑃, 𝐼𝐴
𝑃,  𝐹𝐴

𝑃, 𝑇𝐴
𝑁 , 𝐼𝐴

𝑁,  𝐹𝐴
𝑁) is a bipolar single valued neutrosophic set in V 

and B = (𝑇𝐵
𝑃, 𝐼𝐵

𝑃,  𝐹𝐵
𝑃, 𝑇𝐵

𝑁 , 𝐼𝐵
𝑁,  𝐹𝐵

𝑁) is a bipolar single valued neutrosophic set in �̃�2 such that 
𝑇𝐵

𝑃(𝒗𝒊, 𝒗𝒋) ≤ min (𝑇𝐴
𝑃(𝒗𝒊), 𝑇𝐴

𝑃(𝒗𝒋))  
𝐼𝐵

𝑃(𝒗𝒊, 𝒗𝒋) ≥ max (𝐼𝐴
𝑃(𝒗𝒊), 𝐼𝐴

𝑃(𝒗𝒋)) 
𝐹𝐵

𝑃(𝒗𝒊, 𝒗𝒋) ≥ max (𝐹𝐴
𝑃(𝒗𝒊), 𝐹𝐴

𝑃(𝒗𝒋)) 
And 
𝑇𝐵

𝑁(𝒗𝒊, 𝒗𝒋) ≥ max (𝑇𝐴
𝑁(𝒗𝒊), 𝑇𝐴

𝑁(𝒗𝒋)) 
𝐼𝐵

𝑁(𝒗𝒊, 𝒗𝒋) ≤ min (𝐼𝐴
𝑁(𝒗𝒊), 𝐼𝐴

𝑁(𝒗𝒋)) 
𝐹𝐵

𝑁(𝒗𝒊, 𝒗𝒋) ≤ min (𝐹𝐴
𝑁(𝒗𝒊), 𝐹𝐴

𝑁(𝒗𝒋)) for all 𝒗𝒊𝒗𝒋 ∈ �̃�2. 
Notation: An edge of BSVNG is denoted by eij ∈ E or 𝒗𝒊𝒗𝒋 ∈ E 
Here the sextuple (vi, 𝑇𝐴

𝑃(vi) , 𝐼𝐴
𝑃(vi) ,  𝐹𝐴

𝑃(vi), 𝑇𝐴
𝑁(vi) , 𝐼𝐴

𝑁(vi),  𝐹𝐴
𝑁(vi)) denotes the positive 

degree of truth-membership, the positive degree of indeterminacy-membership, the positive degree 
of falsity-membership, the negative degree of truth-membership, the negative degree of 
indeterminacy-membership, the negative degree of falsity- membership  of the vertex vi.  

The sextuple (eij , 𝑇𝐵
𝑃, 𝐼𝐵

𝑃,  𝐹𝐵
𝑃, 𝑇𝐵

𝑁 , 𝐼𝐵
𝑁,  𝐹𝐵

𝑁) denotes the positive degree of truth-membership, 
the positive degree of indeterminacy-membership, the positive degree of falsity-membership, the 
negative degree of truth-membership, the negative degree of indeterminacy-membership, the 
negative degree of falsity- membership of the edge relation eij = (𝒗𝒊, 𝒗j) on V× V. 

Note 1. (i) When  𝑇𝐴
𝑃 = 𝐼𝐴

𝑃 = 𝐹𝐴
𝑃= 0 and 𝑇𝐴

𝑁 = 𝐼𝐴
𝑁 = 𝐹𝐴

𝑁= 0 for some i and j, then there is no edge 
between vi and vj . 

Otherwise there exists an edge between vi and vj . 
(ii) If one of the inequalities is not satisfied in (1) and (2), then G is not an BSVNG 

 
 
 
 
 
 
 
                                       
 
 
 
 
   
 
 

Fig. 1: Bipolar single valued neutrosophic graph. 
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Proposition 3.5: A bipolar single valued neutrosophic graph is the generalization of fuzzy 
graph 

Proof: Suppose G= (A, B) be a bipolar single valued neutrosophic graph. Then by setting the 
positive indeterminacy-membership, positive falsity-membership and negative truth-membership, 
negative indeterminacy-membership, negative falsity-membership values of vertex set and edge 
set equals to zero reduces the bipolar single valued neutrosophic graph to fuzzy graph. 

Example 3.6: 
 
 
 
 
 
                                               
 
 
 

Fig.2: Fuzzy graph 
 
Proposition 3.7: A bipolar single valued neutrosophic graph is the generalization of 

intuitionistic fuzzy graph 
Proof: Suppose G= (A, B) be a bipolar single valued neutrosophic graph. Then by setting the 

positive indeterminacy-membership, negative truth-membership, negative indeterminacy-
membership, negative falsity-membership values of vertex set and edge set equals to zero reduces 
the bipolar single valued neutrosophic graph to intuitionistic fuzzy graph. 

Example 3.8 
 
 
 
 
 
                                      
 
 
 

Fig.3:  Intuitionistic fuzzy graph 
 
Proposition 3.9: A bipolar single valued neutrosophic graph is the generalization of single 

valued neutrosophic graph 
Proof: Suppose G= (A, B) be a bipolar single valued neutrosophic graph. Then by setting the 

negative truth-membership, negative indeterminacy-membership, negative falsity-membership 
values of vertex set and edge set equals to zero reduces the bipolar single valued neutrosophic 
graph to single valued neutrosophic graph. 
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Example 3.10 
 
 
 
 

 
 

 
                                       
                                    
 

Fig.4: Single valued neutrosophic graph 
 
Proposition 3.11: A bipolar single valued neutrosophic graph is the generalization of bipolar 

intuitionstic fuzz graph 
Proof: Suppose G= (A, B) be a bipolar single valued neutrosophic graph. Then by setting the 

positive indeterminacy-membership, negative indterminacy-membership values of vertex set and 
edge set equals to zero reduces the bipolar single valued neutrosophic graph to bipolar intuitionstic 
fuzzy graph 

Example 3.12  
 
 
 
 

 
 
 

                                              
 
 
 
 
 

Fig. 5: Bipolar intuitionistic fuzzy graph. 
 
Proposition 3.13: A bipolar single valued neutrosophic graph is the generalization of N-graph 
Proof: Suppose G= (A, B) be a bipolar single valued neutrosophic graph. Then by setting the 

positive degree membership such truth-membership, indeterminacy- membership, falsity-
membership and negative indeterminacy-membership, negative falsity-membership values of 
vertex set and edge set equals to zero reduces the single valued neutrosophic graph to N-graph. 
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𝒗𝟐 (0.2, 0.3, 0.3) (0.2, 0.3, 0.2) 𝒗𝟏(0.2, 0.3, 0.3) 

(0
.2

, 0
.3

, 0
.4

  )
 

𝒗𝟒 (0.2, 0.3, 0.3) 
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Example 3.14: 
 
 
 
 
 
 
 

Fig. 6: N- graph 
 
Definition 3.15. A bipolar single valued neutrosophic graph that has neither self loops nor parallel 
edge is called simple bipolar single valued neutrosophic graph. 
  
Definition 3.16. A bipolar single valued neutrosophic graph is said to be connected if every pair 
of vertices has at least one bipolar single valued neutrosophic graph between them, otherwise it is 
disconnected. 
 
Definition 3.17. When a vertex 𝐯𝐢 is end vertex of some edges (𝐯𝐢, 𝐯𝐣)  of any BSVN-graph G= 
(A, B). Then  𝐯𝐢 and (𝐯𝐢, 𝐯𝐣) are said to be incident to each other. 
 

 
 
 
 
 
 

 
 
 
 
 

Fig. 7:  Incident BSVN-graph 
 

In this graph v2v3, v3v4 and  v3v5 are incident on v3. 

Definition 3.18 Let G= (V, E) be a bipolar single valued neutrosophic graph. Then the degree 
of any vertex v is sum of positive degree of truth-membership, positive sum of degree of 
indeterminacy-membership, positive sum of degree of falsity-membership, negative degree of 
truth-membership, negative sum of degree of indeterminacy-membership, and negative sum of 
degree of falsity-membership of all those edges which are incident on vertex v denoted by d(v)= 
(𝑑𝑇

𝑃(𝑣), 𝑑𝐼
𝑃(𝑣), 𝑑𝐹

𝑃(𝑣), 𝑑𝑇
𝑁(𝑣), 𝑑𝐼

𝑁(𝑣), 𝑑𝐹
𝑁(𝑣)) where  

𝑑𝑇
𝑃(𝑣) =∑ 𝑇𝐵

𝑃(𝑢, 𝑣)𝑢≠𝑣  denotes the positive T- degree of a vertex v,  
 𝑑𝐼

𝑃(𝑣)=∑ 𝐼𝐵
𝑃(𝑢, 𝑣)𝑢≠𝑣  denotes the positive I- degree of a vertex v, 

(-
0.

2)
 

𝒗𝟑 (-0.5) (-0.1) 

𝒗𝟐 (-0.3) (-0.1) 𝒗𝟏(-0.2) 

(-
0.

2)
 

𝒗𝟒 (-0.3) 

𝒗𝟏(0.2, 0.2, 0.4 ,-0.4, -0.1,-0.4) 

(0
.2

, 0
.3

, 0
.5

 ,-
0.

2,
 -0

.3
,-0

.5
) 

(0.1, 0.5, 0.6 ,-0.1, -0.6,-0.5) 𝒗𝟑 (0.2, 0.3, 0.5 ,-0.3, -0.2,-0.1) 

𝒗𝟐 (0.1, 0.3, 0.5 ,-0.6, -0.2,-0.3) (0.1, 0.3, 0.6 ,-0.2, -0.3,-0.1) 

(0
.1

, 0
.3

, 0
.6

 ,-
0.

1,
 -0

.6
,-0

.7
) 

𝒗𝟒 (0.3, 0.2, 0.4 ,-0.2, -0.3,-0.5) 

𝒗𝟓 (0.1, 0.2, 0.3 ,-0.2, -0.3,-0.2) 

 

𝒗𝟓 (0.1, 0.4, 0.6 ,-0.1, -0.5,-0.6) 
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𝑑𝐹
𝑃(𝑣) =∑ 𝐹𝐵

𝑃(𝑢, 𝑣)𝑢≠𝑣  denotes the positive F- degree of a vertex v,  
𝑑𝑇

𝑁(𝑣) =∑ 𝑇𝐵
𝑁(𝑢, 𝑣)𝑢≠𝑣  denotes the negative T- degree of a vertex v,  

 𝑑𝐼
𝑁(𝑣)=∑ 𝐼𝐵

𝑁(𝑢, 𝑣)𝑢≠𝑣  denotes the negative I- degree of a vertex v, 
𝑑𝐹

𝑁(𝑣) =∑ 𝐹𝐵
𝑁(𝑢, 𝑣)𝑢≠𝑣  denotes the negative F- degree of a vertex v 

Definition 3.19:  The minimum degree of G is 

  δ(G) = (δT
P(G), δI

P(G), δF
P(G), δT

N(G), δI
N(G), δF

N(G)) , where 

δT
P(G)= ⋀ {dT

P(v) | v ∈ V} denotes the minimum positive T- degree, 

δI
P(G)= ⋀ {dI

P(v) | v ∈ V} denotes the minimum positive I- degree, 

δF
P(G)= ⋀ {dF

P(v) | v ∈ V} denotes the minimum positive F- degree, 

δT
N(G)= ⋀ {dT

N(v) | v ∈ V} denotes the minimum negative T- degree, 

δI
N(G)= ⋀ {dI

N(v) | v ∈ V} denotes the minimum negative I- degree, 

δF
N(G)= ⋀ {dF

N(v)| v ∈ V} denotes the minimum negative F- degree 

Definition 3.20:  The maximum degree of G is 

  Δ(G) = (ΔT
P(G), ΔI

P(G), ΔF
P(G), ΔT

N(G), ΔI
N(G), ΔF

N(G)), where 

ΔT
P(G)= ⋁ {dT

P(v) | v ∈ V} denotes the maximum positive T- degree, 

ΔI
P(G)= ⋁ {dI

P(v) | v ∈ V} denotes the maximum positive I- degree, 

ΔF
P(G)= ⋁ {dF

P(v) | v ∈ V} denotes the maximum positive F- degree, 

ΔT
N(G)= ⋁ {dT

N(v) | v ∈ V} denotes the maximum negative T- degree, 

ΔI
N(G)= ⋁ {dI

N(v) | v ∈ V} denotes the maximum negative I- degree, 

ΔF
N(G)= ⋁ {dF

N(v)| v ∈ V} denotes the maximum negative F- degree 

Example 3.21. Let us consider a bipolar single valued neutrosophic graph G= (A, B) of  𝐺∗ = 
(V, E), such that V = {v1, v2, v3, v4}, E = {(v1, v2), (v2, v3), (v3, v4), (v4, v1)} 

  
 
 
 
 

 
 
 
 
 
 
 
 

Figure 8: Degree of a bipolar single valued neutrosophic graph G. 
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) 

(0.1, 0.5, 0.6 ,-0.1, -0.6,-0.5) 𝒗𝟑 (0.2, 0.3, 0.5 ,-0.3, -0.5,-0.6) 

𝒗𝟐 (0.1, 0.3, 0.5 ,-0.6, -0.2,-0.3) (0.1, 0.3, 0.6 ,-0.2, -0.3,-0.1) 
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 -0
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) 
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In this example, the degree of v1 is (0.3, 0.6, 1.1, -0.4, -0.6, -0.6). the degree of v2 is (0.2, 0.6, 
1.2, -0.3, -0.9, -0.8). the degree of v3 is (0.2, 0.8, 1.2, -0.2, -1.2, -1.2). the degree of v4 is (0.3, 0.8, 
1.1, -0.3, -0.9, -1) 

Order and size of a bipolar single valued neutrosophic graph is an important term in bipolar 
single valued neutrosophic graph theory. They are defined below. 
Definition 3.22:  Let G = (V, E) be a BSVNG.  The order of G, denoted O(G) is defined as O(G)= 
(OT

p
(G), OI

p
(G), OF

p
(G), OT

N(G), OI
N(G), OF

N(G)), where 

OT
p

(G)= ∑ T1
p

v∈V (v) denotes the positive T- order of a vertex v, 

OI
p

(G)= ∑ I1
p

v∈V (v) denotes the positive I- order of a vertex v, 

OF
p

(G)= ∑ F1
p

v∈V (v) denotes the positive F- order of a vertex v, 

OT
N(G)= ∑ T1

N
v∈V (v) denotes the negative T- order of a vertex v, 

OI
N(G)= ∑ I1

N
v∈V (v) denotes the negative I- order of a vertex v, 

OF
N(G)= ∑ F1

N
v∈V (v) denotes the negative F- order of a vertex v. 

Definition 3.23: Let G = (V, E) be a BSVNG.  The size of G, denoted S(G) is defined as 

S(G)= (ST
p

(G), SI
p

(G), SF
p

(G), ST
N(G), SI

N(G), SF
N(G)), where 

ST
p

(G)= ∑ T2
p

u≠v (u, v) denotes the positive T- size of a vertex v, 

SI
p

(G)= ∑ I2
p

u≠v (u, v) denotes the positive I- size of a vertex v, 

     SF
p

(G)= ∑ F2
p

u≠v (u, v) denotes the positive F- size of a vertex v, 
ST

N(G)= ∑ T2
N

u≠v (u, v) denotes the negative T- size of a vertex v, 

SI
N(G)= ∑ I2

N
u≠v (u, v) denotes the negative I- size of a vertex v, 

     SF
N(G)= ∑ F2

N
u≠v (u, v) denotes the negative F- size of a vertex v. 

 
Definition 3.24 A bipolar single valued neutrosophic graph G = (V, E) is called constant if 

degree of each vertex is k = (𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6). That is, d (𝑣) = (𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6) for all 
𝑣 ∈ V.  

 
 
 
 
 
 
 
 
 
 

 
 

Figure 9: Constant bipolar single valued neutrosophic graph G. 
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In this example, the degree of v1, v2, v3, v4 is (0.2, 0.6, 1.2, -0.4, -0.6, -1.4). 
O(G)= (0.8, 1, 1.8, -1.5, -1.1, -1.8) 
S(G) = (0.4, 1.2, 2.4, -0.7, -1.2, -2.8) 
Remark 3.25. G is a (ki, kj, kl, km, kn, ko)-constant BSVNG iff 𝛿 = Δ= k, where k = ki+ kj+ 

kl +km+ kn+ ko. 
 
Definition 3.26. A bipolar single valued neutrosophic graph G= (A, B) is called strong bipolar 

single valued neutrosophic graph if 
 
𝑇𝐵

𝑃(𝑢, 𝑣) =min (𝑇𝐴
𝑃(𝑢), 𝑇𝐴

𝑃(𝑣)), 
 
𝐼𝐵

𝑃(𝑢, 𝑣) =max (𝐼𝐴
𝑃(𝑢), 𝐼𝐴

𝑃(𝑣)), 
 
𝐹𝐵

𝑃(𝑢, 𝑣) =max (𝐹𝐴
𝑃(𝑢), 𝐹𝐴

𝑃(𝑣)), 
 
𝑇𝐵

𝑁(𝑢, 𝑣) =max (𝑇𝐴
𝑁(𝑢), 𝑇𝐴

𝑁(𝑣)), 
 
𝐼𝐵

𝑁(𝑢, 𝑣) =min (𝐼𝐴
𝑁(𝑢), 𝐼𝐴

𝑁(𝑣)), 
 
𝐹𝐵

𝑁(𝑢, 𝑣) = min (𝐹𝐴
𝑁(𝑢), 𝐹𝐴

𝑁(𝑣)) for all (u, v) ∈ E 
 
Example 3.27. Consider a strong BSVN-graph G such that V = {v1 ,  v2 ,  v3 , v4 }and E = 

{(v1, v2), (v2, v3), (v3, v4), (v4, v1)} 
 
 
 
 
 
 
 
 
 
 
 

                 
Figure 10: Strong bipolar single valued neutrosophic graph G. 

 
Definition 3.28. A bipolar single valued neutrosophic graph G= (A, B) is called complete if 
 
𝑇𝐵

𝑃(𝑢, 𝑣) =min (𝑇𝐴
𝑃(𝑢), 𝑇𝐴

𝑃(𝑣)), 
 
𝐼𝐵

𝑃(𝑢, 𝑣) =max (𝐼𝐴
𝑃(𝑢), 𝐼𝐴

𝑃(𝑣)), 
 
𝐹𝐵

𝑃(𝑢, 𝑣) =max (𝐹𝐴
𝑃(𝑢), 𝐹𝐴

𝑃(𝑣)), 
 

(0
.2

, 0
.3

, 0
.4

,-0
.2

, -
0.

3,
-

0.
5)

 

𝒗𝟒 (0.3, 0.2, 0.4 ,-0.2, -0.3,-0.5) (0.2, 0.3, 0.5,-0.2, -0.5,-0.6) 𝒗𝟑 (0.2, 0.3, 0.5 ,-0.3, -0.5,-0.6) 

(0
.1

, 
0.

3,
 0

.5
 ,

-0
.3

, 
-

0.
5,

-0
.6

) 

𝒗𝟐 (0.1, 0.3, 0.5 ,-0.6, -0.2,-0.3) 𝒗𝟏(0.2, 0.2, 0.4 ,-0.4, -0.1,-0.4) (0.1, 0.3, 0.5 ,-0.6, -0.2,-0.4) 
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𝑇𝐵
𝑁(𝑢, 𝑣) =max (𝑇𝐴

𝑁(𝑢), 𝑇𝐴
𝑁(𝑣)), 

 
𝐼𝐵

𝑁(𝑢, 𝑣) =min (𝐼𝐴
𝑁(𝑢), 𝐼𝐴

𝑁(𝑣)), 
 
𝐹𝐵

𝑁(𝑢, 𝑣) = min (𝐹𝐴
𝑁(𝑢), 𝐹𝐴

𝑁(𝑣)) for all u, v ∈ V. 
 
Example 3.29. Consider a complete BSVN-graph G such that V = {v1, v2, v3, v4}and E = 

{(v1, v2), (v2, v3), (v3, v4), (v4, v1), (v1, v3), (v2, v4)} 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 11: Complete bipolar single valued neutrosophic graph G. 
 
𝑑(𝑣1)= (0.5, 0.8, 1.4, -0 .9, -1, -1.5) 
𝑑(𝒗𝟐)= (0.4, 0.9, 1.5, -1 .2, -1, -1.6) 
𝑑(𝒗𝟑)= (0.4, 0.9, 1.5, -0 .7, -1.3, -1.7) 
𝑑(𝒗𝟒)= (0.5, 0.8, 1.4, -0 .6, -1.1, -1.6) 
 
Definition 3.30. The complement of a bipolar  single valued neutrosophic graph  G = (A, B) of 

a graph 𝐺∗= (V, E) is a bipolar  single valued neutrosophic graph  �̅� = (𝐴̅, �̅�) of 𝐺∗̅̅ ̅  = (V,V ×V), 
where 𝐴̅   = A = (𝑇𝐴

𝑃, 𝐼𝐴
𝑃,  𝐹𝐴

𝑃, 𝑇𝐴
𝑁 , 𝐼𝐴

𝑁,  𝐹𝐴
𝑁) and �̅� = (𝑇𝐵

𝑃̅̅̅̅ , 𝐼𝐵
�̅�,  𝐹𝐵

𝑃̅̅̅̅ , 𝑇𝐵
𝑁̅̅ ̅̅  , 𝐼𝐵

𝑁̅̅ ̅,  𝐹𝐵
𝑁̅̅ ̅̅ )  

is defined by 
�̅�𝐵

𝑃(u, v) = min(𝑇𝐴
𝑃(𝑢), 𝑇𝐴

𝑃(𝑣)) - 𝑇𝐵
𝑃(𝑢, 𝑣)  for all 𝑢, 𝑣 ∈ V, uv ∈ �̃�2 

𝐼�̅�
𝑃(u, v) = max(𝐼𝐴

𝑃(𝑢), 𝐼𝐴
𝑃(𝑣)) - 𝐼𝐵

𝑃(𝑢, 𝑣)  for all 𝑢, 𝑣 ∈ V, uv ∈ �̃�2 
�̅�𝐵

𝑃(u, v) = max(𝐹𝐴
𝑃(𝑢), 𝐹𝐴

𝑃(𝑣)) - 𝐹𝐵
𝑃(𝑢, 𝑣)  for all 𝑢, 𝑣 ∈ V, uv ∈ �̃�2 

�̅�𝐵
𝑁(u, v) = max(𝑇𝐴

𝑁(𝑢), 𝑇𝐴
𝑁(𝑣)) - 𝑇𝐵

𝑁(𝑢, 𝑣)  for all 𝑢, 𝑣 ∈ V, uv ∈ �̃�2 
𝐼�̅�

𝑁(u, v) = min(𝐼𝐴
𝑁(𝑢), 𝐼𝐴

𝑁(𝑣)) - 𝐼𝐵
𝑁(𝑢, 𝑣)  for all 𝑢, 𝑣 ∈ V, uv ∈ �̃�2 

�̅�𝐵
𝑁(u, v) = min(𝐹𝐴

𝑁(𝑢), 𝐹𝐴
𝑁(𝑣)) - 𝐹𝐵

𝑁(𝑢, 𝑣)  for all 𝑢, 𝑣 ∈ V, uv ∈ �̃�2 
Proposition 3.31: The complement of complete BSVN-graph is a BSVN-graph with no edge. 

Or if G is a complete then in �̅� the edge is empty. 
Proof 
Let G= (V, E) be a complete BSVN-graph. 𝑇𝐵

𝑃(𝑢, 𝑣) =min (𝑇𝐴
𝑃(𝑢), 𝑇𝐴

𝑃(𝑣)), 
So   𝑇𝐵

𝑃(𝑢, 𝑣) =min (𝑇𝐴
𝑃(𝑢), 𝑇𝐴

𝑃(𝑣)),  𝑇𝐵
𝑁(𝑢, 𝑣) =max (𝑇𝐴

𝑁(𝑢), 𝑇𝐴
𝑁(𝑣)), 
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𝐼𝐵

𝑃(𝑢, 𝑣) =max (𝑇𝐴
𝑃(𝑢), 𝑇𝐴

𝑃(𝑣)), 𝐼𝐵
𝑁(𝑢, 𝑣) =min (𝐼𝐴

𝑁(𝑢), 𝐼𝐴
𝑁(𝑣)), 

 
𝐹𝐵

𝑃(𝑢, 𝑣) =max (𝑇𝐴
𝑃(𝑢), 𝑇𝐴

𝑃(𝑣)),  𝐹𝐵
𝑁(𝑢, 𝑣) =min (𝐹𝐴

𝑁(𝑢), 𝐹𝐴
𝑁(𝑣)   for all 𝑢, 𝑣 ∈ V 

 
Hence in �̅�,   
 �̅�𝐵

𝑃= min(𝑇𝐴
𝑃(𝑢), 𝑇𝐴

𝑃(𝑣)) - 𝑇𝐵
𝑃(𝑢, 𝑣)  for all 𝑢, 𝑣 ∈ V 

        = min(𝑇𝐴
𝑃(𝑢), 𝑇𝐴

𝑃(𝑣)) - min(𝑇𝐴
𝑃(𝑢), 𝑇𝐴

𝑃(𝑣)) for all 𝑢, 𝑣 ∈ V 
       = 0      for all 𝑢, 𝑣 ∈ V 
and 
 𝐼�̅�

𝑃= max(𝐼𝐴
𝑃(𝑢), 𝐼𝐴

𝑃(𝑣)) - 𝐼𝐵
𝑃(𝑢, 𝑣)  for all 𝑢, 𝑣 ∈ V 

        = max(𝐼𝐴
𝑃(𝑢), 𝐼𝐴

𝑃(𝑣)) - max(𝐼𝐴
𝑃(𝑢), 𝐼𝐴

𝑃(𝑣)) for all 𝑢, 𝑣 ∈ V 
       = 0      for all 𝑢, 𝑣 ∈ V 
Also 
 �̅�𝐵

𝑃= max(𝐹𝐴
𝑃(𝑢), 𝐹𝐴

𝑃(𝑣)) - 𝐹𝐵
𝑃(𝑢, 𝑣)  for all 𝑢, 𝑣 ∈ V 

        = max(𝐹𝐴
𝑃(𝑢), 𝐹𝐴

𝑃(𝑣)) - max(𝐹𝐴
𝑃(𝑢), 𝐹𝐴

𝑃(𝑣)) for all 𝑢, 𝑣 ∈ V 
       = 0      for all 𝑢, 𝑣 ∈ V 
Similarly 
�̅�𝐵

𝑁= max(𝑇𝐴
𝑁(𝑢), 𝑇𝐴

𝑁(𝑣)) - 𝑇𝐵
𝑁(𝑢, 𝑣)  for all 𝑢, 𝑣 ∈ V 

        = max(𝑇𝐴
𝑁(𝑢), 𝑇𝐴

𝑁(𝑣)) - max(𝑇𝐴
𝑁(𝑢), 𝑇𝐴

𝑁(𝑣)) for all 𝑢, 𝑣 ∈ V 
       = 0      for all 𝑢, 𝑣 ∈ V 
and 
 𝐼�̅�

𝑃= min(𝐼𝐴
𝑁(𝑢), 𝐼𝐴

𝑁(𝑣)) - 𝐼𝐵
𝑁(𝑢, 𝑣)  for all 𝑢, 𝑣 ∈ V 

        = min(𝐼𝐴
𝑁(𝑢), 𝐼𝐴

𝑁(𝑣)) - min(𝐼𝐴
𝑁(𝑢), 𝐼𝐴

𝑁(𝑣)) for all 𝑢, 𝑣 ∈ V 
       = 0      for all 𝑢, 𝑣 ∈ V 
Also 
 �̅�𝐵

𝑁= min(𝐹𝐴
𝑁(𝑢), 𝐹𝐴

𝑁(𝑣)) - 𝐹𝐵
𝑁(𝑢, 𝑣)  for all 𝑢, 𝑣 ∈ V 

        = min(𝐹𝐴
𝑁(𝑢), 𝐹𝐴

𝑁(𝑣)) - min(𝐹𝐴
𝑁(𝑢), 𝐹𝐴

𝑁(𝑣)) for all 𝑢, 𝑣 ∈ V 
       = 0      for all 𝑢, 𝑣 ∈ V 
(�̅�𝐵

𝑃, 𝐼�̅�
𝑃, �̅�𝐵

𝑃, �̅�𝐵
𝑁, 𝐼�̅�

𝑁, �̅�𝐵
𝑁) 

Thus (�̅�𝐵
𝑃, 𝐼�̅�

𝑃, �̅�𝐵
𝑃, �̅�𝐵

𝑁, 𝐼�̅�
𝑁, �̅�𝐵

𝑁)= (0, 0, 0, 0, 0) 
Hence the edge set of �̅� is empty if G is a complete BSVNG. 
Definition 3.32: A regular BSVN-graph is a BSVN-graph where each vertex has the same 

number of open neighbors degree. 𝑑𝑁(v)= (𝑑𝑁𝑇
𝑃 (𝑣), 𝑑𝑁𝐼

𝑃 (𝑣), 𝑑𝑁𝐹
𝑃 (𝑣), 𝑑𝑁𝑇

𝑁 (𝑣), 𝑑𝐼
𝑁(𝑣), 𝑑𝑁𝐹

𝑁 (𝑣)).  
The following example shows that there is no relationship between regular BSVN-graph and a 

constant BSVN-graph 
Example 3.33. Consider a graph 𝐺∗ such that V= {𝑣1, 𝑣2, 𝑣3, 𝑣4}, E = {𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4, 

𝑣4𝑣1}. Let A be a single valued neutrosophic subset of V and le B a single valued neutrosophic 
subset of E denoted by  

 𝑣1 𝑣2 𝑣3 𝑣4   𝑣1𝑣2 𝑣2𝑣3 𝑣3𝑣4 𝑣4𝑣1 
𝑇𝐴

𝑃 0.2 
 

0.2 
 

0.2 
 

0.2 
 

 𝑇𝐵
𝑃 0.1 

 
0.1 
 

0.1 
 

0.2 
 

𝐼𝐴
𝑃 0.2 0.2 0.2 0.2  𝐼𝐵

𝑃 0.3 0.3 0.5 0.3 
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𝐹𝐴
𝑃 0.4 0.4 0.4 0.4  𝐹𝐵

𝑃 0.6 0.6 0.6 0.5 
𝑇𝐴

𝑁 -
0.4 

-
0.4 

-
0.4 

-
0.4 

 𝑇𝐵
𝑁 -0.2 -0.1 -0.1 -0.2 

𝐼𝐴
𝑁 -

0.1 
-

0.4 
-

0.1 
-

0.1 
 𝐼𝐵

𝑁 -0.3 -0.6 -0.6 -0.3 

𝐹𝐴
𝑁 -

0.4 
-

0.4 
-

0.4 
-

0.4 
 𝐹𝐵

𝑁 -0.5 -0.7 -0.7 -0.5 

 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 12: Regular bipolar single valued neutrosophic graph G. 
 
By routing calculations show that G is regular BSVN-graph since each open neighbors degree 

is same, that is (0.4, 0.4, 0.8, -0.8, -0.2, -0.8). But it is not constant BSVN-graph since degree of 
each vertex is not same. 

Definition 3.34: Let G = (V, E) be a bipolar single valued neutrosophic graph. Then the totally 
degree of a vertex  v ∈ V is defined by 

    td(v)= (𝑡𝑑𝑇
𝑃(𝑣), 𝑡𝑑𝐼

𝑃(𝑣), 𝑡𝑑𝐹
𝑃(𝑣), 𝑡𝑑𝑇

𝑁(𝑣), 𝑡𝑑𝐼
𝑁(𝑣), 𝑡𝑑𝐹

𝑁(𝑣)) where  
𝑡𝑑𝑇

𝑃(𝑣) =∑ 𝑇𝐵
𝑃(𝑢, 𝑣)𝑢≠𝑣  +𝑇𝐴

𝑃(𝑣) denotes the totally positive T- degree of a vertex v,  
𝑡𝑑𝐼

𝑃(𝑣)=∑ 𝐼𝐵
𝑃(𝑢, 𝑣)𝑢≠𝑣  +𝐼𝐴

𝑃(𝑣) denotes the totally positive I- degree of a vertex v, 
𝑡𝑑𝐹

𝑃(𝑣) =∑ 𝐹𝐵
𝑃(𝑢, 𝑣)𝑢≠𝑣  +𝐹𝐴

𝑃(𝑣) denotes the totally positive F- degree of a vertex v,  
𝑡𝑑𝑇

𝑁(𝑣) =∑ 𝑇𝐵
𝑁(𝑢, 𝑣)𝑢≠𝑣  +𝑇𝐴

𝑁(𝑣) denotes the totally negative T- degree of a vertex v,  
𝑡𝑑𝐼

𝑁(𝑣)=∑ 𝐼𝐵
𝑁(𝑢, 𝑣)𝑢≠𝑣  +𝐼𝐴

𝑁(𝑣) denotes the totally negative I- degree of a vertex v, 
𝑡𝑑𝐹

𝑁(𝑣) =∑ 𝐹𝐵
𝑁(𝑢, 𝑣)𝑢≠𝑣  +𝐹𝐴

𝑁(𝑣) denotes the totally negative F- degree of a vertex v 
 If each vertex of G has totally same degree m = (m1, m2, m3, m4, m5, m6), then G is called a 

m-totally constant BSVN-Graph. 
Example 3.35. Let us consider a bipolar single valued neutrosophic graph G= (A, B) of  𝐺∗ = 

(V, E), such that V = {v1, v2, v3, v4}, E = {(v1, v2), (v2, v3), (v3, v4), (v4, v1)} 
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Figure 13: Totally degree of a bipolar single valued neutrosophic graph G. 
 
In this example, the totally degree of v1 is (0.5, 0.8, 1.4, -0.8, -0.7, -1.4). The totally degree of 

v2 is (0.3, 0.9, 1.7, -0.9, -1.1, -1.5). The totally degree of v3 is (0.4, 1.1, 1.7, -0.5, -1.7, -2). The 
totally degree of v4 is (0.6, 1, 1.5, -0.5, -1.1, -1,7). 

Definition 3.36: A totally regular BSVN-graph is a BSVN-graph where each vertex has the 
same number of closed neighbors degree, it is noted d[v] 

Example 3.37. Let us consider a BSVN-graph G= (A, B) of  𝐺∗ = (V, E), such that V = 
{v1, v2, v3, v4} and E = {(v1, v2), (v2, v3), (v3, v4), (v4, v1)} 

  
 
 
 

 
 

 
 
 
 
 
 

Figure 14: Degree of a bipolar single valued neutrosophic graph G. 
 
By routing calculations, we show that G is regular BSVN-graph since the degree of  

v1, v2, v3, and v4 is (0.2, 0.6, 1.2, -0.4, -0.6, -1). It is neither totally regular BSVN-graph not 
constant BSVN-graph. 
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4. Conclusion 
In this paper, we have introduced the concept of bipolar single valued neutrosophic graphs and 

described degree of a vertex, order, size of bipolar single valued neutrosophic graphs, also we have 
introduced the notion of complement of a bipolar single valued neutrosophic graph, strong bipolar 
single valued neutrosophic graph, complete bipolar single valued neutrosophic graph, regular 
bipolar single valued neutrosophic graph. Further, we are going to study some types of single 
valued neutrosophic graphs such irregular and totally irregular single valued neutrosophic graphs 
and bipolar single valued neutrosophic graphs.  
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A Neutrosophic Graph Similarity Measures 

Abstract 
This paper is devoted for presenting new neutrosophic similarity measures between 

neutrosophic graphs. We proposetwo ways to determine the neutrosophic distance between 
neutrosophic vertex graphs. The two neutrosophic distances are based on the Haussdorff distance, 
and a robust modified variant of the Haussdorff distance, moreover we show that they both satisfy 
the metric distance measure axioms. Furthermore, a similarity measure between neutrosophic edge 
graphs that is based on a probabilistic variant of Haussdorff distance is introduced. The aim is to 
use those measures for the purpose of matching neutrosophic graphs whose structure can be 
described in the neutrosophic domain. 

Keywords 
Neutrosophic graphs, Haussdorff distance, graph matching. 
 

1. Introduction 
Graphs are essential for encoding information, which may serve in several fields ranging from 

computational biology to computer vision. The notion of graph theory was first introduced by 
Euler in 1736, given a graph where vertices and edges represent pairwise interactions between 
entities [2, 5].The past years have witnessed a high development in the areas of the applications of 
graphs of pattern recognition and computer vision, where graphs are the most powerful and handy 
tool used in representing both objects and concepts. The invariance properties, as well as the fact 
that graphs are well suited to model objects in terms of parts and their relations, make them very 
attractive for various applications. Hence, the theory of graph became an extremely useful tool for 
solving combinatorial problems in different areas such as geometry, algebra, number theory, 
topology, operations research, optimization and computer science [1]. In 1975, a fuzzy graph 
theory as a generalization of Euler's graph theory was introduced by Rosenfeld [7], based on the 
concepts of fuzzy set theory proposed by Zadeh in 1965 [19]. 

In a world full of indeterminacy, traditional crisp set with its boundaries of truth and false has 
not infused itself with the ability of reflecting the reality. Therefore, neutrosophic found its place 
into contemporary research as an alternative representation of the real world Established by 
Florentin Smarandache [16], Neutrosophy was presented as the study of "the origin, nature, and 
scope of neutralities, as well as their interactions with different ideational spectra". The main idea 
was to consider an entity   ”A” in relation to its opposite ”Non-A”, and to that which is neither "A” 
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nor” Non-A”, denoted by "Neut-A”. From then on, Neutrosophy became the basis of Neutrosophic 
Logic, Neutrosophic Probability, Neutrosophic Set Theory, and Neutrosophic Statistics. 
According to this theory every idea “A” tends to be neutralized and balanced by ”neut-A” 
and ”non- A” ideas - as a state of equilibrium. In a classical way “A”, “neut-A”, ”anti-A” are 
disjoint two by two. But, since in many cases the borders between notions are vague, imprecise or 
sorties, it is possible that  ”A”, ”neut-A” and ”anti-A” have common parts two by two, or even all 
three of them as well. In [16, 17], Smarandache introduced the fundamental concepts of 
neutrosophic set, that had led Salama and Smarandache [15], to provide a mathematical treatment 
for the neutrosophic phenomena which already existed in our real world. Moreover the work of 
Salama and Smarandache [15, 16, 17] formed a starting point to construct new branches of 
neutrosophic mathematics. Hence, Neutrosophic set theory turned out to be a generalization of 
both the classical and fuzzy counterparts.  

In [6, 11, 12, 13], the authors gave a new dimension for the graph theory using the concept of 
neutrosophy, some study for different types of neutrosophic graphs were presented and some of 
their properties were investigated. The aim of this paper is to compute the dissimilarity between 
two graphs, our methodology is based on the Haussdorff distance, which is invariant to rotation. 
Whereas several neutrosophic distances where introduced in [4, 14], the authors constructed the 
neutrosophic distance between neutrosophic sets.  The remaining of the paper is structured as 
follows: definitions of neutrosophic sets and graphs are presented in §2 and §3. Whereas, §4 
introduces the idea behind the Haussdorff distance between two crisp sets. In §5.2 and §5.3, we 
propose two new neutrosophic dissimilarity measures between neutrosophicvertex graphs based 
on the classical and the modified Haussdorff distances. Furthermore, we investigate the metric 
axioms for the obtained distances. A neutrosophic similarity measure between neutrosophic edge 
graphs, based on a probabilistic variant of Haussdorff distance, is introduced in §5.3. 

1. Neutrosophic Sets 
let X be a space of points (objects), with a generic element in X denoted by x, a neutrosophic 

set A in X is characterized by a truth-membership function T, a indeterminacy-membership 
function I and a falsity-membership function F [15, 18], That is: T, I, F: x →] -0, 1+ [. 

Where T (x), I(x) and F (x) are real standard or non-standard subsets of   ]-0, 1+ [. 
In general if there is no restriction on the sum of T (x), I(x) and F (x), so 0− ≤  T(x) + I (x) + F 

(x) ≤ 3+.T, I, F are called neutrosophic components. 
In this paper we will restrict our work to use the standard unit interval [0, 1]. 

3. Neutrosophic Graphs 
In [6], the authors defined the neutrosophic graph, to be a graph G < V, E > combined with six 

mappings, written in the form 𝐺𝑁 = < 𝑉, 𝐸, 𝑇𝑒, 𝐼𝑒 ,  𝐹𝑒 , 𝑇𝑣,  𝐼𝑣, 𝐹𝑣 >, where 
𝑇𝑣:V→ [0, 1] , 𝐼𝑣 :V→ [0, 1], 𝐹𝑣 :V→ [0, 1] denoting the degree of membership ,degree of 

indeterminacy and non- membership of the element vi∈V respectively and 0 ≤ 𝑇𝑣 (vi) +  𝐼𝑣(vi) +  
𝐹𝑣 (vi)  ≤ 3 for every vi∈ V, (i = 1, 2, ….. , n) , and 

𝑇𝑒: V× V →[0, 1], 𝐼𝑒: V× V → [0, 1]  and  𝐹𝑒: V× V →[0, 1]  are such that 𝑇𝑒(𝑣𝑖 , 𝑣𝑗) ≤

 min(𝑇𝑣(𝑣𝑖),  𝑇𝑣(𝑣𝑗)),𝐼𝑒(𝑣𝑖, 𝑣𝑗) ≤ min(𝐼𝑣(𝑣𝑖),   𝐼𝑣(𝑣𝑗)) and 𝐹𝑒(𝑣𝑖 ,  𝑣𝑗) ≤ min (𝐹𝑣(𝑣𝑖),  𝐹𝑣(𝑣𝑗)) 
and 0 ≤ 𝑇𝑒(𝑣𝑖 , 𝑣𝑗)+𝐼𝑒(𝑣𝑖,  𝑣𝑗) +𝐹𝑒(𝑣𝑖 , ) ≤ 3 for every (𝑣𝑖 , 𝑣𝑗) ∈ E (i, j =1, 2, 3, …., n). 
The concept of neutrosophic graph was used by several authors; nevertheless they took different 

points of view when describing the interpretation of graph neutrosophy. 
We constructed the following structure depending on the one given in [6, 12]. 
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3.1. Neutrosophic Edge Graphs: 
A neutrosophic graph is defined as a graph combined with three mappings, written as 𝐺 =

(𝑉, 𝐸 , 𝑇𝑒, 𝐼𝑒  , 𝐹𝑒), 𝑤ℎ𝑒𝑟𝑒   𝑇𝑒:V× V →[0, 1], 𝐼𝑒: V× V → [0, 1] and 𝐹𝑒: V× V →[0, 1] are 
such that 𝑇𝑒(𝑣𝑖 , 𝑣𝑗)≤ min (𝑇𝑣(𝑣𝑖),  𝑇𝑣(𝑣𝑗)),𝐼𝑒(𝑣𝑖 , 𝑣𝑗)≤ min (𝐼𝑣(𝑣𝑖),  𝐼𝑣(𝑣𝑗)) and 𝐹𝑒(𝑣𝑖 , 𝑣𝑗) ≤ min 
(𝐹𝑣(𝑣𝑖), 𝐹𝑣(𝑣𝑗)) and 0≤ 𝑇𝑒(𝑣𝑖 , 𝑣𝑗)+𝐼𝑒(𝑣𝑖 , 𝑣𝑗)+𝐹𝑒(𝑣𝑖 , 𝑣𝑗) ≤ 3 for every (𝑣𝑖 ,  𝑣𝑗) ∈ E (i , j =1,2,3, …., 
n). 

3.2. Neutrosophic Vertex Graphs: 
The term neutrosophic vertex graph was used to definea graphof the form: 

𝐺 = (𝑉  , 𝐸  ,  𝑇𝑣, 𝐼𝑣  ,  𝐹𝑣  )  combined with three mappings, written as 𝑇𝑣:V→ [0, 1], 𝐼𝑣:V→ 
[0, 1], 𝐹𝑣 :V→ [0, 1] denoting the degree of membership, degree of indeterminacy and non- 
membership of the element vi∈ V respectively and  0  ≤ 𝑇𝑣 (vi) +  𝐼𝑣(vi) +  𝐹𝑣 (vi)  ≤ 3 for every  
vi∈ V, (i = 1, 2, ….. , n). 

4.  Haussdorff distance 
Since first introduced by Haussdorff in 1914 [8], the Haussdorff distance has been used in 

several areas including matching and recognition problems. It provides a means of computing the 
distance between sets of unordered observations when the correspondences between the individual 
items are unknown. In its most general setting, the Haussdorff distance measures how far two 
subsets of a metric space are from each other. It turns the set of non-empty compact subsets of a 
metric space into a metric space in its own right. Given two such sets, the closest point in the 
second set for each point in the first set is considered. Hence, the Haussdorff distance is the 
maximum over all these values. More formally, the classical Haussdorff distance (H D) [4, 10], 
between two finite point sets A and B is given by: 

H(A, B) = max(ℎ(𝐴, 𝐵), ℎ(𝐵, 𝐴)) 
Where the directed Haussdorff distance from A to B is defined to be: 

ℎ(𝐴, 𝐵) = 𝑚𝑎𝑥
𝑎∈𝐴

𝑚𝑖𝑛
𝑏∈𝐵

‖𝑎 − 𝑏‖ 
And ‖. ‖ is some underlying norm on the points of A and B (e.g., the 𝐿2 or Euclidean norm). 
Regardless of the norm, the Haussdorff metric captures the notion of the worst match between 
two objects. The computed value is the largest distance between a point in one set and a point in 
the other one. Several variants of the Haussdorff distance have been proposed as alternatives to 
the maximum of the minimum approach in the classical one; such as Haussdorff fraction, 
Haussdorff quintile [10] and Spatially Coherent Matching [3]. 

A robust modified Haussdorff distance (MHD) based on the average distance value instead of 
the maximum value was proposed by Dubuisson and Jain [7], in this sense they defined the directed 
distance of the MHD as: 

𝑀𝐻(𝐴, 𝐵) =
1

𝑁𝐴
∑ min

b∈B
‖a − b‖

𝑎∈A

 

5. Neutrosophic Graph Similarity Measures 
In this section, we introduce neutrosophic graph similarity measures, based on the concept of 

Haussdorffdistance and some of its variants. 
Firstly, we propose two new neutrosophic dissimilarity measures based on the classical and the 

modified Haussdorff distances [4, 6, 14]. Basically the neutrosophic dissimilarity measure is a 
triple: the first part is a dissimilarity measure of the true value of the neutrosophic object, the 
second part is a dissimilarity measure of the indeterminate value of the neutrosophic object, and 
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the third part is a dissimilarity measure of the false value of the neutrosophicobject; that is the 
opposite of the neutrosophic object. Secondly, we propose a new neutrosophic similarity measure 
based on the probabilistic Haussdorff distance [9]. With a similar structure, the neutrosophic 
similarity measure is also a triple as the explained in the neutrosophic dissimilarity measure. 
Obviously, if the indeterminate part does not exist (its measure is zero) and if the measure of the 
opposite object is ignored the suggested neutrosophic dissimilarity measure is reduced to the 
concept of Haussdorff   distance in the fuzzy sense. 
5.1 NeutrosophicHaussdorff Distance: 

To commence, we consider two neutrosophic vertex graphs 
𝐺1 = (𝑉1 ,  𝐸1  ,  𝑇𝑣1, 𝐼𝑣1, 𝐹𝑣1) 𝑎𝑛𝑑 𝐺2 =  (𝑉2 , 𝐸2 ,  𝑇𝑣2, 𝐼𝑣2 , 𝐹𝑣2 ), where 𝑉𝑖, i =1, 2      
are the sets of nodes, 𝐸𝑖, where i =1,2 are the sets  of edges and 𝑇𝑣𝑖 ,  𝐼𝑣𝑖 ,  𝐹𝑣𝑖, where     i =1, 2  

are the matrices whose elements are the true, indeterminate and false values defined for each 
element of 𝑉𝑖, i = 1, 2,  respectively. We can now write the distances between the two neutrosophic 
vertex graphs𝐺1, 𝐺2 as follows: 

                          𝑁𝐺𝐷(𝐺1 , 𝐺2) = (𝑇𝑁𝐺𝐷(𝐺1, 𝐺2), 𝐼𝑁𝐺𝐷(𝐺1, 𝐺2), 𝐹𝑁𝐺𝐷(𝐺1, 𝐺2)) 
Where, 
                          𝑇𝑁𝐺𝐷(𝐺1, 𝐺2) = max(𝑇𝑁𝐺𝑑(𝐺1, 𝐺2), 𝑇𝑁𝐺𝑑(𝐺2, 𝐺1)) 

                           𝐼𝑁𝐺𝐷(𝐺1, 𝐺2) = max(𝐼𝑁𝐺𝑑(𝐺1, 𝐺2), 𝐼𝑁𝐺𝑑(𝐺2, 𝐺1)) 
    𝐹NGD(G1, G2) = max(𝐹𝑁𝐺𝑑(G1, G2), FNGd(G2, G1)) 

And 
𝑇NGd(𝐺1, G2) =  max

i∈V1

max
j∈V1

min
I∈V2

min
J∈V2

‖T𝑣2
(I, J) − T𝑣1

(i, j)‖ 

    𝐼NGd(G1, G2) = max
i∈V1

max
j∈V1

1

|V2|×|V2|
∑ ∑‖I𝑣2

(I, J) − I𝑣1
(i, j)‖

JєV2IєV2

   

   𝐹NGd(G1, G2) = min
i∈V1

min
j∈V1

max
I∈V2

max
J∈V2

‖F𝑣2
(I, J) − F𝑣1

(i, j)‖ 

𝑁𝐺𝑑(𝐺2, 𝐺1)can be computed in a similar way. 
Proposition1: 
The Neutrosophic vertex graph distance NGD satisfies the metric distance measure axioms: 
A1) (Symmetry):               NGD (𝐺1,, 𝐺2) = NGD (𝐺2, 𝐺1), 
A2) (Non-negativity):        NGD (𝐺1, 𝐺2) ≥ 0, 
A3) (Coincidence):             if NGD (𝐺1, 𝐺2) = 0 then 𝐺1 = 𝐺2, 
A4) (Triangle Inequality): for any three neutrosophic vertex graphs G1,  G2 and G3 we have: 

NGD (𝐺1, 𝐺2) ≤ : NGD (𝐺1, 𝐺2) + NGD (𝐺2, 𝐺3). 
Poof:   A1 and A2 can easily be proven. 
A3): When NGD (𝐺1, 𝐺2)=(𝑇𝑁𝐺𝐷(𝐺1, 𝐺2),  𝐼𝑁𝐺𝐷(𝐺1, 𝐺2),  𝐹𝑁𝐺𝐷(𝐺1, 𝐺2)) = (0, 0, 0), that is every 

component of the triple which is the maximum of two positive values is zero, the values of 
𝑇𝑁𝐺𝑑(𝐺𝑖 ,  𝐺𝑗), 𝐼𝑁𝐺𝑑(𝐺𝑖 ,  𝐺𝑗)and 𝐹𝑁𝐺𝑑(𝐺𝑖 ,  𝐺𝑗) for i, j =1, 2 are all zeros. Namely the maximum 
distance among the nearest nodes in both  𝐺1,  𝐺2  is zero.That means that the distance between 
each element of 𝑉1 and its nearest element in the set 𝑉2 is zero. That is each element in 𝑉1 coincides 
with an element in 𝑉2 and vice versa; hence   𝑉1 = 𝑉2. 

A4): Consider any three neutrosophic graphs𝐺1 = (𝑉1 , 𝐸1 ,  𝑇1, 𝐼1 ,  𝐹1 ) , 
𝐺2 =  (𝑉2 , 𝐸2 , 𝑇2, 𝐼2 , 𝐹2)𝑎𝑛𝑑 𝐺3 =  (𝑉3 , 𝐸3 , 𝑇3, 𝐼3 , 𝐹3 ). For any 𝑖𝑘,  𝑗𝑘 ∈ 𝑉𝑘, 
k =1, 2, 3, we can easily see that: 

‖𝑇3(𝑖3, 𝑗3) − 𝑇1(𝑖1, 𝑗3)‖ ≤ ‖𝑇3(𝑖3, 𝑗3) − 𝑇2(𝑖2, 𝑗2)‖ + ‖𝑇2(𝑖2, 𝑗2) − 𝑇1(𝑖1, 𝑗1)‖ 



New Trends in Neutrosophic Theory and Applications 

227 
 

Where the values 𝑇𝐾(𝑖𝐾,  𝑗𝐾), K=1, 2, 3, lye in the interval [0, 1]. Consequently, one can show 
that: 

max
𝑖1∈𝑉1

max
j1∈V1

min
i3∈V3

min
j3∈V3

‖𝑇3(𝑖3, 𝑗3) − 𝑇1(𝑖1, 𝑗3)‖ ≤ max
i2∈V2

max
j2∈V2

min
i3∈V3

min
j3∈V3

‖𝑇3(𝑖3, 𝑗3) − 𝑇2(𝑖2, 𝑗2)‖ 

+ max
i1∈V1

max
𝑗1∈𝑉1

min
𝑖2∈𝑉2

min
𝑗2∈𝑉2

‖𝑇2(𝑖2, 𝑗2) − 𝑇1(𝑖1, 𝑗1)‖ 

That is: 𝑇𝑁𝐺𝑑(𝐺1, 𝐺3) ≤ 𝑇𝑁𝐺𝑑(𝐺2, 𝐺3) + 𝑇𝑁𝐺𝑑(𝐺1, 𝐺2) 
and similarly 𝑇𝑁𝐺𝑑(𝐺3, 𝐺1) ≤ 𝑇𝑁𝐺𝑑(𝐺3, 𝐺2) + 𝑇𝑁𝐺𝑑(𝐺2, 𝐺1) 
Hence, max ( 𝑇𝑁𝐺𝑑(𝐺1, 𝐺3), 𝑇𝑁𝐺𝑑(𝐺3, 𝐺1)) ≤  max ( 𝑇𝑁𝐺𝑑(𝐺2, 𝐺3), 𝑇𝑁𝐺𝑑(𝐺3, 𝐺2) ) + max 

(𝑇𝑁𝐺𝑑(𝐺1, 𝐺2),𝑇𝑁𝐺𝑑(𝐺2, 𝐺1)).  Then, 𝑇𝑁𝐺𝐷(𝐺1, 𝐺3) ≤ 𝑇𝑁𝐺𝐷(𝐺1, 𝐺2) + 𝑇𝑁𝐺𝐷(𝐺2, 𝐺3). 
The same procedure goes for both  𝐼𝑁𝐺𝐷 and  𝐹𝑁𝐺𝐷.   That leads to 
NGD (𝐺1, 𝐺3)  ≤  NGD (𝐺1, 𝐺2) + NGD (𝐺2, 𝐺3). 
5.2 Modified Neutrosophic Haussdorff Distance: 
Consider two neutrosophic vertex graphs 𝐺1 = (𝑉1 ,  𝐸1 ,  𝑇𝑣1, 𝐼𝑣1 , 𝐹𝑣1) and 𝐺2 =  (𝑉2 , 𝐸2 ,

𝑇𝑣2, 𝐼𝑣2 , 𝐹𝑣2  ),   where 𝑉𝑖, i = 1, 2 are  the sets of nodes, 𝐸𝑖,   where i =1, 2 are the sets of edges 
and 𝑇𝑣𝑖, 𝐼𝑣𝑖 , 𝐹𝑣𝑖 , where i =1, 2  are the matrices whose elements are the true, indeterminate and false 
values defined for each element of 𝑉𝑖,     i = 1, 2,  respectively. We can now write the distances 
between the two neutrosophic vertex graphs 𝐺1, 𝐺2 as follows: 

MNGD (𝐺1, 𝐺2) = (𝑇𝑀𝑁𝐺𝐷(𝐺1, 𝐺2), 𝐼𝑀𝑁𝐺𝐷(𝐺1, 𝐺2), 𝐹𝑀𝑁𝐺𝐷(𝐺1,  𝐺2)) 
Where, 
𝑇MNGD(𝐺1, 𝐺2) = max (𝑇𝑀𝑁𝐺𝑑(𝐺1, 𝐺2),𝑇𝑀𝑁𝐺𝑑(𝐺2, 𝐺1)   (  
𝐼𝑀𝑁𝐺𝐷(𝐺1, 𝐺2)  = max (𝐼𝑀𝑁𝐺𝑑(𝐺1, 𝐺2),𝐼𝑀𝑁𝐺𝑑(𝐺2, 𝐺1)) 
𝐹MNGD(𝐺1, 𝐺2)     = max (𝐹𝑀𝑁𝐺𝑑(𝐺1, 𝐺2),𝐹𝑀𝑁𝐺𝑑(𝐺2, 𝐺1)) 
And, 

TMNGd(𝐺1, 𝐺2) =
1

|𝑉1|×|𝑉1|
∑ ∑ min

𝑖∈𝑣2

min
𝑗∈𝑣2

‖𝑇2(𝐼, 𝐽) − 𝑇1(𝑖, 𝑗)‖

𝑗∈𝑣1𝑖∈𝑣1

 

IMNGd(𝐺1, 𝐺2)  =  
1

|𝑉1|×|𝑉1|
∑ ∑

1

⌈𝑉2⌉×|𝑉2|
∑ ∑‖𝑇2(𝐼, 𝐽) − 𝑇1(𝑖, 𝑗)‖

𝐽∈𝑉2𝐼∈𝑉2

.
𝑗∈𝑣1𝑖∈𝑣1

 

FMNGd(G1, G2) =  
1

|V1|×|V1|
∑ ∑ max

𝐼∈𝑉2

max
𝐽∈𝑉2

‖𝐹2(𝐼, 𝐽) − 𝐹1(𝑖, 𝑗)‖

𝑗∈𝑉1i∈V1

 

Similarly, we can find MNGd (𝐺2, 𝐺1). 
Proposition 2: The Modified Neutrosophic vertex graph distance MNGD satisfies the metric 

distance measure axioms: 
AA1)  (symmetry):                MNGD (𝐺1,  𝐺2) = MNGD (𝐺2,  𝐺1), 
AA2)  (non-negativity):         MNGD (𝐺1,  𝐺2)  ≥ 0, 
AA3)  (coincidence):             if MNGD (𝐺1, 𝐺2) = 0 then 𝐺1= 𝐺2, 
AA4)  (triangle inequality):   for any three neutrosophic vertex graphs 𝐺1,𝐺2 and 𝐺3 we have: 
MNGD (𝐺1, 𝐺3) ≤ MNGD (𝐺1, 𝐺2) + M NGD (𝐺2, 𝐺3). 
Proof:    Similar to the procedure used to prove Proposition 1. 
 
5.3 ProbabilisticNeutrosophic Haussdorff Distance: 
To overcome the robustness of both the classical and the modified Haussdorff distance, Hue 

and Hancock [9] have developed a probabilistic variant of the Haussdorff distance. This measure 
the similarity of the set of attributes rather than using defined set based distance measures. To 
commence, we recall two edgegraphs𝐺1 = (𝑉1 , 𝐸1 , 𝑇𝑒1

, 𝐼𝑒1
, 𝐹𝑒1

) ,  𝐺2 =  (𝑉2 , 𝐸2 ,  𝑇𝑒2
, 𝐼𝑒2

 ,
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𝐹𝑒2
 ) as mentioned before, the set of all nodes connected to the node I∈ 𝐺2 by an edge is defined 

as: 
𝐶𝐼

2 = {𝐽|(𝐼, 𝐽) ∈ 𝐸2}, and the corresponding set of nodes connected to the node 𝑖 ∈ 𝐺1 by an 
edge   𝐶𝑖

1 = {𝑗|(𝑖, 𝑗) ∈ 𝐸1}. A measure for the match of the graph 𝐺2 onto  𝐺1 is: 
𝑃𝑁𝐺𝐷(𝐺1, 𝐺2) = (𝑇𝑃𝑁𝐺𝐷(𝐺1, 𝐺2),  𝐼𝑃𝑁𝐺𝐷(𝐺1, 𝐺2), 𝐹𝑃𝑁𝐺𝐷(𝐺1, 𝐺2)) 

where 
𝑇𝑃𝑁𝐺𝐷(𝐺1, 𝐺2) = max(𝑇𝑃𝑁𝐺𝑑(𝐺1, 𝐺2),  𝑇𝑃𝑁𝐺𝑑(𝐺2,  𝐺1)) 

                          𝐼𝑃𝑁𝐺𝐷(𝐺1, 𝐺2) = max(𝐼𝑃𝑁𝐺𝑑(𝐺1, 𝐺2),  𝐼𝑃𝑁𝐺𝑑(𝐺2,  𝐺1)) 
   𝐹PNGD(G1, G2) = max(𝐹𝑃𝑁𝐺𝑑(G1, G2),  FPNGd(G2,  G1)) 

and  

𝑇𝑃𝑁𝐺𝑑(𝐺1, 𝐺2) =
1

|𝑉2|×|𝑉1|
∑ ∑ max

𝐼∈𝑉2

max
𝐽∈𝐶𝐼

2
𝑃((𝑖, 𝑗) → (𝐼, 𝐽

𝑗∈𝐶𝑖
1

)
𝑖∈𝑉1

|𝑇𝑒2
(𝐼, 𝐽), 𝑇𝑒1

(𝑖, 𝑗)) 

𝐼𝑃𝑁𝐺𝑑(𝐺1, 𝐺2) =
1

|𝑉2|×|𝑉1|
∑ ∑ max

𝐼∈𝑉2

max
𝐽∈𝐶𝐼

2
𝑃((𝑖, 𝑗) → (𝐼, 𝐽

𝑗∈𝐶𝑖
1

)

𝑖𝜖𝑉1

|𝐼𝑒2
(𝐼, 𝐽), 𝐼𝑒1

(𝑖, 𝑗)) 

𝐹𝑃𝑁𝐺𝑑(𝐺1, 𝐺2) =
1

|𝑉2|×|𝑉1|
∑ ∑ min

𝐼∈𝑉2

min
𝐽∈𝐶𝐼

2
𝑃((𝑖, 𝑗) → (𝐼, 𝐽

𝑗∈𝐶𝑖
1

)
𝑖∈𝑉1

|𝐹𝑒2
(𝐼, 𝐽), 𝐹𝑒1

(𝑖, 𝑗)) 

In this formula the posteriori probability 𝑃 ((𝑖, 𝑗) → (𝐼, 𝐽) → (𝐼, 𝐽)|𝑇𝑒2
(𝐼 , 𝐽), 𝑇𝑒1

(𝑖, 𝑗)) 
represents the true value for the match of the 𝐺2 edge (I, J) onto the 𝐺1 edge (i, j) provided by 

the corresponding pair of 𝑇𝑒2
(𝐼, 𝐽) and 𝑇𝑒1

(𝑖, 𝑗).  This similarity measure works as follows, it 
commence with finding the maximum probability over the nodes in 𝐶𝐼

2 then averaging the edge 
compatibilities over the nodes 𝐶𝑖

1. Similarly we consider the maximum probability over the nodes 
in the graph 𝐺2 followed by averaging over the nodes in𝐺1.It worth mentioned here that unlike 
Neutrosophic Haussdorff distance this similarity measure does not satisfy the distance axioms. 
Moreover, while the true components of the Neutrosophic Haussdorff distance measures the 
maximum distance between two sets of observations, our measures here returns the maximum 
similarity. Back to the rest formulae of the posteriori probability which represent the indeterminacy 
value and the false value for the match of the 𝐺2 edge (I, J) onto the 𝐺1 edge (i, j) using similar 
procedure to the true value.We still need to compute the probabilities𝑃((𝑖, 𝑗) → (𝐼, 𝐽)|𝑇𝑒2

(𝐼,

𝐽), 𝑇𝑒1
(𝑖, 𝑗)), 

𝑃 ((𝑖, 𝑗) → (𝐼, 𝐽)|𝐼𝑒2
(𝐼, 𝐽), 𝐼𝑒1

(𝑖, 𝑗)) and   𝑃((𝑖, 𝑗) → (𝐼, 𝐽)|𝐹𝑒2
(𝐼, 𝐽), 𝐹𝑒1

(𝑖, 𝑗)) . For that 
purpose we will use a robust weighting function: 

𝑃((𝑖, 𝑗) → (𝐼, 𝐽)|𝑇𝑒2
(𝐼, 𝐽), 𝑇𝑒1

(𝑖, 𝑗)) =
Г𝜎(‖𝑇𝑒2

(𝐼, 𝐽), 𝑇𝑒1
(𝑖, 𝑗)‖)

∑ Г𝜎(‖𝑇𝑒2
(𝐼, 𝐽), 𝑇𝑒1

(𝑖, 𝑗)‖)(𝐼,𝐽)𝜖𝐸2

 

𝑃((𝑖, 𝑗) → (𝐼, 𝐽)|𝐼𝑒2
(𝐼, 𝐽), 𝐼𝑒1

(𝑖, 𝑗)) =
Г𝜎(‖𝐼𝑒2

(𝐼, 𝐽), 𝐼𝑒1
(𝑖, 𝑗)‖)

∑ Г𝜎(‖𝐼𝑒2
(𝐼, 𝐽), 𝐼𝑒1

(𝑖, 𝑗)‖)(𝐼,𝐽)𝜖𝐸2

 

𝑃((𝑖, 𝑗) → (𝐼, 𝐽)|𝑇𝐹𝑒2
(𝐼, 𝐽), 𝑇𝐹𝑒1

(𝑖, 𝑗)) =
Г𝜎(‖𝐹𝑒2

(𝐼, 𝐽), 𝐹𝑒1
(𝑖, 𝑗)‖)

∑ Г𝜎(‖𝐹𝑒2
(𝐼, 𝐽), 𝐹𝑒1

(𝑖, 𝑗)‖)(𝐼,𝐽)𝜖𝐸2

 

WhereГ𝜎(. ) is a distance weighting function. There are several alternative robust weighting 
functions. For instance, one may consider the Gaussian of the form   

Г𝜎(𝑝) = exp (
−𝜌2

2𝜎2) where 𝜌2 = (𝑇𝑒2
(𝐼, 𝐽) − 𝑇𝑒1

(𝑖, 𝑗))
2

 according to the true part,  
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𝜌2 = (𝐼𝑒2
(𝐼, 𝐽) − 𝐼𝑒1

(𝑖, 𝑗))
2

according to the indeterminacy part and 𝜌2 = (𝐹𝑒2
(𝐼, 𝐽) −

𝐹𝑒1
(𝑖, 𝑗))

2

  according to the false part, where𝜎 is the standard deviation. The similarity measure 
can be viewed as an average pairwise attribute consistency measure. 

6. Conclusion and Future Work 
Graphs are the most powerful and handy tool used in representing objects and concepts. This 

paper is dedicated for presenting new neutrosophic similarity and dissimilarity measures between 
neutrosophic graphs. The proposed distance measures are based on the Haussdorff distance, a 
modified and a probabilistic variant of the Haussdorff distance, additionally we proved that the 
given Neutrosophic Haussdorff and the Neutrosophic Modified Haussdorff distances satisfy the 
metric distance measure axioms. The aim is to use those measures for the purpose of matching 
graphswhose structure is described in the neutrosophic domain.In our plan for the future we will 
consider using the deduced measurements in image processing applications, such as image 
clustering and segmentation. 
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Operations on Interval Valued Neutrosophic Graphs 

Abstract 
Combining the single valued neutrosophic set with graph theory, a new graph model emerges, 

called single valued neutrosophic graph. This model allows attaching the truth-membership (t), 
indeterminacy–membership (i) and falsity- membership degrees (f) both to vertices and edges. 
Combining the interval valued neutrosophic set with graph theory, a new graph model emerges, 
called interval valued neutrosophic graph. This model generalizes the fuzzy graph, intuitionistic 
fuzzy graph and single valued neutrosophic graph. In this paper, the authors define operations of 
Cartesian product, composition, union and join on interval valued neutrosophic graphs, and 
investigate some of their properties, with proofs and examples. 

Keywords 
Neutrosophy, neutrosophic set, fuzzy set, fuzzy graph, neutrosophic graph, interval valued 

neutrosophic set, single valued neutrosophic graph, interval valued neutrosophic graph. 
 

1. Introduction 
The neutrosophy was pioneered by F. Smarandache (1995, 1998). It is a branch of philosophy 

which studies the origin, nature, and scope of neutralities, as well as their interactions with different 
ideational spectra. The neutrosophic set proposed by Smarandache is a powerful tool to deal with 
incomplete, indeterminate and inconsistent information in real world, being a generalization of 
fuzzy set ( Zadeh 1965; Zimmermann 1985), intuitionistic fuzzy set (Atanassov 1986; Atanassov 
1999),interval valued fuzzy set (Turksen 1986) and interval valued intuitionistic fuzzy sets 
(Atanassov and Gargov 1989).The neutrosophic set is characterized by a truth-membership degree 
(t), an indeterminacy-membership degree (i) and a falsity-membership degree (f) independently, 
which are within the real standard or nonstandard unit interval ]−0, 1+[. If the range is restrained 
within the real standard unit interval [0, 1], the neutrosophic set easily applies to engineering 
problems. For this purpose, Wang et al. (2010) introduced the concept of single valued 
neutrosophic set (SVNS) as a subclass of the neutrosophic set. The same author introduced the 
notion of interval valued neutrosophic sets (Wang et al. 2005b, 2010) as subclass of neutrosophic 
sets in which the value of truth-membership, indeterminacy-membership and falsity-membership 
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degrees are intervals of numbers instead of real numbers. The single valued neutrosophic set and 
the interval valued neutrosophic set have been applied in a wide variety of fields, including 
computer science, engineering, mathematics, medicine and economics (Ansari 2013a, 2013b, 
2013c;Aggarwal 2010;Broumi 2014;Deli 2015;Hai-Long 2015;Liu and Shi 2015;Şahin 2015; 
Wang et al. 2005b;Ye 2014a, 2014b,2014c). 

Graph theory has now become a major branch of applied mathematics and it is generally 
regarded as a branch of combinatorics. Graph is a widely used tool for solving combinatorial 
problems in different areas, such as geometry, algebra, number theory, topology, optimization and 
computer science. To be noted that, when there is uncertainty regarding either the set of vertices 
or edges, or both, the model becomes a fuzzy graph. Many works on fuzzy graphs, intuitionistic 
fuzzy graphs and interval valued intuitionistic fuzzy graphs (Antonios K et al. 2014; Bhattacharya 
1987; Mishra and Pal 2013; Nagoor Gani and Shajitha Begum 2010; Nagoor Gani and Latha 2012; 
Nagoor Gani and Basheer Ahamed 2003;Parvathi and Karunambigai 2006; Shannon and 
Atanassov 1994) have been carried out and all of them have considered the vertex sets and edge 
sets as fuzzy and /or intuitionistic fuzzy sets. But, when the relations between nodes (or vertices) 
are indeterminate, the fuzzy graphs and intuitionistic fuzzy graphs fail to work. For this purpose, 
Smarandache (2015a, 2015b, 2015c) defined four main categories of neutrosophic graphs. Two 
are based on literal indeterminacy (I): I-edge neutrosophic graph and I-vertex neutrosophic graph. 
The two categories were deeply studied and gained popularity among the researchers (Garg et al. 
2015,Vasantha Kandasamy2004, 2013, 2015) due to their applications via real world problems. 
The other neutrosophic graph categories are based on (t, i, f) components and are called:(t, i, f)-
edge neutrosophic graph and (t, i, f)-vertex neutrosophic graph. These two categories are not 
developed at all.  

Further on, Broumi et al. (2016b) introduced a new neutrosophic graph model, called single 
valued neutrosophic graph (SVNG), and investigated some of its properties as well. This model 
allows attaching the membership (t), indeterminacy (i) and non-membership degrees (f) both to 
vertices and edges. The single valued neutrosophic graph is a generalization of fuzzy graph and 
intuitionistic fuzzy graph. Broumi et al. (2016a) also introduced neighborhood degree of a vertex 
and closed neighborhood degree of a vertex in single valued neutrosophic graph, as a 
generalization of neighborhood degree of a vertex and closed neighborhood degree of a vertex in 
fuzzy graph and intuitionistic fuzzy graph. Moreover, Broumi et al. (2016c) introduced the concept 
of interval valued neutrosophic graph, as a generalization of single valued neutrosophic graph, and 
discussed some properties, with proofs and examples. In addition, Broumi et al.(2016c) introduced 
the concept of bipolar single valued neutrosophic graph, as a generalization of fuzzy graphs, 
intuitionistic fuzzy graph, N-graph, bipolar fuzzy graph and single valued neutrosophic graph, and 
studied some related properties. 

In this paper, researchers’ objective is to define some operations on interval valued neutrosophic 
graphs, and to investigate some properties. 

http://ip.ios.semcs.net/search?q=author%3A%28%22Yang,%20Hai-Long%22%29
http://www.amazon.com/s/ref=dp_byline_sr_ebooks_1?ie=UTF8&text=W.+B.+Vasantha+Kandasamy&search-alias=digital-text&field-author=W.+B.+Vasantha+Kandasamy&sort=relevancerank
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2. Preliminaries 

In this section, the authors mainly recall some notions related to neutrosophic sets, single valued 
neutrosophic sets, interval valued neutrosophic sets, fuzzy graphs, intuitionistic fuzzy graphs, 
interval valued intuitionistic fuzzy graphs, single valued neutrosophic graphs and interval valued 
neutrosophic graphs, relevant to the present work. The readers are referred for further details to 
(Broumi et al. 2016b;Mishra and Pal 2013;Nagoor Gani and Basheer Ahamed 2003;Parvathi and 
Karunambigai 2006;Smarandache 2006;Wang et al. 2010;Wang et al. 2005a). 

Definition 1 (Smarandache 2006) 

Let X be a space of points (objects) with generic elements in X denoted by x; then the 
neutrosophic set A (NS A) is an object having the form A = {< x: TA(x), IA(x), FA(x)>, x ∈X}, 
where the functions T, I, F: X→]−0,1+[  define respectively a truth-membership function, an 
indeterminacy-membership function, and a falsity-membership function of the element x ∈X to 
the set A with the condition: 

−0 ≤ TA(x)+ IA(x)+ FA(x)≤ 3+.                            (1) 

The functions TA(x), IA(x) and FA(x) are real standard or nonstandard subsets of ]−0,1+[. 

Since it is difficult to apply NSs to practical problems, Wang et al. 2010 introduced the concept 
of a SVNS, which is an instance of a NS and can be used in real scientific and engineering 
applications. 

Definition 2 (Wang et al. 2010) 

Let X be a space of points (objects) with generic elements in X denoted by x. A single valued 
neutrosophic set A (SVNS A) is characterized by truth-membership function TA(x) , an 
indeterminacy-membership function IA(x), and a falsity-membership function FA(x). For each 
point x in X, TA(x), IA(x), FA(x)∈ [0, 1]. A SVNS A can be written as  

A = {< x: TA(x), IA(x), FA(x)>, x ∈ X}     
 (2) 

Definition 3 (Wang et al. 2005a) 

Let X be a space of points (objects) with generic elements in X denoted by x. An interval valued 
neutrosophic set (for short IVNS A) A in X is characterized by truth-membership function TA(x), 
indeteminacy-membership function IA(x) and falsity-membership function FA(x). For each point 
x in X, one has that 

TA(x) = [𝑇𝐴𝐿(x), 𝑇𝐴𝑈(x)],  

IA(x) = [𝐼𝐴𝐿(𝑥), 𝐼𝐴𝑈(𝑥)], 

FA(x) = [𝐹𝐴𝐿(𝑥), 𝐹𝐴𝑈(𝑥)] ⊆[0, 1], and 

0 ≤ TA(x)+ IA(x)+ FA(x)≤ 3.       (3) 

 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Smarandache,%20F..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Wang%2C%20H..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Wang%2C%20H..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Smarandache,%20F..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Wang%2C%20H..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Wang%2C%20H..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Wang%2C%20H..QT.&newsearch=true
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Definition 4 (Wang et al. 2005a) 

An IVNS A is contained in the IVNS B, A ⊆ B, if and only if 

𝑇𝐴𝐿(x) ≤ 𝑇𝐵𝐿(x),  𝑇𝐴𝑈(x) ≤ 𝑇𝐵𝑈(x),   

𝐼𝐴𝐿(x) ≥ 𝐼𝐵𝐿(x), 𝐼𝐴𝑈(x) ≥ 𝐼𝐵𝑈(x),  

𝐹𝐴𝐿(x) ≥ 𝐹𝐵𝐿(x), 𝐹𝐴𝑈(x) ≥ 𝐹𝐵𝑈(x), for any x in X.    (4) 

Definition 5 (Wang et al. 2005a) 

The union of two interval valued neutrosophic sets A and B is an interval neutrosophic set C, 

written as C = A ∪  B, whose truth-membership, indeterminacy-membership, and false 

membership are related to those A and B by 

𝑇𝐶𝐿(x) =  max (𝑇𝐴𝐿(x),  𝑇𝐵𝐿(x)) 

𝑇𝐶𝑈(x) =  max (𝑇𝐴𝑈(x),  𝑇𝐵𝑈(x)) 

𝐼𝐶𝐿(x) =  min (𝐼𝐴𝐿(x),  𝐼𝐵𝐿(x)) 

𝐼𝐶𝑈(x) =  min (𝐼𝐴𝑈(x),  𝐼𝐵𝑈(x)) 

𝐹𝐶𝐿(x) =  min (𝐹𝐴𝐿(x),  𝐹𝐵𝐿(x)) 

𝐹𝐶𝑈(x) = min (𝐹𝐴𝑈(x),  𝐹𝐵𝑈(x)), for all x in X.               (5) 

Definition 6 (Wang et al 2005a) 

Let X and Y be two non-empty crisp sets. An interval valued neutrosophic relation R(X, Y) is a 

subset of product space X × Y, and is characterized by the truth membership function 𝑇𝑅(x, y), 

the indeterminacy membership function IR(x, y), and the falsity membership function 𝐹𝑅(x, y), 

where x ∈ X and y ∈ Y and 𝑇𝑅(x, y),IR(x, y),𝐹𝑅(x, y) ⊆ [0, 1]. 

Definition 7 (Nagoor Gani and Basheer Ahamed 2003) 

A fuzzy graph is a pair of functions G = (σ, µ), where σ is a fuzzy subset of a non-empty set V and 

μ is a symmetric fuzzy relation on σ, i.e.σ: V → [ 0,1] and  μ: VxV→[0,1], such that    μ(uv) ≤ 

σ(u) ⋀σ(v), for all u, v ∈ V where uv denotes the edge between u and v and σ(u) ⋀σ(v) denotes 

the minimum of σ(u) and σ(v). σ is called the fuzzy vertex set of G andμ is called the fuzzy edge 

set of G. 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Wang%2C%20H..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Wang%2C%20H..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Wang%2C%20H..QT.&newsearch=true
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Figure 1: Fuzzy Graph 

 

Definition 8 (Nagoor Gani and Basheer Ahamed 2003) 

The fuzzy subgraph H=(τ,ρ) is called a fuzzy subgraph of G =( σ, µ) if τ(u) ≤ σ(u) for all u ∈ V 

and ρ(u, v) ≤  μ(u, v)  for all u, v ∈ V. 

Definition 9 (Parvathi and Karunambigai 2006) 

An Intuitionistic fuzzy graph is of the form G=<V,E>,where V={v1,v2,….,vn},such that 𝜇1:V→ 
[0,1] and 𝛾1:V→ [0,1] denote the degree of membership and non-membership of the elementvi ∈ 
V, respectively, and 

0≤ 𝜇1(vi)+𝛾1(vi))≤ 1,forevery  vi ∈ V,(i=1, 2,……. n),  (6) 

 E  ⊆ VxVwhere 𝜇2:VxV→[0,1]and 𝛾2:VxV→ [0,1] are such that 𝜇2(vi,vj)≤ min[𝜇1(vi),𝜇1(vj)] 

and 𝛾2(vi,vj)≥ max[𝛾1(vi),𝛾1(vj)], and 

0≤𝜇2(vi,vj)+𝛾2(vi,vj)≤1 for every (vi,vj) ∈E,(i,j =1,2,……. n) (7) 

 

Figure 2: Intuitionistic Fuzzy Graph 
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Definition 10 (Mishra and Pal 2013) 

An interval valued intuitionistic fuzzy graph (IVIFG) G= (A, B) satisfies the following 
conditions:  

1.V= {𝑣1  ,𝑣2  ,…  ,𝑣𝑛 } such that 𝑀𝐴𝐿 :V→[0, 1],𝑀𝐴𝑈 :V→[0, 1]  and 𝑁𝐴𝐿 :V→[0,1], 
𝑁𝐴𝑈 :V→[0, 1] denote the degree of membership and non-membership of the element 𝑦 ∈ V, 
respectively,  and 

0≤ 𝑀𝐴(𝑥) +𝑁𝐴(𝑥) ≤1 for every  𝑥 ∈ V                       
 (8) 

2.The functions  𝑀𝐵𝐿:V x V →[0, 1],𝑀𝐵𝑈:V x V →[0, 1] and 𝑁𝐵𝐿:V x V →[0,1], 𝑁𝐵𝑈:V x 
V →[0, 1] are denoted by 

𝑀𝐵𝐿(𝑥𝑦) ≤ min [𝑀𝐴𝐿(𝑥), 𝑀𝐴𝐿(𝑦)], 𝑀𝐵𝑈(𝑥𝑦) ≤ min [𝑀𝐴𝑈(𝑥), 𝑀𝐴𝑈(𝑦)] 

𝑁𝐵𝐿(𝑥𝑦) ≥ max [𝑁𝐵𝐿(𝑥), 𝑁𝐵𝐿(𝑦)] ,  𝑁𝐵𝑈(𝑥𝑦) ≥ max[𝑁𝐵𝑈(𝑥), 𝑁𝐵𝑈(𝑦)]  

such that    0≤ 𝑀𝐵(𝑥𝑦)  + 𝑁𝐵(𝑥𝑦) ≤1, for every  𝑥𝑦 ∈ E     (9) 

 
Figure 3: Interval valued intuitionistic graph 

 

Definition 11 (Broumi et al. 2016b) 

A single valued neutrosophic graph (SVN-graph) with underlying set V is defined to be a pair 
G= (A, B), where: 

1.The functions 𝑇𝐴:V→[0, 1], 𝐼𝐴:V→[0, 1] and 𝐹𝐴:V→[0, 1] denote the degree of truth-
membership, degree of indeterminacy-membership and falsity-membership of the element 𝑣𝑖 ∈ V, 
respectively, and 

0≤ 𝑇𝐴(𝑣𝑖) + 𝐼𝐴(𝑣𝑖) +𝐹𝐴(𝑣𝑖) ≤3, for all  𝑣𝑖 ∈ V (i=1, 2, …,n)  (10) 

2. The functions   𝑇𝐵: E ⊆ V x V →[0, 1],𝐼𝐵: E ⊆ V x V →[0, 1] and 𝐹𝐵: E ⊆ V x V →[0, 
1] are defined by 
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𝑇𝐵({𝑣𝑖 , 𝑣𝑗}) ≤ min [𝑇𝐴(𝑣𝑖), 𝑇𝐴(𝑣𝑗)], 

𝐼𝐵({𝑣𝑖 , 𝑣𝑗}) ≥ max [𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗)] and 

𝐹𝐵({𝑣𝑖 , 𝑣𝑗}) ≥ max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)]                                                                  (11)       

and denote the degree of truth-membership, indeterminacy-membership and falsity-
membership of the edge (𝑣𝑖,𝑣𝑗) ∈ E respectively, where 

 0≤ 𝑇𝐵({𝑣𝑖 , 𝑣𝑗}) + 𝐼𝐵({𝑣𝑖 , 𝑣𝑗})+ 𝐹𝐵({𝑣𝑖 , 𝑣𝑗}) ≤3, 

for all  {𝑣𝑖 , 𝑣𝑗} ∈ E (i, j = 1, 2,…, n).       (12) 

“A”is called the single valued neutrosophic vertex set of V, “B” - the single valued neutrosophic 
edge set of E, respectively. B is a symmetric single valued neutrosophic relation on A. The notation 
(𝑣𝑖 , 𝑣𝑗)is used for an element of E. Thus, G = (A, B) is a single valued neutrosophic graph of G∗= 
(V, E), if : 

𝑇𝐵(𝑣𝑖 , 𝑣𝑗) ≤ min [𝑇𝐴(𝑣𝑖), 𝑇𝐴(𝑣𝑗)], 

𝐼𝐵(𝑣𝑖 , 𝑣𝑗) ≥ max [𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗)] and 

𝐹𝐵(𝑣𝑖 , 𝑣𝑗) ≥ max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)],     for all  (𝑣𝑖 , 𝑣𝑗) ∈ E   (13) 

 
Figure 4: Single valued neutrosophic graph 

 

Definition 12 (Broumi et al. 2016b) 

Let G = (A, B) be a single valued neutrosophic graph. Then the degree of a vertex v is defined 
by d(v)= (𝑑𝑇(𝑣), 𝑑𝐼(𝑣),𝑑𝐹(𝑣)), where  

𝑑𝑇(𝑣)=∑ 𝑇𝐵(𝑢, 𝑣)𝑢≠𝑣 , 𝑑𝐼(𝑣)=∑ 𝐼𝐵(𝑢, 𝑣)𝑢≠𝑣  and 𝑑𝐹(𝑣)=∑ 𝐹𝐵(𝑢, 𝑣)𝑢≠𝑣  (14) 
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Definition 13 (Broumi et al. 2016b)  

A single valued neutrosophic graph G= (A,  B) and 𝐺∗ is called  strong neutrosophic graph 

𝑇𝐵(𝑣𝑖 , 𝑣𝑗) = min [𝑇𝐴(𝑣𝑖), 𝑇𝐴(𝑣𝑗)] 

𝐼𝐵(𝑣𝑖 , 𝑣𝑗) = max [𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗)]  

𝐹𝐵(𝑣𝑖 , 𝑣𝑗) = max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)]  for all (𝑣𝑖 , 𝑣𝑗) ∈ E.                                (15) 

Definition 14 (Broumi et al. 2016b) 

The complement of a strong single valued neutrosophic graph G on  𝐺∗ is strong single valued 
neutrosophic graph �̅� on 𝐺∗ where 

1.�̅� =V 

2.𝑇𝐴
̅̅ ̅(𝑣𝑖)= 𝑇𝐴(𝑣𝑖),𝐼�̅�(𝑣𝑖)= 𝐼𝐴(𝑣𝑖),𝐹𝐴

̅̅ ̅(𝑣𝑖)= 𝐹𝐴(𝑣𝑖), 𝑣𝑗 ∈ V. 

3.𝑇𝐵
̅̅ ̅(𝑣𝑖 , 𝑣𝑗)= min [𝑇𝐴(𝑣𝑖), 𝑇𝐴(𝑣𝑗)]-𝑇𝐵(𝑣𝑖, 𝑣𝑗) 

𝐼�̅�(𝑣𝑖 , 𝑣𝑗)= max [𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗)]-𝐼𝐵(𝑣𝑖 , 𝑣𝑗) and 

𝐹𝐵
̅̅ ̅(𝑣𝑖 , 𝑣𝑗)= max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)]-𝐹𝐵(𝑣𝑖 , 𝑣𝑗), for all (𝑣𝑖 , 𝑣𝑗) ∈ E.               (16)  

Definition 15 (Broumi et al. 2016b) 

A single valued neutrosophic graph G = (A, B) is called complete, if: 

𝑇𝐵(𝑣𝑖 , 𝑣𝑗)= min(𝑇𝐴(𝑣𝑖), 𝑇𝐴(𝑣𝑗)),  

𝐼𝐵(𝑣𝑖 , 𝑣𝑗)= max(𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗))  

and 𝐹𝐵(𝑣𝑖 , 𝑣𝑗)= max(𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)), for every 𝑣𝑖 , 𝑣𝑗 ∈ V.  (17) 

Example 1 

Consider a graph 𝐺∗= (V, E) such that V = {a, b, c, d} , E= {ab ,ac ,bc , cd}. Then, G= (A, B) 
is a single valued neutrosophic complete graph of 𝐺∗. 

 
Figure 5:  Complete single valued neutrosophic graph 
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3. Operations on Interval-Valued Neutrosophic Graphs 

Throughout this section, G∗ = (V, E) denotes a crisp graph, and G - an interval valued neutrosophic 

graph. 

Definition 16 

By an interval-valued neutrosophic graph of a graph 𝐺∗=(V,E)one means a pair G=(A,B), where 

A=< [𝑇𝐴𝐿, 𝑇𝐴𝑈], [𝐼𝐴𝐿, 𝐼𝐴𝑈], [𝐹𝐴𝐿, 𝐹𝐴𝑈]>is an interval-valued neutrosophic set on V and B=< [𝑇𝐵𝐿, 

𝑇𝐵𝑈], [𝐼𝐵𝐿 , 𝐼𝐵𝑈], [𝐹𝐵𝐿 , 𝐹𝐵𝑈 ] > is an interval-valued neutrosophic relation on E satisfying the 

following condition:  

1.V= {𝑣1,𝑣2 ,…,𝑣𝑛} such that 𝑇𝐴𝐿:V→[0, 1],𝑇𝐴𝑈:V→[0, 1], 𝐼𝐴𝐿 :V→[0,1],𝐼𝐴𝑈 :V→[0, 1] and 
𝐹𝐴𝐿:V→[0,1], 𝐹𝐴𝑈:V→[0, 1] denote the degree of truth-membership, the degree of  indeterminacy- 
membership and falsity-membership of the element 𝑦 ∈ V, respectively, and 

0≤ 𝑇𝐴(𝑣𝑖)+ 𝐼𝐴(𝑣𝑖) +𝐹𝐴(𝑣𝑖) ≤3, 

for every𝑣𝑖 ∈ V.         (18)  

2. The functions 𝑇𝐵𝐿:V x V →[0, 1],𝑇𝐵𝑈:V x V →[0, 1],𝐼𝐵𝐿:V x V →[0, 1],𝐼𝐵𝑈:V x V →[0, 1] 
and 𝐹𝐵𝐿:V x V →[0,1], 𝐹𝐵𝑈:V x V →[0, 1], such that 

𝑇𝐵𝐿(𝑣𝑖, 𝑣𝑗) ≤ min [𝑇𝐴𝐿(𝑣𝑖), 𝑇𝐴𝐿(𝑣𝑗)] 

𝑇𝐵𝑈(𝑣𝑖 , 𝑣𝑗) ≤ min [𝑇𝐴𝑈(𝑣𝑖), 𝑇𝐴𝑈(𝑣𝑗)]                                                        

𝐼𝐵𝐿(𝑣𝑖 , 𝑣𝑗) ≥ max [𝐼𝐵𝐿(𝑣𝑖), 𝐼𝐵𝐿(𝑣𝑗)]  

𝐼𝐵𝑈(𝑣𝑖 , 𝑣𝑗) ≥ max [𝐼𝐵𝑈(𝑣𝑖), 𝐼𝐵𝑈(𝑣𝑗)]  

and 

𝐹𝐵𝐿(𝑣𝑖 , 𝑣𝑗) ≥ max [𝐹𝐵𝐿(𝑣𝑖), 𝐹𝐵𝐿(𝑣𝑗)]  

𝐹𝐵𝑈(𝑣𝑖 , 𝑣𝑗) ≥ max [𝐹𝐵𝑈(𝑣𝑖), 𝐹𝐵𝑈(𝑣𝑗)] (19) 

denote the degree of truth-membership, indeterminacy-membership and falsity-membership of 
the edge (𝑣𝑖,𝑣𝑗) ∈ E respectively, where 

0≤ 𝑇𝐵(𝑣𝑖, 𝑣𝑗) + 𝐼𝐵(𝑣𝑖, 𝑣𝑗)+ 𝐹𝐵(𝑣𝑖 , 𝑣𝑗) ≤3, 

for all (𝑣𝑖 , 𝑣𝑗) ∈ E.         (20) 

Example 2 

Figure 5 is an example for IVNG, G = (A,B) defined on a graph 𝐺∗= (V, E)  

such that V = {x, y, z}, E = {xy, yz, zx}, A is an interval valued neutrosophic set of V 
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A={ < x, [0.5, 0.7], [0.2, 0.3], [0.1, 0.3]>, <y, [0.6, 0.7],[0.2, 0.4], [0.1, 0.3]>, <z, [0.4, 0.6],[0.1, 
0.3], [0.2, 0.4],>}, and B an interval valued neutrosophic set of  E⊆V x V 

B={ <xy, [0.3, 0.6], [0.2, 0.4], [0.2, 0.4]>, <yz, [0.3, 0.5],[0.2, 0.5], [0.2, 0.4]>, <xz, [0.3, 
0.5],[0.3,  0.5], [0.2, 0.4]>}. 

 
Figure 6:  Interval valued neutrosophic graph 

By routine computations, it is easy to see that G=(A,B) is an interval valued neutrosophic graph of 

𝐺∗. 

Here, the new concept of Cartesian product is given. 

Definition 17 

Let 𝐺∗ =  𝐺1
∗×𝐺2

∗=(V, E) be the Cartesian product of two graphs where V = 𝑉1×𝑉2and E= {(𝑥, 
𝑥2) (𝑥, 𝑦2) /𝑥 ∈ 𝑉1, 𝑥2𝑦2 ∈ 𝐸2} ∪{(𝑥1,  𝑧) (𝑦1, 𝑧) /𝑧 ∈ 𝑉2, 𝑥1𝑦1 ∈ 𝐸1}; then, the Cartesian product 
G = 𝐺1×𝐺2 = ( 𝐴1×𝐴2, 𝐵1×𝐵2 ) is an interval valued neutrosophic graph defined by 

1) (𝑇𝐴1𝐿×𝑇𝐴2𝐿) (𝑥1,𝑥2) = min (𝑇𝐴1𝐿(𝑥1), 𝑇𝐴2𝐿(𝑥2)) 
(𝑇𝐴1𝑈×𝑇𝐴2𝑈) (𝑥1,𝑥2) = min (𝑇𝐴1𝑈(𝑥1), 𝑇𝐴2𝑈(𝑥2)) 
(𝐼𝐴1𝐿×𝐼𝐴2𝐿) (𝑥1,𝑥2) = max (𝐼𝐴1𝐿(𝑥1), 𝐼𝐴2𝐿(𝑥2)) 
(𝐼𝐴1𝑈×𝐼𝐴2𝑈) (𝑥1,𝑥2) = max (𝐼𝐴1𝑈(𝑥1), 𝐼𝐴2𝑈(𝑥2)) 
(𝐹𝐴1𝐿×𝐹𝐴2𝐿) (𝑥1,𝑥2) = max (𝐹𝐴1𝐿(𝑥1), 𝐹𝐴2𝐿(𝑥2)) 
(𝐹𝐴1𝑈×𝐹𝐴2𝑈) (𝑥1,𝑥2) = max (𝐹𝐴1𝑈(𝑥1), 𝐹𝐴2𝑈(𝑥2)) 

for all ( 𝑥1,𝑥2) ∈ 𝑉.         
 (21) 

2) (𝑇𝐵1𝐿×𝑇𝐵2𝐿) ((𝑥,𝑥2)(𝑥,𝑦2)) = min (𝑇𝐴1𝐿(𝑥), 𝑇𝐵2𝐿(𝑥2𝑦2)) 
(𝑇𝐵1𝑈×𝑇𝐵2𝑈) ((𝑥,𝑥2)(𝑥,𝑦2))  = min (𝑇𝐴1𝑈(𝑥), 𝑇𝐵2𝑈(𝑥2𝑦2)) 
(𝐼𝐵1𝐿×𝐼𝐵2𝐿) ((𝑥,𝑥2)(𝑥,𝑦2)) = max (𝐼𝐴1𝐿(𝑥), 𝐼𝐵2𝐿(𝑥2𝑦2)) 
(𝐼𝐵1𝑈×𝐼𝐵2𝑈) ((𝑥,𝑥2)(𝑥,𝑦2)) = max (𝐼𝐴1𝑈(𝑥), 𝐼𝐵2𝑈(𝑥2𝑦2)) 
(𝐹𝐵1𝐿×𝐹𝐵2𝐿) ((𝑥,𝑥2) (𝑥,𝑦2)) = max (𝐹𝐴1𝐿(𝑥), 𝐹𝐵2𝐿(𝑥2𝑦2)) 
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(𝐹𝐵1𝑈×𝐹𝐵2𝑈) ((𝑥,𝑥2)(𝑥,𝑦2)) = max(𝐹𝐴1𝑈(𝑥), 𝐹𝐵2𝑈(𝑥2𝑦2)), 

∀ x ∈ 𝑉1,∀𝑥2𝑦2 ∈ 𝐸2.                    
(22) 

 

3) (𝑇𝐵1𝐿×𝑇𝐵2𝐿) ((𝑥1,𝑧) (𝑦1,𝑧)) = min (𝑇𝐵1𝐿(𝑥1𝑦1), 𝑇𝐴2𝐿(𝑧)) 
(𝑇𝐵1𝑈×𝑇𝐵2𝑈) ((𝑥1,𝑧) (𝑦1,𝑧)) = min (𝑇𝐵1𝑈(𝑥1𝑦1), 𝑇𝐴2𝑈(𝑧)) 
(𝐼𝐵1𝐿×𝐼𝐵2𝐿) ((𝑥1 ,𝑧) (𝑦1,𝑧)) = max (𝐼𝐵1𝐿(𝑥1𝑦1), 𝐼𝐴2𝐿(𝑧)) 
(𝐼𝐵1𝑈×𝐼𝐵2𝑈) ((𝑥1 ,𝑧) (𝑦1,𝑧)) = max (𝐼𝐵1𝑈(𝑥1𝑦1), 𝐼𝐴2𝑈(𝑧)) 
(𝐹𝐵1𝐿×𝐹𝐵2𝐿) ((𝑥1 ,𝑧) (𝑦1,𝑧)) = max (𝐹𝐵1𝐿(𝑥1𝑦1), 𝐹𝐴2𝐿(𝑧)) 
(𝐹𝐵1𝑈×𝐹𝐵2𝑈) ((𝑥1 ,𝑧) (𝑦1,𝑧)) = max (𝐹𝐵1𝑈(𝑥1𝑦1), 𝐹𝐴2𝑈(𝑧)) 

∀ z ∈ 𝑉2, ∀𝑥1𝑦1 ∈ 𝐸1.         (23) 

Example 3 

Let 𝐺1
∗= (𝐴1, 𝐵1) and 𝐺2

∗= (𝐴2, 𝐵2) be two graphs where𝑉1 ={a, b}, 𝑉2 ={c, d},𝐸1 ={a, b} and 
𝐸2 ={c, d}.Consider two interval valued neutrosophic graphs: 

𝐴1={ <a, [0.5, 0.7], [0.2, 0.3], [0.1, 0.3]>, <b, [0.6, 0.7],[0.2, 0.4], [0.1, 0.3]>}, 

𝐵1={ <ab, [0.3, 0.6], [0.2, 0.4], [0.2, 0.4]>}; 

 

𝐴2={ <c, [0.4, 0.6], [0.2, 0.3], [0.1, 0.3]>, <d, [0.4, 0.7],[0.2, 0.4], [0.1, 0.3}>}, 

𝐵2={ <cd, [0.3, 0.5], [0.4, 0.5], [0.3, 0.5]>}. 

 

 

 
Figure 7: Interval valued neutrosophic graph G1 

 

 

 
Figure 8: Interval valued neutrosophic graph G2 

 



Florentin Smarandache, Surapati Pramanik (Editors) 

 

242 
 

 
Figure 9: Cartesian product of interval valued neutrosophic graph 

By routine computations, It is easy to see that G1×G2 is an interval-valued neutrosophic graph of 

𝐺1
∗×𝐺2

∗. 

Proposition 1 

The Cartesian product G1×G2=( 𝐴1×𝐴2, 𝐵1×𝐵2 ) of two interval  valued neutrosophic graphs of 

the graphs 𝐺1
∗and𝐺2

∗ is an interval valued neutrosophic graph of 𝐺1
∗×𝐺2

∗. 

Proof. Verifying only conditions for B1×B2, because conditions for A1×A2 areobvious. 

Let E= {(𝑥,𝑥2) (𝑥,𝑦2) /𝑥 ∈ 𝑉1,𝑥2𝑦2 ∈ 𝐸2} ∪{(𝑥1, 𝑧) (𝑦1, 𝑧) /𝑧 ∈ 𝑉2,𝑥1𝑦1 ∈ 𝐸1} 

Considering (𝑥,𝑥2) (𝑥,𝑦2) ∈ 𝐸, one has: 

( 𝑇𝐵1𝐿×𝑇𝐵2𝐿 ) (( 𝑥 , 𝑥2 ) ( 𝑥 , 𝑦2 )) = min ( 𝑇𝐴1𝐿(𝑥 ), 𝑇𝐵2𝐿(𝑥2𝑦2 )) ≤  min ( 𝑇𝐴1𝐿(𝑥 ), 
min(𝑇𝐴2𝐿(𝑥2),𝑇𝐴2𝐿(𝑦2))) = min(min (𝑇𝐴1𝐿(𝑥),𝑇𝐴2𝐿(𝑥2)), min (𝑇𝐴1𝐿(𝑥),𝑇𝐴2𝐿(𝑦2))) 

= min ((𝑇𝐴1𝐿×𝑇𝐴2𝐿) (𝑥,𝑥2),(𝑇𝐴1𝐿×𝑇𝐴2𝐿) (𝑥,𝑦2)),    (24) 

(𝑇𝐵1𝑈×𝑇𝐵2𝑈 ) (( 𝑥 ,𝑥2 ) (𝑥 ,𝑦2 )) = min ( 𝑇𝐴1𝑈(𝑥 ), 𝑇𝐵2𝑈(𝑥2𝑦2 ))  ≤ min (𝑇𝐴1𝑈(𝑥 ), 
min(𝑇𝐴2𝑈(𝑥2),𝑇𝐴2𝑈(𝑦2)))= min(min (𝑇𝐴1𝑈(𝑥),𝑇𝐴2𝑈(𝑥2)), min 𝑇𝐴1𝑈(𝑥),𝑇𝐴2𝑈(𝑦2)))= min 
((𝑇𝐴1𝑈×𝑇𝐴2𝑈) (𝑥,𝑥2),(𝑇𝐴1𝑈×𝑇𝐴2𝑈) (𝑥,𝑦2)),    (25) 

( 𝐼𝐵1𝐿×𝐼𝐵2𝐿 ) (( 𝑥 , 𝑥2 ) ( 𝑥 , 𝑦2 )) = max ( 𝐼𝐴1𝐿(𝑥 ), 𝐼𝐵2𝐿(𝑥2𝑦2 )) ≥  max ( 𝐼𝐴1𝐿(𝑥 ), 
max(𝐼𝐴2𝐿(𝑥2),𝐼𝐴2𝐿(𝑦2))) = max(max (𝐼𝐴1𝐿(𝑥),𝐼𝐴2𝐿(𝑥2)), max (𝐼𝐴1𝐿(𝑥),𝐼𝐴2𝐿(𝑦2))) = max 
((𝐼𝐴1𝐿×𝐼𝐴2𝐿) (𝑥,𝑥2),(𝐼𝐴1𝐿×𝐼𝐴2𝐿) (𝑥,𝑦2)),    (26) 

( 𝐼𝐵1𝑈×𝐼𝐵2𝑈 ) (( 𝑥 , 𝑥2 ) (𝑥 , 𝑦2 )) = max ( 𝐼𝐴1𝑈(𝑥 ), 𝐼𝐵2𝑈(𝑥2𝑦2 )) ≥ max ( 𝐼𝐴1𝑈(𝑥 ), 
max(𝐼𝐴2𝑈(𝑥2 ),𝐼𝐴2𝑈(𝑦2)))= max(max (𝐼𝐴1𝑈(𝑥),𝐼𝐴2𝑈(𝑥2 )), max (𝐼𝐴1𝑈(𝑥),𝐼𝐴2𝑈(𝑦2))) = 
max ((𝐼𝐴1𝑈×𝐼𝐴2𝑈) (𝑥,𝑥2),(𝐼𝐴1𝑈×𝐼𝐴2𝑈) (𝑥,𝑦2)),    (27) 
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(𝐹𝐵1𝐿×𝐹𝐵2𝐿 ) (( 𝑥 , 𝑥2 ) ( 𝑥 ,𝑦2 )) = max ( 𝐹𝐴1𝐿(𝑥 ), 𝐹𝐵2𝐿(𝑥2𝑦2 )) ≥ max ( 𝐹𝐴1𝐿(𝑥 ), 
max(𝐹𝐴2𝐿(𝑥2),𝐹𝐴2𝐿(𝑦2))) = max(max (𝐹𝐴1𝐿(𝑥),𝐹𝐴2𝐿(𝑥2)), max (𝐹𝐴1𝐿(𝑥),𝐹𝐴2𝐿(𝑦2))) = 
max ((𝐹𝐴1𝐿×𝐹𝐴2𝐿) (𝑥,𝑥2),(𝐹𝐴1𝐿×𝐹𝐴2𝐿) (𝑥,𝑦2)), (28) 

(𝐹𝐵1𝑈×𝐹𝐵2𝑈 ) ((𝑥 ,𝑥2 ) (𝑥 ,𝑦2 )) = max (𝐹𝐴1𝑈(𝑥 ), 𝐹𝐵2𝑈(𝑥2𝑦2 )) ≥  max (𝐹𝐴1𝑈(𝑥 ), 
max(𝐹𝐴2𝑈(𝑥2),𝐹𝐴2𝑈(𝑦2))) = max(max (𝐹𝐴1𝑈(𝑥),𝐹𝐴2𝑈(𝑥2)), max (𝐹𝐴1𝑈(𝑥),𝐹𝐴2𝑈(𝑦2)))= 
max ((𝐹𝐴1𝑈×𝐹𝐴2𝑈) (𝑥,𝑥2),(𝐹𝐴1𝑈×𝐹𝐴2𝑈) (𝑥,𝑦2)). (29) 

Similarly, for(𝑥1, 𝑧) (𝑦1, 𝑧)∈ 𝐸, one has: 

(𝑇𝐵1𝐿×𝑇𝐵2𝐿) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = min (𝑇𝐵1𝐿(𝑥1𝑦1), 𝑇𝐴2𝐿(𝑧))≤ min (𝑚𝑖𝑛(𝑇𝐴1𝐿(𝑥1), 
𝑇𝐴1𝐿(𝑦1))),𝑇𝐴2𝐿(𝑧 ))) = min(min (𝑇𝐴1𝐿(𝑥 ),𝑇𝐴2𝐿(𝑧 )), min (𝑇𝐴1𝐿(𝑦1 ),𝑇𝐴2𝐿(𝑧)))= min 
((𝑇𝐴1𝐿×𝑇𝐴2𝐿) (𝑥1,𝑧),(𝑇𝐴1𝐿×𝑇𝐴2𝐿) (𝑦1,𝑧)),     (30) 

(𝑇𝐵1𝑈×𝑇𝐵2𝑈) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = min (𝑇𝐵1𝑈(𝑥1𝑦1), 𝑇𝐴2𝑈(𝑧)) ≤ min (𝑚𝑖𝑛(𝑇𝐴1𝑈(𝑥1), 
𝑇𝐴1𝑈(𝑦1))),𝑇𝐴2𝑈(𝑧)))= min(min (𝑇𝐴1𝑈(𝑥),𝑇𝐴2𝑈(𝑧)), min (𝑇𝐴1𝑈(𝑦1),𝑇𝐴2𝑈(𝑧))) = min 
((𝑇𝐴1𝑈×𝑇𝐴2𝑈) (𝑥1 ,𝑧),(𝑇𝐴1𝑈×𝑇𝐴2𝑈) (𝑦1 ,𝑧)), (31) 

(𝐼𝐵1𝐿×𝐼𝐵2𝐿 ) ((𝑥1 , 𝑧) (𝑦1 , 𝑧)) = max (𝐼𝐵1𝐿(𝑥1𝑦1), 𝐼𝐴2𝐿(𝑧))≥ max(𝑚𝑎𝑥(𝐼𝐴1𝐿(𝑥1 ), 
𝐼𝐴1𝐿(𝑦1))),𝐼𝐴2𝐿(𝑧))) = max(max (𝐼𝐴1𝐿(𝑥 ),𝐼𝐴2𝐿(𝑧)), max (𝐼𝐴1𝐿(𝑦1 ),𝐼𝐴2𝐿(𝑧 ))) = max 
((𝐼𝐴1𝐿×𝐼𝐴2𝐿) (𝑥1,𝑧),(𝐼𝐴1𝐿×𝐼𝐴2𝐿) (𝑦1,𝑧)),     (32) 

(𝐼𝐵1𝑈×𝐼𝐵2𝑈) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = max (𝐼𝐵1𝑈(𝑥1𝑦1), 𝐼𝐴2𝑈(𝑧)) ≥ max (𝑚𝑎𝑥(𝐼𝐴1𝑈(𝑥1), 
𝐼𝐴1𝑈(𝑦1))),𝐼𝐴2𝑈(𝑧))) = max(max (𝐼𝐴1𝑈(𝑥),𝐼𝐴2𝑈(𝑧)), max (𝐼𝐴1𝑈(𝑦1),𝐼𝐴2𝑈(𝑧))) = max 
((𝐼𝐴1𝑈×𝐼𝐴2𝑈) (𝑥1,𝑧),(𝐼𝐴1𝑈×𝐼𝐴2𝑈) (𝑦1,𝑧)),    (33) 

(𝐹𝐵1𝐿×𝐹𝐵2𝐿) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = max(𝐹𝐵1𝐿(𝑥1𝑦1), 𝐹𝐴2𝐿(𝑧)) ≥ max (𝑚𝑎𝑥(𝐹𝐴1𝐿(𝑥1), 
𝐹𝐴1𝐿(𝑦1))),𝐹𝐴2𝐿(𝑧))) = max(max (𝐹𝐴1𝐿(𝑥),𝐹𝐴2𝐿(𝑧)), max (𝐹𝐴1𝐿(𝑦1),𝐹𝐴2𝐿(𝑧))) = max 
((𝐹𝐴1𝐿×𝐹𝐴2𝐿) (𝑥1 ,𝑧),(𝐹𝐴1𝐿×𝐹𝐴2𝐿) (𝑦1 ,𝑧)),    (34) 

(𝐹𝐵1𝑈×𝐹𝐵2𝑈) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = max (𝐹𝐴1𝑈(𝑥1𝑦1), 𝐹𝐵2𝑈(𝑧))≥ max (max(𝐹𝐴1𝑈(𝑥1), 
𝐹𝐴1𝑈(𝑦1))),𝐹𝐴2𝑈(𝑧))) = max(max (𝐹𝐴1𝑈(𝑥),𝐹𝐴2𝑈(𝑧)), max (𝐹𝐴1𝑈(𝑦1),𝐹𝐴2𝑈(𝑧))) = max 
((𝐹𝐴1𝑈×𝐹𝐴2𝑈) (𝑥1,𝑧),(𝐹𝐴1𝑈×𝐹𝐴2𝑈) (𝑦1,𝑧)). (35) 

This completes the proof. 

Definition 18 

Let 𝐺∗ = 𝐺1
∗×𝐺2

∗=(𝑉1×𝑉2, E) be the composition of two graphs where E= {(𝑥, 𝑥2) (𝑥, 𝑦2) /𝑥 ∈

𝑉1 , 𝑥2𝑦2 ∈ 𝐸2} ∪{(𝑥1 ,  𝑧) (𝑦1 , 𝑧) /𝑧 ∈ 𝑉2 , 𝑥1𝑦1 ∈ 𝐸1}∪ {( 𝑥1 , 𝑥2) ( 𝑦1 , 𝑦2) |𝑥1𝑦1 ∈ 𝐸1 , 𝑥2 ≠

 𝑦2},then the composition of interval valued neutrosophic graphs 𝐺1[ 𝐺2] = (𝐴1 ∘ 𝐴2, 𝐵1 ∘ 𝐵2) is 
an interval valued neutrosophic graphs defined by: 

1. (𝑇𝐴1𝐿 ∘ 𝑇𝐴2𝐿) (𝑥1,𝑥2) = min (𝑇𝐴1𝐿(𝑥1), 𝑇𝐴2𝐿(𝑥2))    (36) 
(𝑇𝐴1𝑈 ∘ 𝑇𝐴2𝑈) (𝑥1,𝑥2) = min (𝑇𝐴1𝑈(𝑥1), 𝑇𝐴2𝑈(𝑥2)) 
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(𝐼𝐴1𝐿 ∘ 𝐼𝐴2𝐿) (𝑥1,𝑥2) = max (𝐼𝐴1𝐿(𝑥1), 𝐼𝐴2𝐿(𝑥2)) 
(𝐼𝐴1𝑈 ∘ 𝐼𝐴2𝑈) (𝑥1, 𝑥2) = max (𝐼𝐴1𝑈(𝑥1), 𝐼𝐴2𝑈(𝑥2)) 
(𝐹𝐴1𝐿 ∘ 𝐹𝐴2𝐿) (𝑥1, 𝑥2) = max (𝐹𝐴1𝐿(𝑥1), 𝐹𝐴2𝐿(𝑥2)) 
(𝐹𝐴1𝑈 ∘ 𝐹𝐴2𝑈) (𝑥1, 𝑥2) = max (𝐹𝐴1𝑈(𝑥1), 𝐹𝐴2𝑈(𝑥2))  ∀ 𝑥1 ∈ 𝑉1,𝑥2 ∈ 𝑉2;  
 

2. (𝑇𝐵1𝐿 ∘ 𝑇𝐵2𝐿) ((𝑥,𝑥2)(𝑥,𝑦2)) = min (𝑇𝐴1𝐿(𝑥), 𝑇𝐵2𝐿(𝑥2𝑦2))   (37) 
(𝑇𝐵1𝑈 ∘ 𝑇𝐵2𝑈) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = min (𝑇𝐴1𝑈(𝑥), 𝑇𝐵2𝑈(𝑥2𝑦2)) 
(𝐼𝐵1𝐿 ∘ 𝐼𝐵2𝐿) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = max (𝐼𝐴1𝐿(𝑥), 𝐼𝐵2𝐿(𝑥2𝑦2)) 
(𝐼𝐵1𝑈 ∘ 𝐼𝐵2𝑈) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = max (𝐼𝐴1𝑈(𝑥), 𝐼𝐵2𝑈(𝑥2𝑦2)) 
(𝐹𝐵1𝐿 ∘ 𝐹𝐵2𝐿) ((𝑥,𝑥2) (𝑥,𝑦2)) = max (𝐹𝐴1𝐿(𝑥), 𝐹𝐵2𝐿(𝑥2𝑦2)) 
(𝐹𝐵1𝑈 ∘ 𝐹𝐵2𝑈) ((𝑥,𝑥2)(𝑥,𝑦2)) = max (𝐹𝐴1𝑈(𝑥), 𝐹𝐵2𝑈(𝑥2𝑦2)) ∀ 𝑥 ∈ 𝑉1, ∀𝑥2𝑦2 ∈ 𝐸2; 
 

3. (𝑇𝐵1𝐿 ∘ 𝑇𝐵2𝐿) ((𝑥1,𝑧) (𝑦1,𝑧)) = min (𝑇𝐵1𝐿(𝑥1𝑦1), 𝑇𝐴2𝐿(𝑧))   
 (38) 

(𝑇𝐵1𝑈 ∘ 𝑇𝐵2𝑈) ((𝑥1,𝑧) (𝑦1,𝑧)) = min (𝑇𝐵1𝑈(𝑥1𝑦1), 𝑇𝐴2𝑈(𝑧)) 
(𝐼𝐵1𝐿 ∘ 𝐼𝐵2𝐿) ((𝑥1,𝑧) (𝑦1,𝑧)) = max (𝐼𝐵1𝐿(𝑥1𝑦1), 𝐼𝐴2𝐿(𝑧)) 
(𝐼𝐵1𝑈 ∘ 𝐼𝐵2𝑈) ((𝑥1,𝑧) (𝑦1,𝑧)) = max (𝐼𝐵1𝑈(𝑥1𝑦1), 𝐼𝐴2𝑈(𝑧)) 
(𝐹𝐵1𝐿 ∘ 𝐹𝐵2𝐿) ((𝑥1,𝑧) (𝑦1,𝑧)) = max (𝐹𝐵1𝐿(𝑥1𝑦1), 𝐹𝐴2𝐿(𝑧)) 
(𝐹𝐵1𝑈 ∘ 𝐹𝐵2𝑈) ((𝑥1,𝑧) (𝑦1,𝑧))= max (𝐹𝐵1𝑈(𝑥1𝑦1), 𝐹𝐴2𝑈(𝑧)) ∀ z ∈ 𝑉2, ∀𝑥1𝑦1 ∈ 𝐸1; 
 

4. (𝑇𝐵1𝐿 ∘ 𝑇𝐵2𝐿) ((𝑥1,𝑥2) (𝑦1,𝑦2)) = min (𝑇𝐴2𝐿(𝑥2), 𝑇𝐴2𝐿(𝑦2), 𝑇𝐵1𝐿(𝑥1𝑦1)) 
 (39) 

(𝑇𝐵1𝑈 ∘ 𝑇𝐵2𝑈) ((𝑥1,𝑥2) (𝑦1,𝑦2)) = min (𝑇𝐴2𝑈(𝑥2), 𝑇𝐴2𝑈(𝑦2), 𝑇𝐵1𝑈(𝑥1𝑦1)) 

(𝐼𝐵1𝐿 ∘ 𝐼𝐵2𝐿) ((𝑥1,𝑥2) (𝑦1,𝑦2)) = max (𝐼𝐴2𝐿(𝑥2), 𝐼𝐴2𝐿(𝑦2), 𝐼𝐵1𝐿(𝑥1𝑦1)) 

(𝐼𝐵1𝑈 ∘ 𝐼𝐵2𝑈) ((𝑥1,𝑥2) (𝑦1,𝑦2)) = max (𝐼𝐴2𝑈(𝑥2), 𝐼𝐴2𝑈(𝑦2), 𝐼𝐵1𝑈(𝑥1𝑦1)) 

(𝐹𝐵1𝐿 ∘ 𝐹𝐵2𝐿) ((𝑥1,𝑥2) (𝑦1,𝑦2)) = max (𝐹𝐴2𝐿(𝑥2), 𝐹𝐴2𝐿(𝑦2), 𝐹𝐵1𝐿(𝑥1𝑦1)) 

( 𝐹𝐵1𝑈 ∘ 𝐹𝐵2𝑈 )(( 𝑥1 , 𝑥2 ) ( 𝑦1 , 𝑦2 )) = max ( 𝐹𝐴2𝑈(𝑥2 ), 𝐹𝐴2𝑈(𝑦2 ), 𝐹𝐵1𝑈(𝑥1𝑦1 )), 
∀ (𝑥1,𝑥2)( 𝑦1,𝑦2) ∈ 𝐸0-E,where 𝐸0= E ∪ {( 𝑥1,𝑥2) ( 𝑦1,𝑦2) |𝑥1𝑦1 ∈ 𝐸1, 𝑥2 ≠  𝑦2}. 

Example 4 

Let 𝐺1
∗= (𝑉1, 𝐸1) and 𝐺2

∗= (𝑉2, 𝐸2) be two graphs such that 𝑉1 ={a, b}, 𝑉2 ={c, d},𝐸1 ={a, b} 
and 𝐸2 ={c, d}. Consider two interval-valued neutrosophic graphs: 

𝐴1={ < a, [0.5, 0.7], [0.2, 0.3], [0.1, 0.3]>, <b, [0.6, 0.7],[0.2, 0.4], [0.1, 0.3}, 

𝐵1={ < ab, [0.3, 0.6], [0.2, 0.4], [0.2, 0.4]>}; 

 

𝐴2={ < c, [0.4, 0.6], [0.2, 0.3], [0.1, 0.3]>, <d, [0.4, 0.7],[0.2, 0.4], [0.1, 0.3}, 

𝐵2={ < cd, [0.3, 0.5], [0.2, 0.5], [0.3, 0.5]>}. 
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Figure 10: Interval valued neutrosophic graph G1 

 

 
Figure 11: Interval valued neutrosophic graph G2 

 

 
Figure 12: Composition of interval valued neutrosophic graph. 

Proposition2 

The composition𝐺1[ 𝐺2] =(𝐴1 ∘ 𝐴2, 𝐵1 ∘ 𝐵2) of two interval valued neutrosophic graphs of the 

graphs 𝐺1
∗and 𝐺2

∗ is an interval valued neutrosophic graph of 𝐺1
∗[𝐺2

∗]. 

Proof. Verifying only conditions for B1 ∘ B2, because conditions for A1 ∘ A2 are obvious. Let 

E= {(𝑥,𝑥2) (𝑥,𝑦2) /𝑥1 ∈ 𝑉1, 𝑥2𝑦2 ∈ 𝐸2} ∪{(𝑥1, 𝑧) (𝑦1, 𝑧) /𝑧 ∈ 𝑉2,𝑥1𝑦1 ∈ 𝐸1}.Considering(𝑥,𝑥2) 

(𝑥,𝑦2) ∈ 𝐸, one has: 

( 𝑇𝐵1𝐿 ∘ 𝑇𝐵2𝐿 ) (( 𝑥 , 𝑥2 ) ( 𝑥 , 𝑦2 )) = min ( 𝑇𝐴1𝐿(𝑥 ), 𝑇𝐵2𝐿(𝑥2𝑦2 )) ≤ min ( 𝑇𝐴1𝐿(𝑥 ), 
min(𝑇𝐴2𝐿(𝑥2 ),𝑇𝐴2𝐿(𝑦2 )))= min(min (𝑇𝐴1𝐿(𝑥 ),𝑇𝐴2𝐿(𝑥2 )), min (𝑇𝐴1𝐿(𝑥 ),𝑇𝐴2𝐿(𝑦2 )))= min 
((𝑇𝐴1𝐿 ∘ 𝑇𝐴2𝐿) (𝑥,𝑥2),(𝑇𝐴1𝐿 ∘ 𝑇𝐴2𝐿) (𝑥,𝑦2)),    (40) 
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( 𝑇𝐵1𝑈 ∘ 𝑇𝐵2𝑈 ) (( 𝑥 , 𝑥2 ) ( 𝑥 , 𝑦2 )) = min ( 𝑇𝐴1𝑈(𝑥 ), 𝑇𝐵2𝑈(𝑥2𝑦2 )) ≤  min ( 𝑇𝐴1𝑈(𝑥 ), 
min(𝑇𝐴2𝑈(𝑥2),𝑇𝐴2𝑈(𝑦2)))= min(min (𝑇𝐴1𝑈(𝑥),𝑇𝐴2𝑈(𝑥2)), min (𝑇𝐴1𝑈(𝑥),𝑇𝐴2𝑈(𝑦2)))= min 
((𝑇𝐴1𝑈 ∘ 𝑇𝐴2𝑈) (𝑥,𝑥2),(𝑇𝐴1𝑈 ∘ 𝑇𝐴2𝑈) (𝑥,𝑦2)), (41) 

( 𝐼𝐵1𝐿 ∘ 𝐼𝐵2𝐿 ) (( 𝑥 , 𝑥2 ) ( 𝑥 , 𝑦2 )) = max ( 𝐼𝐴1𝐿(𝑥 ), 𝐼𝐵2𝐿(𝑥2𝑦2 )) ≥ max ( 𝐼𝐴1𝐿(𝑥 ), 
max( 𝐼𝐴2𝐿(𝑥2 ), 𝐼𝐴2𝐿(𝑦2 ))) = max(max ( 𝐼𝐴1𝐿(𝑥 ), 𝐼𝐴2𝐿(𝑥2 )), max ( 𝐼𝐴1𝐿(𝑥 ), 𝐼𝐴2𝐿(𝑦2 ))) = 
max((𝐼𝐴1𝐿 ∘ 𝐼𝐴2𝐿) (𝑥,𝑥2),(𝐼𝐴1𝐿 ∘ 𝐼𝐴2𝐿) (𝑥,𝑦2)),    (42) 

( 𝐼𝐵1𝑈 ∘ 𝐼𝐵2𝑈 ) (( 𝑥 , 𝑥2 ) ( 𝑥 , 𝑦2 )) = max ( 𝐼𝐴1𝑈(𝑥 ), 𝐼𝐵2𝑈(𝑥2𝑦2 )) ≥ max ( 𝐼𝐴1𝑈(𝑥 ), 
max(𝐼𝐴2𝑈(𝑥2),𝐼𝐴2𝑈(𝑦2))) = max(max (𝐼𝐴1𝑈(𝑥),𝐼𝐴2𝑈(𝑥2)), max (𝐼𝐴1𝑈(𝑥),𝐼𝐴2𝑈(𝑦2))) = max 
((𝐼𝐴1𝑈 ∘ 𝐼𝐴2𝑈) (𝑥,𝑥2),(𝐼𝐴1𝑈 ∘ 𝐼𝐴2𝑈) (𝑥,𝑦2)),    (43) 

( 𝐹𝐵1𝐿 ∘ 𝐹𝐵2𝐿 ) (( 𝑥  , 𝑥2 ) ( 𝑥  , 𝑦2 )) = max ( 𝐹𝐴1𝐿(𝑥 ), 𝐹𝐵2𝐿(𝑥2𝑦2 )) ≥ max ( 𝐹𝐴1𝐿(𝑥 ), 
max(𝐹𝐴2𝐿(𝑥2),𝐹𝐴2𝐿(𝑦2))) = max(max (𝐹𝐴1𝐿(𝑥),𝐹𝐴2𝐿(𝑥2)), max (𝐹𝐴1𝐿(𝑥),𝐹𝐴2𝐿(𝑦2))) = max 
((𝐹𝐴1𝐿 ∘ 𝐹𝐴2𝐿) (𝑥,𝑥2),(𝐹𝐴1𝐿 ∘ 𝐹𝐴2𝐿) (𝑥,𝑦2)), (44) 

( 𝐹𝐵1𝑈 ∘ 𝐹𝐵2𝑈 ) (( 𝑥 , 𝑥2 ) ( 𝑥 , 𝑦2 )) = max ( 𝐹𝐴1𝑈(𝑥 ), 𝐹𝐵2𝑈(𝑥2𝑦2 )) ≥ max ( 𝐹𝐴1𝑈(𝑥 ), 
max(𝐹𝐴2𝑈(𝑥2 ),𝐹𝐴2𝑈(𝑦2 ))) = max(max (𝐹𝐴1𝑈(𝑥 ),𝐹𝐴2𝑈(𝑥2 ), max (𝐹𝐴1𝑈(𝑥 ),𝐹𝐴2𝑈(𝑦2 )) = 
max((𝐹𝐴1𝑈 ∘ 𝐹𝐴2𝑈) (𝑥,𝑥2),(𝐹𝐴1𝑈 ∘ 𝐹𝐴2𝑈) (𝑥,𝑦2)). (45) 

In the case (𝑥1, 𝑧) (𝑦1, 𝑧)∈ 𝐸, the proof is similar. 

In the case (𝑥1,𝑥2) (𝑦1,𝑦2) ∈ 𝐸0-E. 

(𝑇𝐵1𝐿 ∘ 𝑇𝐵2𝐿)((𝑥1,𝑥2) (𝑦1,𝑦2)) = min (𝑇𝐴2𝐿(𝑥2), 𝑇𝐴2𝐿(𝑦2), 𝑇𝐵1𝐿(𝑥1𝑦1))≤ min (𝑇𝐴2𝐿(𝑥2), 
𝑇𝐴2𝐿(𝑦2 ),min  (𝑇𝐴1𝐿(𝑥1 ), 𝑇𝐴1𝐿(𝑦1 ))) = min(min ( 𝑇𝐴1𝐿(𝑥1 ), 𝑇𝐴2𝐿(𝑥2 )), min 
(𝑇𝐴1𝐿(𝑦1),𝑇𝐴2𝐿(𝑦2))) = min ((𝑇𝐴1𝐿 ∘ 𝑇𝐴2𝐿) (𝑥1,𝑥2),(𝑇𝐴1𝐿 ∘ 𝑇𝐴2𝐿) (𝑦1,𝑦2)), (46) 

(𝑇𝐵1𝑈 ∘ 𝑇𝐵2𝑈 ) (( 𝑥1 ,𝑥2 ) (𝑦1 , 𝑦2 )) =  min (𝑇𝐴2𝑈(𝑥2 ), 𝑇𝐴2𝑈(𝑦2 ), 𝑇𝐵1𝐿(𝑥1𝑦1 )) ≤ min 
( 𝑇𝐴2𝑈(𝑥2 ), 𝑇𝐴2𝑈(𝑦2 ),min  (𝑇𝐴1𝑈(𝑥1 ), 𝑇𝐴1𝑈(𝑦1 ))) = min(min ( 𝑇𝐴1𝑈(𝑥1 ),𝑇𝐴2𝑈(𝑥2 )), min 
(𝑇𝐴1𝑈(𝑦1),𝑇𝐴2𝑈(𝑦2))) = min ((𝑇𝐴1𝑈 ∘ 𝑇𝐴2𝑈) (𝑥1,𝑥2),(𝑇𝐴1𝑈 ∘ 𝑇𝐴2𝑈) (𝑦1,𝑦2)),(47) 

(𝐼𝐵1𝐿 ∘ 𝐼𝐵2𝐿) ((𝑥1 ,𝑥2) (𝑦1 ,𝑦2)) = max (𝐼𝐴2𝐿(𝑥2), 𝐼𝐴2𝐿(𝑦2), 𝐼𝐵1𝐿(𝑥1𝑦1)) ≥ max (𝐼𝐴2𝐿(𝑥2), 
𝐼𝐴2𝐿(𝑦2 ),max  (𝐼𝐴1𝐿(𝑥1 ), 𝐼𝐴1𝐿(𝑦1 ))) = max(max ( 𝐼𝐴1𝐿(𝑥1 ), 𝐼𝐴2𝐿(𝑥2 )), max 
(𝐼𝐴1𝐿(𝑦1),𝐼𝐴2𝐿(𝑦2))) = max ((𝐼𝐴1𝐿 ∘ 𝐼𝐴2𝐿) (𝑥1,𝑥2),(𝐼𝐴1𝐿 ∘ 𝐼𝐴2𝐿) (𝑦1,𝑦2)), (48) 

(𝐼𝐵1𝑈 ∘ 𝐼𝐵2𝑈) ((𝑥1,𝑥2) (𝑦1,𝑦2)) = max (𝐼𝐴2𝑈(𝑥2), 𝐼𝐴2𝑈(𝑦2), 𝐼𝐵1𝐿(𝑥1𝑦1))≥ max (𝐼𝐴2𝑈(𝑥2), 
𝐼𝐴2𝑈(𝑦2 ),max  (𝐼𝐴1𝑈(𝑥1 ), 𝐼𝐴1𝑈(𝑦1 ))) = max(max ( 𝐼𝐴1𝑈(𝑥 ), 𝐼𝐴2𝑈(𝑥2 )), max 
(𝐼𝐴1𝑈(𝑦1),𝐼𝐴2𝑈(𝑦2))) =  max ((𝐼𝐴1𝑈 ∘ 𝐼𝐴2𝑈) (𝑥1,𝑥2),(𝐼𝐴1𝑈 ∘ 𝐼𝐴2𝑈) (𝑦1,𝑦2)), (49) 

 (𝐹𝐵1𝐿 ∘ 𝐹𝐵2𝐿 ) (( 𝑥1  ,𝑥2 ) (𝑦1  ,𝑦2 )) = max (𝐹𝐴2𝐿(𝑥2 ), 𝐹𝐴2𝐿(𝑦2 ), 𝐹𝐵1𝐿(𝑥1𝑦1 )) ≥ max 
( 𝐹𝐴2𝐿(𝑥2 ), 𝐹𝐴2𝐿(𝑦2 ),max (𝐹𝐴1𝐿(𝑥1 ), 𝐹𝐴1𝐿(𝑦1 ))) = max(max ( 𝐹𝐴1𝐿(𝑥 ), 𝐹𝐴2𝐿(𝑥2 )), max 
(𝐹𝐴1𝐿(𝑦1),𝐹𝐴2𝐿(𝑦2)))= max ((𝐹𝐴1𝐿 ∘ 𝐹𝐴2𝐿) (𝑥1,𝑥2),(𝐹𝐴1𝐿 ∘ 𝐹𝐴2𝐿) (𝑦1,𝑦2)), (50) 
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(𝐹𝐵1𝑈 ∘ 𝐹𝐵2𝑈 ) (( 𝑥1 , 𝑥2 ) ( 𝑦1 , 𝑦2 )) = max( 𝐹𝐴2𝑈(𝑥2 ) , 𝐹𝐴2𝑈(𝑦2 ), 𝐹𝐵1𝐿(𝑥1𝑦1 )) ≥ max 
(𝐹𝐴2𝑈(𝑥2 ), 𝐹𝐴2𝑈(𝑦2 ),max  (𝐹𝐴1𝑈(𝑥1 ), 𝐹𝐴1𝑈(𝑦1 ))) = max(max (𝐹𝐴1𝑈(𝑥 ),𝐹𝐴2𝑈(𝑥2 )), max 
(𝐹𝐴1𝑈(𝑦1),𝐹𝐴2𝑈(𝑦2))) = max ((𝐹𝐴1𝑈 ∘ 𝐹𝐴2𝑈) (𝑥1,𝑥2),(𝐹𝐴1𝑈 ∘ 𝐹𝐴2𝑈) (𝑦1 ,𝑦2)). (51) 

This completes the proof. 

Definition 19 

The union𝐺1 ∪  𝐺2= (𝐴1 ∪ 𝐴2, 𝐵1 ∪ 𝐵2 ) of two interval valued neutrosophic graphs of the graphs 

𝐺1
∗and𝐺2

∗is an interval-valued neutrosophic graph of 𝐺1
∗ ∪ 𝐺2

∗. 

1) (𝑇𝐴1𝐿 ∪ 𝑇𝐴2𝐿) (𝑥) = 𝑇𝐴1𝐿(𝑥)  if  x ∈ 𝑉1 and x ∉ 𝑉2, 
(𝑇𝐴1𝐿 ∪ 𝑇𝐴2𝐿) (𝑥) = 𝑇𝐴2𝐿(𝑥)  if x ∉ 𝑉1 and x ∈ 𝑉2, 
(𝑇𝐴1𝐿 ∪ 𝑇𝐴2𝐿) (𝑥) = max (𝑇𝐴1𝐿(𝑥), 𝑇𝐴2𝐿(𝑥))   if x ∈ 𝑉1 ∩ 𝑉2,  

 (52) 
2) (𝑇𝐴1𝑈 ∪ 𝑇𝐴2𝑈) (𝑥) = 𝑇𝐴1𝑈(𝑥)  if  x ∈ 𝑉1 and x ∉ 𝑉2, 

(𝑇𝐴1𝑈 ∪ 𝑇𝐴2𝑈) (𝑥) = 𝑇𝐴2𝑈(𝑥)  if x ∉ 𝑉1 and x ∈ 𝑉2, 
(𝑇𝐴1𝑈 ∪ 𝑇𝐴2𝑈) (𝑥) = max (𝑇𝐴1𝑈(𝑥), 𝑇𝐴2𝑈(𝑥))   if x ∈ 𝑉1 ∩ 𝑉2,  

 (53) 
3) (𝐼𝐴1𝐿 ∪ 𝐼𝐴2𝐿) (𝑥) = 𝐼𝐴1𝐿(𝑥)              if  x ∈ 𝑉1 and x ∉ 𝑉2, 

(𝐼𝐴1𝐿 ∪ 𝐼𝐴2𝐿) (𝑥) = 𝐼𝐴2𝐿(𝑥)              if x ∉ 𝑉1 and x ∈ 𝑉2, 
(𝐼𝐴1𝐿 ∪ 𝐼𝐴2𝐿) (𝑥) = min (𝐼𝐴1𝐿(𝑥), 𝐼𝐴2𝐿(𝑥) )   if x ∈ 𝑉1 ∩ 𝑉2,   (54) 

4) (𝐼𝐴1𝑈 ∪ 𝐼𝐴2𝑈) (𝑥) = 𝐼𝐴1𝑈(𝑥)                            if  x ∈ 𝑉1 and x ∉ 𝑉2, 
(𝐼𝐴1𝑈 ∪ 𝐼𝐴2𝑈) (𝑥) = 𝐼𝐴2𝑈(𝑥)                            if x ∉ 𝑉1 and x ∈ 𝑉2, 
(𝐼𝐴1𝑈 ∪ 𝐼𝐴2𝑈) (𝑥) = min (𝐼𝐴1𝑈(𝑥), 𝐼𝐴2𝑈(𝑥) )   if x ∈ 𝑉1 ∩ 𝑉2,  

 (55) 
5) (𝐹𝐴1𝐿 ∪ 𝐹𝐴2𝐿) (𝑥) = 𝐹𝐴1𝐿(𝑥)                 if  x ∈ 𝑉1 and x ∉ 𝑉2, 

(𝑁𝐴1𝐿 ∪ 𝑁𝐴2𝐿) (𝑥) = 𝐹𝐴2𝐿(𝑥)      if x ∉ 𝑉1 and x ∈ 𝑉2, 
(𝑁𝐴1𝐿 ∪ 𝑁𝐴2𝐿) (𝑥) = min (𝐹𝐴1𝐿(𝑥), 𝐹𝐴2𝐿(𝑥) )   if x ∈ 𝑉1 ∩ 𝑉2,  

 (56) 
6) (𝐹𝐴1𝑈 ∪ 𝐹𝐴2𝑈) (𝑥) = 𝐹𝐴1𝑈(𝑥)     if  x ∈ 𝑉1 and x ∉ 𝑉2, 

(𝐹𝐴1𝑈 ∪ 𝐹𝐴2𝑈) (𝑥) = 𝐹𝐴2𝑈(𝑥)      if x ∉ 𝑉1 and x ∈ 𝑉2, 
(𝐹𝐴1𝑈 ∪ 𝐹𝐴2𝑈) (𝑥) = min (𝐹𝐴1𝑈(𝑥), 𝐹𝐴2𝑈(𝑥) )   if x ∈ 𝑉1 ∩ 𝑉2,  

 (57) 
7) (𝑇𝐵1𝐿 ∪ 𝑇𝐵2𝐿) (𝑥𝑦) = 𝑇𝐵1𝐿(𝑥𝑦)                  if  xy ∈ 𝐸1and xy ∉ 𝐸2, 

(𝑇𝐵1𝐿 ∪ 𝑇𝐵2𝐿) (𝑥𝑦) = 𝑇𝐵2𝐿(𝑥𝑦)                  if xy ∉ 𝐸1 and xy ∈ 𝐸2, 
(𝑇𝐵1𝐿 ∪ 𝑇𝐵2𝐿) (𝑥𝑦) = max (𝑇𝐵1𝐿(𝑥𝑦), 𝑇𝐵2𝐿(𝑥𝑦) )   if xy ∈ 𝐸1 ∩ 𝐸2,  (58) 

8) (𝑇𝐵1𝑈
∪ 𝑇𝐵2𝑈) (𝑥𝑦) = 𝑇𝐵1𝑈(𝑥𝑦)                if  xy ∈ 𝐸1  and  xy ∉ 𝐸2, 

(𝑇𝐵1𝑈 ∪ 𝑇𝐵2𝑈) (𝑥𝑦) = 𝑇𝐵2𝑈(𝑥𝑦)                  if xy ∉ 𝐸1 and xy ∈ 𝐸2, 
(𝑇𝐵1𝑈 ∪ 𝑇𝐵2𝑈) (𝑥𝑦) = max (𝑇𝐵1𝑈(𝑥𝑦), 𝑇𝐵2𝑈(𝑥𝑦) )   if xy ∈ 𝐸1 ∩ 𝐸2, 

 (59) 
9) (𝐼𝐵1𝐿 ∪ 𝐼𝐵2𝐿) (𝑥𝑦) =𝐼𝐵1𝐿(𝑥𝑦)                  if  xy ∈ 𝐸1  and  xy ∉ 𝐸2, 

(𝐼𝐵1𝐿 ∪ 𝑀𝐵2𝐿) (𝑥𝑦) = 𝐼𝐵2𝐿(𝑥𝑦)                             if xy ∉ 𝐸1 and xy ∈ 𝐸2, 
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(𝐼𝐵1𝐿 ∪ 𝐼𝐵2𝐿) (𝑥𝑦) = min (𝐼𝐵1𝐿(𝑥𝑦), 𝐼𝐵2𝐿(𝑥𝑦) )         if xy ∈ 𝐸1 ∩ 𝐸2,  (60) 
10) (𝐼𝐵1𝑈

∪ 𝐼𝐵2𝑈) (𝑥𝑦) = 𝐼𝐵1𝑈(𝑥𝑦)                 if  xy ∈ 𝐸1  and  xy ∉ 𝐸2, 
(𝐼𝐵1𝑈 ∪ 𝐼𝐵2𝑈) (𝑥𝑦) = 𝐼𝐵2𝑈(𝑥𝑦)                            if xy ∉ 𝐸1 and xy ∈ 𝐸2, 
(𝐼𝐵1𝑈 ∪ 𝐼𝐵2𝑈) (𝑥𝑦) = min (𝐼𝐵1𝑈(𝑥𝑦), 𝐼𝐵2𝑈(𝑥𝑦) )       if xy ∈ 𝐸1 ∩ 𝐸2,  (61) 

11) (𝐹𝐵1𝐿 ∪ 𝐹𝐵2𝐿) (𝑥𝑦) = 𝐹𝐵1𝐿(𝑥𝑦)                         if  xy ∈ 𝐸1  and  xy ∉ 𝐸2, 
(𝐹𝐵1𝐿 ∪ 𝐹𝐵2𝐿) (𝑥𝑦) = 𝐹𝐵2𝐿(𝑥𝑦)                            if xy ∉ 𝐸1 and xy ∈ 𝐸2, 
(𝐹𝐵1𝐿 ∪ 𝐹𝐵2𝐿) (𝑥𝑦) = min (𝐹𝐵1𝐿(𝑥𝑦), 𝐹𝐵2𝐿(𝑥𝑦) )     if xy ∈ 𝐸1 ∩ 𝐸2,  (62) 

12) (𝐹𝐵1𝑈
∪ 𝐹𝐵2𝑈) (𝑥𝑦) =𝐹 𝐵1𝑈(𝑥𝑦)                            if  xy ∈ 𝐸1  and  xy ∉ 𝐸2, 

(𝐹𝐵1𝑈 ∪ 𝐹𝐵2𝑈) (𝑥𝑦) = 𝐹𝐵2𝑈(𝑥𝑦)                            if xy ∉ 𝐸1 and xy ∈ 𝐸2, 
(𝐹𝐵1𝑈 ∪ 𝐹𝐵2𝑈) (𝑥𝑦) = min (𝐹𝐵1𝑈(𝑥𝑦), 𝐹𝐵2𝑈(𝑥𝑦) )      if xy ∈ 𝐸1 ∩ 𝐸2.  (63) 

Proposition 3 

Let 𝐺1 and 𝐺2 are two interval valued neutrosophic graphs, then 𝐺1 ∪ 𝐺2 is an interval valued 
neutrosophic graph. 

Proof. Verifying only conditions for B1 ∘ B2, because conditions for A1 ∘ A2 are obvious.  

Let x y ∈ 𝐸1 ∩ 𝐸2. 

Then: 

( TB1L ∪ TB2L )( xy ) = max( TB1L(xy ), TB2L(xy )) ≤  max(min( TA1L(x ), TA1L(y )), 
min( TA2L(x ), TA2L(y ))) = min(max( TA1L(x ), TA2L(x )), max( TA1L(y ), TA2L(y ))) =  
min((𝑇𝐴1𝐿 ∪ 𝑇𝐴2𝐿) (𝑥), (𝑇𝐴1𝐿 ∪ 𝑇𝐴2𝐿) (𝑦)));     (64) 

( TB1U ∪ TB2U )( xy ) = max( TB1U(xy ), TB2U(xy )) ≤ max(min( TA1U(x ), TA1U(y )), 
min( TA2U(x ), TA2U(y ))) = min(max( TA1U(x ), TA2U(x )), max( TA1U(y ), TA2U(y ))) = 
min((𝑇𝐴1𝑈 ∪ 𝑇𝐴2𝑈) (𝑥), (𝑇𝐴1𝑈 ∪ 𝑇𝐴2𝑈) (𝑦)));     (65) 

( IB1L ∪ IB2L )( xy ) = min( IB1L(xy ), IB2L(xy )) ≥ min(max( IA1L(x ), IA1L(y )), 
max(IA2L(x),IA2L(y))) = min(min(IA1L(x),IA2L(x)), min(IA1L(y),IA2L(y))) = max((𝐼𝐴1𝐿 ∪

𝐼𝐴2𝐿) (𝑥), (𝐼𝐴1𝐿 ∪ 𝐼𝐴2𝐿) (𝑦)));     (66) 

( IB1U ∪ IB2U )( xy ) = min( IB1U(xy ), IB2U(xy )) ≥ min(max( IA1U(x ), IA1U(y )), 
max(IA2U(x),IA2U(y))) = max(min(IA1U(x),IA2U(x)), min(IA1U(y),IA2U(y))) = max((𝐼𝐴1𝑈 ∪

𝐼𝐴2𝑈) (𝑥), (𝐼𝐴1𝑈 ∪ 𝐼𝐴2𝑈) (𝑦)));     (67) 

( FB1L ∪ FB2L )( xy ) = min( FB1L(xy ), FB2L(xy ))  ≥  min(max( FA1L(x ), FA1L(y )), 
max( FA2L(x ), FA2L(y ))) = min(min( FA1L(x ), FA2L(x )), min( FA1L(y ), FA2L(y ))) = 
max((𝐹𝐴1𝐿 ∪ 𝐹𝐴2𝐿) (𝑥), (𝐹𝐴1𝐿 ∪ 𝐹𝐴2𝐿) (𝑦)));     (68) 

( FB1U ∪ FB2U )( xy ) = min( FB1U(xy ), FB2U(xy ))  ≥ min(max( FA1U(x ), FA1U(y )), 
max( FA2U(x ), FA2U(y ))) = max(min( FA1U(x ), FA2U(x )), min( FA1U(y ), FA2U(y ))) = 
max((𝐹𝐴1𝑈 ∪ 𝐹𝐴2𝑈) (𝑥), (𝐹𝐴1𝑈 ∪ 𝐹𝐴2𝑈) (𝑦))).    (69) 
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This completes the proof. 

Example 5 

Let 𝐺1
∗ = ( 𝑉1 , 𝐸1 ) and 𝐺2

∗ = ( 𝑉2 , 𝐸2 ) be two graphs such that 𝑉1  ={𝑣1 ,𝑣2 ,𝑣3 ,𝑣4 , 𝑣5 }. 𝑉2 
={𝑣1 ,𝑣2 ,𝑣3 ,𝑣4},𝐸1  ={𝑣1𝑣2 , 𝑣1𝑣5 , 𝑣2𝑣3 , 𝑣5𝑣3 , 𝑣5𝑣4 ,𝑣4𝑣3} and 𝐸2  ={𝑣1𝑣2 , 𝑣2𝑣3 , 𝑣2𝑣4 , 𝑣3𝑣34 , 
𝑣4𝑣1}. Consider two interval valued neutrosophic graphs  𝐺1= (𝐴1, 𝐵1) and 𝐺2= (𝐴2, 𝐵2). 

 
Figure 13: Interval valued neutrosophic graph G1 

 
Figure 14: Interval valued neutrosophic graph G1 
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Figure 15: Interval valued neutrosophic graph G1∪G2 

 

Definition 20 

The join of 𝐺1 + 𝐺2  = ( 𝐴1 + 𝐴2 , 𝐵1 + 𝐵2 ) interval valued neutrosophic graphs 𝐺1  and 
G2of the graphs 𝐺1

∗and𝐺2
∗  is defined as follows: 

 

1) (𝑇𝐴1𝐿 + 𝑇𝐴2𝐿)(𝑥) ={

(𝑇𝐴1𝐿 ∪ 𝑇𝐴2𝐿)(𝑥)     if 𝑥 ∈ 𝑉1 ∪ 𝑉2

𝑇𝐴1𝐿(𝑥)                      if 𝑥 ∈ 𝑉1

𝑇𝐴2𝐿(𝑥)                      if 𝑥 ∈ 𝑉2

   (70) 

(𝑇𝐴1𝑈 + 𝑇𝐴2𝑈)(𝑥) = {
(𝑇𝐴1𝑈 ∪ 𝑇𝐴2𝑈)(𝑥)     if 𝑥 ∈ 𝑉1 ∪ 𝑉2

𝑇𝐴1𝑈(𝑥)                      if 𝑥 ∈ 𝑉1

𝑇𝐴2𝑈(𝑥)                      if 𝑥 ∈ 𝑉2

 

(𝐼𝐴1𝐿 + 𝐼𝐴2𝐿) (𝑥) = {
(𝐼𝐴1𝐿 ∩ 𝐼𝐴2𝐿)(𝑥)      if 𝑥 ∈ 𝑉1 ∪ 𝑉2

𝐼𝐴1𝐿(𝑥)                      if 𝑥 ∈ 𝑉1

𝐼𝐴2𝐿(𝑥)                      if 𝑥 ∈ 𝑉2

 

(𝐼𝐴1𝑈 + 𝐼𝐴2𝑈) (𝑥) = {
(𝐼𝐴1𝑈 ∩ 𝐼𝐴2𝑈)(𝑥)     if 𝑥 ∈ 𝑉1 ∪ 𝑉2

𝐼𝐴1𝑈(𝑥)                      if 𝑥 ∈ 𝑉1

𝐼𝐴2𝑈(𝑥)                      if 𝑥 ∈ 𝑉2
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(𝐹𝐴1𝐿 + 𝐹𝐴2𝐿) (𝑥) = {
(𝐹𝐴1𝐿 ∩ 𝐹𝐴2𝐿)(𝑥)     if 𝑥 ∈ 𝑉1 ∪ 𝑉2

𝐹𝐴1𝐿(𝑥)                      if 𝑥 ∈ 𝑉1

𝐹𝐴2𝐿(𝑥)                      if 𝑥 ∈ 𝑉2

 

(𝐹𝐴1𝑈 + 𝐹𝐴2𝑈) (𝑥) = {
(𝐹𝐴1𝑈 ∩ 𝐹𝐴2𝑈)(𝑥)     if 𝑥 ∈ 𝑉1 ∪ 𝑉2

𝐹𝐴1𝑈(𝑥)                      if 𝑥 ∈ 𝑉1

𝐹𝐴2𝑈(𝑥)                      if 𝑥 ∈ 𝑉2

 

 

2) (𝑇𝐵1𝐿 + 𝑇𝐵2𝐿) (𝑥y)= {
(𝑇𝐵1𝐿 ∪ 𝑇𝐵2𝐿)(xy)       if 𝑥𝑦 ∈ 𝐸1 ∪ 𝐸2

𝑇𝐵1𝐿(𝑥𝑦)                      if 𝑥𝑦 ∈ 𝐸1

𝑇𝐵2𝐿(𝑥𝑦)                      if 𝑥𝑦 ∈ 𝐸2

  (71) 

(𝑇𝐵1𝑈 + 𝑇𝐵2𝑈) (𝑥y)={

(𝑇𝐵1𝑈 ∪ 𝑇𝐵2𝑈)(xy)     if 𝑥𝑦 ∈ 𝐸1 ∪ 𝐸2

𝑇𝐵1𝑈(𝑥𝑦)                      if 𝑥𝑦 ∈ 𝐸1

𝑇𝐵2𝑈(𝑥𝑦)                      if 𝑥𝑦 ∈ 𝐸2

 

(𝐼𝐵1𝐿 + 𝐼𝐵2𝐿) (𝑥y)= {
(𝐼𝐵1𝐿 ∩ 𝐼𝐵2𝐿)(xy)     if 𝑥𝑦 ∈ 𝐸1 ∪ 𝐸2

𝐼𝐵1𝐿(𝑥𝑦)                      if 𝑥𝑦 ∈ 𝐸1

𝐼𝐵2𝐿(𝑥𝑦)                      if 𝑥𝑦 ∈ 𝐸2

 

(𝐼𝐵1𝑈 + 𝐼𝐵2𝑈) (𝑥y)={

(𝐼𝐵1𝑈 ∩ 𝐼𝐵2𝑈)(xy)     if 𝑥𝑦 ∈ 𝐸1 ∪ 𝐸2

𝐼𝐵1𝑈(𝑥𝑦)                      if 𝑥𝑦 ∈ 𝐸1

𝐼𝐵2𝑈(𝑥𝑦)                      if 𝑥𝑦 ∈ 𝐸2

 

(𝐹𝐵1𝐿 + 𝐹𝐵2𝐿) (𝑥y)={

(𝐹𝐵1𝐿 ∩ 𝐹𝐵2𝐿)(xy)     if 𝑥𝑦 ∈ 𝐸1 ∪ 𝐸2

𝐹𝐵1𝐿(𝑥𝑦)                      if 𝑥𝑦 ∈ 𝐸1

𝐹𝐵2𝐿(𝑥𝑦)                      if 𝑥𝑦 ∈ 𝐸2

 

(𝐹𝐵1𝑈 + 𝐹𝐵2𝑈) (𝑥 y) = {
(𝐹𝐵1𝑈 ∩ 𝐹𝐵2𝑈)(xy)     if 𝑥𝑦 ∈ 𝐸1 ∪ 𝐸2

𝐹𝐵1𝑈(𝑥𝑦)                      if 𝑥𝑦 ∈ 𝐸1

𝐹𝐵2𝑈(𝑥𝑦)                      if 𝑥𝑦 ∈ 𝐸2

 

 
3) (𝑇𝐵1𝐿 + 𝑇𝐵2𝐿) (𝑥 y) = min (𝑇𝐵1𝐿(𝑥), 𝑇𝐵2𝐿(𝑥))    (72) 

(𝑇𝐵1𝑈 + 𝑇𝐵2𝑈) (𝑥y) = min (𝑇𝐵1𝑈(𝑥), 𝑇𝐵2𝑈(𝑥)) 
(𝐼𝐵1𝐿 + 𝐼𝐵2𝐿) (𝑥y)=max (𝐼𝐵1𝐿(𝑥), 𝐼𝐵2𝐿(𝑥)) 
(𝐼𝐵1𝑈 + 𝐼𝐵2𝑈) (𝑥 y) = max (𝐼𝐵1𝑈(𝑥), 𝐼𝐵2𝑈(𝑥) 
(𝐹𝐵1𝐿 + 𝐹𝐵2𝐿) (𝑥y)=max (𝐹𝐵1𝐿(𝑥), 𝐹𝐵2𝐿(𝑥)) 
(𝐹𝐵1𝑈 + 𝐹𝐵2𝑈) (𝑥 y) = max (𝐹𝐵1𝑈(𝑥), 𝐹𝐵2𝑈(𝑥))𝑖𝑓𝑥𝑦 ∈  𝐸′,  

where 𝐸′ is the set of all edges joining the nodes of 𝑉1 and 𝑉2, assuming𝑉1 ∩ 𝑉2=∅. 

Example 6 

Let 𝐺1
∗= (𝑉1, 𝐸1) and 𝐺2

∗= (𝑉2, 𝐸2) be two graphs such that 𝑉1 ={𝑢1,𝑢2,𝑢3},𝑉2 ={𝑣1,𝑣2,𝑣3},𝐸1 
={𝑢1𝑢2, 𝑢2𝑢3} and 𝐸2 ={𝑣1𝑣2, 𝑣2𝑣3}. Consider two interval valued neutrosophic graphs  𝐺1= (𝐴1, 
𝐵1) and 𝐺2= (𝐴2, 𝐵2). 
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Figure 16: Interval valued neutrosophic graph ofG1 and G2 

 
Figure 17: Interval valued neutrosophic graph of G1 + G2 

5. Conclusion 

The interval valued neutrosophic models give more precision, flexibility and compatibility to the 
system as compared to the classical, fuzzy, intuitionistic fuzzy and neutrosophic models. In this 
paper, the authors introduced some operations: Cartesian product, composition, union and join 
on interval valued neutrosophic graphs, and investigated some of their properties. In the future, 
the authors plan to study others operations, such as: tensor product and normal product of two 
interval valued neutrosophic graphs. 
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Applications of Neutrosophic Sets in Medical Image Denoising 

and Segmentation 

Abstract 

 In medical science, diagnosis and prognosis is one of the most difficult and challenging task 
because of restricted subjectivity of the experts and presence of fuzziness in medical images. In 
observing the severity of several diseases, different professional experts may result in wrong 
diagnosis. In order to perform diagnosis intuitively in the medical images, different image 
processing methods have been explored in terms of neutrosophic theory to interpret the inherent 
uncertainty, ambiguity and vagueness. This paper demonstrates the use of neutrosophic theory in 
medical image denoising and segmentation where the performance is observed to be much better.  

Keywords 
Neutrosophic logic, fuzzy logic, image segmentation. 

 

1. Introduction 

Generally medical images are consisted of fuzziness and imprecision information, therefore 
segmentation, feature extraction and classification are difficult to perform [1]. Since fuzzy sets are 
widely used for processing fuzziness and uncertainty in a wide range of fields such as control 
science and image processing [2]. But the limitation of this method is that it does not consider the 
spatial context of the pixels due to noise and artifacts [3]. The generalization of fuzzy set in form 
of neutrosophic set is becoming more popular in image processing tasks to overcome the 
limitations of fuzzy based approaches. The concept of Neutrosophy is introduced by Smarandache 
[4]. Neutrosophy is the foundation of neutrosophic probability, neutrosophic statistics, 
neutrosophic logic and neutrosophic set [4]. Neutrosophic set generalizes the concept of the classic 
set, fuzzy set, interval valued fuzzy set [5], intuitionistic fuzzy set [6], paraconsistent set, 
paradoxist set, tautological set, dialetheist set [3]. Neutrosophy theory takes into account every 
theory, concept, or entity <A> in relation to its opposite, <Anti-A> and <Non-A>. The neutralities 
<Neut-A> which is not A, and that which is neither <A> nor <Anti-A> are referred to as <Non-
A>. In neutrosophic logic, three neutrosophic components:  T, I, F are defined to estimate the truth 

mailto:koundal@gmail.com
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membership degree, the false membership degree, and the indeterminacy membership degree 
(neither true nor false) in <A>. Unlike fuzzy logic, neutrosophic logic introduces the extra domain 
I which provides a more efficient way to handle higher degrees of uncertainty that is very difficult 
for fuzzy logic to be handled [7]. The major difference between a Neutrosophic Set (NS) and a 
Fuzzy Set (FS) is that there is no limit on the sum m in a NS, while in a FS m (m=t+f) must be 
equal to 1 [8]. The Neutrosophic image domain is shown in Fig. 1. 

 

 

 

 

 

 

 

Figure 1. Neutrosophic Image Domain 

A neutrosophic image is characterized by three subsets T, I and F. A pixel  P  in neutrosophic 
image is described as P(i ,j ), { T(i ,j), I(i ,j ), F(i ,j)}. Thus, for each pixel in the neutrosophic 
image, the truth degree T, false degree F and indeterminacy degree I is required to be computed. 
In general, a NS is symbolized as <T, I, F>. In case of determining the tumor in image, tumor can 
be considered as <A>, boundaries as <Neut-A> and background as <Anti-A>. T, I, and F are the 
neutrosophic components to represent <A>, <Neut-A> and <Anti-A>, <A> and <Anti-A> contain 
region information, while <Neut-A> has boundary information [9, 10]. 

 A pixel in the neutrosophic image can be represented as 𝐴{𝑡, 𝑖, 𝑓}, where 𝑡% represents true 
(tumor), 𝑖% represents indeterminate (boundaries) and 𝑓% represents false (background), where 
𝑡𝑇, 𝑖𝐼 and 𝑓𝐹  [7]. In the FS, 𝑖 = 0, 0 𝑡, 𝑓100. In the NS, 0 𝑡, 𝑖, 𝑓100 [11,12].  An 
element 𝑥(𝑡, 𝑖, 𝑓) belongs to the set in the following way: it is 𝑡 true in the set, 𝑖 indeterminate in 
the set, and 𝑓  false, where 𝑡, 𝑖, and 𝑓  are real numbers taken from the sets 𝑇, 𝐼, and 𝐹 with no 
restriction on 𝑇, 𝐼, 𝐹 nor on their sum 𝑚 = 𝑡 + 𝑖 + 𝑓. In literature, number of neutrosophic based 
denoising and segmentation methods are given [13, 14, 15, 21, 23, 29]. 

The rest of paper is organized in four sections. Section 2 describes the neutrosophic based image 
denoising and segmentation methods. Section 3 discusses the results of various neutrosophic 
domain methods. Finally, the conclusion is summarized in Section 4. 

2. Neutrosophic Based Image Processing 

1.1. Transformation of Image in Neutrosophic Domain  

𝑇𝑀,  𝐼𝑀 and 𝐹𝑀 are the neutrosophic components to represent < 𝐴 >, < 𝑁𝑒𝑢𝑡 − 𝐴 > and <

𝐴𝑛𝑡𝑖 − 𝐴 > respectively in neutrosophic domain. Every neutrosophic pixel can be represented as 
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𝑃𝑁𝐼 = {𝑇𝑀, 𝐼𝑀, 𝐹𝑀}, where 𝑇𝑀 is the set of white pixels,  𝐼𝑀  is the set of indeterminate pixels 
and 𝐹𝑀 is the set of non-white pixels respectively [16, 17]. The membership functions 𝑇𝑀, 𝐼𝑀 
and 𝐹𝑀 are computed as  

𝑇𝑀 =  
𝑓𝑖𝑗 − 𝑓𝑚𝑖𝑛

𝑓𝑚𝑎𝑥

 (1) 

where 𝑖 differs from 0 to n-1, j differs from 0 to 𝑚-1, 𝑓𝑖𝑗 is local mean obtained using window, 
𝑓𝑚𝑖𝑛 is minimum intensity value and 𝑓𝑚𝑎𝑥 is the maximum intensity value.   

𝑓𝑖𝑗 =
1

𝑤×𝑤
∑ ∑ 𝑓𝑚𝑛

𝑗+
𝑤
2

𝑛=𝑗−
𝑤
2

𝑖+
𝑤
2

𝑚=𝑖−
𝑤
2

 

 

  
(2) 

where 𝑤 is a window size, 𝑓𝑚𝑛 is the noisy image and 𝑓𝑖𝑗 is  local mean of pixels on 𝑤. 

𝐼𝑀 =  
𝛿𝑖𝑗 − 𝛿𝑚𝑖𝑛

𝛿𝑚𝑎𝑥
    (3) 

𝛿𝑖𝑗 = 𝑎𝑏𝑠(𝑓𝑖𝑗 − 𝑓𝑖𝑗)    (4) 

where 𝛿𝑖𝑗 is absolute difference value between local mean value 𝑓𝑖𝑗 and intensity 𝑓𝑖𝑗 , 𝛿𝑚𝑎𝑥  is 
the maximum absolute difference value and 𝛿𝑚𝑖𝑛  is minimum absolute difference value. The false 
membership is computed as 

𝐹𝑀 = 1 − 𝑇𝑀 
 

(5) 

The true subset, 𝑇𝑀, is computed by normalizing the intensity values in [0,1] as given in Eq.(1). 
In ultrasound images, pixels belonging to speckle and texture are hard to differentiate, hence, 𝑓𝑖𝑗 , 
is calculated to ascertain the neighborhood mean of pixels in a kernel. Absolute difference is used 
to determine the indeterminate component and False subset, 𝐹𝑀 , is determined as the complement 
of 𝑇𝑀 [18]. 

2.2. Related Work on Neutrosophic Domain image denoising 

Several denoising methods based on neutrosophic set have been proposed in the literature to 
remove Speckle noise, Gaussian and Rician noise [19-28]. Various notions and theories based on 
NS are defined and applied for denoising of images. The image is converted into the NS domain 
and γ-median-filtering operation is used to decrease the image indeterminacy. The experiments 
have been carried out on natural images with various levels of noise for better image denoising 
[16].  
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A wiener filter in neutrosophic domain has been introduced in literature for removal of Rician 
noise. The wiener filtering operation is employed on true and false subsets for the reduction of the 
noise and indeterminacy. Experiments have been performed on simulated MRI from Brainweb 
database and clinical MR images, which are affected by Rician noise [22]. It has been found that 
wiener filter in neutrosophic domain is able to preserve edges with the suppression of Rician noise. 

In [25, 26], LEE and KUAN filter were implemented in neutrosophic domain for the reduction 
of speckle noise [27]. The Neutrosophic Nonconvex Regularizer Speckle Noise Removal 
(NNRSNR)  method based on Gamma statistics in neutrosophic domain is presented in [28]. 
Another method based on Nakagami distribution statistics (NTV) which is presented in [29] is 
further explored in neutrosophic domain. Neutrosophic Nakagami Total Variation method 
(NNTV) is presented to exploit the Nakagami statistics in neutrosophic domain [30]. 

2.3. Related work on  Neutrosophic Domain Image Segmentation 
Recently, neutrosophic based methods have been attracted attention in solving image 

segmentation problems due to their high performance and indeterminacy handling capability. In 
literature, several authors have reported number of segmentation methods based on NS [31-40].  

Zhang et al. [7] introduced an algorithm, which used the region merge method in NS for the 
segmentation of natural images to resolve over-segmentation problem. The region merge 
algorithm started with initial seeds and merged the two regions until a stopping criterion is satisfied. 
The cluster center is selected on the basis of histogram features in fuzzy domain and the region 
merge criterion is defined in intensity domain based on edge value and standard deviation features. 

Cheng et al. [31] introduced the NS approach with image thresholding for the segmentation of 
artificial and natural images with indeterminacy handling capability. However, selection of 
particular threshold value is a critical task as well as it ignores the spatial information and is noise 
sensitive. Guo et al.[32]  presented the fuzzy c-means clustering in NS domain. In this method, 
entropy in NS domain is used to estimate the indeterminacy of image and α-mean operation is 
presented to decrease the indeterminacy to make the image more homogenous. Then, image is 
segmented using a fuzzy c-means clustering. The membership value in the fuzzy clustering is 
updated as per the indeterminacy value. The experimental analysis demonstrated that the method 
performed better on both clean and noisy images. Another NS based image segmentation method 
is presented in which two new operations are defined to reduce the indeterminacy of the image. 
Zhang et al. [33] presented a watershed segmentation approach in NS domain. In the first phase, 
image is mapped to NS domain and then, neutrosophic logic and thresholding is used to get a 
binary image. Final segmentation result is obtained from watershed method. The Neutrosophic 
Watershed (NW) method has better performance on non-uniform as well as on noisy images. 

Further NS is integrated with Improved Fuzzy C-Means (IFCM) for image segmentation [34]. 
In this, membership degree and convergence criterion of clustering are redefined accordingly. 
Experimental results demonstrated that the method segmented the images effectively and 
accurately. Another method named as Neutrosophic C-Means (NCM) clustering is introduced for 
uncertain data clustering, which is inspired from fuzzy c-means and the NS framework [35]. In 
this method, the clustering problem is derived as an objective function and is minimized with both 
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ambiguity rejection and distance rejection. These measures are able to manage uncertainty due to 
imprecise definition of the clusters. 

Another automatic segmentation approach is presented by Sengur et al. [36] which is the 
combination of texture information with color information in NS and wavelet domain. The method 
is used for the segmentation of natural color image using 𝛾-𝐾 -means clustering. The cluster 
number K is ascertained with cluster validity analysis. Experiments demonstrated that it segmented 
the natural images very effectively even if the texture and color of each region does not have 
homogeneous statistical characteristics. Shan et al. [37] presented a clustering method named as 
Neutrosophic L-Means (NLM) clustering for segmentation of breast ultrasound images. The 
method achieved the best accuracy with a fairly rapid processing speed. The main limitation of the 
method is that it is not able to segment multiple-lesions and failed under severe shadowing effect. 

Karabatak et al.[38]  has given a color image segmentation method in neutrosophic domain. 
Firstly, the image is transformed into NS domain by defining three membership sets. Then α-mean 
and β-enhancement operations were used to reduce the indeterminacy. The method suffered from 
over-segmentation and fixed parameters. An Iterative Neutrosophic Lung Segmentation (INLS) 
method has been introduced which is based on Expectation-Maximization (EM) analysis and 
Morphological operations (EMM) for the segmentation of ribs and lungs [39]. The results have 
shown that the images without or with lung diseases are segmented out more properly.  

Guo et al. [40] has introduced a method for image based on the NS filter and level set. In First 
the image is transformed into NS domain by true, false and indeterminacy membership sets. 
Subsequently, a filter is applied for reduction of noise and level set for image segmentation. Further, 
a Neutrosophic Edge Detection (NSED) method is presented for edges detection with a new 
directional α-mean operation [41]. The experiments have been performed using artificial and real 
images which demonstrated that it is able to detect edges accurately.  

Recently a clustering algorithm named as Neutrosophic Evidential C-Means (NECM) with 
Dezert–Smarandache Theory (DSmT) is proposed for natural image segmentation [42]. The 
DSmT combination rule and decision has been utilized to achieve the final result. The NECM 
method is tested on both data clustering and image segmentation applications. Further, a 
Neutrosophic Similarity Score (NSS) method and level set algorithm is introduced for breast 
segmentation in ultrasound images [43]. First, the breast ultrasound is transformed to the NS 
domain via three membership subsets and then NSS is defined and used to determine the 
membership degree of the tumor region. Finally, the level set is employed for tumor segmentation 
in the NSS image. The results have shown that the method can segment the breast tissue in 
ultrasound images effectively and accurately. 

Another neutrosophic domain segmentation method named as Spatial Neutrosophic Distance 
Regularizer Level Set (SNDRLS) method is presented for automated delineation of nodules in 
thyroid ultrasound images [44]. 
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3. Experimental results and discussion 

3.1. Results of denoising on synthetic images 
This section demonstrates the qualitative and quantitative results to evaluate the effectiveness 

of the neutrosophic domain speckle reduction methods. In experiments, performance of the 
neutrosophic domain speckle reduction methods NLEE, NKUAN, NNTV and NNRSNR methods 
are compared with LEE, KUAN, NTV and NRSNR to study the impact of neutrosophic domain 
in speckle reduction and edge preservation [45]. Several quantitative measures like Signal to Noise 
ratio (SNR) and Edge Preservation Index (EPI) have been used for the evaluation of 
aforementioned methods [45, 46]. 

For quantitative evaluation of despeckling methods, the experiments are conducted on synthetic 
images, in which image is corrupted by speckle noise using speckle simulation procedure [30]. 
The performance of speckle reduction methods have been measured on the speckle simulated 
images at various noise levels (σ = 0.3,0.4, … .0.9). Table 1 represents SNR values of noisy image, 
KUAN, LEE, NKUAN and NLEE methods at various noise levels from σ = 0.3 to 0.9  for 
synthetic image. From quantitative results, it has been noticed that the neutrosophic domain 
methods outperformed the spatial domain methods by achieving higher SNR values. The NKUAN 
outperformed the KUAN filter by gaining higher values of SNR. Similarly, NLEE has also 
outperformed the LEE filter by achieving higher SNR values. 

 Table 1 

 SNR (dB) 

Noise 
Level 

Noisy 
Image 

KUA
N 

NKU
AN LEE NLEE 

0.3 21.11 
22.1

1 23.42 23.16 23.97 

0.4 19.04 20.7
2 

21.41 21.62 22.73 

0.5        17.9 
18.7

3 19.39 20.25 21.88 

0.6 16.38 17.1
8 18.86 19.21 20.24 

0.7 15.21 
15.8

8 16.31 17.56 18.96 

0.8 13.99 14.6
4 15.98 16.94 17.51 

0.9 3.63 5.71 6.04 7.79 8.53 
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Figure 2 illustrates EPI of different speckle reduction techniques in which neutrosophic domain 
methods have high edge preservation as compared to spatial domain methods. From graphical 
representation as shown in Fig. 2, it is observed that NLEE is able to preserve edges better in 
neutrosophic domain as compared to LEE method. NLEE method has also been found to be 
performed better than NKUAN in terms of edge preservation. The results have been compared 
with spatial-domain speckle reduction filters such as LEE and KAUN.  Figure 3 illustrates the 
results of speckle simulated synthetic image. Fig. 3(a) is the original image, and Fig. 3(b) is the 
image simulated with speckle noise at 0.5 noise level. Figure 3(c) and Fig. 3(d) are the despeckling 
results of LEE and KUAN filter, respectively. Figure 3(e) and Fig. 3(f) are the results of the 
proposed methods i.e. Neutrosophic KUAN (NKUAN) filter and Neutrosophic LEE (NLEE) filter.  

 

    
Figure 2: EPI comparison of different techniques on speckle simulated synthetic image.   
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Figure 3: (a) Original synthetic image (b) Speckle simulated Synthetic image (c) LEE [25] (d)  
KUAN [26] (e) NKUAN [28] (f) NLEE [28].  

Table 2 lists the comparison of different speckle reduction methods such as Nakagami Total 
Variation (NTV) [29], Neutrosophic Nakagami Total variation (NNTV) [30], Non convex Sparse 
Regularizer Speckle Noise removal (NRSNR) [50] and Neutrosophic Nonconvex Regularizer 
Speckle Noise removal (NNRSNR) [27] methods in terms of SNR values at various noise levels 
from σ = 0.3 to 0.9. From quantitative results, it has been observed that the neutrosophic domain 
NNRSNR method outperformed the NRSNR method by achieving higher SNR values. Similarly, 
neutrosophic domain NNTV outperformed the NTV and other methods by gaining higher SNR 
value. It is clear from the Table 2 that both neutrosophic domain methods performed better as 
compared to their counterparts even at high noise levels by achieving maximum SNR values.  

Table 2: SNR comparison of different methods at different noise levels (σ = 0.3 to 0.9). SNR is 
given in dB. 

 

   

                    (d)                      (e)                     (f) 

              Methods 

     Variance 

Noisy 

image 
NRSNR 
[50] 

NNRSNR 
[27] 

NTV 

[29] 

NNTV 

[30] 

0.3 21.11 22.73 24.22 25.35 26.89 

0.4 19.04 22.12 23.03 23.73 24.32 

0.5 17.9 22.46 23.73 24.26 25.86 

0.6 16.38 21.64 21.98 22.75 23.07 

0.7 15.21 18.71 19.66 20.99 21.75 

0.8 13.99 17.20 18.37 20.15 20.89 

0.9 3.63 6.85 8.75 9.66 10.33 

Average 15.32 18.81 19.96 20.98 21.87 
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Similar type of observations could be made from Fig. 4 with the visual comparison of NRSNR, 
NTV, NNRSNR and NNTV on speckle simulated phantom image (img1). Figure 4(a) shows an 
original image and Fig. 4(b) displays the speckle simulated image. Whereas Fig. 4(c) reveals that 
the NRSNR blurred the image information such as edges. Figure 4(d) illustrates that the 
neutrosophic domain NNRSNR method performs well in speckle suppression. However, some of 
the pixels are advertantly suppressed and blurred near the boundaries. Similar type of observation 
could be made by Fig. 4(e) and Fig. 4(f) that the neutrosophic domain NNTV method has better 
visual result as compared to its counterpart in terms of speckle reduction and edge preservation.  

Figure 4: Visual comparison of different methods on speckle-simulated synthetic image (img2) σ 
= 0.5. (a) Original image (b) Speckle simulated image. Image processed by    (c) NRSNR         
(d) NNRSNR (e) NTV (f) NNTV. 

3.2 Results of denoising on real images 

Figure 5 shows the results of KUAN, NKUAN, LEE and NLEE methods on medical images. 
The original image is shown in Fig. 5(a). The NKUAN and NLEE methods have outperformed 
the KUAN and LEE methods in spatial domain by removing speckle noise as illustrated in Fig. 
5. 

   

(a)                  (b)                   (c) 

   

               (d)                 (e)                 (f) 
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                                                 (a)                                                 (b) 

                  

                        (c)                                                 (d)                                               (e) 

Figure 5: Visual comparison of various methods on (a) test image (b) KUAN (c) NKUAN   (d) 
LEE (e) NLEE. 

Figure 6 shows the results of NRSNR, NTV, NNTV and NNRSNR methods on thyroid ultrasound 
images. The original ultrasound image is given in Fig. 6(a). The NRSNR over-smoothed and 
blurred the images while speckle removal as illustrated in Fig. 6(b). It caused loss of important 
details and information of an image. The NNRSNR method has given better results but artifacts 
can be noticed in Fig. 6(c). The NNTV method effectively removed the speckle noise and 
preserved the nodule structure as illustrated in Fig. 6(e). Therefore, NNRSNR and NNTV method 
in neutrosophic domain can lead to efficient nodule detection in the ultrasound image. Small 
structures which are obscured by speckle noise become visible after processing by neutrosophic 
domain speckle reduction methods. The NNTV is able to remove speckle pattern, preserve 
anatomical structures, resolvable details and boundaries. All these results demonstrate the 
superiority of the neutrosophic domain methods in handling indeterminacy.  

These visual outcomes are also evaluated via their line profiles shown in Fig. 7, along the line in 
the original image. Further, a closer glance in Fig. 7(d) and Fig. 7(f), it is observed that the 
NNRSNR and NNTV methods surpass the other methods by clearly highlighting the edges of 
thyroid nodule with the suppression of speckle noise as well as with the preservation of edges and 
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corners in the thyroid gland ultrasound image. The methods in neutrosophic domain are able to 
preserve the corners, boundaries and sharp features of the image as shown in Fig. 7. Also the 
minute subtle details which are hidden by speckle, become noticeable in despeckled image 
processed by NNTV method. 

Figure 6: Visual results on the thyroid ultrasound image (img6) (a) Original image. Image 
processed by (b) NRSNR (c) NNRSNR (d) NTV (e) NNTV. 

 

Further, comparison of NNRSNR and NNTV methods on real ultrasound image is illustrated 
in Fig. 8. Figure 8(c) shows the despeckled image and its intensity profile is shown in Fig. 8(d) 
along the highlighted line which revealed that the NNRSNR has lose some important information 
while removing speckle noise in the filtered image and has changed the contrast of the resultant 
image. It is observed that the NNTV method using Nakagami distribution can preserved the nodule 
boundaries better in ultrasound images while the degree of speckle suppression is high as 
compared to NNRSNR method.  

 

 

 

 

 

  

 

                             (a)                (b)  

   

                 (c)                 (d)                   (e) 
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Figure 7: Line profiles for the thyroid ultrasound image (img6). (a) Original image. (b) Line 
profile of original image. Line profiles of (c) NRSNR (d) NNRSNR (e) NTV (f) NNTV with 

original image along the highlighted line. 

  

(a) (b) 

  

(c) (d) 

  
(e) (f) 
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(a)  (b)  

  

(c ) (d) 

  

(e) (f) 

Figure 8: Denoising results on the thyroid ultrasound image (img8) (a) Original image                 
(b) Line profile of original image (c) Image processed by NNRSNR (d) Line profile of NNRSNR  

(e) Image processed by NNTV (f) Line profile of NNTV. 
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1.3. Results of segmentation on real images 

Further, the performance of segmentation methods in neutrosophic domain is compared on real 
ultrasound images [47]. Various performance metrics such as area-based and boundary-based are 
used to compute how much nodule pixels are correctly covered and to measure the possible 
disagreement over two curves [48, 49]. Area based metrics which are used in this work are True 
Positive (TP), False Positive (FP), Dice Coefficient (DC) and Hausdorff Distance (HD). 

Table 3 lists the values of all quality metrics. As evident from results, it is observed that 
SNDRLS outperforms all other neutrosophic domain methods by achieving high values in terms 
of performance measures. The larger values of area based metrics produced by SNDRLS method 
assure more similarity between ground truth and the region extracted by automated segmentation 
method. The SNLM also reveals an improvement in FP value and HD values than other methods 
as listed in Table 3. The results have shown that more area is achieved by the SNDRLS method in 
comparison to NCM and NLM.  

Table 3: Comparison of segmentation methods  

               
Metrics 

Methods 
TP (%) DC (%) FP (%) 

 

HD 
(pixels) 

 

NCM [35] 88.5±6.2 78.50±18.4 10.93±10.9 20.1±19.7 

NLM [37] 89.0±5.9 88. 00 ±3.9 13.41±13.3 4.3±4.01 

SNLM [44] 93.45±2.5 92.8±4.6 4.07±4.8 3.23±0.9 

SNDRLS [44] 95.92±3.70 93.88±2.59 7.04±4.21 0.52±0.20 

 

The quantitative results of proposed method are also supplemented with subjective outcomes. 
Figure 9 shows the comparison of proposed SNDRLS method with all aforementioned methods. 
Figure 9(a) illustrates the original thyroid ultrasound image and Fig. 9(b) shows the ground truth 
image. It is observed that the contour segmented by Neutrosophic Watershed (NW) is passed 
through the weak boundaries as shown in Fig. 9(c).  
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Neutrosophic C Means (NCM) is affected as it is easily trapped into inappropriate local minima 
due to similar intensities as illustrated in Fig. 9(d). As evident from Fig. 9(e), NLM method is not 
able to segment the entire nodule properly. In addition, Fig. 9(f) illustrates the visual outcome of 
SNLM, which shows that the boundary of segmented nodule is not close to the boundary marked 
by an expert. It is found that the results of SNDRLS are very close to the manual segmentation as 
shown in Fig. 9(g). The SNDRLS is able to handle indeterminacy, fuzziness and uncertainty of 
pixels. From visual results, it has been noticed that the SNDRLS method is effective and accurate 

 

 

 

 (a)  

   

(b) (c) (d ) 

   

(e) (f) (g) 

Figure 9: (a) Ultrasound image (img23) (b) Ground Truth. Segmentation results by                        
(c) Neutrosophic Watershed (NW) [33] (d) NCM [35] (e) NLM [37] (f) SNLM [44]                      

(g) SNDRLS [44]. 
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in nodule segmentation using ultrasound images. Figure 10(a) shows the original ultrasound image 
and Fig. 10(b) illustrates the ground truth image. While from Fig. 10(c), it has been noticed that 
the nodule is not properly segmented out due to low contrast and weak boundaries. The image 
segmented by NLM is able to attain delineate nodule regions with non-nodule regions also as 
shown in Fig. 10(d).  

 

Figure 10: Ultrasound image (img318) (a) Original image (b) Ground Truth. Segmentation 
results by (c) NW [33] (d) NLM [37] (e) SNLM [44] (f) NCM [35] (g) SNDRLS [44]. 

 

 

 

 

 (a)  

   

(b) (c) (d ) 

   

(e) (f) (g) 
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The NCM and SNLM are able to segment the nodule in neutrosophic domain but the obtained 
boundary is not much close to the ground truth boundary as illustrated in Fig. 10(e) and Fig. 10(f). 
The best segmentation of nodule is achieved by SNDRLS as the attained delineations are very 
smooth and completely adapted to the thyroid nodule boundaries as shown in Fig. 10(g). 
Additionally, SNDRLS can prevent leakage through weak edges resulting in accurate extraction 
of nodule boundaries by handling the intensity in-homogeneity well. 

4. Conclusion 

Neutrosophic logic gives a powerful tool that can be used to describe the image with uncertain 
information. This paper provides the usefulness of neutrosophic theory in medical image denoising 
and segmentation. It is observed that the results using neutrosophic set are much better than the 
fuzzy/non fuzzy set theory because Neutrosophic set can consider more number of uncertainties by 
its indeterminacy handling capability. Neutrosophic set gives better result even in low contrasted 
images with vague region/boundaries. Through the work discussed above shows that neutrosophic 
based approaches can be utilized for more image processing and pattern recognition applications. 
It also helps in solving the problems where membership function is not defined accurately due to 
the lack of personal error.    

References 
1. Mondal K, Dutta P, Bhattacharyya S. Fuzzy logic based gray image extraction and segmentation. 

International Journal of Scientific & Engineering Research. 2012;3(4):1-14. 
2. Yang Y, Huang S. Image segmentation by fuzzy C-means clustering algorithm with a novel penalty term. 

Computing and Informatics. 2012;26(1):17-31. 
3. Koundal D, Gupta S, Singh S. Applications of neutrosophic and intuitionistic fuzzy set on Image processing. 

National Conference on Green Technologies: Smart and Efficient Management (GTSEM-2012). 2012.  
4. Smarandache F. A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, 

Neutrosophic Probability: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability. 
Infinite Study; 2005.  

5. Zhang M, Zhang L, Cheng HD. Segmentation of ultrasound breast images based on a neutrosophic method. 
Optical Engineering. 2010;49(11): 117001-117001. 

6. Atanassov KT. Intuitionistic fuzzy sets. Fuzzy sets and Systems. 1986;20(1):87-96.  
7. Zhang L, Zhang Y. A novel region merge algorithm based on neutrosophic logic. International Journal of 

Digital Content Technology and its Applications. 2011;5(7):381-7.  
8. Smarandache F. A Geometric Interpretation of the Neutrosophic Set-A Generalization of the Intuitionistic 

Fuzzy Set. arXiv preprint math/0404520. 2004. 
9. Zhang M. Novel approaches to image segmentation based on neutrosophic logic. (Doctoral dissertation, Utah 

State University). 2010.  
10. Ju W. Novel Application of Neutrosophic Logic in Classifiers Evaluated under Region-Based Image 

Categorization System (Doctoral dissertation, Utah State University). 2011. 
11. Smarandache F. Neutrosophic Logic-Generalization of the Intuitionistic Fuzzy Logic. arXiv preprint 

math/0303009. 2003. 
12. Wang H, Smarandache F, Sunderraman R, Zhang YQ. Interval Neutrosophic Sets and Logic: Theory and 

Applications in Computing: Theory and Applications in Computing. Infinite Study. 2005(5). 
13. Cheng HD, Shan J, Ju W, Guo Y, Zhang L. Automated breast cancer detection and classification using 

ultrasound images: A survey. Pattern Recognition. 2010;43(1):299-317. 
14. Eisa M. A New Approach for Enhancing Image Retrieval using Neutrosophic Sets. International Journal of 

Computer Applications. 2014;95(8):12-20. 



Florentin Smarandache, Surapati Pramanik (Editors) 

 

274 
 

15. Shan J. A fully automatic segmentation method for breast ultrasound images. (Doctoral dissertation, Utah 
State University). 2011. 

16. Guo Y, Cheng HD, Zhang Y. A new neutrosophic approach to image denoising. New Mathematics and 
Natural Computation. 2009 Nov;5(3):653-62.  

17. Guo Y, Şengür A. A novel image segmentation algorithm based on neutrosophic filtering and level set. 
Neutrosophic Sets and Systems. 2013;1:46-49. 

18. Mohan J, Chandra AT, Krishnaveni V, Guo Y. Evaluation of Neutrosophic Set Approach Filtering Technique 
For Image Denoising. The International Journal of Multimedia & Its Applications (IJMA). 2012;4(4):73-81. 

19. Mohan J, Chandra AT, Krishnaveni V, Guo Y. Image Denoising Based on Neutrosophic Wiener Filtering. 
In Advances in Computing and Information Technology. Springer Berlin Heidelberg. 2013;861-869. 

20. Mohan J, Krishnaveni V, Guo Y. Performance analysis of neutrosophic set approach of median filtering for 
MRI denoising. Int. J Elec. & Commn. Engg & Tech. 2012;3:148-163. 

21. Mohan J, Krishnaveni V, Guo Y. MRI denoising using nonlocal neutrosophic set approach of Wiener filtering. 
Biomedical Signal Processing and Control. 2013;8(6):779-791. 

22. Mohan J, Krishnaveni V, Guo Y. A new neutrosophic approach of wiener Filtering for MRI denoising. 
Measurement Science Review. 2013;13(4):177-186. 

23. Qi X, Liu B, Xu J. A Neutrosophic Filter for High-Density Salt and Pepper Noise Based on Pixel-Wise 
Adaptive Smoothing Parameter. Journal of Visual Communication and Image Representation. 2016;36:1-10. 

24. Guo Y, Cheng HD, Zhao W, Zhang Y. A novel image segmentation algorithm based on fuzzy c-means 
algorithm and neutrosophic set. Proceeding of the 11th Joint Conference on Information Sciences, Atlantis 
Press. 2008.  

25. Lee JS. Digital image enhancement and noise filtering by use of local statistics. Pattern Analysis and Machine 
Intelligence, IEEE Transactions on. 1980;(2):165-168. 

26. Kuan DT, Sawchuk AA, Strand TC, Chavel P. Adaptive restoration of images with speckle. In 26th Annual 
Technical Symposium of International Society for Optics and Photonics. 1983: 28-38. 

27. Koundal D, Gupta S, Singh S. Speckle reduction method for thyroid ultrasound images in neutrosophic 
domain. IET Image Processing. 2016;10(2):167-75.  

28. Koundal D, Gupta S, Singh S. Speckle reduction filter in neutrosophic domain. In Int. Conf. of Biomedical 
Engineering and Assisted Technologies. 2012:786-790. 

29. Koundal D, Gupta S, Singh S. Nakagami-based total variation method for speckle reduction in thyroid 
ultrasound images. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering 
in Medicine. 2016; 230(2):97-110.  

30. Koundal D. Automated system for delineation of thyroid nodules in ultrasound images. 2016 (Doctoral 
dissertation, Panjab University, Chandigarh, India). 

31. Cheng HD, Guo Y. A new neutrosophic approach to image thresholding. New Mathematics and Natural 
Computation. 2008;4(03):291-308. 

32. Guo Y, Cheng HD. New neutrosophic approach to image segmentation. Pattern Recognition. 
2009;42(5):587-595.  

33. Zhang M, Zhang L, Cheng HD. A neutrosophic approach to image segmentation based on watershed method. 
Signal Processing. 2010;90(5):1510-1517. 

34. Guo Y, Sengur A. A novel color image segmentation approach based on neutrosophic set and modified fuzzy 
c-means. Circuits, Systems, and Signal Processing. 2013;32(4):1699-1723. 

35. Guo Y, Sengur A. NCM: Neutrosophic c-means clustering algorithm. Pattern Recognition. 2015;48(8):2710-
2724. 

36. Sengur A, Guo Y. Color texture image segmentation based on neutrosophic set and wavelet transformation. 
Computer Vision and Image Understanding. 2011;115(8):1134-1144. 

37. Shan J, Cheng HD, Wang Y. A novel segmentation method for breast ultrasound images based on 
neutrosophic l-means clustering. Medical physics. 2012;39(9):5669-5682. 



New Trends in Neutrosophic Theory and Applications 

275 
 

38. Karabatak E, Guo Y, Sengur A. Modified neutrosophic approach to color image segmentation. Journal of 
Electronic Imaging. 2013;22(1):013005(1-11). 

39. Guo Y, Zhou C, Chan HP, Chughtai A, Wei J, Hadjiiski LM, Kazerooni EA. Automated iterative 
neutrosophic lung segmentation for image analysis in thoracic computed tomography. Medical physics. 
2013;40(8):1-11.  

40. Guo Y, Şengür A. A novel image segmentation algorithm based on neutrosophic filtering and level set. 
Neutrosophic Sets and Systems. 2013;1:46-9.  

41. Guo Y, Şengür A. A novel image edge detection algorithm based on neutrosophic set. Computers & Electrical 
Engineering. 2014;40(8):3-25. 

42. Guo Y, Sengur A. NECM: Neutrosophic evidential c-means clustering algorithm. Neural Computing and 
Applications. 2015;26(3):561-71. 

43. Guo Y, Şengür A, Ye J. A novel image thresholding algorithm based on neutrosophic similarity score. 
Measurement. 2014;58:175-86. 

44. Koundal D, Gupta S, Singh S. Automated delineation of thyroid nodules in ultrasound images using spatial 
neutrosophic clustering and level set. Applied Soft Computing. 2016;40:86-97.  

45. Mazzetta J, Caudle D, Wageneck B. Digital camera imaging evaluation. Electro Optical Industries. 2005:8.  
46. Chumning H, Huadong G, Changlin W. Edge preservation evaluation of digital speckle filters. IEEE 

International in Geoscience and Remote Sensing Symposium. IGARSS. 2002; 4, 2471-2473. 
47. http://cimlaboratory.com/?lang=en&sec=proyecto&id=31 
48. Clinton N, Holt A, Scarborough J, Yan LI, Gong P. Accuracy assessment measures for object-based image 

segmentation goodness. Photogrammetric Engineering and remote sensing. 2010;76(3):289-99. 
49. Arbelaez P, Maire M, Fowlkes C, Malik J. Contour detection and hierarchical image segmentation. IEEE 

Transactions on Pattern Analysis and Machine Intelligence. 2011;33(5):898-916. 
50. Han Y, Feng XC, Baciu G, Wang WW. Nonconvex sparse regularizer based speckle noise removal. Pattern 

Recognition. 2013;46(3):989-1001. 

 

http://cimlaboratory.com/?lang=en&sec=proyecto&id=31




 

 
 

NEUTROSOPHIC MODEL IN SOCIOLOGY 

 





New Trends in Neutrosophic Theory and Applications 

279 
 

SANTANU KU. PATRO 

Department of Mathematics, Berhampur University, Bhanja Bihar - 760007, Berhampur, Odisha, India.  
Email: ksantanupatro@gmail.com 

On a model of Love dynamics: A Neutrosophic analysis 

Abstract 
This study is an application of neutrosophy to the dynamics of love, the most interesting 

social phenomena. The love dynamics were studied earlier by Strogatz (Strogatz, 1994), 
Radzicki (Radzicki, 1993), Rapport (Rapport, 1960), etc. Although   Strogatz’s model 
(Strogatz, 1994) was originally intended only to motivate students, it makes several 
interesting and plausible predictions, and suggests extensions that produce even wider range 
of behavior. This paper has been written in the Strogatz’s spirit, and it has extended Romeo 
& Juliet model (Sprott, 2004) to the neutrosophic domain. A love impact factor (LIF) has 
been proposed, and analyzed using neutrosophic logic. 

Keywords 
Neutrosophy, neutrosophic logic, love, romance, human behavior, partner selection, differential 

equation, love dynamics. 
 

1. Introduction  
In present days, the human behavior has become an interesting issue to study. Researchers 

(concerning to dynamics) were looking for some new techniques to study it accurately. Apparently, 
studying it isn’t a difficult task, and obviously it can be easily performed by the psychologists. 
Though, studying it accurately or near to accuracy, that is a difficult task. It may be achieved by 
mathematical analysis; but since there always appear indeterminacies, a more detailed analysis is 
required, and that is the main goal of this paper. In order to do this, we need to define human 
behavior in terms of equations (with indeterminacy) and we need to form a refined model, based 
on different feelings, taking into account different conditions. This paper deals with the refinement 
of love dynamics, a subject that falls in the field of social psychology, where interpersonal 
relationship are a topic of major concern. The feelings of love transpose in different forms; but 
here we opt to consider it as partner’s love. One may say that romantic relationships are somehow 
a simpler case, since they involve only two individuals. The analysis has been performed following 
the modeling approach, with the induction of neutrosophic logic. An obvious difficulty in any 
model of love is defining what is meant by love and quantifying it in some meaning including 
intimacy, passion, and commitment (Strogatz, 1988); each type consists of complex mixtures of 
feelings. In addition to love for another person, there is love for oneself, love of life, love of 
humanity, and so forth. Furthermore, according to neutrosophy (Smarandache, 1998), the opposite 
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of love may not be hate, since those two feelings can coexists, and one love some things about 
one’s partner and hate others at the same time. Actually, the feelings in an individual can fluctuate 
depending on life, position, humanity or partner (Sprott, 2001). These feelings vary from person 
to person and from time to time. Even if everyone have the same in his/her hearts, the ratio or 
percentage differs. The feeling in human being varies according to different conditions. For this, 
different conditions and assumptions have to be applied and therefore we need to move towards 
an interpretative world or to think for a model that can give the complete dynamics of human 
feelings. It is obviously unrealistic to suppose that one’s love is only influenced by only his/her 
own feelings and of the other related person, independent of external influences. The parameters 
that characterize the interactions are unchanged by excluding the possibility of learning (Scharfe 
& Bartholonew, 1994). However, the major goal in this research is to apply neutrosophic logic in 
the love model with the form of coupled ordinary differential equations. 

This paper has been organized as follows: In section 2, we recall definition of neutrosophy and 
neutrosophic logic and preliminaries of neutrosophy. Section 3 is devoted to represent 
neutrosophic love model. Section 4 states open problems. Section 5 presents conclusion. 

2. Neutrosophy & Neutrosophic logic  
According to Prof. Florentin Smarandache (Smarandache, 1998), “Neutrosophy is a branch of 

philosophy that studies the origin, nature and scope of neutralities as well as their interaction with 
different ideational spectra”. Prof. Florentin Smarandache is regarded as the father of neutrosophy, 
and Prof.   Cheng-Gui Huang (Huang, n.d.) claims that neutrosophy is a deep thought on human 
culture, giving advantage to break mechanical understanding. Neutrosophic theory has been 
applied in many fields in order to solve problems related to indeterminacy. Neutrosophy is a 
generalization of Hegel’s dialectics. It considers every entity < A > together with its opposite or 
negation < anti A > idea, refered to together as < non A >. 

Definition (Smarandache, 1998) 
A logic in which each proposition is estimated to have the percentage of truth in a subset T, the 

percentage of indeterminacy in a subset I, and the percentage of falsity in a subset F, where T, I, F 
are defined above, is called neutrosophic logic. 

Actually, neutrosophic logic is a formal description frame trying to measure the truth, 
indeterminacy and falsehood. For detailed study of neutrosophic logic, researchers may consult 
the first book on neutrosophy authored by Florentin Smarandache (Smarandache, 1998). 
Neutrosophic logic was invented by F. Smarandache in 1995, which is an extension of fuzzy logic, 
intuitionistic fuzzy logic, paraconsistent logic. It deals with indeterminacy. In neutrosophic logic, 
every logical variable ‘x’ is described by an ordered triple x = (t, i, f), where 

t  degree of truth, 
i  level of indeterminacy, 
f  degree of false. 

To maintain consistency with classical and fuzzy logic and with probability, there is a special 
case where t + i+ f = 1. But to refer to intuitionistic logic, which means incomplete information on 
a variable, proposition or event, one has t +i+ f <1. Analogically, referring to paraconsistent logic, 
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which means contradictory sources of information about some logical variable, proposition or 
event, we have t + i +f > 1. Florentin  Smarandache (Smarandache,1998) defined neutrosophic 
components. Assume that T, I, F be standard or non-standard real subset of   1,0 . Florentin 

Smarandache (Smarandache, 1998) presented neutrosophic components as follows: 
 supT = t_sup, infT = t_inf, 
 supI = i_sup, infI = i_inf, 
 supF = f_sup, infF = f_inf, and  
  n_sup = t_sup + i_sup + f_sup, 
  n_inf = t_inf + i_inf + f_inf. 
The sets T, I, F are not necessarily intervals; but may be any real sub- unitary subsets, discrete 

or continuous; single element, finite or (countable or uncountable) infinite; union or intersection 
of various subsets, etc. 

3. Neutrosophic Love model 
In this section, we present a neutrosophic love model, which is linear. The classical version was 

studied earlier by Strogatz (Strogatz, 1994). Generally, we classify by 
a) Linear love model, and  
b) Non-linear love model. 

Here, we confine our discussion to linear model only. 
3. A. Necessity of Neutrosophy in Love dynamics 
It is well known that, in society, there is no single factor that affects ‘love affairs’. There are so 

many other external factors (families, relatives, friends, enemies, situations etc.) including 
indeterminacy that can affect the love affairs, which are not described in previous studies 
(Bartholomew & Horowitz, 199; Carnelly & Janoff-Bulman, 1991; Gottman, Murray, Swanson, 
Tyson, & Swanson, 2002, Gragnani, Rinaldi, Feichtinger, 1997; Gragnani, Rinaldi, & Feichtinger, 
1997; Griffin & Bartholomew, 1994; Kobak &Hazan, 1991; Radzicki, 1993; Rinaldi,1998a; 
Rinaldi,1998b; Rinaldi & Gragnani, 1998; Scharfe & Bartholomew, 1994; Sternberg, 1986; 
Stenberg & Barnes, 1988; Strogatz, 1988; Strogatz, 1994; Wauer, Schwarzer, Cai,&Lin,2007). For 
an example, let us suppose that a boy, Dushmanta, is forced to love an unknown girl, Sakuntala. It 
should be noted that the persons (who forced Dushmanta) prisoned his sister, so that the boy acts 
with the girl, as a lover, only for his sister. In this case, the boy neither loves nor hates the girl. We 
can conclude that there is some indeterminacy in love dynamics. There are so many examples like 
this. Therefore, we apply neutrosophic logic to Romeo-Juliet model (Sprott, 2004).  

3. B.  Neutrosophic Linear love model (NLL model) 
Let’s consider a love affair between Romeo and Juliet, where 
                           R(t) = Romeo’s love (or hate, if –ve) for Juliet at a particular time ‘t’ 
                           J(t) = Juliet’s love (or hate, if –ve) for Romeo at a particular time ‘t’. 
The simplest neutrosophic linear love model is  
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( ) ( )

( ) ( )

dR a bI R c dI J
dt
dJ e fI R g hI J
dt

   

   

                               (i)  

Simplifying, we have 
      

( ) ( )

( ) ( )

dR aR cJ bR dJ I
dt
dJ eR gJ fR hJ I
dt

   

   

                        (ii) 

where I level of indeterminacy, and a, b, c, d, e, f ∈ R. 
3. B. i.  Features of NLL model 
The parameters ‘a’, ‘b’, ‘c’, ‘d’ in NLL model specify Romeo’s situational styles, and the 

parameters ‘e’, ‘f’, ‘g’, ‘h’, specify Juliet’s situational feelings. Overall, we can say that the 
parameter ‘a’ describes the extent to which Romeo is encouraged by his own feelings, and ‘c’ is 
the extent to which Romeo is encouraged by Juliet’s feelings, ‘b’ describes the extent to which 
Romeo is encouraged or discouraged by his family or other sources, and ‘d’ is the extent to which 
Romeo is encouraged or discouraged by Juliet’s family. 

Now, we are going to present the characteristics of this NLL model. 
3. B. ii. Characteristics of NLL model 
We may describe the situational behavior of Romeo in this NLL model by portioning our 

universe of discourse NU  into two parts. These are: 

a) Independent indeterminacy model ( 0I
NU  ), 

b) Dependent indeterminacy model ( 0I
NU  ). 

3. B. ii. a. Independent Indeterminacy model ( 0I
NU  ) 

 Here, Romeo can exhibit one of the nine romantic styles, depending upon the signs of ‘a’ and 
‘c’.  

1. Eager Behavior: [if a > 0, c > 0] i.e. Romeo is encouraged by his own feelings as well as 
Juliet’s. 

2. Narcissistic nerd: [if a > 0 and c < 0] i.e. Romeo wants more of what he feels; but retreats 
from Juliet’s feelings. 

3. Secure lover: [if a < 0, b > 0] i.e. Romeo retreats from his own feelings; but is encouraged 
by Juliet’s. 

4. Hermit: [if a < 0 and b < 0] i.e. Romeo retreats from his own feelings as well as Juliet’s. 
5. X-inertia: [if a > 0, b = 0] i.e. Romeo is encouraged by his own feelings; but doesn’t get 

any reply from Juliet’s. 
6. Y-inertia: [if a = 0 and b > 0] i.e. Romeo is encouraged by Juliet’s feelings; but act as a 

neutral person. 
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7. Juliet’s Hate: [if a < 0 and b = 0] i.e. Romeo retreats from his own feelings; but doesn’t 
get any (positive) reply from Juliet, which ultimately leads to Juliet’s hate. 

8. Romeo’s hate: [if a = 0, b < 0] i.e. Romeo retreats from Juliet’s feelings, but doesn’t give 
any positive reply, which ultimately leads to his hate towards Juliet. 

9. Not love at all: [if a = 0 and b = 0] i.e. Both Romeo and Juliet has no reaction w.r.t each 
other.  

3. B. ii. b. Dependent Indeterminacy model 
In this case, there is a positive value of indeterminacy in which there exists an external factor, 

by means of which the love of Romeo and Juliet is affected. 
1. Limit touches the sky: [if a, b, c, d>0] i.e. Romeo and Juliet encouraged by themselves 

as well as their families. 
2. Up-Romeo: [if a > 0, c > 0, b > 0, d < 0] i.e. Romeo encouraged by himself, Juliet and his 

family; but the family of Juliet doesn’t accept this proposal. 
3. Up-Juliet: [if a > 0, c > 0, b < 0, d>0] i.e. Romeo & Juliet are encouraged by themselves; 

but Romeo’s family doesn’t cooperate for this love affairs. 
4. Unsecured love: [if a > 0, c > 0, b < 0, d<0] i.e. Both Romeo and Juliet are encouraged 

by their love; but neither Romeo’s family nor Juliet’s family agree for this affair. 
5. Forced Juliet: [if a > 0, c < 0, b > 0, d>0] i.e. both the families of Romeo and Juliet are 

correlated and agreed in this love affair. And Romeo is encouraged by his own love affair; 
but retreats from Juliet’s feelings i.e. Juliet is forced to love or suppress her love. 

6. Failed Romeo: [if a > 0, c < 0, b > 0, d<0] i.e. Romeo is encouraged by himself as well 
as his family; but retreats from Juliet’s feelings and her family. 

7. Harassed Romeo: [if a > 0, c < 0, b < 0, d<0] i.e. Romeo is encouraged by himself only; 
but has no support from both Juliet and their families. 

8. Crossed Love: [if a>0, c<0, b<0, d>0] i.e. Romeo is encouraged by himself. Romeo’s 
family agrees with the affair; but neither Juliet nor her family accept this affair. 

9. Suspected Love: [if a < 0, c > 0, b > 0, d>0] i.e. Romeo retreats from his behavior and 
encouraged from both Juliet’s behavior and her family. In this case, either Romeo 
suppresses his love or loves any other girl. 

10. Crossed Love [if a < 0, c > 0, b >0, d<0] i.e. when Romeo isn’t agreed, his family is 
agreed; but it is opposite for Juliet.  

11. Fickle Love:  [if a < 0, c > 0, b < 0, d<0] i.e. Romeo retreats from his own behavior as 
well as families, but encouraged by Juliet. 

12. One sided: [if a < 0, c > 0, b < 0, d > 0] i.e. Romeo & his family retreats from the behavior 
of Juliet as well as her family. 

13. Family love: [if a < 0, c < 0, b >0, d > 0] i.e. Romeo & Juliet aren’t encouraged by 
themselves. Only their families are agreed. 

14. Not love: [if a < 0, c <0, b < 0, d < 0] i.e. No factors are interested in this affairs. 
15. Fluctuated R-family: [if a < 0, c < 0, b > 0, d < 0] i.e. Only Romeo’s family is interested 

in this affairs. 
16. Fluctuated J-family: [if a < 0, c < 0, b < 0, d > 0] i.e. Only Juliet’s family is interested in 

this affair. 
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17. Neutral Juliet: [if a > 0, c = 0, b > 0, d > 0] i.e. Juliet is neutral in this affairs. 
18. Single Romeo: [if a > 0, c = 0, b < 0, d < 0] i.e. only Romeo encouraged from his behavior. 
19. Lonely Romeo: [if a > 0, c = 0, b < 0, d < 0] i.e. only Romeo is encouraged by his behavior; 

neither Juliet, nor their families. 
20. Moderate Romeo: [if a >0, c = 0, b< 0, d> 0] i.e. the love is moderate, that is only Romeo 

is encouraged by his behavior. 
21. Neutral Romeo: [if a = 0, c > 0, b > 0, d > 0] i.e. Juliet and her family are encouraged by 

themselves. 
22. Single Juliet: [if a = 0, c > 0, b < 0, d < 0] i.e. only Juliet is agreed and Romeo is 

encouraged by Juliet’s feelings. 
23. Moderate Juliet: [if a = 0, c > 0, b > 0, d < 0] i.e. only Romeo is encouraged by the 

feelings of Juliet. 
24. Moderate J-family: [if a = 0, c > 0, b < 0, d > 0] i.e. only Juliet is agreed in this proposal. 
25. Unarranged J-love: [if a < 0, c = 0, b > 0,d >0] i.e. only families of the lovers are agreed 

in this proposal. 
26. No love: [if a < 0, c < 0, b < 0, d <0] i.e. there exists no love. 
27. Failed J-love: [if a < 0, c = 0, b <0, d > 0] i.e. only Juliet’s family show their interest; but 

there is no interest from Romeo and Juliet. 
28. Failed R-Love: [if a < 0, c = 0, b > 0, d < 0] i.e. only Romeo’s family show their interest 

in this proposal. 
29. Unarranged R-love: [if a = 0, c < 0, b > 0, d > 0] i.e. Families of the lovers are agreed in 

this issue. 
30. Family J-love: [if a = 0, c < 0, b < 0, d > 0] i.e. only the family of Juliet agrees. 
31. Family R-love: [if a = 0, c < 0, b > 0, d <0] i.e. only the family of Romeo agrees. 
32. No love: [if a=0, c<0, b<0, d<0] i.e. none factors agreed and Juliet kept her behavior as 

neutral. 
33. One sided R-family: [if a = 0,  c = 0, b > 0, d < 0] i.e. only the family of Romeo is agreed 

in this proposal. 
34. One sided J-family: [if a = 0, c = 0, b < 0, d > 0] i.e. the family of Juliet is agreed and 

there is no interest of others. 
35. Neutral lovers: [if a = 0, c = 0, b > 0, d > 0] i.e. the lovers are kept as neutral and their 

families are interested in this issue. 
36. Never love: [if a = 0, c = 0, b < 0,  d < 0] i.e. all factors show the uninterested intention 

for this issue.  

3. C. Impact factor of Love Definition: Let NU  be the universe of discourse. Let ‘LIF’ be the 
impact factor of a love affair, which is defined as the index of affection of the love affair, whether 
it is going to succeed or to fail, or in between them. 

 The love impact factor is denoted as ‘LIF’ and defined as follows: 
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 < 0: if ,TL IFLN N < 0 

1.    = 0: if ,TL IFLN N = 0 

   = 1: if ,TL IFLN N    0 

   > 1: if ,TL IFLN N > 1 

     1: if ,TL IFLN N   1   

     0: if ,TL IFLN N   0 
 
where,  &  N

TL IFLN are the love functions of the parameters (a, c) and (b, d) respectively, and it 

is defined as follows:            
< 0 : if a, c < 0 
= 0 : if a , c = 0 
= 1 : if a or c=0 
> 1 : if a > 0, c > 0 
  1 : if a 1 and c 1 
  0: if a, c   0   

 
 
and                                                    

= 1 : if b or d = 0 
> 1 : if b > 0, d > 0  
  1 : if b1 and d   0 
  0: if b, d   0   
= 0 : if b , d = 0  
< 0 : if b < 0, d < 0 

 
Now we consider some cases as follows:  
Examples: (Regarding LIF)  
1. Let’s consider the case of ‘limit touches the sky’. In this case, a >0, b > 0, c >0, d > 0 . So 

1TLN   and, 1IFLN   this implies LIF > 1, which implies that it is very much effective love. 
2. Let’s consider the case of ‘Up-Romeo’.  In this case, 1, 1TL IFLN N  , this implies 1-  

LIF 1, for all very small positive . It is like a fluctuating love, leading to success. 
3. Let’s consider the case of ‘unsecured love’; in this case,  

2.  
1&  N 1

1   LIF 1, >0
TL IFLN  

    
  

               So it is a case of fluctuating love, leading to success.  

,TL IFLN NLIF 

= 

TLN = Nf (a, c) = 

IFLN = Nf (b, d) = 
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Like this, we can study any case described in Section 3, case, and can find the ‘love index factor’ 
for accuracy. 

For inquiring minds, we suggest some research level open problems, as following. 

4. Open problems  
 

1. Extend the love dynamics to neutrosophic love triangles. 
2. Propose new neutrosophic love models based upon ancient / modern society. 
3. Create a neutrosophic model on attachment process.  
4. Propose a neutrosophic love model and analyze it for a secure individual, etc. 

 

5. Conclusions  
The aim of this paper was to present a new neutrosophic love model, which would be able to 

describe the whole love features. Also, we proposed here for the first time the love impact factor 
(LIF). Due to insufficiencies of previous works, we decided to apply the neutrosophy to love 
dynamics, since ‘love’ involves indeterminacy. ‘Love dynamics’ being a very interesting and open 
topic for research, the present study may open up new avenue of research for current neutrosophic 
research arena. 

Acknowledgement  

The author is very grateful to Prof. (Dr.) Florentin Smarandache, Mathematics & Science 
Department, University of New Mexico, USA and Dr. Surapati Pramanik, Department of 
Mathematics, Nandalal Ghosh B.T. College, Panpur, Narayanpur, West Bengal, India, for their 
insightful and constructive comments and suggestions, which have been very helpful in improving 
the paper. 

References 
1. Bartholomew, K., Horowitz, L. M., Attachment styles among young adults: a test of a four-category 

model, Journal of Personality and Social Psychology, 61 (2), 226-244, 1991.  
2. Carnelly, K. B., Janoff-Bulman, R., Optimism about love relationships: general vs. specific lessons from 

one’s personal experiences, Journal of Social and Personal Relationships, 9, 5-20, 1992.  
3. Gottman, J. M., Murray, J. D., Swanson, C. C., Tyson, R., Swanson, K. R., The mathematics of marriage, 

Cambridge, MA: MIT Press, 2002.  
4. Gragnani, A., Rinaldi, S., Feichtinger, G., Cyclic dynamics in romantic relationships, International 

Journal of Bifurcation and Chaos, 7, 2611-2619, 1997.  
5. Griffin, D. W., Bartholomew, K,, Models of the self and other. Fundamental dimensions underlying 

measures of adult attachment, Journal of Personality and Social Psychology, 67, 430-445, 1994.  
6. Huang, C. G., A note on neutrosophy and Buddhism (n.d.), 

http://www.gallup.unm.edu/~smarandache/Huang-Neutrosophy.htm. Retrieved on September 15, 2016.   
7. Jones, F. J., The structure of Petrarch’s Canzoniere: A chronological, psychological, and stylistic analysis, 

Cambridge: Brewer, 1995. 
8. Kobak, R. R., Hazan, C., Attachment in marriage: the effect of security and accuracy of working models, 

Journal of Personality and Social Psychology, 60, 861-869, 1991.  
9. Radzicki, M. J., Dyadic processes, tempestuous relationships, and system dynamics, System Dynamics 

Review, 9, 79-94, 1993. 

http://www.gallup.unm.edu/~smarandache/Huang-Neutrosophy.htm


New Trends in Neutrosophic Theory and Applications 

287 
 

10. Rapoport, A., Fights, games and debates, Ann Arbor, University of Michigan Press.   NDPLS, 8(3), 1960.  
11. Rinaldi, S., Love dynamics: the case of linear couples, Applied Mathematics and Computation, 95, 181-

192, 1998a.  
12. Rinaldi, S., Laura and Petrarch: An intriguing case of cyclical love dynamics, SIAM Journal on Applied 

Mathematics, 58, 1205-1221, 1998b.  
13. Rinaldi, S., Gragnani, A., Love dynamics between secure individuals: A modeling approach, Nonlinear 

Dynamics, Psychology, and Life Sciences, 2, 283-301, 1998.  
14. Scharfe, E., Bartholomew, K., Reliability and stability of adult attachment patterns, Personal 

Relationships, 1, 23-43, 1994.  
15. Smarandache,  F., A unifying field in logic. Neutrosopy, neutrosophic set, neutrosophic probability & 

statistics,  American Research Press, Rehoboth, 1998. 
16. Sprott, J. C., Dynamics of Love and Happiness, Chaos and Complex Systems Seminar in Madison, 

Wisconsin 2001. 
17. Sprott, J. C., Chaos and time-series analysis, Oxford: Oxford University Press, 2003.  
18. Sprott, J. C., Dynamical model of love, nonlinear dynamics, Psychology & Life Sciences, 8 (3), 303-313, 

2004. 
19. Sternberg, R. J, The triangular theory of love, Psychological Review, 93, 119-135, 1986. 
20. Stenberg, R. J., Barnes, M. L. (Eds.), The psychology of love, New Haven, CT: Yale University Press, 

1988.   
21. Strogatz, S. H., Love affairs and differential equations, Mathematics Magazine, 61(1), 35, 1988.  
22. Strogatz, S. H., Nonlinear dynamics and chaos with applications to physics, biology, chemistry and 

engineering. Addison-Wesley, Reading, M.A. 1994.  
23. Wauer J., Schwarzer D, Cai, G.Q. Lin, Y. K., Dynamical models of love with time-varying fluctuations, 

Applied Mathematics and Computation, 188, 1535-1448, 2007. 

 





 

 
 

PROBABILITY THEORY 

 





New Trends in Neutrosophic Theory and Applications 

291 
 

A. A. SALAMA1, FLORENTIN SMARANDACHE2 

1Department of Mathematics and Computer Science, Faculty of Sciences, Port Said University, Egypt.  
Email: drsalama44@gmail.com 
2Department of Mathematics, University of New Mexico Gallup, NM, USA. Email: smarand@unm.edu  

Neutrosophic Crisp Probability Theory & Decision Making 

Process 

Abstract  

Since the world is full of indeterminacy, the neutrosophics found their place into contemporary 
research. In neutrosophic set, indeterminacy is quantified explicitly and truth-membership, 
indeterminacy-membership and falsity-membership are independent. So it is natural to adopt for 
that purpose the value from the selected set with highest degree of truth-membership, 
indeterminacy membership and least degree of falsity-membership on the decision set. These 
factors indicate that a decision making process takes place in neutrosophic environment. In this 
paper, we introduce and study the probability of neutrosophic crisp sets. After given the 
fundamental definitions and operations, we obtain several properties and discussed the relationship 
between them. These notions can help researchers and make great use of it in the future in making 
algorithms to solving problems and manage between these notions to produce a new application 
or new algorithm of solving decision support problems. Possible applications to mathematical 
computer sciences are touched upon.  

Keywords 

Neutrosophic set, neutrosophic probability, neutrosophic crisp sets, intuitionistic neutrosophic set. 

 

1. Introduction 
Neutrosophy has laid the foundation for a whole family of new mathematical theories 

generalizing both their classical and fuzzy counterparts [1, 2, 3, 22, 23, 24, 25, 26, 27, 28, 29, 30, 
31, 32, 33, 34, 35, 36, 42] such as a neutrosophic set theory.  The fundamental concepts of 
neutrosophic set, introduced by Smarandache in [48, 49, 50, 51], and Salama et al. in [4, 5, 6, 7, 8, 
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], provides a natural foundation for treating 
mathematically the neutrosophic phenomena which exist pervasively in our real world and for 
building new branches of neutrosophic mathematics. In this paper is to introduce and study the 
probability of neutrosophic crisp sets. After given the fundamental definitions and operations, we 
obtain several properties, and discussed the relationship between neutrosophic crisp sets and others.   

mailto:drsalama44@gmail.com
mailto:smarand@unm.edu
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2. Terminologies 
We recollect some relevant basic preliminaries, and in particular, the work of Smarandache in 

[37, 38, 39, 40], and Salama et al. [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. 
Smarandache introduced the neutrosophic components T, I, F which represent the membership, 
indeterminacy, and non-membership values respectively, where  1,0 - is nonstandard unit interval. 

Example 2.1 [37, 39] 
Let us consider a neutrosophic set a collection of possible locations (position) of particle x and 

Let A and B two neutrosophic sets. One can say, by language abuse, that any particle x 
neutrosophically belongs to any set, due to the percentages of truth/indeterminacy/falsity involved, 
which varies between  1  and 0 .For example :x(0.5,0.2,0.3) belongs to A (which means, the 
probability of 50% particle x is in a poison of A, with a probability of 30% x is not in A, and the 
rest is undecidable); or y(0,0,1) belongs to A( which normally means y is not for sure in A );or 
z(0,1,0) belongs to A (which means one does know absolutely nothing about z affiliation with A). 
More general, x((0.2-0.3),(0.4—0.45) [0.50-0.51],{0.2,0.24,0.28}) belongs to the seta, which 
means: With a probability in between 20-30% particle x is in a position of A ( one cannot find an 
exact approximate because of various sources used ); With a probability of 20% or 24% or 28% x 
is not in A; The indeterminacy related to the appurtenance of x to A is in between 40-45% or 
between 50-51% ( limits included ). The subsets representing the appurtenance, indeterminacy, 
and falsity may overlap, and n-sup = 30%+51%+28% > 100 in this case. 

Definition 2.1 [14, 15, 21] 
A neutrosophic crisp set (NCS for short) 321 ,, AAAA   can be identified to an ordered triple 

321 ,, AAA  are subsets on X, and every crisp set in X is obviously an NCS having the form

321 ,, AAA ,  

Definition 2.2 [21] 
The object having the form

 
321 ,, AAAA   is called  

(Neutrosophic Crisp Set with Type I) If satisfying  21 AA ,  31 AA  and

 32 AA . (NCS-Type I for short).  

(Neutrosophic Crisp Set with Type II) If satisfying  21 AA ,  31 AA  and

 32 AA  and  .321 XAAA   (NCS-Type II for short).  

(Neutrosophic Crisp Set with Type III) If satisfying,  321 AAA  and  

.321 XAAA   (NCS-Type III for short).  

Definition 2.3 

1)  (Neutrosophic Set [7]):  Let X be a non-empty fixed set. A neutrosophic set ( NS for short) 

A  is an object having the form  )(),(),( xxxA AAA   where    xx AA  ,  and  xA  which 

represent the degree of member ship function (namely  xA ), the degree of indeterminacy 
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(namely  xA ), and the degree of non-member ship (namely  xA ) respectively of each 

element Xx  to the set A  where   1)(),(),(0 xxx AAA  and
  3)()()(0 xxx AAA  . 

2) (Neutrosophic Intuitionistic Set of Type 1 [8]):  Let X be a non-empty fixed set. A 
neutrosophic intuitionistic set of type 1 (NIS1 for short) set A  is an object having the form

)(),(),( xxxA AAA   where    xx AA  ,  and  xA  which represent the degree of member 
ship function (namely  xA ), the degree of indeterminacy (namely  xA ), and the degree of 
non-membership (namely  xA ) respectively of each element Xx  to the set A  where 

  1)(),(),(0 xxx AAA  and the functions satisfy the condition 
      5.0 xxx AAA   and   3)()()(0 xxx AAA  .  

3) (Neutrosophic Intuitionistic Set of Type 2 [41]). Let X be a non-empty fixed set. A 
neutrosophic intuitionistic  set of type 2 A  (NIS2 for short) is an object having the form

)(),(),( xxxA AAA   where    xx AA  ,  and  xA  which represent the degree of member 
ship function (namely  xA ), the degree of indeterminacy (namely  xA ), and the degree of 
non-membership (namely  xA ) respectively of each element Xx  to the set A  where 

)(),(),(5.0 xxx AAA  and the functions satisfy the condition     ,5.0 xx AA 

  ,5.0)(  xx AA    ,5.0)(  xx AA   and   2)()()(0 xxx AAA  . A 
neutrosophic crisp with three types the object 321 ,, AAAA   can be identified to an ordered 

triple 321 ,, AAA  are subsets on X, and every crisp set in X is obviously a NCS having the form

321 ,, AAA . Every neutrosophic set )(),(),( xxxA AAA   on X  is obviously on NS having 
the form )(),(),( xxx AAA  . 
Salama et al. in [14, 15, 21] constructed the tools for developed neutrosophic crisp set, and 

introduced the NCS NN X,  in X. 

 Remark 2.1 

i) The neutrosophic intuitionistic set is a neutrosophic set but the neutrosophic set is not in 
general a neutrosophic intuitionistic set in general. 

ii) Neutrosophic crisp sets with three types are neutrosophic crisp set. 

3.  The Probability of Neutrosophic Crisp Sets  
    If an experiment produces indeterminacy, that is called a neutrosophic experiment. 

Collecting all results, including the indeterminacy, we get the neutrosophic sample space (or the 
neutrosophic probability space) of the experiment. The neutrosophic power set of the neutrosophic 
sample space is formed by all different collections (that may or may not include the indeterminacy) 
of possible results. These collections are called neutrosophic events. In classical experimental the 

probability is 








 trialsofnumber    totel
occursA event     timesofnumber   . Similarly, Smarandache  [16, 17, 18]  introduced 

neutrosophic experimental probability as follows: 



Florentin Smarandache, Surapati Pramanik (Editors) 

 

294 
 










 trialsofnumber    total
occurnot    does Aevent    timesofnumber  ,

 trialsofnumber    total
occursacy  indetermin    timesofnumber  ,

 trialsofnumber    total
occurs  Aevent     timesofnumber   

Probability of NCS is a generalization of the classical probability in which the chance that event 

321 ,, AAAA   occurs is: )  false , P(A)  (A)  true, PP(A 321 ateindetermin , on a sample space X, or 

)(),(),()( 321 APAPAPANP  .  

A subspace of the universal set, endowed with a neutrosophic probability defined for each of 
its subset, forms a probability neutrosophic crisp space.  

Definition 3.1 

Let X be a non- empty set and A be any type of  neutrosophic crisp set on a space X, then the 

probability is a mapping  31,0: XNP , )(),(),()( 321 APAPAPANP  that is the probability a 

neutrosophic crisp set has the property that, 
 










 o,p,pp if                       0
1,0 p    where),p,p(p

)A(NP
321

3,2,1321  ,  

Remark 3.1 

i) In case if 321 ,, AAAA  is NCS then    3)()()(0 321 APAPAP    

ii) In case if 321 ,, AAAA  is NCS-Type I then 2)()()(0 321  APAPAP . 

iii) The probability of NCS-Type II is a neutrosophic  crisp set where 
  2)()()(0 321 APAPAP  

iv)  The probability of NCS-Type III is a neutrosophic crisp set where
  3)()()(0 321 APAPAP . 

Probability Axioms of NCS 

Axioms: 

1- The probability of neutrosophic crisp set and NCS-Type III  A on X 

)(),(),()( 321 APAPAPANP  where 0)(,0)(,0)( 321  APAPAP or 

 










  if                       0
10    where

)(
321

321321

o,p,pp
, p),p,p(p

ANP ,,
 

2- The probability of neutrosophic crisp set and NCS-Type IIIs A on X 

)(),(),()( 321 APAPAPANP  where   3)()()(0 321 ApApAp . 

3- Bonding the probability of neutrosophic crisp set and NCS-Type IIIs 

)(),(),()( 321 APAPAPANP  where .0)(,0)(,0)(1 321  APAPAP  

4- Addition law for any two neutrosophic crisp sets or NCS-Type III 

i) ),()()(()( 1111 BAPBPAPBANP  ),()()(( 2222 BAPBPAP   

 )()()(( 3333 BAPBPAP   
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if  NBA  , then )()( NNPBANP  . 

),()()(),()()()( 222111 NN NPBNPANPNPBNPANPBANP  

).()()( 333 NNPBNPANP   

     Since our main purpose is to construct the tools for developing probability of neutrosophic 
crisp sets, we must introduce the following:  

1) Probability of neutrosophic crisp empty set with three types ( )( NNP  for short) may be 

defined as four types: 

i) Type 1:  1,0,0)(),(),()( XPPPNP N    

ii) Type 2:  1,1,0)(),(),()( XPXPPNP N   

i) Type 3:  0,0,0)(),(),()(  PPPNP N  

ii) Type 4:  0,1,0)(),(),()(  PXPPNP N  

2)  Probability of neutrosophic crisp universal and NCS-Type III universal sets ( )( NXNP ) may be 

defined as four types: 

i) Type 1:   0,0,1)(),(),()(  PPXPXNP N   

ii) Type 2:  0,1,1)(),(),()( PXPXPXNP N  

iii) Type 3:  1,1,1)(),(),()( XPXPXPXNP N   

iv) Type 4:  1,0,1)(),(),()( XPPXPXNP N    

Remark 3.1 

1) ,1)( NNXNP  NN ONP )( .Where NN O,1  are in Definition 2.1 [6], or equals any type 

for N1 . 

2) The probability of neutrosophic crisp set is a neutrosophic set. 

 

Definition 3.2 (Monotonicity)  

Let X    be a non-empty set, and NCSS A  and   B   in the form 321 ,, AAAA  , 321 ,, BBBB 

with )(),(),()( 321 APAPAPANP  , )(),(),()( 321 BPBPBPBNP   then we may consider two possible 

definitions for subsets ( BA ) 

( BA )  may be defined as two types: 

1) Type1: )()P(  and  )()(),()()()( 332211 BPABPAPBPAPBNPANP  or 

2) Type2: )()P(  and  )()(),()()()( 332211 BPABPAPBPAPBNPANP  . 
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Definition 3.3 

Let X be a non-empty set, and   NCSs A  and  B  in the form 321 ,, AAAA  , 321 ,, BBBB   

are NCSs.  Then 

1. )( BANP   may be defined  two types as: 

i) Type1: )(),(),()( 332211 BAPBAPBAPBANP  or 

ii) Type2: )(),(),()( 332211 BAPBAPBAPBANP   

2. )( BANP   may be defined two types as: 

i)  Type1: )(),(),()( 332211 BAPBAPBAPBANP   or 

ii) Type 2: )(),(),()( 332211 BAPBAPBAPBANP   

3. )( cANP  may be defined by three types  

i)  Type1: )(),(),()( 321
cccc APAPAPANP  =  )1(),1(),1( 321 AAA or 

ii)  Type2: )(),(),()( 123 APAPAPANP cc  or 

iii) Type3: )(),(),()( 123 APAPAPANP c  . 

Proposition 3.1  

Let A  and B in the form 321 ,, AAAA  , 321 ,, BBBB  are NCSs on a non-empty set X.  Then 

1)  1 ,1 ,1()()( ANPANP c or Type (iii) of NNXNP 1)(  or = any types for N1 . 

2)  )( BANP ),()((),()(()( 222111 BAPAPBAPAPBANP 

 )()(( 333 BAPAP  

3) 



)(

)(
,

)(
)(,

)(
)()(

33

3

22

2

11

1

BANP
ANP

BANP
ANP

BANP
ANPBANP  

Proposition 3.1  

Let A  and B in the form 321 ,, AAAA  , 321 ,, BBBB  are NCSs   on a non-empty set X. And

p , Np  are NCSs   Then 

i) 
)(

1,
)(

1,
)(

1)(
XnXnXn

pNP   

ii) 
)(

11,
)(

1,0)(
XnXn

pNP N   
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Example  3.1 

1) Let  dcbaX ,,,  and A , B are two neutrosophic crisp events on X defined by

     dccbaA ,,,, ,      ccabaB ,,,, ,      dcap ,, then see that 

,5.0,5.0,25.0)( ANP ,25.0,5.0,5.0)( BNP ,25.0,25.0,25.0)( pNP one can 

compute all probabilities from definitions. 

2) If       ,,, cbA  and       ,, dB   are neutrosophic crisp sets on X then : 

      ,, BA   and NBANP 00,0,0)(  ,   

          ,,,, dcbBA  and NBANP 00,75.0,0)(  . 

Example 3.2 

Let },,,,,{ fedcbaX  , }{},{},,,,{ fedcbaA  , },{},,{},,{ dfcebaD   be a NCS-Type 2, 

 }{},{},,,{ edcbaB   be a NCT-Type I but not NCS-Type II, III, },,{},,{},,{ afedcbaC   be a 

NCS-Type III, but not NCS-Type I,II, ,},,{},,{},,,,,{ afedcedcbaE 
 

},,,,,{,},,,,,{ bcdafeedcbaF 
 

We can compute the probabilities for NCSs by the following: 

   ,
6
1,

6
1,

6
4)( ANP ,

6
2,

6
2,

6
2)( DNP ,

6
1,

6
1,

6
3)( BNP ,

6
3,

6
2,

6
2)( CNP

,
6
3,

6
2,

6
4)( ENP ,

6
6,0,

6
5)( FNP  

Remark 3.2 

The probabilities of a neutrosophic crisp set are neutrosophic sets. 

Example 3.3 

Let },,,{ dcbaX  , }{},{},,{ dcbaA  , },{},{},{ bdcaB   are NCS-Type I on X and 

},{},,{},,{1 dadcbaU  , }{},{},,,{2 dccbaU  are NCS-Type III on X,  then  we can find the 

following operations  

1) Union, intersection, complement, deference and its probabilities  

a)Type1: },{},{},{ bdcaBA  , }5.0,25.0,25.0)(  BANP and Type 2,3:

},{},{},{ bdcaBA  ,  }5.0,25.0,25.0)(  BANP . 

2) )( BANP  may be equals 

 Type1:  0,0,25.0)( BANP , Type 2:  0,0,25.0)( BANP , Type 3: 

 0,0,25.0)( BANP ,   
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b) Type 2: }{},{},,{ dcbaBA  , }25.0,25.0,5.0)(  BANP and Type 2: }{},{},.{ dcbaBA   

}25.0,25.0,5.0)(  BANP . 

 c) Type1: cA },,{},,,{,},{ cbadbadc NCS-Type III set on X, 75.0,75.0,5.0)( cANP . 

 Type2: },{},,,{,}{ badbadAc   NCS-Type III on X,  5.0,75.0,25.0)( cANP . 

 Type3: },{},{,}{ bacdAc   NCS-Type III on X,  5.0,75.0,75.0)( cANP . 

 d) Type1: cB },{},,,{},,,{ cadbadcb be NCS-Type III on X , )( cBNP 5.0,75.0,75.0  

Type2: cB }{},{},,{ acdb NCS-Type I on X, and )( cBNP 25.0,25.0,5.0 . 

Type3: cB }{},,,{},,{ adbadb NCS-Type III on X and )( cBNP 25.0,75.0,5.0 . 

 e) Type 1: ,},{},,{},,,{21 dadccbaUU  NCS-Type III, ,5.0,5.0,75.0{)( 21 UUNP  

  Type2: ,},{},{},,,{21 daccbaUU   ,5.0,25.0,75.0{)( 21 UUNP   

 f) Type1: ,},{},,{},,{21 dadcbaUU   NCS-Type III, ,5.0,5.0,5.0)( 21 UUNP  

Type2: ,},{},{},,{21 dacbaUU   NCS-Type III, and ,5.0,25.0,5.0)( 21 UUNP  

 g)  Type 1: },{},,{},,{1 bcbadcU c
 , NCS-Type III and 5.0,5.0,5.0)( 1 

cUNP  

    Type 2: },{},,{},,{1 badcdaU c
 , NCS-Type III and 5.0,5.0,5.0)( 1 

cUNP   

    Type3: },{},,{},,{1 babadaU c
 , NCS-Type III and 5.0,5.0,5.0)( 1 

cUNP . 

 h) Type1: },,{},,,{},{2 cbadbadU c
  NCS-Type III and 75.0,75.0,25.0)( 2 

cUNP ,              Type2:

},,{},{},{2 cbacdU c   NCS-Type III and 75.0,25.0,25.0)( 2 
cUNP , Type3:

},,{},,,{},{2 cbadbadU c   NCS-Type III. 75.0,75.0,25.0)( 2 
cUNP . 

2) Probabilities for events: 25.0,25.0,5.0)( ANP , 5.0,25.0,25.0)( BNP , 5.0,5.0,5.0)( 1 UNP ,

25.0,25.0,75.0)( 2 UNP   

, 5.0,5.0,5.0)( 1 
cUNP , 75.0,75.0,25.0)( 2 

cUNP  

e)  cBA )( = },{},,,{},,,{ cadbadcb be a NCS-Type III. 25.0,75.0,75.0)(  cBANP be a 

neutrosophic set. 

f) 75.0,75.0,5.0)()(  cc BNPANP , 5.0,75.0,75.0)()(  cc BNPANP  

g) )()()()( BANPBNPANPBANP  }25.0,25.0,5.0  
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s) 25.0,25.0,5.0)( ANP , 75.0,75.0,5.0)( cANP , 5.0,25.0,25.0)( BNP ,

5.0,75.0,75.0)( cBNP  

Probabilities for Products 

1) The product of two events given by  

)},(),,{()},,{()},,(),,{( bdddccabaaBA  , and 16
2

16
1

16
2 ,,)(  BANP  

)},(),,{()},,{()},,(),,{( dbddccbaaaAB  and 16
2

16
1

16
2 ,,)(  ABNP

)},(),,{()},,(),,{()},,(),,(),,(),,{(1 addddcccbbbaabaaUA  ,and 16
2

16
2

16
4

1 ,,)( UANP

)},(),,{()},,(),,{()},,(),,(),,(),,(),,(),,{(21 daddcdcccbcabbbaabaaUU  and

16
2

16
2

16
6

21 ,,)( UUNP  

Remark 3.3 

  The following diagram represents the relation between neutrosophic crisp concepts and 
neutrosphic sets   

 

  Probability of Neutrosophic Crisp Sets      

    

 

Generalized Neutrosophic Set                   Intuitionistic Neutrosophic Set           

 

 

 Neutrosophic Set  
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1 ON NEUTROSOPHIC TOPOLOGY

1.1. Introduction.

The neutrosophic logic is a formal frame trying to measure the truth, indeterminacy, and falsehood.
Smarandache [36] remarks the differences between neutrosophic logic (NL) and intuitionistic fuzzy

logic (IFL) and the corresponding neutrosophic sets and intuitionistic fuzzy sets. The main differences
are:

a) Neutrosophic Logic can distinguish between absolute truth (that is an unalterable and permanent
fact), and relative truth (where facts may vary depending on the circumstances), because

NL(absolute truth)=1+ while NL(relative truth)=1. This has obvious application in philosophy.
That’s why the unitary standard interval [0, 1] used in IFL has been extended to the unitary non-standard
interval ]−0, 1+[ in NL.

Similar distinctions for absolute or relative falsehood, and absolute or relative indeterminacy are
allowed in NL.

b) In NL there is no restriction on T, I, F other than they are subsets of ]−0, 1+[, thus:
−0 ≤ inf T + inf I + inf F ≤ supT + sup I + supF ≤ 3+.
This non-restriction allows paraconsistent, dialetheist, and incomplete information to be characterized

in NL (i.e. the sum of all three components if they are defined as points, or sum of superior limits of
all three components if they are defined as subsets can be > 1, for paraconsistent information coming
from different sources, or < 1 for incomplete information), while that information can not be described
in IFL because in IFL the components T (truth), I (indeterminacy), F (falsehood) are restricted either
to t+ i+ f = 1 if T, I, F are all reduced to the points t,i, f respectively, or to supT + sup I + supF = 1
if T, I, F are subsets of [0, 1].

c) In NL the components T, I, F can also be non-standard subsets included in the unitary non-standard
interval ]−0, 1+[, not only standard subsets, included in the unitary standard interval [0, 1] as in IFL.

In various recent papers [35,38,39,40], F. Smarandache generalizes intuitionistic fuzzy sets (IFSs) and
other kinds of sets to neutrosophic sets (NSs). In [39] some distinctions between NSs and IFSs are
underlined.

The notion of intuitionistic fuzzy set defined by K.T. Atanassov [1] has been applied by Çoker [8] for
study intuitionistic fuzzy topological spaces. This concept has been developed by many authors (Bayhan
and Çoker[6], Çoker, [7,8], Çoker and Eş [9], Eş and Çoker[12], Gürçay, Çoker and Eş[13], Hanafy [14],
Hur, Kim and Ryou [15], Lee and Lee [16]; Lupiáñez [17-21], Turanh and Çoker [41]).

A few years ago raised some controversy over whether the term ”intuitionistic fuzzy set” was appro-
priate or not (see [11] and [4]). At present, it is customary to speak of ”Atanassov’ intuitionistic fuzzy
set”

F. Smarandache also defined the notion of neutrosophic topology on the non-standard interval [35].
One can expect some relation between the inuitionistic fuzzy topology on an IFS and the neutrosophic

topology. We show in this chapter that this is false. Indeed, the complement of an IFS A is not the
complement of A in the neutrosophic operation, the union and the intersection of IFSs do not coincide
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with the corresponding operations for NSs, and finally an intuitionistic fuzzy topology is not necessarily
a neutrosophic topology.

Clearly, for their various applications to many areas of knowledge, including philosophy, religion,
sociology, .. (see [5,40,42]), the Atanassov’ intuitionistic fuzzy sets and the neutrosophic sets are notions
that use knowledge-based techniques to support human decision-making, learning and action.

1.2. Basic definitions.

First, we present some basic definitions:

Definition 1 Let X be a non-empty set. An intuitionistic fuzzy set (IFS for short) A, is an object having
the form A = {< x, µA, γA > /x ∈ X} where the functions µA : X → I and γA : X → I denote the degree
of membership (namely µA(x)) and the degree of nonmembership (namely γA(x)) of each element x ∈ X
to the set A, respectively, and 0 ≤ µA(x) + γA(x) ≤ 1 for each x ∈ X. [1].

Definition 2 Let X be a non-empty set, and the IFSs A = {< x, µA, γA > |x ∈ X}, B = {< x, µB , γB >
|x ∈ X}. Let

A = {< x, γA, µA > |x ∈ X}
A ∩B = {< x, µA ∧ µB , γA ∨ γB > |x ∈ X}
A ∪B = {< x, µA ∨ µB , γA ∧ γB > |x ∈ X}.[3].

Definition 3 Let X be a non-empty set. Let 0∼ = {< x, 0, 1 > |x ∈ X} and 1∼ = {< x, 1, 0 > |x ∈
X}.[8].

Definition 4 An intuitionistic fuzzy topology (IFT for short) on a non-empty set X is a family τ of
IFSs in X satisfying:

(a) 0∼,1∼ ∈ τ,
(b) G1 ∩G2 ∈ τ for any G1, G2 ∈ τ ,
(c) ∪Gj ∈ τ for any family {Gj |j ∈ J} ⊂ τ.
In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS for short) and any

IFS in τ is called an intuitionistic fuzzy open set (IFOS for short) in X. [8].

Definition 5 Let T , I,F be real standard or non-standard subsets of the non-standard unit interval
]−0, 1+[, with

supT = tsup , inf T = tinf
sup I = isup , inf I = iinf
supF = fsup , inf F = finf and nsup = tsup + isup + fsup ninf = tinf + iinf + finf ,
T , I,F are called neutrosophic components. Let U be an universe of discourse, and M a set included

in U . An element x from U is noted with respect to the set M as x(T, I, F ) and belongs to M in the
following way: it is t% true in the set, i% indeterminate (unknown if it is) in the set, and f% false,
where t varies in T , i varies in I, f varies in F. The set M is called a neutrosophic set (NS). [40].

Remark. All IFS is a NS.

Definition 6 Let S1 and S2 be two (unidimensional) real standard or non-standard subsets, then we
define:

S1 ⊕ S2 = {x|x = s1 + s2, where s1 ∈ S1 and s2 ∈ S2},
S1 � S2 = {x|x = s1 − s2, where s1 ∈ S1and s2 ∈ S2},
S1 � S2 = {x|x = s1 · s2, where s1 ∈ S1and s2 ∈ S2}. [36].

306 

Florentin Smarandache, Surapati Pramanik (Editors) 



Definition 7 One defines, with respect to the sets A an B over the universe U :
1. Complement: if x(T1, I1, F1) ∈ A, then
x({1+}� T1, {1+}� I1, {1+}� F1) ∈ C(A).
2. Intersection: if x(T1, I1, F1) ∈ A, x(T2, I2, F2) ∈ B, then
x(T1 � T2, I1 � I2, F1 � F2) ∈ A ∩B.
3.Union: if x(T1, I1, F1) ∈ A, x(T2, I2, F2) ∈ B, then
x(T1 ⊕ T2 � T1 � T2, I1 ⊕ I2 � I1 � I2, F1 ⊕ F2 � F1 � F2) ∈ A ∪B.
[40].

1.3. Results.

Proposition 1. Let A be an IFS in X, and j(A) be the corresponding NS. We have that the
complement of j(A) is not necessarily j(A).

Proof. If A =< x, µA, γA > is x(µA(x), 1− µA(x)− νA(x), νA(x)) ∈ j(A).
Then ,
for 0∼ =< x, 0, 1 > is x(0, 0, 1) ∈ j(0∼)
for 1∼ =< x, 1, 0 > is x(1, 0, 0) ∈ j(1∼)
and for A =< x, γA, µA > is x(γA(x), 1− µA(x)− νA(x), µA(x)) ∈ j(A).
Thus, 1∼ = 0∼ and j( 1∼) 6= C(j(0∼)) because x(1, 0, 0, ) ∈ j( 1∼) but x({1+}, {1+}, {0+}) ∈

C(j(0∼)).

Proposition 2. Let A and B be two IFSs in X,and j(A) and j(B) be the corresponding NSs. We

have that j(A)∪ j(B) is not necessarily j(A ∪B), and j(A)∩ j(B) is not necessarily j(A ∩B) .
Proof. Let A =< x, 1/2, 1/3 > and B =< x, 1/2, 1/2 > (i.e. µA, νA, µB , νB are constant maps).
Then, A∪B =< x, µA∨µB , γA∧γB >=< x, 1/2, 1/3 > and x(1/2, 1/6, 1/3) ∈ j(A∪B). On the other

hand, x(1/2, 1/6, 1/3) ∈ j(A), x(1/2, 0, 1/2) ∈ j(B), x(1, 1/6, 5/6) ∈ j(A)⊕ j(B), x(1/4, 0, 1/6) ∈ j(A)�
j(B) and x(3/4, 1/6, 2/3) ∈ j(A)∪ j(B) .Thus j(A ∪B) 6= j(A)∪ j(B).

Analogously, A ∩ B =< x, µA ∧ µB , γA ∨ γB >=< x, 1/2, 1/2 > and x(1/2, 0, 1/2) ∈ j(A ∩ B), but
x(1/4, 0, 1/6) ∈ j(A) ∩ j(B).Thus, j(A ∩B) 6= j(A) ∩ j(B).

Definition 8 Let’s construct a neutrosophic topology on NT =]−0, 1+[, considering the associated family
of standard or non-standard subsets included in NT , and the empty set which is closed under set union
and finite intersection neutrosophic. The interval NT endowed with this topology forms a neutrosophic
topological space. [35].

Proposition 3. Let (X, τ) be an intuitionistic fuzy topological space. Then, the family {j(U)|U ∈ τ}
is not necessarily a neutrosophic topology.

Proof. Let τ = {1∼, 0∼, A} where A =< x, 1/2, 1/2 > then x(1, 0, 0) ∈ j(1∼), x ∈ (0, 0, 1) ∈ j(0∼)
and x(1/2, 0, 1/2) ∈ j(A). Thus {j(1∼), j(0∼), j(A)} is not a neutrosophic topology, because this family
is not closed by finite intersections, indeed, x(1/2, 0, 0) ∈ j(1∼) ∩ j(A), and this neutrosophic set is not
in the family.

2 OTHER NEUTROSOPHIC TOPOLOGIES

2.1. Introduction.

F. Smarandache also defined various notions of neutrosophic topologies on the non-standard interval
[35,40].

One can expect some relation between the intuitionistic fuzzy topology on an IFS and the neutrosophic
topology. We show in this chapter that this is false. Indeed, the union and the intersection of IFSs do not
coincide with the corresponding operations for NSs, and an intuitionistic fuzzy topology is not necessarilly
a neutrosophic topology on the non-standard interval, in the various senses defined by Smarandache.

2.2. Basic definitions.
First, we present some basic definitions:
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Definition 9 Let J ∈ {T, I, F} be a component. Most known N-norms are:
The algebraic product N-norm: Nn−a lg ebraicJ(x, y) = x · y
The bounded N-norm: Nn−boundedJ(x, y) = max {0, x+ y − 1}
The default (min) N-norm: Nn−minJ(x, y) = min {x, y}
Nn represent the intersection operator in neutrosophic set theory. Indeed x ∧ y = (T∧, I∧, F∧).
[40]

Definition 10 Let J ∈ {T, I, F} be a component. Most known N-conorms are:
The algebraic product N-conorm: Nc−a lg ebraicJ(x, y) = x+ y − x · y
The bounded N-conorm: Nc−boundedJ(x, y) = min {1, x+ y}
The default (max) N-conorm: Nc−maxJ(x, y) = max {x, y}
Nc represent the union operator in neutrosophic set theory.Indeed x ∨ y = (T∨, IV , F∨)
[40]

2.3. Results.

Proposition 1. Let A and B be two IFSs in X, and j(A) and j(B) be the corresponding NSs. We

have that j(A)∪ j(B) is not necessarily j(A∪B), and j(A)∩ j(B) is not necessarily j(A∩B), for any of
three definitions of intersection of NSs.

Proof. Let A =< x, 1/2, 1/3 > and B =< x, 1/2, 1/2 > (i.e. µA, νA, µB , νB are constant maps).
Then, A ∪ B =< x, µA ∨ µB , γA ∧ γB >=< x, 1/2, 1/3 > and x(1/2, 1/6, 1/3) ∈ j(A ∪ B). On the

other hand, x(1/2, 1/6, 1/3) ∈ j(A), x(1/2, 0, 1/2) ∈ j(B).
Then, we have that:
1) for the union operator defined by the algebraic product N-conorm x(3/4, 1/6, 2/3) ∈ j(A)∪ j(B) .
2) for the union operator defined by the bounded N-conorm x(1, 1/6, 5/6) ∈ j(A)∪ j(B) .
3) for the union operator defined by the default (max) N-conorm x(1/2, 1/6, 1/2) ∈ j(A)∪ j(B) .
Thus j(A ∪B) 6= j(A)∪ j(B),with the three definitions.
Analogously, A ∩B =< x, µA ∧ µB , γA ∨ γB >=< x, 1/2, 1/2 > and x(1/2, 0, 1/2) ∈ j(A ∩B).
And, we have that:
1) for the intersection operator defined by the algebraic product N-norm x(1/4, 0, 1/6) ∈ j(A)∩ j(B)

.
2) for the intersection operator defined by the bounded N-norm x(0, 0, 0) ∈ j(A)∩ j(B) .
3) for the intersection operator defined by the default (min) N-norm x(1/2, 0, 1/3) ∈ j(A)∩ j(B) .
Thus j(A ∩B) 6= j(A)∩ j(B),with the three definitions.

Definition 11 Let’s construct a neutrosophic topology on NT =]−0, 1+[, considering the associated fam-
ily of standard or non-standard subsets included in NT , and the empty set which is closed under set union
and finite intersection neutrosophic. The interval NT endowed with this topology forms a neutrosophic
topological space. There exist various notions of neutrosophic topologies on NT , defined by using various
N-norm/N-conorm operators. [35, 40].

Proposition 2. Let (X, τ) be an intuitionistic fuzzy topological space. Then, the family {j(U)|U ∈ τ}
is not necessarily a neutrosophic topology on NT (in the three defined senses).

Proof. Let τ = {1∼, 0∼, A} where A =< x, 1/2, 1/2 > then x(1, 0, 0) ∈ j(1∼), x ∈ (0, 0, 1) ∈ j(0∼)
and x(1/2, 0, 1/2) ∈ j(A). Thus τ∗ = {j(1∼), j(0∼), j(A)} is not a neutrosophic topology, because this
family is not closed by finite intersections, for any neutrosophic topology on NT . Indeed,

1) For the intersection defined by the algebraic product N-norm, we have that x(1/2, 0, 0) ∈ j(1∼) ∩
j(A), and this neutrosophic set is not in the family τ∗.

2) For the intersection defined by the bounded N-norm, we have also that x(1/2, 0, 0) ∈ j(1∼)∩ j(A),
and this neutrosophic set is not in the family τ∗.

3) For the intersection defined by the default (min) N-norm, we have also that x(1/2, 0, 0) ∈ j(1∼) ∩
j(A), and this neutrosophic set is not in the family τ∗.
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3 INTERVAL NEUTROSOPHIC SETS AND TOPOLOGY

3.1. Introduction.

Also, Wang, Smarandache, Zhang, and Sunderraman [42] introduced the notion of interval neutro-
sophic set, which is an instance of neutrosophic set and studied various properties. We study in this
chapter relations between interval neutrosophic sets and topology.

3.2. Basic definitions.

First, we present some basic definitions. For definitions on non-standard Analysis, see [33] :

Definition 12 Let X be a space of points (objects) with generic elements in X denoted by x. An
interval neutrosophic set (INS) A in X is characterized by thuth-membership function TA, indeteminacy-
membership function IA and falsity-membership function FA. For each point x in X, we have that TA(x),
IA(x), FA(x) ∈ [0, 1]. [42].

Remark. All INS is clearly a NS.

When X is continuous, an INS A can be written as
A =

∫
X

〈T (x), I(x), F (x)〉 /x, x ∈ X

When X is discrete, an INS A can be written as

A =
n∑

i=1

〈T (xi), I(xi)F (xi)〉 /xi , xi ∈ X

Definition 13 a) An interval neutrosophic set A is empty if inf TA(x) = supTA(x) = 0, inf IA(x) =
sup IA(x) = 1, inf FA(x) = supFA(x) = 0 for all x in X.

b) Let 0 =< 0, 1, 1 > and 1 =< 1, 0, 0 > .[42].

Definition 14 (Complement) Let CN denote a neutrosophic complement of A.
Then CN is a function CN : N → N and CN must satisfy at least the following three axiomatic

requirements:
1. CN (0) = 1 and CN (1) = 0 (boundary conditions).
2. Let A and B be two interval neutrosophic sets defined on X, if A(x) ≤ B(x), then CN (A(x)) ≥

CN (B(x)), for all x in X. (monotonicity).
3. Let A be an interval neutrosophic set defined on X, then CN (CN (A(x))) = A(x), for all x in X.

(involutivity).[42].
Remark. There are many functions which satisfy the requirement to be the complement operator of

interval
neutrosophic sets. Here we give one example.

Definition 15 (Complement CN1
) The complement of an interval neutrosophic set A is denoted by A

and is defined by
T
A

(x) = FA(x);
inf I

A
(x) = 1− sup IA(x);

sup I
A

(x) = 1− inf IA(x);
F
A

(x) = TA(x); for all x in X.

Definition 16 (N-norm) Let IN denote a neutrosophic intersection of two interval neutrosophic sets A
and B. Then IN is a function IN : N ×N → N and IN must satisfy at least the following four axiomatic
requirements:

1. IN (A(x), 1) = A(x), for all x in X. (boundary condition).
2. B(x) ≤ C(x) implies IN (A(x), B(x)) ≤ IN (A(x), C(x)), for all x in X. (monotonicity).
3. IN (A(x), B(x)) = IN (B(x), A(x)), for all x in X. (commutativity).
4. IN (A(x), IN (B(x), C(x))) = IN (IN (A(x), B(x)), C(x)), for all x in X. (associativity).[42].
Remark. Here we give one example of intersection of two interval neutrosophic sets which satis es

above N-norm axiomatic requirements. Other diferent definitions can be given for different applications
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Definition 17 (Intersection IN1
) The intersection of two interval neutrosophic sets A and B is an

interval neutrosophic set C, written as C = A∩B, whose truth-membership, indeterminacy-membership,
and false-membership are related to those of A and B by

inf TC(x) = min(inf TA(x); inf TB(x)),
supTC(x) = min(supTA(x); supTB(x)),
inf IC(x) = max(inf IA(x); inf IB(x)),
sup IC(x) = max(sup IA(x); sup IB(x)),
inf FC(x) = max(inf FA(x); inf FB(x)),
supFC(x) = max(supFA(x); supFB(x)); for all x in X.

Definition 18 (N-conorm) Let UN denote a neutrosophic union of two interval neutrosophic sets A and
B. Then UN is a function UN : N ×N → N

and UN must satisfy at least the following four axiomatic requirements:
1. UN (A(x), 0) = A(x), for all x in X. (boundary condition).
2. B(x) ≤ C(x) implies UN (A(x), B(x)) ≤ UN (A(x), C(x)), for all x in X. (monotonicity).
3. UN (A(x), B(x)) = UN (B(x), A(x)), for all x in X. (commutativity).
4. UN (A(x), UN (B(x), C(x))) = UN (UN (A(x), B(x)), C(x)), for all x in X. (associativity). [42].
Remark. Here we give one example of union of two interval neutrosophic sets which satis es above

N-conorm axiomatic requirements. Other different definitions can be given for different applications.

Definition 19 (Union UN1) The union of two interval neutrosophic sets A and B is an interval neu-
trosophic set C, written as C = A ∪ B, whose truth-membership, indeterminacy-membership, and false-
membership are related to those of A and B by

inf TC(x) = max(inf TA(x); inf TB(x)),
supTC(x) = max(supTA(x); supTB(x)),
inf IC(x) = min(inf IA(x); inf IB(x)),
sup IC(x) = min(sup IA(x); sup IB(x)),
inf FC(x) = min(inf FA(x); inf FB(x)),
supFC(x) = min(supFA(x); supFB(x)), for all x in X.

3.3. Results.

Proposition 1. Let A be an IFS in X, and j(A) be the corresponding INS. We have that the
complement of j(A) is not necessarily j(A).

Proof. If A =< x, µA, γA > is j(A) =< µA, 0, γA > .
Then ,
for 0∼ =< x, 0, 1 > is j(0∼) = j(< x, 0, 1 >) =< 0, 0, 1 >6= 0 =< 0, 1, 1 >
for 1∼ =< x, 1, 0 > is j(1∼) = j(< x, 1, 0 > ) =< 1, 0, 0 >= 1
Thus, 1∼ = 0∼ and j( 1∼) = 1 6= CN (j(0∼)) because CN (1) = 0 6= j(0∼).

Definition 20 Let’s construct a neutrosophic topology on NT =]−0, 1+[, considering the associated fam-
ily of standard or non-standard subsets included in NT , and the empty set which is closed under set union
and finite intersection neutrosophic. The interval NT endowed with this topology forms a neutrosophic
topological space. [35].

Proposition 2. Let (X, τ) be an intuitionistic fuzzy topological space. Then, the family of INSs
{j(U)|U ∈ τ} is not necessarily a neutrosophic topology.

Proof. Let τ = {1∼, 0∼, A} where A =< x, 1/2, 1/2 > then j(1∼) = 1, j(0∼) =< 0, 0, 1 >6= ∅ and
j(A) =< 1/2, 0, 1/2 >. Thus {j(1∼), j(0∼), j(A)} is not a neutrosophic topology, because the empty INS
is not in this family.
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4 NEUTROSOPHIC PARACONSISTENT TOPOLOGY

The history of paraconsistent logic is not very long. It was designed by S. Jaskowski in 1948. Without
knowing the work of this author, N.C. A. da Costa, from 1958, using different methods and ideas, began
to make statements about this type of logic. After other logicians have developed independently, new
systems of paraconsistent logic, as Routley, Meyer, Priest, Asenjo, Sette, Anderson and Benalp, Wolf (with
da Costa himself), .... At present there is a thriving movement dedicated to the study of paraconsistent
logic in several countries. In the philosophical aspect has meant, in some cases, a real opening of horizons,
for example, in the treatment of the paradoxes, in efforts to treat rigorously dialectical thinking, in fact
possible to develop a set theory inconsistent. .. Because of this, there is growing interest in understanding
the nature and scope.

Jaskowski deductive logic led her to refer to several problems that caused the need for paraconsistent
logic:

1) The problem of organizing deductive theories that contain contradictions, as in the dialectic: ”The
principle that no two contradictory statements are both true and false is the safest of all.”

2) To study theories that there are contradictions engendered by vagueness: ”The contemporary
formal approach to logic increases the accuracy of research in many fields, but it would be inappropriate
to formulate the principle of contradiction of Aristotle thus:”Two contradictory propositions are not
true”. We need to add:”in the same language”or ”if the words that are part of those have the same
meaning”. This restriction is not always found in daily use, and also science, we often use terms that are
more or less vague.

3) To study directly some postulates or empirical theories whose basic meanings are contradictory.
This applies, for example, the physics at the present stage.

Objectives and method of construction of paraconsistent logics can be mentioned, besides those men-
tioned by Jaskowski:

1) To study directly the logical and semantic paradoxes, for example, if we directly study the paradoxes
of set theory (without trying to avoid them, as it normally is), we need to construct theories of sets of
such paradoxes arising, but without being formal antinomies. In this case we need a paraconsistent logic.

2) Better understand the concept of negation.
3) Have logic systems on which to base the paraconsistent theories. For example, set up logical

systems for different versions and possibly stronger than standard theories of sets, of dialectics, and of
certain physical theories that , perhaps, are inconsistent (some versions of quantum mechanics).

Various authors [31] worked on ”paraconsistent Logics”, that is, logics where some contradiction is
admissible. We remark the theories exposed by Da Costa [10], Routley and other [34], and Peña [29,30].

Smarandache defined also the neutrosophic paraconsistent sets [Sm5] and he proposed a natural
definition of neutrosophic paraconsistent topology.

A problem that we consider is the possible relation between this concept of neutrosophic paraconsistent
topology and the previous notions of general neutrosophic topology and intuitionistic fuzzy topology. We
show in this chapter that neutrosophic paraconsistent topology is not an extension of intuitionistic fuzzy
topology.

First, we present some basic definitions:

Definition 21 Let M be a non-empty set. A general neutrosophic topology on M is a family Ψ of
neutrosophic sets in M satisfying the following axioms:

(a) 0∼ = x(0, 0, 1) ,1∼ = x(1, 0, 0) ∈ Ψ
(b) If A,B ∈ Ψ , then A ∩B ∈ Ψ
(c) If a family {Aj |j ∈ J} ⊂ Ψ,then ∪Aj ∈ Ψ.
[40]

Definition 22 A neutrosophic set x(T, I, F ) is called paraconsistent if inf(T ) + inf(I) + inf(F ) >
1.[39]

Definition 23 For neutrosophic paraconsistent sets 0 = x(0, 1, 1) and 1 = x(1, 1, 0).(Smarandache).

Remark. If we use the unary neutrosophic negation operator for neutrosophic sets [40], nN (x(T, I, F )) =
x(F, I, T ) by interchanging the thuth T and falsehood F components, we have that nN (0 ) = 1 .
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Definition 24 Let X be a non-empty set. A family Φ of neutrosophic paraconsistent sets in X will called
a neutrosophic paraconsistent topology if:

(a) 0 and 1 ∈ Φ
(b) If A,B ∈ Φ, then A ∩B ∈ Φ
(c) Any union of a subfamily of paraconsistent sets of Φ is also in Φ.
(Smarandache).
Results.

Proposition 1. The neutrosophic paraconsistent topology is not an extension of intuitionistic fuzzy

topology.
Proof. We have that 0∼ =< x, 0, 1 > and 1∼ =< x, 1, 0 > are members of all intuitionistic fuzzy

topology, but
x(0, 0, 1) ∈ j(0∼) 6= 0 , and, x(1, 0, 0) ∈ j(1∼) 6= 1 .

Proposition 2. A neutrosophic paraconsistent topology is not a general neutrosophic topology.
Proof. Let the family {1 , 0 } . Clearly it is a neutrosophic paraconsistent topology, but 0∼,1∼ are

not in this family.
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[28] F. Miró Quesada: ”La Lógica paraconsistente y el problema de la racionalidad de la Lógica”, in
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Some GIS Topological Concepts via Neutrosophic Crisp Set 

Theory  

Abstract 
In this paper we introduce and study the neutrosophic crisp pre-open, semi-open, 𝛽- open 

set, neutrosophic crisp continuity and neutrosophic crisp compact spaces are introduced. 
Furthermore, we investigate some of their properties and characterizations. Possible 
application to GIS topology rules are touched upon. 
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continuity, neutrosophic crisp compact space. 
 
 

1. Introduction  
Smarandache [26, 27] introduced the notion of neutrosophic sets, which is a generalization 

of Zadeh's fuzzy set [28]. In Zadah's sense, there is no precise definition for the set. Later on, 
Atanassov presented the idea of the intuitionistic fuzzy set [1], where he goes beyond the 
degree of membership introducing the degree of non-membership of some element in the set. 
The new presented concepts attracted several authors to develop the classical mathematics. 
For instance, Chang [2] and Lowen [6] started the discipline known as "Fuzzy Topology", 
where they forwarded the concepts from fuzzy sets to the classical topological spaces. 
Furthermore, Salama et al. [14, 17, 20] established several notations for what they called, 
"Neutrosophic topological spaces"]. 

In this paper, we study in more details some weaker and stronger structures constructed 
from the neutrosophic crisp topology introduced in [7], as well as the concepts neutrosophic 
crisp interior and the neutrosophic closure. 

The remaining of this paper is structured as follows: in §2, some basic definitions are 
presented, while the new concepts of neutrosophic crisp nearly open sets are introduced in §3, 
in addition to providing a study of some of its properties. The neutrosophic crisp continuous 
function and neutrosophic crisp compact spaces are presented in §4 and §5, respectively.  
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2. Terminologies 
We recollect some relevant basic preliminaries, in particular, the work introduced by We 

recollect some relevant basic preliminaries, in particular, the work introduced by 
Smarandache and Salama [7],  Salama et al. [8] and Smarandache  [25,26,27]. The 
neutrosophic components T, I, F: X⟶]0−, 1+[to represent the membership, indeterminacy, 
and non-membership values of some universe X, respectively, where ]0−, 1+[is the non-
standard unit Interval.  
Definition 2.1 [7] 

Let 𝑋 be a non-empty fixed sample space. A neutrosophic crisp set (𝑁𝐶𝑆 for short) 𝐴 is an 
object having the form 𝐴 = (𝐴1, 𝐴2, 𝐴3) where 𝐴1, 𝐴2 and 𝐴3 are subsets of 𝑋. Where 𝐴1 contains 
all those members of the space X that accept the event A and 𝐴3 contains all those members 
of the space X that rejected the event A, while 𝐴2 contains those who stand in a distance from 
accepting or rejecting A. 
Definition 2.2 

Salama [7] defined the object having the form 𝐴 = (𝐴1, 𝐴2, 𝐴3) to be 
1) (Neutrosophic Crisp Set with Type 1),if satisfying 𝐴1∩𝐴2=∅ , 𝐴1∩𝐴3 =∅ and 𝐴2∩𝐴3 = ∅. 

(𝑁𝐶𝑆 -Type 1 ).  
2) (Neutrosophic Crisp Set with Type 2), if satisfying 𝐴1∩𝐴2=∅ , 𝐴1∩𝐴3 =∅ and 𝐴2∩𝐴3 = ∅ 

and 𝐴1∪𝐴2∪𝐴3 = 𝑋 (𝑁𝐶𝑆 -Type 2 ). 
 3) (Neutrosophic Crisp Set with Type 3) if satisfying 𝐴1∩𝐴2∩𝐴3 = ∅ and 𝐴1∪𝐴2∪𝐴3 = 𝑋. 

(𝑁𝐶𝑆 -Type3 for short) .  
Every neutrosophic crisp set 𝐴 of a non-empty set 𝑋 is obviously a𝑁𝐶𝑆 having the form 𝐴 

= (𝐴1, 𝐴2, 𝐴3). 
Definition 2.3 [7] 

Let 𝐴 = (𝐴1, 𝐴2, 𝐴3) a 𝑁𝐶𝑆 on 𝑋, then the complement of the set 𝐴 , (𝐴c for short ) was 
presented in [7], to have one of the following forms: 
(C1)  𝐴c = (𝐴1

𝑐, 𝐴2
𝑐 , 𝐴3

𝑐)  or 
(C2)  𝐴c = (𝐴3, 𝐴2, 𝐴1) or  
(C3)  𝐴c= (𝐴3, 𝐴2

𝑐 , 𝐴1). 
Several relations and operations between 𝑁𝐶𝑆 were defined in [7], which we are introducing 

in the following: 
Definition 2.4 [7] 

Let 𝑋 be a non-empty set, and 𝑁𝐶𝑆𝐴 and 𝐵 in the form 𝐴 = (𝐴1, 𝐴2, 𝐴3), 𝐵= (𝐵1, 𝐵2, 𝐵3), 
then we may consider two possible definitions for subsets (𝐴⊆𝐵). 

The concept of (𝐴⊆𝐵) may be defined as two types: 
Type 1. 𝐴⊆𝐵⟺𝐴1⊆𝐵1, 𝐴2⊆𝐵2 and 𝐴3⊇𝐵3 or 
 Type 2. 𝐴⊆𝐵⟺𝐴1⊆𝐵1, 𝐴2⊇𝐵2 and 𝐴3⊇𝐵3 

 Proposition 2.5[7] 
For any neutrosophic crisp set 𝐴 the following are hold 

𝜙N⊆𝐴, 𝜙N⊆𝜙N 
𝐴⊆𝖷N, 𝖷N⊆𝖷N 
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 Definition 2.6[7] 
Let 𝑋be a non-empty set, and the two 𝑁𝐶𝑆𝑠𝐴 and 𝐵given in the form 𝐴 = (𝐴1, 𝐴2, 𝐴3) , 𝐵 = 

(𝐵1, 𝐵2, 𝐵3), then :  
1) 𝐴∩𝐵 may be defined as two types: 
i)Type 1. 𝐴∩𝐵 = 〈𝐴1∩𝐵1, 𝐴2∩𝐵2, 𝐴3∪𝐵3〉 
ii) Type 2. 𝐴∩𝐵 = 〈𝐴1∩𝐵1, 𝐴2∪𝐵2, 𝐴3∪𝐵3〉 
2) 𝐴∪𝐵 may be defined as two types: 
i) Type 1. 𝐴∪𝐵 = 〈𝐴1∪𝐵1, 𝐴2∪𝐵2, 𝐴3∩𝐵3〉 
ii) Type 2. 𝐴∪𝐵 = 〈𝐴1∪𝐵1, 𝐴2∩𝐵2, 𝐴3∩𝐵3〉 

Definition 2.7[7] 
A neutrosophic crisp topology (𝑁𝐶𝑇 ) on a non-empty set 𝑋 is a family 𝛤of neutrosophic 

crisp subsets of𝑋 satisfying the following axioms: 
i) ∅𝑁, 𝑋𝑁∊𝛤. 
ii) 𝐴1∩𝐴2∊ 𝛤, ∀𝐴 1, 𝐴 2∊ 𝛤. 
iii) ∪ 𝐴 j∊𝛤, ∀{𝐴 j : j∊J} ⊆𝛤. 

In this case, the pair (𝑋, 𝛤) is called a neutrosophic crisp topological space (𝑁𝐶𝑇𝑆) in 𝑋. The 
elements of 𝛤are called neutrosophic crisp open sets (𝑁𝐶𝑂𝑆𝑠) in 𝑋. A neutrosophic crisp set 
F is closed if and only if its complement Fc is an open neutrosophic crisp set. 

Definition 2.8[7] 
Let (𝑋, 𝛤) be 𝑁𝐶𝑇𝑆 and 𝐴 = 〈𝐴1, 𝐴2, 𝐴3〉 be a 𝑁𝐶𝑆 in 𝑋. Then the neutrosophic crisp closure 

of 𝐴 (𝑁𝐶𝑐𝑙(𝐴)) and neutrosophic interior crisp (𝑁𝐶𝑖𝑛𝑡(𝐴) ) of 𝐴 are defined by 
𝑁𝐶𝑐𝑙(𝐴)=∩{𝐾:𝐾 is an 𝑁𝐶𝐶𝑆 in 𝑋 and 𝐴⊆𝐾} 
𝑁𝐶𝑖𝑛𝑡 (𝐴) = ∪{G:G is an 𝑁𝐶𝑂𝑆 in 𝑋 and G ⊆𝐴) ,  
Where 𝑁𝐶𝑆 is a neutrosophic crisp set and 𝑁𝐶𝑂𝑆 is a neutrosophic crisp open set. It can be 

also shown that 𝑁𝐶𝑐𝑙(𝐴) is a 𝑁𝐶𝐶𝑆 (neutrosophic crisp closed set) and 𝑁𝐶𝑖𝑛𝑡(𝐴) is a 𝑁𝐶𝑂𝑆 
(neutrosophic crisp open set)  in 𝑋 .  

3.  Neutrosophic Crisp Nearly Open Sets 
 Definition 3.1 

Let (𝑋, 𝛤) be a 𝑁𝐶𝑇𝑆 and 𝐴 =〈𝐴1, 𝐴2, 𝐴3〉 be a 𝑁𝐶𝑆 in 𝑋, then 𝐴 is called: 
Neutrosophic crisp 𝛼-open set iff𝐴⊆ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝐴)).   [24] 

i) Neutrosophic crisp pre-open set iff𝐴 ⊆ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝐴)) . 
ii) Neutrosophic crisp semi-open set iff𝐴 ⊆ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡 (𝐴)) . 

iii) Neutrosophic crisp 𝛽- open set iff𝐴 ⊆ (𝑁𝐶𝑐𝑙 (𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙 (𝐴)). 
We shall denote the class of all neutrosophic crisp 𝛼- open sets as𝑁𝐶𝛤𝛼, and the class of 
all neutrosophic crisp pre-open sets as 𝑁𝐶𝛤p, and the class of all neutrosophic crisp semi-
open sets as 𝑁𝐶𝛤𝑆, and the class of all neutrosophic crisp 𝛽- open sets as 𝑁𝐶𝛤𝛽. 

Definition 3.2  
Let (𝑋, 𝛤) be a 𝑁𝐶𝑇𝑆 and 𝐵 = 〈𝐵1, 𝐵2, 𝐵3〉 be a 𝑁𝐶𝑆 in 𝑋, then 𝐵 is called: 

  
i) Neutrosophic crisp 𝛼-closed set iff (𝑁𝐶𝑐𝑙 (𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙 (𝐵))⊆ 𝐵. 
ii) Neutrosophic crisp pre- closed set iff 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡 (𝐵)) ⊆ 𝐵. 
iii) Neutrosophic crisp semi- closed set iff 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝐵)) ⊆ 𝐵. 

iv) Neutrosophic crisp 𝛽- closed set iff 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝐵)) ⊆𝐵. 
One can easily show that, the complement of a neutrosophic crisp (𝛼, pre, semi, 𝛽)- open set 
is a neutrosophic crisp (𝛼, pre, semi, 𝛽)- closed set,respectively. 
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 Remark 3.3 
For the class consisting of exactly all a 𝑁𝐶𝛼- structure and 𝑁𝐶𝛽- structure, evidently, 𝑁𝐶𝛤⊆ 

𝑁𝐶𝛤𝛼⊆ 𝑁𝐶𝛤𝛽 .  
We notice that every non-empty 𝑁𝐶𝛽- open has 𝑁𝐶𝛼-open non-empty interior.  

If all neutrosophic crisp sets the family {𝐵i}i∊I, are 𝑁𝐶 𝛽- open sets, then 
 Proposition 3.4 

Consider, {∪𝐵i}i∊I, is a family of 𝑁𝐶𝛽- open sets, then 
{∪𝐵i}i∊I⊂𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝐵i))⊂𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝐵i)) , that is A 𝑁𝐶𝛽- structure is a neutrosophic 

closed with respect to arbitrary neutrosophic crisp unions .  
We shall now characterize 𝑁𝐶𝛤𝛼 in terms of𝑁𝐶𝛤𝛽 . 

 Definition 3.5 
Let (𝑋, 𝛤) be a 𝑁𝐶𝑇𝑆 and 𝐴 = 〈𝐴1, 𝐴2, 𝐴3〉 be a 𝑁𝐶𝑆 in 𝑋, then: 

𝑁𝐶𝑐𝑙𝛼(𝐴) = ⋂{ G:G⊇𝐴 and G is 𝑁𝐶𝛼-closed} 
𝑁𝐶𝑖𝑛𝑡𝛼 (𝐴) = ⋃{G:G⊆𝐴 and G is 𝑁𝐶𝛼- open} 
𝑁𝐶𝑐𝑙 pre (𝐴) = ⋂{ G:G⊇𝐴 and G is 𝑁𝐶pre-closed} 
𝑁𝐶𝑖𝑛𝑡 pre (𝐴) = ⋃{G:G⊆𝐴 and G is 𝑁𝐶pre- open} 

Definition 3.6  
𝑁𝐶𝑐𝑙 semi (𝐴) = ⋂{ G:G⊇𝐴 and G is 𝑁𝐶semi-closed} 
𝑁𝐶𝑖𝑛𝑡 semi (𝐴) = ⋃{G:G⊆𝐴 and G is 𝑁𝐶semi- open} 
𝑁𝐶𝑐𝑙𝛽(𝐴) = ⋂{ G:G⊇𝐴 and G is 𝑁𝐶𝛽-closed} 
𝑁𝐶𝑖𝑛𝑡𝛽(𝐴) = ⋃{G:G⊆𝐴 and G is 𝑁𝐶𝛽- open} 

Theorem 3.7 
Let (𝑋, 𝛤) be a 𝑁𝐶𝑇𝑆. 𝑁𝐶𝛤𝛼 Consists of exactly those 𝑁𝐶𝑆𝐴 for which 𝐴∩𝐵∈ 𝑁𝐶𝛤𝛽  for 

𝐵∊𝑁𝐶𝛤𝛽. 
Proof 

Let 𝐴∈ 𝑁𝐶𝛤𝛼, 𝐵∈ 𝑁𝐶𝛤𝛽, 𝑃∈𝐴∩𝐵 and 𝑈 be a neutrosophic crisp neighborhood (for short 
𝑁𝐶𝑛𝑏𝑑) of p. 

Clearly 𝑈 ∩ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝐴)), too  is a neutrosophic crisp open neighborhood of 𝑃, 
so 𝑉=(𝑈∩ 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝐴)))) ∩𝑁𝐶𝑖𝑛𝑡(𝐵) is non-empty . Since 𝑉⊂𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝐴)) 
this implies 

(𝑈∩𝑁𝐶𝑖𝑛𝑡(𝐴) ∩𝑁𝐶𝑖𝑛𝑡(𝐵) =𝑉∩𝑁𝐶𝑖𝑛𝑡(𝐴) =∅𝑁  . 
It follows that  

Conversely, 𝐴∩𝐵⊂ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝐴) ∩ 𝑁𝐶𝑖𝑛𝑡(𝐵))= 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝐴∩𝐵)) i.e. 𝐴 ∩𝐵∈ 𝑁𝐶𝛤𝛽. 
Let 𝐴∩𝐵∈ 𝑁𝐶𝛤𝛽for all 𝐵∈ 𝑁𝐶𝛤𝛽. then in particular 𝐴∈ 𝑁𝐶𝛤𝛽. Assume that  

𝑃∈𝐴∩(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝐴)∩(𝑁𝐶𝑖𝑛𝑡(𝐴)))c. Then 𝑃∈ 𝑁𝐶𝑐𝑙(𝐵), where (𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝐴)))c 
Clearly {𝑃}∪𝐵∈𝑁𝐶𝛤𝛽 and consequently 𝐴∩{{𝑃}∪𝐵}∈𝑁𝐶𝛤𝛽. But 𝐴∩{{𝑃}∪𝐵}={𝑃}. Hence 
{𝑃} is a neutrosophic crisp open. 𝑃∊(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝐴))) implies 𝑃∊)𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝐴)()), 
contrary to assumption. Thus 𝑃∊𝐴 implies 𝑃∊(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝐴)) and 𝐴∈ 𝑁𝐶𝛤𝛼. Thus we have 
found that 𝑁𝐶𝛤𝛼 is complete determined by 𝑁𝐶𝛤𝛽 i.e. all neutrosophic crisp topologies with 
the same 𝑁𝐶𝛽- structure also determined the same 𝑁𝐶𝛼-structure, explicitly given Theorem 
3.1. 

We shall prove that conversely all neutrosophic crisp topologies with the same 𝑁𝐶𝛼-
structure, so that 𝑁𝐶𝛤𝛽, is completely determined by 𝑁𝐶𝛤𝛼 

 Theorem 3.8 
Every 𝑁𝐶𝛼-structure is a 𝑁𝐶𝛤.  
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 Proof 
𝑁𝐶𝛤𝛽 Contains the neutrosophic crisp empty set and is closed with respect to arbitrary 

unions. A standard result gives the class of those neutrosophic crisp sets 𝐴 for which 
𝐴∩𝐵∈𝑁𝐶𝛤𝛽  for all 𝐵∈𝑁𝐶𝛤𝛽 constitutes a neutrosophic crisp topology, hence the theorem.  

We may now characterize 𝑁𝐶𝛤𝛽, in terms of 𝑁𝐶𝛤𝛼 in the following way.  
Proposition 3.9 

Let (𝑋, 𝛤) be a 𝑁𝐶𝑇𝑆. Then 𝑁𝐶𝛤𝛽 = 𝑁𝐶𝛤𝛼𝛽 and hence 𝑁𝐶𝛼 -equivalent topologies determine 
the same 𝑁𝐶𝛽 -structure.  

 Proof  
Let 𝑁𝐶𝛼–𝑐𝑙 and𝛼–𝗂𝗇t denote neutrosophic closure and Neutrosophic crisp interior with 

respect to 𝑁𝐶𝛤𝛼. If 𝑃∈𝐵∈𝑁𝐶𝛤𝛽 and 𝑃∈ 𝐵∈ 𝑁𝐶𝛤𝛼, then 
 (𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝐴)))∩𝑁𝐶𝑖𝑛𝑡(𝐵))≠∅𝑁.  
Since (𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝐴))) is a crisp neutrosophic neighbor-hood of point p, so 

certainly 𝑁𝐶𝑖𝑛𝑡(𝐵) meets 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝐴)) and therefore (big neutrosophic open) meets 
𝑁𝐶𝑖𝑛𝑡(𝐴) , proving  𝐴∩𝑁𝐶𝑖𝑛𝑡(𝐵) ≠ ∅𝑁 . This means 𝐵⊂ 𝑁𝐶𝛼𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝐵)) .i.e. 𝐵∈𝑁𝐶𝛤𝛼𝛽 on 
the other hand let 𝐴∈𝑁𝐶𝛤𝛼𝛽 , 𝑃∈ 𝐴. and 𝑃∈ 𝑉∈𝑁𝐶𝛤. As   𝑉∈𝑁𝐶𝛤𝛼, and 𝑃∈ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝐴)), 
we have 𝑉∩𝑁𝐶𝑖𝑛𝑡(𝐴)≠∅N  and there exist a neutrosophic trip set 𝑊∈ 𝛤 such that 
𝑊⊂𝑉∩𝑁𝐶𝛼𝑖𝑛𝑡(𝐴)⊂𝐴. 

In other words 𝑉∩ (𝑁𝐶𝑖𝑛𝑡(𝐴))≠∅𝑁 and 𝑃∈𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝐴)). Thus we have verified 𝑁𝐶𝛤𝛼𝛽 

⊂𝑁𝐶𝛤𝛼, and the proof is complete combining Theorem 3.1 and Proposition 3.1. and we get 
𝑁𝐶𝛤𝛼𝛼 = 𝑁𝐶𝛤𝛼.  

 Corollary 3.10 
A neutrosophic crisp topology 𝑁𝐶𝛤is a 𝑁𝐶𝛼 - topology iff 𝑁𝐶𝛤 = 𝑁𝐶𝛤𝛼. Evidently 𝑁𝐶𝛤𝛽 

is a neutrosophic crisp topology iff𝑁𝐶𝛤𝛼 = 𝑁𝐶𝛤𝛽.  In this case 𝑁𝐶𝛤𝛽𝛽 = 𝑁𝐶𝛤𝛼𝛽 = 𝑁𝐶𝛤𝛽. 
 Corollary 3.11 

𝑁𝐶𝛽-Structure 𝐵 is a neutrosophic crisp topology, then 𝐵= 𝐵𝛼= 𝐵𝛽. 
 We proceed to give some results on the neutrosophic structure of neutrosophic crisp 𝑁𝐶𝛼–

topology 
Proposition 3.12 

The 𝑁𝐶𝛼-open with respect to a given neutrosophic crisp topology are exactly those sets 
which may be written as a difference between a neutrosophic crisp open set and a neutrosophic 
crisp nowhere dense set. If 𝐴∊ 𝑁𝐶𝛤𝛼 we have 𝐴= 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝐴))) 
∩(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝐴))∩𝐴c)c, where (𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝐴))∩𝐴c) clearly is neutrosophic 
crisp nowhere dense set, we easily see that  

𝐵⊂ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝐴))  and consequently 
𝐴⊂𝐵⊂𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝐴))  so the proof is complete. 

 Corollary 3.13  
A neutrosophic crisp topology is a 𝑁𝐶𝛼- topology iff all neutrosophic crisp nowhere dense 

sets are neutrosophic crisp closed. For a neutrosophic crisp 𝑁𝐶𝛼-topology may be 
characterized as neutrosophic crisp topology where the difference between neutrosophic crisp 
open and neutrosophic crisp nowhere dense set is again a neutrosophic crisp open, and this 
evidently is equivalent to the condition stated. 

 Proposition 3.14 
Neutrosophic crisp topologies which are 𝑁𝐶𝛼- equivalent, determine the same class of 

neutrosophic crisp nowhere dense sets.  
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 Proposition 3.16 
If a 𝑁𝐶𝛼 -Structure 𝐵, is a neutrosophic crisp topology, then all neutrosophic crisp 

topologies 𝛤 for which 𝛤𝛽 = 𝐵   are neutrosophic crisp extremely disconnected.  
In particular: Either all or none of the neutrosophic crisp topologies of a 𝑁𝐶𝛼 – class are 

extremely disconnected. 
 Proof  

Let 𝛤𝛽 = 𝐵, and suppose there is 𝐴∊𝛤 such that 𝑁𝐶𝑐𝑙(𝐴)∉𝛤. Let 
𝑃∊𝑁𝐶𝑐𝑙(𝐴)∩𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝐴))c with 𝐵 = {𝑃} ∪𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝐴)), 𝛭 = 𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝐴))c  
We have {𝑃} ⊂ 𝛭= (𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(A))c= 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝛭)),  
{𝑃}⊂ 𝑁𝐶𝑐𝑙(𝐴) = 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝐴))⊂ 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝐵)). Hence both 𝐵 and 𝛭 are in 𝛤𝛽. 

The intersection 𝐵∩ 𝛭= {𝑃} is not neutrosophic crisp open, since 𝑃∈ 𝑁𝐶𝑐𝑙(𝐴)∩𝛭c hence not 
𝑁𝐶𝛽- open. So, 𝛤𝛽=𝐵 is not a neutrosophic crisp topology. Now suppose 𝐵 is not a topology, 
and 𝛤𝛽=𝐵 There is a 𝐵∈ 𝛤𝛽 such that 𝐵∉𝛤𝛼. Assume that 𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝐵)) ∊𝛤. Then 

𝐵⊂𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝐵))=𝑁𝐶𝑖𝑛𝑡(𝑁𝐶𝑐𝑙(𝑁𝐶𝑖𝑛𝑡(𝐵)) i.e. 𝐵∊ 𝛤𝛼, contrary to assumption. Thus we 
have produced an open set whose closure is not open, which completes the proof.  

 Corollary 3.17 
A neutrosophic crisp topology 𝛤 is a neutrosophic crisp extremally disconnected if and 

only if 𝛤𝛽 is a neutrosophic crisp topology. 
 

 Remark 3.18 
The following diagram represents the relation between neutrosophic crisp nearly open sets: 

 
 
 
 
 
 

 
 
 

 
 
 

 4.  Neutrosophic Crisp Continuity 
We, introduce and study of neutrosophic crisp continuous function and we obtain some 

characterizations of neutrosophic continuity. Here come the basic definitions first: 
 Definition 4.1  

Let (𝑋, 𝛤) be a 𝑁𝐶𝑇𝑆 and 𝐴 =〈𝐴1,𝐴2,𝐴3〉 be a 𝑁𝐶𝑆 in 𝑋, and 𝑓: 𝑋⟶𝑋 then: 
 
1) If  𝑓𝑁𝐶𝛼-continuous ⟹ inverse image of 𝑁𝐶𝛼 open set is 𝑁𝐶𝛼- open set 
2) If  𝑓 𝑁𝐶pre-continuous ⟹ inverse image of 𝑁𝐶pre-open set is 𝑁𝐶pre- open set 
3) If  𝑓 𝑁𝐶semi-continuous ⟹ inverse image of 𝑁𝐶semi-open set is 𝑁𝐶semi- open set 
4) If  𝑓 𝑁𝐶𝛽-continuous ⟹ inverse image of 𝑁𝐶𝛽-open set is 𝑁𝐶𝛽- open set 

 Definition 4.2 
The following was given in [24] 
(a) If 321 ,, AAAA   is a NCS in X, then the neutrosophic crisp image of A under ,f

𝑁𝐶𝛽- 

open set 
𝑁𝐶- 

open set 
𝑁𝐶𝛼- 

open set 

𝑁𝐶semi- 

open set

𝑁𝐶pre- 

open set 
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denoted by ),(Af  is the a NCS in Y defined by .)(),(),()( 321 AfAfAfAf   
(b) If 𝑓 is a bijective map then 𝑓-1: 𝑌⟶𝑋  is a map defined such that:  

for any NCS 321 ,, BBBB   in Y, the neutrosophic crisp preimage of B, denoted by 
),(1 Bf  is a 𝑁𝐶𝑆in X defined by .)(),(),()( 3

1
2

1
1

11 BfBfBfBf    

Definition 4.3 
Let (𝑋, 𝛤1) , and (𝑌, 𝛤2)  be two 𝑁𝐶𝑇𝑆𝑠, and let 𝑓: 𝑋⟶𝑌 be a function. Then 𝑓 is said to be 

continuous if 𝑓 the preimage of each 𝑁𝐶𝑆 in 𝛤2 is a 𝑁𝐶𝑆 in 𝛤1.  
Definition 4.4 

Let (𝑋, 𝛤1) , and (𝑌, 𝛤2)  be two 𝑁𝐶𝑇𝑆𝑠 and let   𝑓: 𝑋⟶𝑌  be a function. Then 𝑓 is said to 
be open iff the image of each 𝑁𝐶𝑆 in 𝛤1, is a 𝑁𝐶𝑆 in 𝛤2. 
Proposition4.5 

Let  oX , and  oY ,  be two 𝑁𝐶𝑇𝑆𝑠. 
If YXf :  is continuous in the usual sense, then in this case, f  is continuous in the sense 

of Definition 4.3 too.  
Proof 

Here we consider the 𝑁𝐶𝑇𝑆𝑠on X and Y, respectively, as follows:   o
c GGG  :,,1   

and  o
c HHH  :,,2  , 

In  this case we have, for each 2,, cHH  , oH  , 

)(),(),(,, 1111 cc HffHfHHf    1
11 ))((,,   cHfHf  . 

Now we obtain some characterizations of neutrosophic continuity.  
 Proposition 4.6 

Let 𝑓: (𝑋, 𝛤1) ⟶(𝑌, 𝛤2). Then f is neutrosophic continuous iff the preimage of each 
neutrosophic crisp closed set (𝑁𝐶𝐶𝑆) in 𝛤2 is a 𝑁𝐶𝐶𝑆 in 𝛤1. 
 Proposition 4.7 

The following are equivalent to each other: 
(a) 𝑓: (𝑋, 𝛤1)⟶(𝑌, 𝛤2) is neutrosophic continuous.  
(b) 𝑓-1(𝑁𝐶𝑖𝑛𝑡(𝐵) ⊆ 𝑁𝐶𝑖𝑛𝑡(𝑓-1(𝐵))) for each 𝑁𝐶𝑆𝐵in 𝑌.  
(c) (𝑁𝐶𝑐𝑙 𝑓-1(𝐵)) ⊆𝑓-1(𝑁𝐶𝑐𝑙(𝐵)). for each 𝑁𝐶𝑆𝐵 in 𝑌.  
 Corollary 4.8 

Consider ),( 1X and  2,Y to be two 𝑁𝐶𝑇𝑆𝑠, and let YXf :  be a function. 
 if  2

1
1 :)(   HHf . Then 1  will be the coarsest NCT on X which makes the 

function YXf : continuous. One may call it the initial neutrosophic crisp topology with 
respect to .f  

5.  Neutrosophic Crisp Compact Space  
First we present the basic concepts: 

 Definition5.1 
Let  ,X be an NCTS. 

(a) If a family  JiGGG iii :,, 321
 of NCOSs in X satisfies the condition 

  ,:,,
321 Niii XJiGGG  then it is called an  neutrosophic open cover of X.  

(b) A finite subfamily of an open cover  JiGGG iii :,, 321  on X, which is also a 
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neutrosophic open cover of X , is called a neutrosophic crisp finite open subcover. 
 Definition5.2 

A neutrosophic crisp set 321 ,, AAAA    in a  NCTS  ,X  is called neutrosophic crisp 
compact iff every neutrosophic crisp open cover of A has a finite neutrosophic crisp open 
subcover. 

 Definition5.3 

A family  JiKKK iii :,, 321
 of neutrosophic crisp compact sets in X satisfies the finite 

intersection property (FIP ) iff every finite subfamily  niKKK iii ,...,2,1:,,
321

  of the family 
satisfies the condition   Niii niKKK  ,...,2,1:,,

321
.      

  Definition5.4 
A NCTS  ,X is called neutrosophic crisp compact iff each neutrosophic crisp open cover 

of X has a finite open subcover. 
 Corollary5.5 

A NCTS  ,X  is a neutrosophic crisp compact iff every family  JiGGG iii :,,
321

 of 
neutrosophic crisp compact sets in X having the finite intersection properties has nonempty 
intersection. 
Corollary5.6 

Let  1,X ,  2,Y be NCTSs and YXf :  be a continuous surjection. If  1,X  is a 
neutrosophic crisp compact, then so is  2,Y . 
 Definition5.7 

If a family  JiGGG iii :,, 321  of neutrosophic crisp compact sets in X satisfies the 

condition  JiGGGA iii  :,, 321 ,  then it is called a  neutrosophic crisp open cover of A. 

Let’s consider a finite subfamily of a neutrosophic crisp open subcover of 
 JiGGG iii :,, 321 . 

 Corollary5.8 
Let  1,X ,  2,Y   be NCTSs and YXf :  be a continuous surjection. If A is a 

neutrosophic crisp compact in  1,X , then so is )(Af  in  2,Y . 

 6. Conclusion 
In this paper, we presented a generalization of the neutrosophic topological space. The 

basic definitions of the neutrosophic crisp topological space and the neutrosophic crisp 
compact space with some of their characterizations were deduced. Furthermore, we 
constructed a neutrosophic crisp continuous function, with a study of a number its properties. 
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Hausdorff Extensions in Single Valued Neutrosophic 

S∗ Centered Systems 

Abstract 

This paper explores the concept of single valued neutrosophic S∗ open sets in single valued 

neutrosophic S∗ centered system. Also the characterization of Hausdorff extensions of spaces 

in single valued neutrosophic S∗ centered systems are established. 

Keywords 

Single valued neutrosophic set, single valued neutrosophic structure space, single valued 

neutrosophic S∗ centered system, single valued neutrosophic S∗θ− homeomorphism, single 

valued neutrosophic S∗θ− continuous functions. 

1. Introduction 

Florentin Smarandache [ 8, 9] combined the non- standard analysis with a tri component 
logic/set, probabi l i ty t heor y  with philosophy and proposed the term neutrosophy which 
means knowledge of neutral thoughts. This neutral represents the main distinction b e t w e e n  
fuzzy and intuitionistic fuzzy logic set. In 1998, Florent in Smarandache defined the 
neutrosophic set [8, 9]. Florentin Smarandache and his colleagues [5] presented an instance of 
neutrosophic set, called single valued neutrosophic set. Alexandrov [1] developed a method of 
centered systems for studying compact extensions of topological spaces. The method  o f  
centered sys t ems  in topological spaces was studied b y Iliadis [6] and in fuzzy topological 
spaces by Uma et al. [10]. We extend the  same in single valued neutrosophic topological 
spaces. 

2. Preliminaries 

Definition 2.1. [5] 

Let X be a space of points (objects), with a generic element in X denoted by x. A single valued 
neutrosophic set (SVNS) A in X is characterized by truth-membership function TA, indeterminacy-
membership function IA and falsity-membership function FA.  
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For each point x in X, TA(x), IA(x), FA(x) ∈ [0,1]. When X is continuous, a SVNS A can be written 
as A, XxxxFxIxTX AAA  ,/)(),(),( . 

When X is discrete, a SVNS A can be written as 

XxxxFxIxTA ii

n

i
iii 



,/)(),(),(
1

 

Definition 2.2: [10] 

Let R be a fuzzy Hausdorff space.  A system p = {λα} of fuzzy open sets of R is 
called fuzzy centered if any finite collection of the fuzzy sets of the system has a non-
empty intersection. The system p is called a maximal fuzzy centered system or a fuzzy end 
if it cannot be included in any larger fuzzy centered system of fuzzy open sets.   

Definition 2.3: [10] 

Let θ(R) denote the collection of all fuzzy ends belonging to a given fuzzy Hausdorff space 
R. A fuzzy topology introduces   into θ(R) in the following way. Let Pλ be the set of all 
fuzzy ends that   contain λ as an element, where λ is a fuzzy open set of R. Therefore, Pλ 
is a fuzzy neighbourhood of each fuzzy end contained in Pλ. 

3. Single valued neutrosophic S* Hausdorff extension spaces 

Definition 3.1 

Let X be a non- empty set and S be a collection of all single valued neutrosophic sets of 

X. A single valued neutrosophic S∗structure on S is a collection S∗ of subsets of S having 
the following properties: 

1. φ and S are in S∗. 

2. The union of the elements of any sub collection of S∗ is in S∗. 

3. The intersection of the elements of any finite sub collection of S∗ is in S∗. 

The collection S together with the structure S∗ is called single valued neutrosophic S∗ 

structure space. The members of S∗ are called single valued neutrosophic S∗ open sets.  The  

complement of single valued neutrosophic S∗ open set is said to be a single valued 

neutrosophic S∗ closed set.  

Example 3.2: 

Let },{ baX   , 













6.0,4.0,7.0

,
5.0,3.0,8.0

baS ,  4321
* ,,,,, SSSSSS   where, 
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,
8.0,2.0,5.0

,
7.0,1.0,6.01














baS














9.0,3.0,5.0

,
6.0,2.0,4.02

baS , 













9.0,2.0,5.0

,
7.0,1.0,4.03

baS ,

.
8.0,3.0,5.0

,
6.0,2.0,6.04














baS  

Here ),( *SS  is a structure space. 

Definition 3.3: 

Let A be a member of S. A single valued neutrosophic S∗ open set U in ),( *SS  is said to 

be a single valued neutrosophic S∗ open neighbourhood of A if A ∈ G ⊂ U for some single 

valued neutrosophic S∗  open set G in ),( *SS . 

Example 3.4: 

Let },{ baX   , 













6.0,4.0,7.0

,
5.0,3.0,8.0

baS ,  4321
* ,,,,, SSSSSS   where, 

,
8.0,2.0,5.0

,
7.0,1.0,6.01














baS














9.0,3.0,5.0

,
6.0,2.0,4.02

baS , 














9.0,2.0,5.0

,
7.0,1.0,4.03

baS , .
8.0,3.0,5.0

,
6.0,2.0,6.04














baS  

Let 













9.0,1.0,3.0

,
8.0,1.0,4.0

baA . 

Here 41 SSA  . 4S  is the single valued neutrosophic S* open neighbourhood of  A . 

Definition 3.5: 

Let ),( *SS  be a single valued neutrosophic S∗ structure space and AAA FITxA ,,,  be a 

single valued neutrosophic set in X. Then the single valued neutrosophic S∗ closure of A (briefly 

SV N S∗cl(A)) and single valued neutrosophic S∗ interior of A (briefly SVN S∗int(A)) are 
respectively defined by 

SVN S∗cl(A) = {K: K is a single valued neutrosophic S∗ closed sets in S and A ⊆ 
K}  

SVN S∗int(A) =  {G: G is a single valued neutrosophic S∗ open sets in S and G ⊆ 
A}.  
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Example 3.6: 

Let },{ baX   , 













6.0,4.0,7.0

,
5.0,3.0,8.0

baS ,  4321
* ,,,,, SSSSSS   where, 

,
8.0,2.0,5.0

,
7.0,1.0,6.01














baS














9.0,3.0,5.0

,
6.0,2.0,4.02

baS , 














9.0,2.0,5.0

,
7.0,1.0,4.03

baS , .
8.0,3.0,5.0

,
6.0,2.0,6.04














baS  

,
5.0,8.0,8.0

,
6.0,9.0,7.01














baS c














5.0,7.0,9.0

,
4.0,8.0,6.02

baS c , 














5.0,8.0,9.0

,
4.0,9.0,7.03

baS c ,













5.0,7.0,8.0

,
6.0,8.0,6.04

baS c . 

Let 













9.0,4.0,7.0

,
6.0,3.0,5.0

baA .Then }{)int(* 3SASSVN  . 

}{)(* 4
cSAclSSVN  . 

Definition 3.7: 

The ordered pair (S, S∗) is called a single valued neutrosophic S∗ Hausdorff space if for 
each pair A1, A2 of disjoint  members  of S, there  exist  disjoint  single valued neutrosophic  

S∗ open sets U1 and U2 such that  A1  ⊆ U1 and A2  ⊆ U2 . 

Example 3.8:  

Let },{ baX   , 













0,1,1

,
0,1,1

baS ,  321
* ,,,, SSSSS   where, 

,
4.0,3.0,0

,
1,0,5.01














baS  ,

4.0,3.0,7.0
,

5.0,2.0,5.02













baS














1,0,7.0

,
5.0,2.0,03

baS . 
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Let 













1,1.0,0

,
1,0,3.01

baA , 













1,0,5.0

,
6.0,1.0,02

baA . 

Here 1A  and 2A  are disjoint members of  S  and 21 , SS  are disjoint single valued neutrosophic 
S* open sets such that 2211 SAandSA  . 

Hence the ordered pair ),( *SS  is a single valued neutrosophic S* Hausdorff space. 

Definition 3.9: 

Let ),( *
11 SS and ),( *

22 SS  be any two single valued neutrosophic S* structure spaces and let 
),(),(: *

22
*
11 SSSSf   be a function. Then f  is said to be single valued neutrosophic S* 

continuous iff the pre image of each single valued neutrosophic *
2S  open set in ),( *

22 SS  is a single 
valued neutrosophic *

1S  open set in ),( *
11 SS . 

Definition 3.10: 

Let ),( *
11 SS and ),( *

22 SS  be any two single valued neutrosophic S* structure spaces and let 
),(),(: *

22
*
11 SSSSf   be a bijective function. If both the functions f  and the inverse function 

),(),(: *
11

*
22

1 SSSSf   are single valued neutrosophic S* continuous then f  is called single 
valued neutrosophic S* homeomorphism. 

Definition 3.11: 

Let f  be a function from a single valued neutrosophic S* structure space ),( *
11 SS  into a 

single valued neutrosophic  S* structure space ),( *
22 SS with )()( 21 AfAf   where ),( *

111 SSA   
and ),( *

222 SSA  .Then f  is called a single valued neutrosophic  S*  continuous at 1A  if for 

every neighbourhood 
2AO  of 2A , there exists a neighbourhood 

1AO  of 1A  such that 

)(*))(*(
21 AA OclSVNSOclSVNSf  .The function is called single valued neutrosophic S*   

continuous if it is single valued neutrosophic  S*  continuous at every member of 1S . 

Definition 3.12: 

A function is called a single valued neutrosophic S∗θ− homeomorphism i f  it is single 

valued neutrosophic S∗ one to one and single valued neutrosophic S∗θ− continuous in both 
directions. 

Definition 3.13: 

Let (S, S∗) be a single valued neutrosophic S∗ Hausdorff space.  A  system p = {Uα: α =1, 

2, 3, ...n} of single valued neutrosophic S∗ open sets is called a single valued neutrosophic S∗ 

centered system if any finite collection of the sets of the system has a non-empty intersection.  
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Definition 3.14: 

The single valued neutrosophic S∗ centered system p is called a maximal single valued 

neutrosophic S∗ centered system or a single valued neutrosophic  S∗  end if it cannot  be 

included in any larger single valued neutrosophic  S∗  centered  system of single valued 

neutrosophic  S∗  open sets. 

Example 3.15:  

In Example 3.8 let us consider the system  3,2,1,1  Sp . 1p  is a fuzzy neutrosophic S* 
centered system since 21 , SS  has a non -empty intersection. 

Let }2,1:{2  Sp is also a fuzzy neutrosophic S* centered system. 

Here 1p  is a maximal fuzzy neutrosophic S* centered system. 

Note 3.16: 

Throughout this paper { Uα: α = 1, 2, 3, ...n} be a single valued neutrosophic S∗ open set 

in (S, S∗). 

Proposition 3.17: 

Let *),( SS be a single valued neutrosophic *S  Hausdorff space and }{ Up   is a 
single valued neutrosophic *S  centered system in *),( SS .Then the following properties 
hold. 

1.If )....,3,2,1( nipU i  then pU i

n

i


1
. 

2.If pUHU  , and H is single valued neutrosophic *S  open set, then pH  . 
3.If H is single valued neutrosophic *S  open set, then pH   iff there exists pU 

such that pU   such that  HU . 
4.If 1321 ,UpUUU   and 2U  are single valued neutrosophic *S  open sets and 

 21 UU , then either pU 1  or pU 2 . 

5.If SUclSVNS )(*  then pU   for any single valued neutrosophic *S  end p . 

Proof: 

1.If )....,3,2,1( nipU i  then 


i

n

i
U

1
.As a contrary, suppose that pU i

n

i


1
, then 













n

i
iUp

1
will be a larger single valued neutrosophic *S end than p .This contradicts 

the maximality of p .Therefore pU i

n

i


1
. 
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2. If pH  , then Hp  will be a larger single valued neutrosophic *S end than 
p .This contradicts the maximality of p .Therefore pH  . 

3.Suppose that pH  .If there exists no pU   such that UH  then by 
Definition 3.13 and Definition 3.14, pH  .This contradicts the maximality of p , since  

}{Hp   will be a larger single valued neutrosophic *S  end than .p Conversely, suppose 
that there exists pU   such that UH .If pH   then UH , which is a 
contradiction. Hence pH  . 

4.If pUpU  21 , , then pUUU  131  and pUUU  232 .It follows that pU 3 , 
which is a contradiction. Hence either pU 1  or pU 2 . 

5. UUclSVNSU  )(*  and pSUclSVNS )(*  for all single valued neutrosophic 
*S ends p .By (3)  UUclSVNSU )(* .Therefore pU   for all single valued 

neutrosophic *S  end p. 

Definition 3.18: 

Let )(S  denote the collection of all single valued neutrosophic *S ends belonging to 
S .A single valued neutrosophic *S  topology is introduced into )(S  in the following 
way. Let UO  be the set of all single valued neutrosophic *S ends that contains U  as an 
element, where U  is a single valued neutrosophic *S open set of S .Therefore UO  is a 
single valued neutrosophic *S  neighbourhood of each single valued neutrosophic *S end 
contained in UO . 

Definition 3.19: 

A subset A  of a single valued neutrosophic *S structure space *),( SS  is said to be an 
everywhere single valued neutrosophic *S dense subset in *),( SS  if SAclSVNS )(* . 

Definition 3.20: 

A subset of a single valued neutrosophic *S structure space *),( SS  is said to be a 
nowhere single valued neutrosophic *S  dense subset  in *),( SS  if cAX \  is everywhere 
single valued neutrosophic *S  dense subset. 

Definition 3.21: 

Let *),( SS  be a single valued neutrosophic *S structure space and Y be a single 
valued neutrosophic *S  open set in *),( SS .Then the single valued neutrosophic *S  
relative topology  *: SGYGTY   is called the single valued neutrosophic *S  relative 
(or induced or subspace ) topology on Y .The ordered pair  YTY ,  is called a single 
valued neutrosophic *S subpace of the single valued neutrosophic *S space *),( SS . 
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Definition 3.22: 

Let *),( SS be a single valued neutrosophic *S structure space. 

1.If a family  iU :
 of single valued neutrosophic *S  open sets in *),( SS  

satisfies the condition   iUS : , then it is called a single valued neutrosophic *S
open cover of .S A finite subfamily of the single valued neutrosophic *S  open cover 
 iU :

 of S , which is also a single valued neutrosophic *S  open cover of S , is 
called a single valued neutrosophic *S  finite subcover . 

2.A single valued neutrosophic *S structure space *),( SS  is called single valued 
neutrosophic *S  compact iff every single valued neutrosophic *S  open cover of S  has 
a single valued neutrosophic *S  finite subcover. 

Definition 3.23: 

A single valued neutrosophic *S  Hausdorff space )(S is called an extension of a 
single valued neutrosophic *S  Hausdorff space S is contained in )(S as an everywhere 
single valued neutrosophic *S  dense subset. 

Definition 3.24: 

A single valued neutrosophic *S  Hausdorff space S  is called single valued 
neutrosophic HS *  closed if every extension coincides with S  itself. 

Definition 3.25: 

An extension )(S is called a single valued neutrosophic HS * closed  if )(S  is 
single valued neutrosophic HS * closed  and single valued neutrosophic *S  compact 
if )(S is single valued neutrosophic *S  compact. 

Definition 3.26: 

Let *),( SS be a single valued neutrosophic *S  structure space. A system B of single 
valued neutrosophic *S  open sets of a single valued neutrosophic *S  structure space S
is called a single valued neutrosophic *S base (or basis) for *),( SS if each member of 

*),( SS  is a union of members of B.A member of B is called a single valued 
neutrosophic *S  basic open set. 

Definition 3.27: 

Let *),( SS  be a single valued neutrosophic *S  structure space .A system of single 
valued neutrosophic *S  open sets of a single valued neutrosophic *S structure space S
is called a single valued neutrosophic *S  sub base if it together with all possible finite 
intersections of members of the system form a base of S . 
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Lemma 3.28: 

A single valued neutrosophic *S  structure space S  is single valued neutrosophic 
HS * closed if and only if any single valued neutrosophic *S  centered system  U  

of single valued neutrosophic *S  open sets of S  satisfies the condition 



 )(* UclSVNS . 

Proof: 

Necessity: If  Up   is single valued neutrosophic *S  centered system with 



 )(* UclSVNS  then it can be constructed the following single valued neutrosophic 

*S  extensions )(S  which does not coincide with S  and a new member p .The single 
valued neutrosophic *S  neighbourhoods of each member SA  in )(S are the same as 
in S .Any set 

U  together with the member p is a single valued neutrosophic *S  

neighbourhood of p. Because of the condition 


 )(* UclSVNS , a single valued 

neutrosophic *S  structure space )(S  is single valued neutrosophic *S Hausdorff and 
since  U  is a single valued neutrosophic *S  centered system , it contains S  as an 
everywhere single valued neutrosophic *S dense subset. Therefore S  is not a single 
valued neutrosophic HS * closed, which is a contradiction. 

Sufficiency: Let S  be a proper everywhere single valued neutrosophic *S  dense 
subset of )(S .Assume that )(S  consists of all single valued neutrosophic *S  
neighbourhoods of some member SSp \)( .Let this be the system  U .This system 
is single valued neutrosophic *S  centered for otherwise p  would be an isolated member 
in )(S  and S would not be everywhere single valued neutrosophic *S  dense subset of 

)(S , since )(S  is single valued neutrosophic *S  Hausdorff space then 
pVclSVNS S  )(* )(




.But the system  SUV  
 is single valued neutrosophic *S  

centered and 


 )(* SVclSVNS , which contradicts the condition of the Lemma. 

Lemma 3.29: 

A single valued neutrosophic *S  structure space S  is single valued neutrosophic 
HS * closed if and only if any maximal single valued neutrosophic *S  centered 

system  U  of single valued neutrosophic *S  open sets of S  contains all the single 
valued neutrosophic *S  neighbourhoods of some member. 

The proof follows easily from Lemma 3.28. 
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Lemma 3.30: 

The single valued neutrosophic *S  structure space S  is single valued neutrosophic 
HS *  closed if and only if from any single valued neutrosophic *S  cover  U  of S  

a finite subsystem )...,3,2,1( niU i   may be chosen such that SUclSVNS
n

i
i 



)(*
1
 .The 

proof follows from Lemma 3.28. 

4. Single valued neutrosophic S* centered systems 

Definition 4.1: 

Let }{q  be a collection of single valued neutrosophic *S  centered (not necessarily 
maximal) systems of single valued neutrosophic *S  open sets of S .A single valued 
neutrosophic *S  topology may be defined on this collection. 

For if U  is a single valued neutrosophic *S   open set of S .Let UO  denote the 
collection of all single valued neutrosophic *S centered systems }{qq containing U  as 
an element. All sets of the form UO  form a sub base. 

Definition 4.2: 

Let )(S be an arbitrary single valued neutrosophic *S  extension of S . Every 
member )(SA   in particular. A may belong to S  defines a certain single valued 

neutrosophic *S  centered system in S , namely  AA USV    where AU  runs through 

all neighbouhoods of A  in )(S . 

Note 4.3: 

Every extension of an arbitrary single valued neutrosophic *S  Hausdorff space S  
can be realized as a single valued neutrosophic *S  structure space of centered systems 
of single valued neutrosophic *S  open sets of S  with an appropriately chosen single 
valued neutrosophic *S  topology. 

Lemma 4.4: 

For any single valued neutrosophic *S extension )(S , the single valued neutrosophic 
*S  structure space )(S  is a single valued neutrosophic *S  extension of S and single 

valued neutrosophic *S homeomorphic to  )(S , where )(S  denote the single 
valued neutrosophic *S  structure space that is obtained by introducing a single valued 
neutrosophic *S  topology into a set of single valued neutrosophic *S  centered systems 

 AV  by the mentioned above. 
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Proof: 

Since if  1AV  and  2AV  are two single valued neutrosophic *S  centered systems 
constructed relative to single valued neutrosophic sets 1A  and 2A , )(S  is single 
valued neutrosophic *S  Hausdorff space. Since S  is a single valued neutrosophic *S  
Hausdorff space, by the above procedure, they contain disjoint elements. The relation 

UA and UA Oq   are equivalent so that S  is single valued neutrosophic *S  
homeomorphic to a subset of )(S .Since VUVU OOO   and since UO contains all the 

Aq  for which UA , it follows that S  is everywhere single valued neutrosophic *S  
dense in )(S , that is )(S  is a single valued neutrosophic *S  extension of S . 

Next to prove that )(S  and )(S are single valued neutrosophic *S  -
homeomorphic. There is a single valued neutrosophic *S  one-to-one correspondence 
between the members of )(S  and )(S  which is denoted by i .Thus AAi )(  if 

SA .Let 'A )(S , ')(,' AAiOA V   and let U be a single valued neutrosophic *S  

neighbourhood of A in )(S  such that VSU  .We prove that VOUi )( .This shows 
that the function i  is single valued neutrosophic *S continuous and hence it is single 
valued neutrosophic *S  continuous. But this is obvious because if UA 1  then 

)( 1AiV  and hence VOAi )( 1 . 

To prove that the inverse function is single valued neutrosophic *S  -continuous. Let 
U be a single valued neutrosophic *S  neighbourhood of )( Ai , where USV  .To 

show that   )(*)(*1 UclSVNSOclSVNSi V  . Let )(*' VOclSVNSA . This means that an 

arbitrary single valued neutrosophic *S  neighbourhood GO  of 'A meets VO , that is 
VG and this in turns means that an arbitrary single valued neutrosophic *S  

neighbourhood of )'(1 Ai   meets V  that is )(*)(*)'(1 UclSVNSVclSVNSAi  .Thus 

  )(*)(*1 UclSVNSOclSVNSi V  and the Lemma is proved. 

Definition 4.5: 

A single valued neutrosophic *S  extension )(S is of type   if the function i (one – 
to-one correspondence between the members of )(S  and )(S ) is a single valued 
neutrosophic *S   homeomorphism. 

Definition 4.6: 

A single valued neutrosophic *S  extension )(S is of type   if the set SS \)(  is 
discrete in the single valued neutrosophic *S  relative topology. 
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Proposition 4.7: 

Every single valued neutrosophic *S  extension of S  is a single valued neutrosophic 
*S   homeomorphic to some extension of type   of the same space. 

Proof: 

The proof follows from the fact that the single valued neutrosophic *S  extension 
)(S  in Lemma 4.4 is of type  . 

Now, let )(S  be any single valued neutrosophic *S  extension. Let )(S  denote the 
single valued neutrosophic *S  structure space obtained as follows. The members of 

)(S  are those of )(S .The single valued neutrosophic *S  neighbourhoods of members 
of SA  are same as in S ,but for members SSA \)( the single valued neutrosophic *S  
neighbourhoods are obtained from those of  A  in )(S by rejecting the set  ASS \)( .Clearly 

)(S  is asingle valued neutrosophic *S  Hausdorff space. 

Definition 4.8: 

Let ),( *
11 SS  and ),( *

22 SS  be two single valued neutrosophic *S  structure spaces. A 
single valued neutrosophic *S  structure space ),( *

11 SS  is said to be topologically 
embedded in another single valued neutrosophic *S  structure space ),( *

22 SS  if ),( *
11 SS  

is a single valued neutrosophic *S  homeomorphic to a single valued neutrosophic *S  
subspace of ),( *

22 SS . 

Lemma 4.9: 

For any single valued neutrosophic *S  extension )(S , the single valued 
neutrosophic *S  structure space )(S  is a single valued neutrosophic *S  extension of 
S , single valued neutrosophic *S   homeomorphic to )(S and of type  . 

Proof: 

It is clear that S  is single valued neutrosophic *S  topologically embedded in )(S  
as an everywhere single valued neutrosophic *S  dense subset , that is , )(S  is a single 
valued neutrosophic *S  extension of S . 

From the construction of )(S , SS \)(  is discrete and hence )(S  is of type  .It 
remains to show that )(S  and )(S  are single valued neutrosophic *S   
homeomorphic. 

This follows from the fact that if U  is single valued neutrosophic *S  open set in S , 

then     )()( )(*)(* SS UclSVNSUclSVNS 
 .Then the single valued neutrosophic *S  

structure space )(S is mapped continuously onto )(S . 
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Note 4.10: 

From Lemma 4.9 each single valued neutrosophic *S  extension )(S  of S  is 
associated with single valued neutrosophic *S  extensions )(S  and )(S , of types   
and   respectively and single valued neutrosophic *S   homeomorphic to each other 
and also single valued neutrosophic *S   homeomorphic to the original single valued 
neutrosophic *S  extension )(S . 

Definition 4.11: 

Let G  be a single valued neutrosophic *S  base of single valued neutrosophic *S  open 
sets in a single valued neutrosophic *S  structure space S and )(G S , the single valued 
neutrosophic *S  structure space whose elements are the members of S  itself  and all 
the maximal single valued neutrosophic *S  centered systems  U  consisting of single 
valued neutrosophic *S  open sets belonging to G , none of which contains as a 
subsystem of the single valued neutrosophic *S  neighbourhoods of any single valued 
neutrosophic *S  open set of S  belonging to G (Clearly this condition is equivalent to 
the following : 


 )(* UclSVNS ). 

Definition 4.12: 

A single valued neutrosophic *S  topology is defined in )(SG as follows. If  U G, 

UO  denotes the set of all UA  and all maximal single valued neutrosophic *S  centered 
system in a )(SG  that contains U  as an element .Since in )(SG  each member SA  
can be replaced by the single valued neutrosophic *S  centered system of all its single 
valued neutrosophic *S  neighbourhoods belonging to G (with the single valued 
neutrosophic *S  topologization :   UOU 

 if   UU  ).It is clear that each )(SG  is a 
single valued neutrosophic *S  Hausdorff extension of type   of  the original single 
valued neutrosophic *S  structure space S . 

Definition 4.13: 

A single valued neutrosophic *S  centered system  U  of single valued neutrosophic 
*S  open sets of G is called a single valued neutrosophic *S  Hausdorff system if for every 

SB  not belonging to  UU   there exists a  UU '  such that )'(* UclSVNSB . 

Definition 4.14: 

A maximal single valued neutrosophic *S Hausdorff system (that is, one which cannot be 
extended while remaining single valued neutrosophic *S centered system and a single valued 
neutrosophic *S  Hausdorff space) is called a single valued neutrosophic *S  Hausdorff 
end. 
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Note 4.15: 

A single valued neutrosophic *S structure space )(SG  associated with the base containing 
all the single valued neutrosophic *S  open sets of S will simply be denoted by )(S . 

Proposition 4.16: 

A single valued neutrosophic *S  extension )(S  is a single valued neutrosophic *S
H closed extension of S . 

Proof: 

Let  U  be an arbitrary single valued neutrosophic *S  centered system of single 
valued neutrosophic *S  open sets of )(S .Let SUV  

. 

Since S  is everywhere single valued neutrosophic *S  dense in )(S , 

    )()( )(*)(* SS UclSVNSVclSVNS 





  .Hence it is enough to show that 

  






)()(* SVclSVNS .If   




SVclSVNS )(* , then by Lemma 3.28, there is nothing 

to prove. 

If   



SUclSVNS )(* , then there exists a single valued neutrosophic *S  Hausdorff 

end p  containing all the sets 
V , and hence   )()(* SVclSVNSp 

  for all  . 

Note 4.17: 

Let G be any single valued neutrosophic *S  base of S .If  U G then G is called single 
valued neutrosophic *S  algebraically closed. 

Remark 4.18: 

If G is called single valued neutrosophic *S  algebraically closed base of S , then 
)(SG  is a single valued neutrosophic *S H closed extension of S . 

The proof is same as that of Proposition 4.16. 

Note 4.19: 

Each single valued neutrosophic *S extension )(S is associated with single valued 
neutrosophic *S  homeomorphic extension )(S of type   ,the single valued neutrosophic 

*S structure space )(S which is associated with )(S is denoted by  )(S and is called a single 
valued neutrosophic *S Katetov extension of S . 

Lemma 4.20: 

A single valued neutrosophic *S continuous image of a single valued neutrosophic HS *  

closed space is a single valued neutrosophic HS *  closed. 
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Proof: 

Let f be a single valued neutrosophic *S  continuous function from a single valued 
neutrosophic HS *

1 closed space 1S onto single valued neutrosophic HS *
2 closed space 

2S .Suppose that 2S  is not a single valued neutrosophic  HS *
2 closed ,then by Lemma 3.30 there 

exists a single valued neutrosophic *
2S  covering  U  of 2S  from which a finite number of 

single valued neutrosophic *
2S   open sets cannot be extracted whose single valued neutrosophic 

*S closures cover 2S .Let 11 SA   and V  be a single valued neutrosophic *
1S open set of 1S such 

that VA 1 and  )())(( *
1

*
1  UclSVNSVclSVNSf  . 

Choosing such a set for each member of 1S ,the collection  V of this single valued 

neutrosophic *
1S  structure space is obtained. A finite number of sets nVVV ....,, 21  is picked such 

that 1
*
11

)( SVclSVNS i

n

i



.But then the union 2

*
11

*
21

)())(()( SSfVclSVNSfUclSVNS ii

n

i

n

i i



 . 

But in general 2
*
21

)( SUclSVNS
i

n

i



 implies that 2

*
11

))(( SVclSVNSf i

n

i



is the whole of 

2S ,which is impossible by hypothesis. 

Remark 4.21: 

The single valued neutrosophic *S structure space )(S is a single valued neutrosophic HS *

closed extension of S  . 

The proof follows from Proposition 4.16 and Lemma 4.20. 

Note 4.22: 

A single valued neutrosophic *S  structure space )(S  has the following maximal properties. 

Proposition 4.23: 

If )(S is any (not necessarily single valued neutrosophic HS *  closed) single valued 
neutrosophic *S  extension of S  then there exists a subset )()( SS     containing S  and a 
single valued neutrosophic *S continuous function 

f of this subset onto )(S such that 

AAf )(
, where SA . Here if )(S is a single valued neutrosophic HS *  closed extension, 

it may be assumed that )()( SS    . 

Proof: Let )(S be a single valued neutrosophic *S  extension of S .Each member 
SSq \)(  defines a single valued neutrosophic *S  centered system of single valued 

neutrosophic *
1S  open sets in S ,namely q  defines    SUV  

 where 
U  is the set of all 

single valued neutrosophic *
1S neighbourhoods of q in )(S .It can be further identified each 

member of )(S with the corresponding single valued neutrosophic *S  centered system 
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 V .Because )(S is a fuzzy neutrosophic *S  Hausdorff space the system  V has the property 

  



SVclSVNS )(* . 

Consider in )(S ,the subset )(S  consisting of all members of S  and all single valued 
neutrosophic *

2S  ends containing at least one system  V corresponding to some )(Sq  .The 
function 

f is constructed as follows: if SA ,put AAf )(
,while if SSp \)( ,then p  

contains some q  . As q  is unique put qpf )(
. 

Clearly, f  is a single valued neutrosophic *S  continuity at every SA .Because S  is a 
single valued neutrosophic *

2S  open in )(S  (by definition of the single valued neutrosophic *S  
topology of )(S ), and hence also in )(S .Let SSp \)(  and qpf )(

. 

Let 
U be a single valued neutrosophic *S neighbourhood of q  in )(S .Then the set pV 

 

is a single valued neutrosophic *S  neighbourhood of p  in )(S  ,where SUV  
 with  

 UpVf  )( , that is, 
f  is single valued neutrosophic *S  continuous at p . 

Suppose that )(S is a single valued neutrosophic HS * closed extension. Let 
SSp \)( ,and let  U be the system of all single valued neutrosophic *

2S  neighbourhoods 
of p  in )(S and let SUV  

.Let 
H  denote a single valued neutrosophic *

1S  open set in 
)(S such that SHV  

. 

The system  H is a single valued neutrosophic *
1S centered system and since )(S  is a single 

valued neutrosophic HS *
1  closed ,then by Lemma 3.28,   


 )(*

1 HclSVNS .Let 

 )(*
1 


HclSVNSq  .If G  is a single valued neutrosophic *

1S  neighbourhood of q  in )(S ,we 

have  VG for every   ,that is ,    VSG  .This means that p  contains the single 
valued neutrosophic *

1S  centered system q  and )()( SS   ,that is )()( SS    . 

Remark 4.24: 

)(S  denotes the single valued neutrosophic *S  structure space obtained from )(S  by 

the procedure described in section 4. It is easy to see that )(S is a single valued neutrosophic 
*S   homeomorphic to a subset of single valued neutrosophic *S  extension )(S .As )(S is 

a single valued neutrosophic *S homeomorphic to )(S , Proposition 4.23 holds if )(S is 
replaced by )(S and single valued neutrosophic *S  continuity by single valued neutrosophic

*S continuity. 
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Remark 4.25: 

A single valued neutrosophic *S  structure space )(S can be mapped  single valued 
neutrosophic *S continuity onto any single valued neutrosophic HS *  closed extension of S  
in such a way that the members of S  remain fixed. 

Now, the classes of single valued neutrosophic *S  Hausdorff extensions of S  are discussed. 

Lemma 4.26: 

A single valued neutrosophic *S  open set )(S  is the largest subset of )(S  that can be 
continuously mapped onto )(S  in such a way that the members of S  remain fixed. In other 

words, if a set )(' S  is continuously mapped onto )(S  in such a way that the members of S  

remain fixed, then )()(' SS    . 

Proof: 

Let SSp \)('
 and let qpf )('

 ,where '
f is a single valued neutrosophic *S  continuous 

function of )(' S onto )(S  .Let U be a single valued neutrosophic *S  neighbourhood of q  in 
)(S .There exists a single valued neutrosophic *S  neighbourhood H of p  in )(S such that 

UHf )('
 .Then , SUSH   that is , p contains SU  and since U is any single valued 

neutrosophic *S neighbourhood of q , p contains the system q ,that is, )(Sp  . 

Note 4.27: 

Thus, all single valued neutrosophic *S  extensions of S  fall into classes, where )(S and 

)(' S are in the same class if and only if )(S = )(' S . All single valued neutrosophic HS *

closed extensions belong to the same class, by Lemma 4.20 contains only single valued 
neutrosophic HS * closed extensions. 

Lemma 4.28: 

If single valued neutrosophic *S  extension )(S and )(S are single valued neutrosophic 

*S homeomorphic, then they belong to the same class, that is )()( SS    . 

Proof: 

Let i be a single valued neutrosophic *S  homeomorphism between )(S and )(S such  

that AAi )(  for SA .Let    SVU  
,where 

V  is a single valued neutrosophic *S

neighbourhood of SSp \)( .Let    SGH  
,where 

G is a  single valued neutrosophic *S

neighbourhood of  qpi )(  in )(S .If some single valued  neutrosophic *S  end d of S contains 
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all the single valued  neutrosophic sets 
U ,then it also contains all the 

H .Choose some 
H  and 

a 
G such that 

 HSG  ,and in )(S choose V such that 

)(*))(*(  GclSVNSVclSVNSi  .Then , SGclSVNSSVclSVNS  )(*)(*  .That is ,

))(*int(* SGclSVNSSVNSUSV   .Hence ,if dSGclSVNSSVNS  ))(*int(* 
, 

then 
 VSG   as the everywhere single valued  neutrosophic *S dense subset,

))(int( SGSVNclSVN 
 also belongs to d. 

Thus, )()( SS    .Similarly, )()( SS    .That is )()( SS    . 
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The Alexandrov-Urysohn Compactness On Single 

Valued Neutrosophic S∗Centered Systems 

Abstract 

In this paper we present the notion of the single valued neutrosophic S∗ maximal compact 

extension in single valued neutrosophic S ∗ centered system. Moreover, the concept of single 

valued neutrosophic S∗ absolute is applied to establish the Alexandrov -Urysohn compactness 
criterion. Some of the basic properties are characterized. 

Keywords 

Single valued neutrosophic S∗ centered system, single valued neutrosophic S∗θ− 

homeomorphism, single valued neutrosophic S∗θ− continuous functions. 

 

1. Introduction 

Florentin Smarandache [9] combined the non- standard analysis with a tri component 
logic/set, probability theory with philosophy and proposed the term neutrosophic which means 
knowledge of neutral thoughts.   This neutral represents the main distinction between fuzzy 
and intuitionistic fuzzy logic set.  In 1998, Florentin Smarandache [6] defined the single 
valued neutrosophic set involving the concept of standard analysis. Stone [10, 11] applied 
the apparatus of Boolean rings to investigate spaces more general than completely regular 
ones,  related  to  some extent to the  function-theoretic approach. Using these methods tone 
[10, 11] obtained a number of important results on Hausdorff spaces and in fact introduced 
the important topological construction that was later called the absolute. The first proof of 
Alexandrov-Urysohn compactness criterion without any axiom of countability was given by 
Stone [10, 11].Cech extension in topological spaces and Alexandrov-Urysohn compactness 
criterion were constructed by Iliadis and Fomin[7]. 

mailto:martinajency@gmail.com
mailto:martinajency@gmail.com
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In this paper, the concept of absolute in single valued neutrosophic S∗ structure space 

and the single valued neutrosophic S∗ maximal compact extension β(S) (single valued 

neutrosophic S∗ cech extension) of an arbitrary single valued neutrosophic S∗ completely 
regular space is introduced. Further, the Alexandrov -Urysohn compactness criterion on 

single valued neutrosophic S∗ structure has been studied. 

2. Preliminaries 

Definition 2.1: [6] 

Let X be a space of points (objects), with a generic element in X denoted by x. A single valued 
neutrosophic set (SVNS) A in X is characterized by truth-membership function TA, indeterminacy-
membership function IA and falsity-membership function FA.  

For each point x in X, TA(x), IA(x), FA(x) ∈ [0,1]. When X is continuous, a SVNS A can be written 
as A, XxxxFxIxT

X AAA  ,/)(),(),( . 

When X is discrete, a SVNS A can be written as 

XxxxFxIxTA ii

n

i
iii 



,/)(),(),(
1

 

Definition 2.2: [3] 

Let X be a non- empty set and S a collection of all single valued neutrosophic sets of X.A 

single valued neutrosophic S∗ structure on S is a collection S∗ of subsets of S having the 
following properties 

1. φ and S are in S∗. 

2. The union of the elements of any sub-collection of S∗ is in S∗. 

3. The intersection of the elements of any finite sub-collection of S∗ is in S∗. 

The collection S together with the structure S∗ is called single valued neutrosophic S∗ 

structure space. The members of S∗ are called single valued neutrosophic S∗ open sets. The 

complement of single valued neutrosophic S∗ open set is said to be a single valued neutrosophic 

S∗ closed set. 

 Example 2.3: [3] 

Let },{ baX   , 













6.0,4.0,7.0

,
5.0,3.0,8.0

baS ,  4321
* ,,,,, SSSSSS   where, 
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,
8.0,2.0,5.0

,
7.0,1.0,6.01














baS














9.0,3.0,5.0

,
6.0,2.0,4.02

baS , 














9.0,2.0,5.0

,
7.0,1.0,4.03

baS , .
8.0,3.0,5.0

,
6.0,2.0,6.04














baS  

Here ),( *SS  is a structure space.  

Definition 2.4: [3] 

Let A be a member of S. A single valued neutrosophic S∗ open set U in ),( *SS  is said to 

be a single valued neutrosophic S∗ open neighborhood of A if A ∈ G ⊂ U for some single 

valued neutrosophic S∗ open set G in ),( *SS . 

Example 2.5: [3] 

Let },{ baX   , 













6.0,4.0,7.0

,
5.0,3.0,8.0

baS ,  4321
* ,,,,, SSSSSS   where, 

,
8.0,2.0,5.0

,
7.0,1.0,6.01














baS














9.0,3.0,5.0

,
6.0,2.0,4.02

baS , 














9.0,2.0,5.0

,
7.0,1.0,4.03

baS , .
8.0,3.0,5.0

,
6.0,2.0,6.04














baS  

Let 













9.0,1.0,3.0

,
8.0,1.0,4.0

baA . 

Here, 41 SSA  . 4S  is the single valued neutrosophic S* open neighbourhood of  A . 

Definition 2.6: [3] 

Let ),( *SS  be a single valued neutrosophic S∗ structure space and AAA FITxA ,,,  be 

a single valued neutrosophic set in X. Then the single valued neutrosophic S∗ closure of A 

(briefly SV N S∗cl(A)) and single valued neutrosophic S∗ interior of A (briefly SVN S∗int(A)) 
are respectively defined by 

SVN S∗cl(A) = {K: K is a single valued neutrosophic S∗ closed sets in S and A 
⊆ K}  

SVN S∗int(A) =  {G: G is a single valued neutrosophic S∗ open sets in S and G 
⊆ A}.  
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Example 2.7: [3] 

Let },{ baX   , 













6.0,4.0,7.0

,
5.0,3.0,8.0

baS ,  4321
* ,,,,, SSSSSS   where, 

,
8.0,2.0,5.0

,
7.0,1.0,6.01














baS














9.0,3.0,5.0

,
6.0,2.0,4.02

baS , 














9.0,2.0,5.0

,
7.0,1.0,4.03

baS , .
8.0,3.0,5.0

,
6.0,2.0,6.04














baS  

,
5.0,8.0,8.0

,
6.0,9.0,7.01














baS c














5.0,7.0,9.0

,
4.0,8.0,6.02

baS c , 














5.0,8.0,9.0

,
4.0,9.0,7.03

baS c ,













5.0,7.0,8.0

,
6.0,8.0,6.04

baS c . 

Let 













9.0,4.0,7.0

,
6.0,3.0,5.0

baA . Then }{)int(* 3SASSVN  . 

}{)(* 4
cSAclSSVN  . 

Definition 2.8: [3] 

The ordered pair (S, S∗) is called a single valued neutrosophic S∗ Hausdorff space if for 
each pair A1, A2  of disjoint  members  of S, there  exist disjoint  single valued neutrosophic  

S∗ open sets U1 and U2 such that  A1  ⊆ U1 and A2  ⊆ U2 . 

Example 2.9: [3]  

Let },{ baX   , 













0,1,1

,
0,1,1

baS ,  321
* ,,,, SSSSS   where, 

,
4.0,3.0,0

,
1,0,5.01














baS  ,

4.0,3.0,7.0
,

5.0,2.0,5.02













baS














1,0,7.0

,
5.0,2.0,03

baS . 

Let 













1,1.0,0

,
1,0,3.01

baA , 













1,0,5.0

,
6.0,1.0,02

baA . 

Here 1A  and 2A  are disjoint members of  S  and 21 , SS  are disjoint single valued neutrosophic 
S* open sets such that 2211 SAandSA  . 

Hence the ordered pair ),( *SS  is a single valued neutrosophic S* Hausdorff   space. 
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Definition 2.10: [3] 

Let ),( *
11 SS and ),( *

22 SS  be any two single valued neutrosophic S* structure spaces and let 

),(),(: *
22

*
11 SSSSf   be a function. Then f  is said to be single valued neutrosophic S* 

continuous iff the pre image of each single valued neutrosophic *
2S  open set in ),( *

22 SS  is a  

single valued neutrosophic *
1S  open set in ),( *

11 SS . 

Definition 2.11: [3] 

Let ),( *
11 SS and ),( *

22 SS  be any two single valued neutrosophic S* structure spaces and let 

),(),(: *
22

*
11 SSSSf   be a bijective function. If both the functions f  and the inverse function 

),(),(: *
11

*
22

1 SSSSf   are single valued neutrosophic S* continuous then f  is called single 
valued neutrosophic S* homeomorphism. 

Definition 2.12: [4] 

Let f  be a function from a single valued neutrosophic S* structure space ),( *
11 SS  into a single 

valued neutrosophic S* structure space ),( *
22 SS with )()( 21 AfAf   where ),( *

111 SSA   and 

),( *
222 SSA  .Then f  is called a single valued neutrosophic  S*  continuous at 1A  if for every 

neighbourhood 
2AO  of 2A , there exists a neighbourhood 

1AO  of 1A  such that 

)(*))(*(
21 AA OclSVNSOclSVNSf  .The function is called single valued neutrosophic S*   

continuous if it is single valued neutrosophic S*   continuous at every member of 1S . 

Definition 2.13: [3] 

A function is called a single valued neutrosophic S∗θ− homeomorphism i f  it is single 

valued neutrosophic S∗ one to one and single valued neutrosophic S∗θ− continuous in both 
directions.  

Definition 2.14: [3] 

Let (S, S∗) be a single valued neutrosophic S∗ Hausdorff space. A system p = {Uα  : α 

=1, 2, 3, ...n} of single valued neutrosophic S∗ open sets is called a single valued neutrosophic 

S∗ centered system if any finite collection of the sets of the system has a non- empty 
intersection  .  

Example 2.15: [3]  

Let },{ baX   , 













0,1,1

,
0,1,1

baS ,  321
* ,,,, SSSSS   where, 



Florentin Smarandache, Surapati Pramanik (Editors) 

 

350 
 

,
4.0,3.0,0

,
1,0,5.01














baS  ,

4.0,3.0,7.0
,

5.0,2.0,5.02













baS














1,0,7.0

,
5.0,2.0,03

baS . 

Let 













1,1.0,0

,
1,0,3.01

baA , 













1,0,5.0

,
6.0,1.0,02

baA .Let us consider the system 

 3,2,1,1  Sp . 1p  is a single valued neutrosophic S* centered system since 21 , SS  has a non 
-empty intersection. 

Let }2,1:{2  Sp is also a single valued neutrosophic S* centered system. 

Here 1p  is a maximal single valued neutrosophic S* centered system. 

Definition 2.16: [3] 

The single valued neutrosophic S∗ centered system p is called a maximal single valued 

neutrosophic S∗ centered system or a single valued neutrosophic S∗ end if it cannot be 

included in any larger single valued neutrosophic S∗ centered system of single valued 

neutrosophic S∗ open sets. 

 Definition 2.17: [3] 

A subset A of a single valued neutrosophic S∗ structure space ),( *SS is said to be an 

everywhere single valued neutrosophic S∗ dense subset in ),( *SS if SV N S∗cl(A) = S. 

Definition 2.18: [3] 

A subset of a single valued neutrosophic S∗ structure space (S, S∗) is said to be a 

nowhere single valued neutrosophic S∗ dense subset in (S, S∗) if X \ Ac is everywhere single 

valued neutrosophic S∗ dense subset. 

3. Single valued neutrosophic Cech extension 

Definition 3.1: 

A single valued neutrosophic S∗ centered system p = {Uα} of single valued neutrosophic 

S∗ open sets of S is called a single valued neutrosophic S∗ completely regular system if for 

any Uα ∈ p there exists a Vα   ∈ p and a single valued neutrosophic S∗ continuous function 
f on S such that f (A) = 1 for A ∈ S\Uα, f (A) = 0 for A ∈ Vα and 0 ≤ f (A) ≤ 1 for any A ∈ 

S. In this case Vα.  is a single valued neutrosophic  S∗  completely regularly contained  in 
Uα . 
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Definition 3.2: 

A single valued neutrosophic S∗ completely regular system is called a single valued 

neutrosophic S∗ completely  regular  end if it is not  contained  in any larger  single valued 

neutrosophic  S∗ completely regular system. 

Definition 3.3: 

Let ),( *
11 SS  and ),( *

22 SS  be any two single valued neutrosophic S∗ structure spaces. A 

function ),(),(: *
22

*
11 SSSSf   of a single valued neutrosophic S∗  structure space ),( *

11 SS  

onto a single valued neutrosophic  S∗  structure space ),( *
22 SS  is a quotient function (or natural 

function) if , whenever V  is a single valued neutrosophic  *
2S  open set in ),( *

22 SS , )(1 Vf   is 

a single valued neutrosophic  *
1S  open se t in ),( *

11 SS  and conversely. 

Note 3.4: 

The  maximal  single valued neutrosophic  S∗  centered  systems  of single valued 

neutrosophic  S∗ open sets ( single valued neutrosophic S∗ ends) regarded as elements of the 

single valued neutrosophic S∗  space θ(S) , fall into  two classes: those single valued 

neutrosophic  S∗  ends each of which contains  all the  single valued neutrosophic  S∗  open 
neighbourhoods  of one (obviously  only one) member of S, and the single valued neutrosophic  

S∗ ends not containing  such systems of single valued neutrosophic S∗ open neighbourhoods. 

The single valued neutrosophic S∗ ends of the first type can be regarded as representing the  

members of the original single valued neutrosophic S∗ space S and those of the second type 
as corresponding to holes in S. 

Definition 3.5: 

The collection of all single valued neutrosophic S∗ ends of the first type in θ(S) is a single 

valued neutrosophic S∗ completely regular space and it is also called the single valued 

neutrosophic S∗ absolute of S which is denoted by w(S). 

In w(S), each member V ∈ S is represented by single valued neutrosophic S∗ ends containing 

all single valued neutrosophic S∗ open neighbourhoods of S. It is obvious that  
SV

VBSw


 )()(

where )(VB  are the single valued neutrosophic S∗ ends p of S that contain all the single valued 

neutrosophic S∗ open neighbourhoods  of V .The subset w(S) is mapped  in a natural way 
onto S .If p ∈ w(S) , then by definition VpS )(  , where V  is the member whose single 
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valued neutrosophic  S∗ open neighbourhoods all belong to p and S is the natural function 
of w(S) onto S. 

Lemma 3.6: 

A single valued neutrosophic S∗ centered system {Uα} of all single valued neutrosophic 

S∗ open neighbourhoods of a member A in a single valued neutrosophic S∗ completely regular 

space S is a single valued neutrosophic S∗ completely regular end. 

Proof: 

Here, {Uα} is a single valued neutrosophic S∗ completely regular centered  system .The 
Lemma will be proved if it is possible to show that  {Uα } is not contained  in any other 

single valued neutrosophic  S∗ completely  regular  system. As a contrary, suppose that {Vα } 

is a single valued neutrosophic  S∗  centered  completely  regular  system  containing  {Uα } 

with  }.{
1  UV    Since   1

V    meets every single valued neutrosophic  S∗  open neighbourhood  

of A , A ∈ SVN S∗cl(
1

V )\
1

V  .Let 
2

V     be an element  of {Vα } such that  S VNS∗cl(
2

V  ) 

⊆ 
1

V .But  then  A ∈ SV N S∗cl(
2

V  ).It  follows that  
2

V    does not  meet any of the  single 

valued neutrosophic  S∗ open neighbourhoods  of A , so {Vα } cannot  be a single valued 

neutrosophic  S∗ centered  system containing  {Uα }. 

Now we construct a single valued neutrosophic S∗ structure space which is denoted by 

)(' S .Itsmembers are all single valued neutrosophic S∗ completely regular ends of S, and 

its single valued neutrosophic S∗  topology is defined as follows: Choose an arbitrary single 

valued neutrosophic  S∗ open set U in S and the collection UO  of all single valued neutrosophic 

S∗ centered completely regular  ends of S that  contain  U as a member is to be a single 

valued neutrosophic  S∗  open neighbourhood  of each of them. 

Lemma 3.7: 

A single valued neutrosophic S∗ completely regular end p = {Uα} of a single valued 

neutrosophic S∗ structure space S has the following properties: 

1. If Uβ ⊇ Uα ∈ p, then Uβ ∈ p. 
2. The intersection of any finite number of members of p belongs to p. 
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Proof:     

Assertion (1) is obvious. 

(2) Let pUUUpUUU nn  ''
2

'
121 ,....,,,...,   and nfff ,......, 21  be functions such that 

0)( Af i  on 1)(),(* ' AfUclSVNS ii  on iUS \ . Then the function  

)(....)()( 21 AfAfAf n  is zero on )(*.....)(* ''
1 nUclSVNSUclSVNS    and a fortiori on

))(...)((* ''
1 nUUclSVNS   .  

Since  ii USUS  \)(\  ,  then 1)(.........)(1  AfAf n  at each member of 

).(\ iUS  Putting 1)( Af  whenever 1)(.........)(1  AfAf n  and 

)(.........)()( 1 AfAfAf n .  When this sum is less than 1, it may be obtained a function

)(Af  such that 0)(,1)(0  AfAf  on )(* '
nUclSVNS   and 1)( Af  on ).(\ US 

Hence the single valued neutrosophic S∗ system p must contain iU and '
iU , otherwise 

it would not be maximal single valued neutrosophic S∗ completely regular system. 

Corollary 3.8: 

.VUVU OOO  For if VU OOp  , then U ∈ p and .pV  By Lemma 3.7, U ∩ V   ∈ p, 

that is, VUOp  .Therefore , .VUVU OOO  If p ∈ OU ∩V, then U ∩ V ∈ p and by the same 
Lemma U ∈ p and V ∈ p. Therefore, UOp  and VOp . That is, VU OOp  .Hence, 

VUVU OOO  .Thus, .VUVU OOO   

Lemma 3.9: 

A single valued neutrosophic S∗ structure space α’(S) is a single valued neutrosophic S∗ 

Hausdorff extension of S. 

 

Proof: 

The single valued neutrosophic S∗ structure space α’(S) is a single valued neutrosophic S∗ 

Hausdorff space. Let p and q be any two disjoint members of α’(S). Then it is easy to find 

U ∈ p and  V   ∈ p such  that  U ∩ V   = φ, for otherwise  the  single valued neutrosophic  S∗ 

centered  system  consisting  of all the  members  of p and  all the  members  of q would be a 

single valued neutrosophic  S∗  centered  completely  regular  system  containing  p and  q, which 
is impossible . UO   and VO  , associated  with this  U and  V , are disjoint  single valued 

neutrosophic  S∗  open neighbourhoods  of p and q in α’(S). 
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It shall be identified that the member A ∈ S with the single valued neutrosophic S ∗ end Ap

= {Uα} consisting of all the single valued neutrosophic S∗ open neighbourhood of A in 

S. Then UO ∩ S = U, which shows that S is single valued neutrosophic S∗ topologically 

embedded in α’(S), and since it is easy to see that S is everywhere single valued neutrosophic 

S∗ dense in α’(S). Therefore, α’(S) is a single valued neutrosophic S∗extension of S. This 
proves the Lemma. 

Note 3.10: 

In a single valued neutrosophic S∗ completely regular space, the single valued neutrosophic 

S∗canonical neighbourhood forms a base.  

Lemma 3.11: 

A single valued neutrosophic S∗ structure space α’(S)can be continuously mapped onto 

every single valued neutrosophic S∗ compact extension of S in such a way that the members 
of S remain fixed. 

Proof: 

Let b(S) be any single valued neutrosophic S∗ compact extension of S.  Each  member A ∈ 

b(S)  determines  the  single valued neutrosophic  S∗  centered  system  Ap   = {Uα } consisting 

of all single valued neutrosophic  S∗  open neighbourhoods  of A in b(S)  .By Lemma 3.6 , 

this is a single valued neutrosophic  S∗ completely regular system and a single valued 

neutrosophic  S∗ maximal  .The  single valued neutrosophic  S∗  centered  system Aq   = {Vα  

= Uα  ∩ S} is a single valued neutrosophic  S∗ completely regular system .If d = {Hα } ∈ 

α’(S) contains a single valued neutrosophic  S∗  centered  system Aq  , then  we define φ on 

α’(S) as φ(d) = Aq  .Since b(S) is a single valued neutrosophic  S∗  Hausdorff extension  , d 

can contain  only one such single valued neutrosophic  S∗  centered  system  Aq   .Hence the  

function  φ is well-defined .Since an arbitrary single valued neutrosophic  S∗  completely 

regular system can be extended  to a single valued neutrosophic  S∗  completely  regular  end , 
φ is onto. It  is easy to see that  if A ∈ S  , then  φ(A)  = A .φ is defined on the  whole of 

α’(S).For  if d = {Hα } ∈ α’(S), then   


 
)(* )( SbHclSVNS   (because b(S) is a single 

valued neutrosophic  S∗compact space).Let     )(* )( SbHclSVNSA 


 .Then  the single valued 
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neutrosophic  S∗centered  system d ∪ Aq  consisting  of all members  Hα  ∈ d and  all members  

Uα   ∈ Aq   is a single valued neutrosophic  S∗completely regular and since d is a single valued 

neutrosophic  S∗  maximal completely regular system , d ∪ Aq  = d, that  is , Aq  ⊆ d , so that  

φ(d) = A. Let A∈ b(S) and Uα be any single valued neutrosophic S ∗ open neighbourhood o f  

A in b(S). Assuming Uα   is a canonical single valued neutrosophic S∗   open neighbourhood. 

Put Vα = Uα ∩ S. Let d ∈ α’(S) and φ(d)=A. Then  
VO  is a single valued neutrosophic  S∗ 

open neighbourhood  of d in α’(S).To  show that  φ(
VO  )  ⊆  SV N S∗cl(Uα ).For  this, it  is 

clear that  Vα   ∈ '
Aq if and  only if 'A   ∈ Uα . Now , if 

VOd ' , then  Vα   ∈ d’.If φ(d’) = 

A’ ∈/ SV N S∗cl(Uα ) then some single valued neutrosophic  S∗  open neighbourhood  of A’ 

which does not contained  in Uα , but  then  Vα  ∈/ 'Aq , so that  Vα  ∈/ d’  , that  is d’  ∈/ OVα , 

This contradicts our assumption  .Since b(S)  is single valued neutrosophic  S∗  regular  

space ,φ is a single valued neutrosophic  S∗  continuous  and the Lemma is proved .The single 

valued neutrosophic set UO , where U is a canonical  single valued neutrosophic  S∗  open 

set of S forms a base in α’(S). 

Lemma 3.12: 

The single valued neutrosophic S∗ structure space α’(S) is a single valued neutrosophic S∗ 

completely regular space. 

Proof: 

Let  p ={Uα } ∈ α’(S)  and  let  2U  be  any  single valued  neutrosophic  S∗   completely 

regular  contained  in the  canonical  single valued neutrosophic  S∗  open  set  1U .Assume  

that SVN S∗cl(
2UO  )  (α’(S)\

1UO  ).Then  there  is a member  q = {SVN S∗cl(Vα )} 

such that q ∈ SV N S∗cl(
2UO  ) ∩ (α’(S)\ 

1UO  ).The  relation  q ∈ SVN S∗cl(
2UO  )  means  

that   every Vα  ∈ q meets U2  and the relation  q ∈ α’(S)\
1UO    , equivalent to q ∈/  

1UO   

means that every Vα  meets S\U1 .Since U1 is a canonical single valued neutrosophic S∗ 

open set , it follows that  Vα  meets S\SVN S∗cl(U1 ). 

If V1   and V2   are single valued neutrosophic S ∗ open sets such that V 1   is single valued 

neutrosophic S∗ completely regularly contained in S\SVN S∗cl(V2) and V =  V1 ∩ V2 ∈ q, 
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then either V1 ∈ q or V2 ∈ q. Now , let f (B) be a function that  is zero on SV N S∗cl( 2U ) 

and 1 on S\U1.Such a function  exists , since 2U   is single valued neutrosophic  S∗  completely  
regularly contained  in 1U  .Also let 0 < a < b < 1 and let Γ(a, b) be the  single valued 

neutrosophic  S∗ open set {B  : a  < f (B)  < b}.By  assumption  , every Vα   ∈ q has  
non- empty  intersection with Γ(a, b).For otherwise , Vα  splits into two single valued 

neutrosophic  S∗  open sets Vα1   and Vα2   such that  Vα1   is single valued neutrosophic  

S∗  completely regularly contained  in S\SV N S∗cl(Vα2 )   and   Vα2 ∩ 2U  = φ , Vα1   ∩ 

(S\SVN S∗cl(U1 ))  = φ. The last  equation contradicts the fact that q  ∈ SV N S∗cl (
2UO  ) 

∩ (α’(S)\
1UO  ). 

Consider the single valued neutrosophic  S∗  open sets Γ(a, b) where 0 < a < a0  < b0  

< b < 1 and a0  and b0  are fixed .They form a single valued neutrosophic  S∗ completely 
regular system which must be contained in q .But Γ(a, b) ⊂ U1 that  is , Γ(a, b) ∩Γ(S\SV N 

S∗cl(U1)) = φ and  hence , q ∈/(α’(S)\ 
1UO  ).  This contradiction shows that SV N S∗cl 

(
2UO  ) ⊆ 

1UO    , from which it follows that  α’(S) is a single valued neutrosophic  S∗  

regular  space .  To prove that i t  is a single valued neutrosophic S ∗ completely regular 
space .   Let Γt, 0 ≤ t ≤ 1,  denote the set of all B ∈ S for which f (B) < t. It has shown that 

i f  t1 < t2, then 
21

)(*
tt

OOclSVNS   .Hence it follows that  
2UO    is single valued 

neutrosophic S∗ completely regularly contained in 
1UO  . 

Lemma 3.13: 

The single valued neutrosophic S∗ structure space α’(S) is a single valued neutrosophic 

S∗ compact. 

Proof: 

 If H is a single valued neutrosophic  S∗ open  se t    of α’(S), then there exists a single 

valued neutrosophic S∗  open set U (H ) of S such that )(*
)( HclSVNSOH HU  then  U (H ) 

= ∪α Uα .If H  is single valued neutrosophic  S∗ completely  regularly  embedded  in G  ,  then  

)(HUO is clearly  single valued neutrosophic  S∗  completely  regularly  embedded  in 

)(GUO .Suppose  that  α’(S) is not a single valued neutrosophic  S∗  compact  space. Then by 
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Tychonoff ’s theorem, there e x i s t s  a single valued neutrosophic S ∗ completely r e gu l a r  

s p a c e  α’(S) ∪ ξ, containing α ’(S) as an everywhere single valued neutrosophic S ∗ dense set. 

Let Hα be the set of all single valued neutrosophic S ∗ open sets of α’(S) for which Hα ∪ ξ 

is a single valued neutrosophic S∗ open neighbourhood of ξ in α’(S) ∪ ξ. Then, {Hα} is a 

single valued neutrosophic S∗ completely regular system in α’(S). Hence )( HUO  is also a 

single valued neutrosophic S∗ completely regular space.  T h u s , ∩ )( HUO = φ.  S i n c e  

α’(S) is a single valued neutrosophic S∗ centered system p = {∪ (Hα)} of single valued 

neutrosophic S ∗ completely regular too.  But p ∈ )( HUO for every α ∈ Λ, that i s  ∩α )( HUO  = 

φ. This contradiction proves the lemma. 

Proposition 3.14: 

For any single valued neutrosophic S∗ completely regular space S, the single valued 

neutrosophic S∗ structure space α’(S) coincides with the Cech extension β(S) upto a single 

valued neutrosophic S∗ homeomorphism leaving the members of S fixed. 

Proof: 

The proof follows immediately from Lemma 3.11 and Lemma 3.13 and the uniqueness of 

a maximal single valued neutrosophic S∗ compact extension. 

4. The Alexandrov - Urysohn compactness  

In this section, the concept of single valued neutrosophic S∗ absolute is applied to establish 
the Alexandrov - Urysohn compactness. 

Property 4.1: 

If SFFFF n  ....321   with  1F  non -empty, then 


i

n

i
F~

1
  (in particular, if F is 

non-empty, so is  F~ ). 

Proof: 

Let B ∈ 1F  and let q’  = {G’} be a single valued neutrosophic  S∗  end of 1F   containing  

a single valued neutrosophic  S∗  centered  system of single valued neutrosophic  S∗  open sets 

G’  , in F  , such that  B ∈ SV N S∗int(SV N S∗cl(G’)).It may be assumed that  it has been 

constructed systems qi  = {Gi } of Fi  such that  qi  contains  all the single valued 
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neutrosophic  S∗  open sets Gi ⊆ Fi for which B ∈ SV N S∗int(SV N S∗cl(Gi )) and all single 

valued neutrosophic S∗ open sets  whose intersection  with 1iF  is some 1iG .  

Now construct qi+1. By definition,  qi+1, consists of all sets Gi+1 ⊆ Fi+1 for which 

B ∈ SV N S∗int(SV N S∗cl(Gi+1 )) and of all single valued neutrosophic S∗ open sets whose 

intersection with Fi is some Gi .It is easy to show that  qi+1  is a single valued neutrosophic 

S∗ centered system. Thus for each i construct a  single valued neutrosophic S∗ centered 

system qi .  Let p = {H }denote  the  single valued neutrosophic  S∗  end of S containing  
nq  .To show that  p ∈ i

n

i
F~

1
    .It follows from the  construction   of p that  if H ∩ Fi  ∈ qi   

for some i and  some single valued neutrosophic  S∗  open  set  H  in S  ,  then  H  ∈ p.To  

show that  iFp ~
 .Let H  be a single valued neutrosophic  S∗  open set of S such that  B ∈ 

SV N S∗int(SV N S∗cl(H ∩ Fi )) .Then H ∩ Fi ∈ qi  and hence H ∈ p , that  is , iFp ~
 .Hence 

the proof. 
Property 4.2: 

If F is a single valued neutrosophic S ∗H − closed,  then F~ is single valued neutrosophic 

S ∗compact (and hence single valued neutrosophic S∗ closed in θ(S)). 

Proof: 

Let {Hα} be any single valued neutrosophic S∗ covering of F~  by single valued 

neutrosophic S∗ open sets in F~ .They may be extended to single valued neutrosophic S∗open 
in w(S). It may assume that each of that each of the extended sets has the form UO , where U 

is a single valued neutrosophic S∗ open set in S.  Otherwise {Hα } may be replaced by a 
finer covering for which this  condition  holds .So it may be assumed  that  {Hα } is a single 

valued neutrosophic S∗  covering of F  by sets single valued neutrosophic  S∗  open in w(S) 

of the form 
UO  , where Uα   is single valued neutrosophic  S∗  open in S. Let B ∈  F.  Le t  

BH   denote  the  union  of a finite number  of single valued neutrosophic  S∗  open sets Hα  

covering the single valued neutrosophic S∗ compact set )(1 Bs
 .It is clear that BH   h a s  t he  

f o r m BUO


, where BU   i s  a  s in g le  va lue d  neutrosophic  S∗  open set in S and is maximal 

among the single valued neutrosophic  S∗  open sets H for which BUH OO


 .From the above, 
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it follows that  the single valued neutrosophic S∗centered system  )int(* FUSVNS B  is a 

single valued neutrosophic  S∗  covering of F .Since F  is single valued neutrosophic  S∗H − 

closed, choose a finite number of members of this single valued neutrosophic S∗ covering such 

that FFUclSVNSSVNSclSVNS B
i

n

i



)))(int(( ***

1  ,where the  closure is taken  in F  in both  

cases. To show that FO B
iU

n

i

~
1


 

.Since  the union   UO B
iU

n

i


 1
 has the property that   

))(int( ** UFclSVNSSVNSB  for any B,then  an arbitrary single valued neutrosophic  S∗  

end Fp ~
  contains  U and hence belongs to some BUO


. Thus, for only those Hα that make 

up B
iUO



and take their intersections with F~ , t h e  r e q u i r e d  finite covering is obtained. 

Definition 4.3: 

A single valued neutrosophic S∗ Hausdorff space S is a single valued neutrosophic S∗ 

compact space if and only if every (not necessarily countable) well-ordered decreasing 

sequence of non-empty single valued neutrosophic S∗ closed sets has a non-empty intersection. 

Theorem 4.4: (Alexandrov - Urysohn compactness) 

A single valued neutrosophic S∗ Hausdorff space S is a single valued neutrosophic S∗ 

compact space if and only if each of its single valued neutrosophic S∗ closed subset is single 

valued neutrosophic S∗H − closed. 

Proof: 
Necessity: 

The necessity of this condition follows from Property 4.2. Since in a single valued 

neutrosophic S∗ compact space every single valued neutrosophic S∗ closed subset is a single 

valued neutrosophic S∗ compact space and hence single valued neutrosophic S∗H − closed. 

Sufficiency: 

Let S be a single valued neutrosophic S∗ Hausdorff space, w(S) be its single valued 

neutrosophic S∗ absolute and S be a single valued neutrosophic S∗ natural function of w(S) 

onto S. Also let F be any single valued neutrosophic S∗ subset of S. It  can be associated  it 

with a certain single valued neutrosophic  S∗  subset  F~ of w(S),  defined  by  saying  that   
the  member  SBBp s   ),(1   , belongs to  F~  i f UOp for every U satisfying the  

condition  B  ∈SV N S∗int(SV N S∗cl(U ∩ F )).By the construction  of  F~ it is  contained in 
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the complete single valued neutrosophic S∗ inverse image )(1 Fs
 of F in w(S). F~  is called 

as the reduced inverse image of F in w(S). The proof of the Alexandrov - Urysohn 

compactness in single valued neutrosophic S∗ topology is based on the properties discussed 
above. For suppose that the conditions of the theorem are satisfied and that {Fα} is a well-

ordered decreasing system of single valued neutrosophic S∗ closed sets of S. Then by Property 

4.1, the set F~  f o r m  a single valued neutrosophic S∗ centered system in w(S). Also, since 

all the '
F s are single valued neutrosophic S∗ compact space (Property 4.2), hence,  


F~ .  

Let FC ~
 . Then πs (C) ∈ Fα for every α, that is, ∩α Fα = φ, as required. 

Property 4.5: 

Any well-ordered sequence of decreasing single valued neutrosophic S∗H − closed sets in 

a single valued neutrosophic S∗ Hausdorff space has a non-empty intersection. 

Proof: 

From the proof of  Property 4.1 it is easy to see that FFS )~( . However, in general  F~  

does not coincide with )(1 Fs
 . Also, in the proof  of Theorem 4.4, it cannot be taken )(1 Fs

  

instead of F~ , since the complete inverse image of a single valued neutrosophic  S∗ H- closed set 

need not be single valued neutrosophic S∗ compact . In fact , let S be a single valued 

neutrosophic S∗  Hausdorff space and F  a single valued neutrosophic  S∗H − closed subset 
such that there is a member A ∈ S\F for which there does not exist disjoint single valued 

neutrosophic S∗  open neighbourhoods  of A and F . Note that  in a single valued neutrosophic  

S∗  Hausdorff space two disjoint single valued neutrosophic S∗ compact sets have disjoint 

single valued neutrosophic S∗  open  neighbourhoods. If )(1 Fs
   were single valued 

neutrosophic S∗  compact,  then  the single valued neutrosophic S∗ compact sets )(1 Fs
  and 

)(1 As
  would have disjoint single valued neutrosophic *S  open neighbourhoods  in w(S)  , say 

U and  V . Then  it  follows from the proof of the  theorem  that  SVN S∗int(SV N S∗cl(πS (U )) 

and  SV N S∗int(SV N S∗cl(πS (V ))) would be disjoint single valued neutrosophic  S∗  open 
neighbourhoods  of F  and A in S, which contradicts our assumption. 
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Foundation for Neutrosophic Mathematical Morphology 

Abstract 
The aim of this paper is to introduce a new approach to Mathematical Morphology based on 

neutrosophic set theory. Basic definitions for neutrosophic morphological operations are extracted 
and a study of its algebraic properties is presented. In our work we demonstrate that neutrosophic 
morphological operations inherit properties and restrictions of Fuzzy Mathematical Morphology. 

Keywords 
Crisp sets operations, fuzzy sets, neutrosophic sets, mathematical morphology, fuzzy 

mathematical morphology.  

1. Introduction
Established in 1964, Mathematical Morphology was firstly introduced by Georges  Matheron

and Jean Serra, as a branch of image processing [12]. As morphology is the study of shapes, 
Mathematical Morphology mostly deals with the mathematical theory of describing shapes using 
set theory. In image processing, the basic morphological operators dilation, erosion, opening and 
closing form the fundamentals of this theory [12]. A morphological operator transforms an image 
into another image, using some structuring element which can be chosen by the user. Mathematical 
Morphology stands somewhat apart from traditional linear image processing, since the basic 
operations of morphology are non-linear in nature, and thus make use of a totally different type of 
algebra than the linear algebra. At first, the theory was purely based on set theory and operators 
which defined for binary cases only. Later on the theory was extended to the grayscale images as 
the theory of lattices was introduced, hence, a representation theory for image processing was 
given [7]. As a scientific branch, Mathematical Morphology expanded worldwide during the 
1990’s. It is also during that period, different models based on fuzzy set theory were introduced 
[3, 4]. Today, Mathematical Morphology remains a challenging research field [6, 7]. 

In 1995, Samarandache initiated the theory of neutrosophic set as new mathematical tool for 
handling problems involving imprecise indeterminacy, and inconsistent data [14]. Later on, several 
researchers such as Bhowmik and Pal [2], and Salama [11], studied the concept of neutrosophic 
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set. Neutrosophy introduces a new concept which represents indeterminacy with respect to some 
event, which can solve certain problems that cannot be solved by fuzzy logic. 

This work is devoted for introducing the neutrosophic concepts to Mathematical Morphology. 
The rest of the paper is structured as follows: In §2, we introduce the fundamental definitions from 
the Mathematical Morphology whereas, the concepts of Fuzzy Morphology are introduced in §3. 
The basic definitions for Neutrosophic Morphological operations are extracted and a study of its 
algebraic properties is presented in §4. 

2. Mathematical Morphology [5] 
Basically, Mathematical Morphology describes an image's regions in the form of sets.  Where 

the image is considered to be the universe with values are pixels in the image, hence, standard set 
notations can be used  to describe image operations [7]. The essential idea, is to explore an image 
with a simple, pre-defined shape, drawing conclusions on how this shape fits or misses the shapes 
in the image [12]. This simple pre-defined shape is called the "structuring element", and it is 
usually small relative to the image.  

In the case of digital images, a simple binary structuring elements like a cross or a square is 
used. The structuring elements can be placed at any pixel in the image, nevertheless, the rotation 
is not allowed. In this process, some reference pixel whose position defines where the structuring 
element is to be placed. The choice of this reference pixel is often arbitrary.  

2.1. Binary Morphology 
In binary morphology, an image is viewed as a subset of an Euclidean space  Rn or the integer 

grid Zn, for some dimension n. The structuring element is a binary image (i.e., a subset of the space 
or the grid). In this section we briefly review the basic morphological operations, the dilation, the 
erosion, the opening and the closing. 

2.1.1. Binary Dilation: (Minkowski addition) 
Dilation is one of the basic operations in Mathematical Morphology, which originally 

developed for binary images [15]. The dilation operation uses a structuring element for exploring 
and expanding the shapes contained in the input image. In binary morphology, dilation is a shift-
invariant (translation invariant) operator, strongly related to the Minkowski addition. 

For any Euclidean space E and a binary image A in E, the dilation of A by some structuring 
element B is defined by: 𝐴⨁𝐵 =  ∪

𝑏∈𝐵
𝐴𝑏 where 𝐴𝑏 is the translate of the set  A  along the vector 

b,  i.e.,  𝐴𝑏={𝑎 + 𝑏 ∈ 𝐸|𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵}. 

The dilation is commutative, and may also be given by: 𝐴⨁𝐵 = 𝐵⨁𝐴 =  ∪
𝑎∈𝐴

𝐵𝑎 . 

An interpretation of the dilation of A by B can be understood as, if we  put a copy of B at each 
pixel in A and union all of the copies, then we get 𝐴⨁𝐵. 

The dilation can also be obtained by: 𝐴⨁𝐵 =  {𝑏 ∈ 𝐸 |(−𝐵) ∩ 𝐴 ≠ ∅}, where (–B) denotes 
the reflection of B, that is, −𝐵 = {𝑥 ∈ 𝐸|−𝑥 ∈ 𝐵}. 

Where the reflection satisfies the following property: −(𝐴⨁𝐵) = (−𝐴)⨁(−𝐵) 

 

https://en.wikipedia.org/wiki/Structuring_element
https://en.wikipedia.org/wiki/Subset
https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Structuring_element
https://en.wikipedia.org/wiki/Mathematical_morphology
https://en.wikipedia.org/wiki/Binary_images
https://en.wikipedia.org/wiki/Structuring_element
https://en.wikipedia.org/wiki/Translational_invariance
https://en.wikipedia.org/wiki/Minkowski_addition
https://en.wikipedia.org/wiki/Dilation_%28morphology%29
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2.1.2. Binary Erosion: (Minkowski subtraction) 
Strongly related to the Minkowski subtraction, the erosion of the binary image A by the 

structuring element B is defined by: 𝐴 ⊖ 𝐵 =  ⋂
𝑏∈𝐵

𝐴−𝑏. 

Unlike dilation, erosion is not commutative, much like how addition is commutative while 
subtraction is not [8, 15]. An interpretation for the erosion of A by B can be understood as, if we 
again put a copy of B at each pixel in A, this time we count only those copies whose translated 
structuring elements lie entirely in A; hence 𝐴 ⊖ 𝐵 is all pixels in A that these copies were 
translated to. The erosion of A by B is also may be given by the expression: A ⊖ B =

 {p ∈ E |Bp ⊆ A},   where   𝐵𝑝  is  the  translation of  B  by the vector  p,  i.e., 

𝐵𝑝 =  {𝑏 + 𝑝 ∈ 𝐸 |𝑏 ∈ 𝐵}, ∀ 𝑝 ∈ 𝐸. 

2.1.3. Binary Opening [15] 
The opening of A by B is obtained by the erosion of A by B, followed by dilation of the resulting 

image by B: 𝐴 ∘ 𝐵  =  (𝐴 ⊖ 𝐵) ⊕ 𝐵. 

The opening is also given by 𝐴 ∘ 𝐵 =  ∪
𝐵𝑥⊆𝐴

𝐵𝑥, which means that, an opening can be consider 

to be the union of all translated copies of the structuring element that can fit inside the object. 
Generally, openings can be used to remove small objects and connections between objects. 

2.1.4. Binary Closing [6]  
The closing of A by B is obtained by the dilation of A by B, followed by erosion of the resulting 

structure by B:A •  B =   (𝐴 ⊕ 𝐵) ⊖ 𝐵. 

 The closing can also be obtained by  A •  B = (Ac ∘ (−B))c, where Ac denotes the complement 
of A relative to E (that is, Ac = {𝑎 ∈ 𝐸 |𝑎 ∉ 𝐴}). Whereas opening removes all pixels where the 
structuring element won’t fit inside the image foreground, closing fills in all places where the 
structuring element will not fit in the image background, that is opening removes small objects, 
while closing removes small holes.  

2.2. Properties of the Basic Binary Operations 
Here are some properties of the basic binary morphological operations (dilation, erosion, 

opening and closing[8]). We define the power set of X, denoted by P(X), to be the set of all crisp 
subset of X. 

For all  A, B, C ∈ 𝑃(𝑋), the following properties hold: 

  𝐴⨁𝐵 = 𝐵⨁𝐴, 

 𝐴 ⊆ 𝐵 ⟹ (𝐴 ⊕ 𝐶) ⊆ (𝐵 ⊕ 𝐶), 

 𝐴 ⊆ (𝐴 ⊕ 𝐵), 

 (𝐴 ⊕ 𝐵) ⊕ 𝐶  = 𝐴 ⊕ (𝐵 ⊕ 𝐶),  and   (𝐴 ⊖ 𝐵) ⊖ 𝐶 = 𝐴 ⊖ (𝐵 ⊖ 𝐶), 
 Erosion and dilation satisfy the duality that is: 

      A ⊕  B = (Ac ⊖ (−B))c,   and  A ⊖  B = (Ac ⊕ (−B))c, 

 𝐴 ⊆ 𝐵 ⟹ (𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶), 

https://en.wikipedia.org/wiki/Minkowski_addition
https://en.wikipedia.org/wiki/Erosion_%28morphology%29
https://en.wikipedia.org/wiki/Opening_%28morphology%29
https://en.wikipedia.org/wiki/Closing_%28morphology%29
https://en.wikipedia.org/wiki/Complement_%28set_theory%29
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 A ∘  B ⊆ 𝐴, 
 Opening and closing satisfy the duality that is: 

A •  B = (Ac ∘ (−B))c,  and   A ∘  B = (Ac • (−B))
c
. 

3. Fuzzy Mathematical Morphology 

When operations are expressed in algebraic or logical terms, one powerful approach leading to 
good properties consists of formally replacing the classical symbols in the equations by their fuzzy 
equivalent. This framework led to an infinity of fuzzy Mathematical Morphologies, which are 
constructed in families with specific properties described in  [3, 13].  

3.1. Fuzzy Set 
Since introduced by Zadeh [16], fuzzy sets have received a great deal of interest [17].  For an 

ordinary set, a given element either belongs or does not belong to the set, whereas for a fuzzy set 
the membership of an element is determined by the value of a given membership function, which 
assigns to each element a degree of membership ranging between zero and one. 

3.1.1. Definition [16] 

Let X be a fixed set. A fuzzy set  𝐴 of  X is an object having the form 𝐴 =  ⟨ 𝜇𝐴 ⟩, where the 
function ]1,0[: XA  defines the degree of membership of the element 𝑥 ∈ 𝑋 to the set 𝐴. The 
set of all fuzzy subset of X is denoted by ℱ(𝑋). 

The  fuzzy  empty  set in  X  is denoted  by  0𝑓 = 〈 0 〉,   𝑤ℎ𝑒𝑟𝑒   0 ∶ 𝑋 ⟶  [0 ,1 ]  and  0(𝑥) =

0,   ∀𝑥 ∈ 𝑋.  Moreover, the fuzzy universe set in X is denoted by 1𝑓 = 〈 1 〉, 𝑤ℎ𝑒𝑟𝑒   1 ∶ 𝑋 ⟶
[0 ,1 ]    𝑎𝑛𝑑    1(𝑥) = 1,   ∀𝑥 ∈ 𝑋. 

3.2. Fuzzy Mathematical Operations [4] 
The fuzziness concept was introduced to the morphology by defining the degree to which the 

structuring element fits into the image. The operations of dilation and erosion of a fuzzy image by 
a fuzzy structuring element having a bounded support, are defined in terms of their membership 
functions. 

3.2.1. Fuzzy Dilation [4] 
Let us consider the notion of dilation within the original formulation of Mathematical 

Morphology in Euclidean space E. For any two n-dimensional gray-scale images, A and B, the  
fuzzy  dilation, 𝐴 ⊕ 𝐵 = 〈𝜇𝐴⊕𝐵〉, of A  by the structuring  element B  is an n-dimensional gray-
scale image, that is: 𝜇𝐴⊕𝐵 ∶  𝑍2 ⟶ [0,1], and 

𝜇𝐴⊕𝐵(𝑣) = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛[ 𝜇𝐴(𝑣 + 𝑢),   𝜇𝐵(𝑢)] 

Where  𝑢, 𝑣 ∈ 𝑍2 are the spatial co-ordinates of pixels in the image and the structuring element; 
while 𝜇𝐴 ,  𝜇𝐵 are the membership functions of the image and the structuring element, respectively. 

3.2.2. Fuzzy Erosion [4]  

For  any  two n-dimensional  gray-scale  image, A and B, the fuzzy erosion 𝐴 ⊖ 𝐵 = 〈 𝜇𝐴⊖𝐵〉 

of  A  by the structuring element  B  is  an n-dimensional  gray-scale  image,  that is: 
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𝜇𝐴⊖𝐵 ∶  𝑍2 ⟶ [0,1], and 

𝜇𝐴⊖𝐵(𝑣) = 𝑖𝑛𝑓
𝑢∈𝑍2

𝑚𝑎𝑥[𝜇𝐴(𝑣 + 𝑢), 1 − 𝜇𝐵(𝑢)] 

where u, v 𝑍2are the spatial co-ordinates of pixels in the image and the structuring element; 
while 𝜇𝐴, 𝜇𝐵 are the membership functions of the image and the structuring element respectively. 

3.2.3. Fuzzy Closing and Fuzzy Opening [3] 
In a similar way the two fuzzy operations for closing and opening for any two n-dimensional 

gray-scale images, A and B, are defined as follows: 

𝜇𝐴•𝐵(𝑣) = 𝑖𝑛𝑓
𝑢∈𝑍2

𝑚𝑎𝑥 ( 𝑠𝑢𝑝
𝑤∈𝑍2

𝑚𝑖𝑛 (𝜇𝐴(𝑣 − 𝑢 + 𝑤), 𝜇𝐵(𝑢)), 1 − 𝜇𝐵(𝑢)) 

  𝜇𝐴∘𝐵(𝑣)  =  𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛 ( 𝑖𝑛𝑓
𝑤∈𝑍2

𝑚𝑎𝑥 (𝜇𝐴(𝑣 − 𝑢 + 𝑤), 𝜇𝐵(𝑢)), 1 − 𝜇𝐵(𝑢)) 

where u, v, w 𝑍2 are the spatial co-ordinates of pixels in the image and the structuring element; 
while 𝜇𝐴, 𝜇𝐵 are the membership functions of the image and the structuring element respectively. 

3.3. Properties of the Basic Operations 
Here are some properties of the basic fuzzy morphological operations (dilation, erosion, 

opening and closing [4]). We define the power set of X, denoted by ℱ(𝑍2), to be the set of all 
fuzzy subset of  X, 

For all 𝐴 , 𝐵, 𝐶 ∈ ℱ(𝑍2) the following properties hold: 

i. Monotonicity (increasing in both argument) 

 𝐴 ⊆ 𝐵 ⟹  𝐴 ⊕ 𝐶 ⊆ 𝐵 ⊕ 𝐶 

 𝐴 ⊆ 𝐵 ⟹  𝐶 ⊕ 𝐴 ⊆ 𝐶 ⊕ 𝐵 
ii. Monotonicity (increasing in the first and decreasing in the argument) 

𝐴 ⊆ 𝐵 ⟹ 𝐴 ⊖ 𝐶 ⊆ 𝐵 ⊖ 𝐶 

𝐴 ⊆ 𝐵 ⟹ 𝐶 ⊖ 𝐴 ⊇ 𝐶 ⊖ 𝐵 
iii. Monotonicity (increasing in the first argument) 

𝐴 ⊆ 𝐵 ⟹ 𝐴 • 𝐶 ⊆ 𝐵 • 𝐶     
iv. Monotonicity (increasing in the first argument) 

𝐴 ⊆ 𝐵 ⟹ 𝐴 ∘ 𝐶 ⊆ 𝐵 ∘ 𝐶     

For any family  (𝐴𝑖|𝑖 ∈ 𝐼) 𝑖𝑛ℱ(Z2) 𝑎𝑛𝑑 𝐵 ∈ ℱ(Z2), 
i. ∩

𝑖∈𝐼
A𝑖 ⊕ B ⊆ ∩

𝑖∈𝐼
(A𝑖 ⊕ B)   and  B ⊕ ∩

𝑖∈I
A𝑖 ⊆ ∩

𝑖∈𝐼
(B ⊕ A𝑖) 

ii. ∩
𝑖∈𝐼

A𝑖 ⊖ B ⊆ ∩
𝑖∈𝐼

(A𝑖 ⊖ B)  and   B ⊖ ∩
𝑖∈I

A𝑖 ⊇ ∩
𝑖∈𝐼

(B ⊖ A𝑖) 
iii. ∩

𝑖∈𝐼
A𝑖 • B ⊆ ∩

𝑖∈𝐼
(A𝑖 • B) 

iv. ∩
𝑖∈𝐼

A𝑖 ∘ B ⊆ ∩
𝑖∈𝐼

(A𝑖 ∘ B) 
For any family  (𝐴𝑖|𝑖 ∈ 𝐼) 𝑖𝑛ℱ(Z2) 𝑎𝑛𝑑 𝐵 ∈ ℱ(Z2), 
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i. ∪
𝑖∈𝐼

A𝑖 ⊕ B ⊇ ∪
𝑖∈𝐼

(A𝑖 ⊕ B)   and  B ⊕ ∪
𝑖∈I

A𝑖 ⊇ ∪
𝑖∈𝐼

(B ⊕ A𝑖) 
ii. ∪

𝑖∈𝐼
A𝑖 ⊖ B ⊇ ∩

𝑖∈𝐼
(A𝑖 ⊖ B)  and   B ⊖ ∩

𝑖∈I
A𝑖 ⊆ ∩

𝑖∈𝐼
(B ⊖ A𝑖) 

iii. ∪
𝑖∈𝐼

A𝑖 • B ⊇ ∩
𝑖∈𝐼

(A𝑖 • B) 
iv. ∪

𝑖∈𝐼
A𝑖 ∘ B ⊇ ∩

𝑖∈𝐼
(A𝑖 ∘ B). 

4.  Neutrosophic Approach to Mathematical Morphology 

Smarandache [14] introduced the neutrosophic components (T, I, F) which represent the 
membership, indeterminacy, and non-membership values respectively, 𝑇 , 𝐼 , 𝐹 ∶ 𝑋 →] -

0,1+[  where  ]-0,1+[   is non-standard unit interval.  Let ε > 0 be some infinitesimal number, hence, 
 11  and  .00   

4.1.  Neutrosophic Sets [1] 

We denote the set of all neutrosophic subset of X by 𝒩(𝑋). In [1, 14], the authors gave different 
definition for the concept of the neutrosophic sets.  For more convenience we are choosing the 
following definitions to  follow  up our work for neutrosophic  morphology.     In the following 
definitions, we consider a space E and two neutrosophic subsets of X; 𝐴, 𝐵 ∈ 𝒩(𝑋). 

4.1.1. Definition [11, 14] 

A neutrosophic set  𝐴 on the universe of discourse  X  is defined as: 

𝐴 =  〈𝑇𝐴, 𝐼𝐴 , 𝐹𝐴〉,  where 𝑇𝐴 , 𝐼𝐴 , 𝐹𝐴 ∶ 𝑋 → [0,1 ]. 

4.1.2. Definition [11] 

The complement of a neutrosophic set  𝐴  is denoted by  Ac and is defined as: 

Ac =  〈𝑇𝐴𝑐 , 𝐼𝐴𝑐  , 𝐹𝐴𝑐〉, where  𝑇𝐴𝑐  , 𝐼𝐴𝑐  , 𝐹𝐴𝑐 ∶ 𝑋 → [0,1 ]  and for all  𝑥  in  X. 

𝑇𝐴𝑐(𝑥) =  1 − 𝑇𝐴(𝑥),   𝐼𝐴𝑐(𝑥) =  1 −  𝐼𝐴(𝑥)    and      𝐹𝐴𝑐 (𝑥) =  1 −  𝐹𝐴(𝑥) 

The neutrosophic empty Set of X is the triple, 0𝒩 = 〈0  , 0  , 1〉,  where 

1(𝑥) = 1 𝑎𝑛𝑑  0(𝑥) = 0,    ∀𝑥 ∈ 𝑋.   

The neutrosophic universe set of  X is the triple,1𝒩 = 〈1  , 1  , 0〉, where 

   1(𝑥) = 1 𝑎𝑛𝑑  0(𝑥) = 0   ∀𝑥 ∈ 𝑋. 

4.2. Neutrosophic Mathematical Morphology 
In this section we introduce the concept of neutrosophic  morphology based on the fact that the 

basic morphological operators make use of fuzzy set operators, or equivalently, crisp logical 
operators. Hence, such expressions can easily be extended using the context of neutrosophic sets.  

4.2.1. Definition 
The reflection of the structuring element   B  mirrored in its origin is defined as:  

 −𝐵 = 〈−𝑇𝐵 , −𝐼𝐵 , −𝐹𝐵〉, where   

−𝑇𝐵(𝑢) = 𝑇𝐵(−𝑢), −𝐼𝐵(𝑢) =  𝐼𝐵(−𝑢)    𝑎𝑛𝑑  − 𝐹𝐵(𝑢) = 𝐹𝐵(−𝑢)  



New Trends in Neutrosophic Theory and Applications 

369 
 

 For every 𝑝 in E, Translation of A by 𝑝 ∈ 𝑍2 is 𝐴𝑝 = 〈𝑇𝐴𝑝
, 𝐼𝐴𝑝

,  𝐹𝐴𝑝
〉, Where  𝑇𝐴𝑝

(𝑢) =

𝑇𝐴𝑝
(𝑢 + 𝑝), 𝐼𝐴𝑝

(𝑢) = 𝐼𝐴𝑝
(𝑢 + 𝑝)   and 𝐹𝐴𝑝

(𝑢) = 𝐹𝐴𝑝
(𝑢 + 𝑝) 

Most morphological operations on neutrosophic can be obtained by combining  neutrosophic  
set theoretical operations with two basic operations, dilation and erosion.  

4.3  Neutrosophic  Morphological  Operations 
The neutrosophy concept is introduced to morphology by a triple degree to which the 

structuring element fits into the image in the three levels of trueness, indeterminacy, and falseness. 
The operations of neutrosophic erosion, dilation, opening and closing of the neutrosophic image 
by neutrosophic structuring element, are defined  in terms of their membership,  indeterminacy 
and non-membership functions; which is defined for the first time as far as we know. 

4.3.1. The Operation of Dilation 
The process of the structuring element B on the image A and moving it across the image in a 

way like convolution is defined as dilation operation. The two main inputs for the dilation operator 
[7] are the image which is to be dilated and a set of coordinate points known as a structuring 
element which may be considered as a kernel. The exact effect of the dilation on the input image 
is determined by this structuring element [6].  

4.3.1.1. Definition:     (Neutrosophic Dilation) 

let A and B are two neutrosophic sets; then the neutrosophic dilation  is given as 
(A ⊕̃ B) = ⟨TA⊕̃B , IA⊕̃B , FA⊕̃B⟩, where for each u and v ∈ 𝑍2. 

𝑇𝐴⊕̃𝐵(𝑣) = 𝑠𝑢𝑝
𝑢∈𝑍𝑛

𝑚𝑖𝑛(𝑇𝐴(𝑣 + 𝑢), 𝑇𝐵(𝑢)) 

 𝐼𝐴⊕̃𝐵(𝑣) = sup
𝑢∈𝑍𝑛

𝑚𝑖𝑛(𝐼𝐴(𝑣 + 𝑢), 𝐼𝐵(𝑢)) 

𝐹𝐴⊕̃𝐵(𝑣) = 𝑖𝑛𝑓
𝑢∈𝑍𝑛

𝑚𝑎𝑥(1 − 𝐹𝐴(𝑣 + 𝑢), 1 − 𝐹𝐵(𝑢)) 

4.3.2. The Operation of Erosion 
The erosion process is as same as dilation, but the pixels are converted to 'white', not 'black'. 

The two main inputs for the erosion operator [12],  are the image which is to be  eroded and 

 a structuring element. The exact effect of the erosion on the input image is determined by this 
structuring element. The following steps are the mathematical definition of erosion for gray-scale  
images. 

4.3.2.1. Definition:    (Neutrosophic Erosion) 

let A and B are two neutrosophic sets  , then the neutrosophic erosion is given  

(A ⊖̃ B) = ⟨TA⊖̃B , IA⊖̃B , F𝐴⊖̃𝐵⟩ ;  where for each   u and v   ∈ 𝑍2 

𝑇𝐴⊖̃𝐵(𝑣) = 𝑖𝑛𝑓
𝑢∈𝑍𝑛

𝑚𝑎𝑥(𝑇𝐴(𝑣 + 𝑢), 1 − 𝑇𝐵(𝑢)) 

𝐼𝐴⊖̃𝐵(𝑣) = 𝑖𝑛𝑓
𝑢∈𝑍𝑛

𝑚𝑎𝑥(𝐼𝐴(𝑣 + 𝑢), 1 − 𝐼𝐵(𝑢)) 

𝐹𝐴⊖̃𝐵(𝑣) = 𝑠𝑢𝑝
𝑢∈𝑍𝑛

𝑚𝑖𝑛(1 − 𝐹𝐴(𝑣 + 𝑢), 𝐹𝐵(𝑢)) 
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4.3.3. The Operation of Opening and Closing 
The combination of the two main operations, dilation and erosion, can produce more complex 

sequences. Opening and closing are the most useful of these for morphological filtering [8]. An 
opening operation is defined as erosion followed by a dilation using the same structuring element 
for both operations. The basic two inputs for opening operator are an image to be opened, and a 
structuring element. Gray-level opening consists simply of gray-level erosion followed by gray-
level dilation. The morphological opening  ∘  and closing  •  are defined by: 

𝐴 ∘̃ 𝐵  =    (𝐴 ⊖̃ 𝐵) ⊕̃ 𝐵 

A •̃  B  =    (𝐴 ⊕̃ 𝐵) ⊖̃ 𝐵 
From a granularity perspective, opening and closing provide coarser descriptions of the set A. 

The opening describes A as closely as possible using not the individual pixels but by fitting 
(possibly overlapping) copies of E within A. The closing describes the complement of A by fitting 
copies of E* outside A. The actual set is always contained within these two extremes: A ∘̃ B ⊆ 𝐴 ⊆
𝐴 •̃ B and the informal notion of fitting copies of E, or of E*, within a set is made precise  in these 
equations: 

The operator 𝒩(E)→ 𝒩(E) : A → A∘̃ B is called the opening by B; it is the composition of the 
erosion ⊖,   followed   by  the dilation ⊕.    On the other hand,    the operator           𝒩(E) → 
𝒩(E) : A → A •̃ B is called the closing. 

To understand what e.g., a closing operation does: imagine the closing applied to a set; the 
dilation will expand object boundaries, which will be partly undone by the following erosion. 
Small, (i.e., smaller than the structuring element) holes and thin tubelike structures in the interior 
or at the boundaries of objects will be filled up by the dilation, and not reconstructed by the erosion, 
inasmuch as these structures no longer have a boundary for the erosion to act upon. In this sense 
the term ’closing’ is a well-chosen one, as the operation removes holes and thin cavities. In the 
same sense the opening opens up holes that are near (with respect to the size of the structuring 
element)  a boundary,  and removes small object protuberances. 

4.3.3.1. Neutrosophic Opening 
let A and B are two neutrosophic sets it's defined as the flowing: 
(A ∘̃ B) = ⟨TA∘̃B , IA∘̃B , FA∘̃B⟩,          where u, v, w∈ 𝑍2 

 𝑇𝐴∘̃𝐵(𝑣) =  𝑠𝑢𝑝
𝑢∈𝑍𝑛

𝑚𝑖𝑛 [ 𝑖𝑛𝑓
𝑧∈𝑅𝑛

𝑚𝑎𝑥(𝑇𝐴(𝑣 − 𝑢 + 𝑤), 1 − 𝑇𝐵(𝑤)), 𝑇𝐵(𝑢)] 

 𝐼𝐴∘̃𝐵(𝑣) =   𝑠𝑢𝑝
𝑢∈𝑍𝑛

𝑚𝑖𝑛 [ 𝑖𝑛𝑓
𝑧∈𝑅𝑛

𝑚𝑎𝑥(𝐼𝐴(𝑣 − 𝑢 + 𝑤), 1 − 𝐼𝐵(𝑤)), 𝐼𝐵(𝑢)] 

 𝐹𝐴∘̃𝐵(𝑣) =  𝑖𝑛𝑓
𝑢∈𝑍𝑛

𝑚𝑎𝑥 [𝑠𝑢𝑝
𝑧∈𝑅𝑛

𝑚𝑖𝑛(1 − 𝐹𝐴(𝑣 − 𝑢 + 𝑤), 𝐹𝐵(𝑤)), 1 − 𝐹𝐵(𝑢)] 

4.3.3.2. Neutrosophic Closing 
 let A and B be two neutrosophic sets it's defined as the flowing: 
(𝐴 •̃ 𝐵) = ⟨𝑇𝐴•̃𝐵 , 𝐼𝐴•̃𝐵 , 𝐹𝐴•̃𝐵⟩,               where u, v, w∈ 𝑍2 
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𝑇𝐴•̃𝐵(𝑣) =  𝑖𝑛𝑓
𝑢∈𝑍2

𝑚𝑎𝑥 [ 𝑠𝑢𝑝
𝑤∈𝑍2

𝑚𝑖𝑛(𝑇𝐴(𝑣 − 𝑢 + 𝑤), 𝑇𝐵(𝑤)), 1 − 𝑇𝐵(𝑢)] 

𝐼𝐴•̃𝐵(𝑣) =  𝑖𝑛𝑓
𝑢∈𝑍2

𝑚𝑎𝑥 [ 𝑠𝑢𝑝
𝑤∈𝑍2

𝑚𝑖𝑛(𝐼𝐴(𝑣 − 𝑢 + 𝑤), 𝐼𝐵(𝑤)), 1 − 𝐼𝐵(𝑢)] 

𝐹𝐴•̃𝐵(𝑣) =  𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛 [ 𝑖𝑛𝑓
𝑤∈𝑍2

𝑚𝑎𝑥(1 − 𝐹𝐴(𝑣 − 𝑢 + 𝑤), 1 − 𝐹𝐵(𝑤)), 𝐹𝐵(𝑢)]       

4.4. Algebraic Properties in Neutrosophic 
The algebraic properties for Neutrosophic Mathematical Morphology erosion and dilation, as 

well as for neutrosophic opening and closing operations are now considered. 

4.4.1. Proposition Duality Theorem of Dilation 
let A and B be two neutrosophic sets.   neutrosophic  erosion and  dilation are dual operations 

i.e. (A𝑐 ⊕̃ B)c = ⟨T(A𝑐 ⊕̃B)c , I(A𝑐 ⊕̃B)c , F(A𝑐 ⊕̃B)c⟩;  where for each u, v ∈ 𝑍2 

𝑇(A𝑐⊕̃𝐵)𝑐(𝑣)  = 1 − 𝑇(A𝑐⊕̃𝐵)(𝑣) 

 = 1 − 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛(𝑇𝐴𝑐(𝑣 + 𝑢), 𝑇𝐵(𝑢))  = 𝑖𝑛𝑓
𝑢∈𝑍2

[1 − 𝑚𝑖𝑛(𝑇𝐴𝑐(𝑣 + 𝑢), 𝑇𝐵(𝑢))] 

 = 𝑖𝑛𝑓
𝑢∈𝑍2

[𝑚𝑎𝑥(1 − TA𝑐(𝑣 + 𝑢), 1 −  𝑇𝐵(𝑢))] 

 = 𝑖𝑛𝑓
𝑢∈𝑍2

[𝑚𝑎𝑥(𝑇𝐴(𝑣 + 𝑢), 1 −  𝑇𝐵(𝑢))]      = 𝑇𝐴⊖̃𝐵(𝑣) 

      𝐼(A𝑐⊕̃𝐵)𝑐(𝑣)  = 1 − 𝐼(A𝑐⊕̃𝐵)(𝑣)                                                              = 1 − 𝑠𝑢𝑝
𝑥∈𝑅𝑛

𝑚𝑖𝑛(A𝑐(𝑣 + 𝑢), 𝐼𝐵(𝑢))    

= 𝑖𝑛𝑓
𝑢∈𝑍2

[1 − 𝑚𝑖𝑛(IA𝑐(𝑣 + 𝑢), 𝐼𝐵(𝑥))] 

                        = 𝑖𝑛𝑓
𝑢∈𝑍2

[𝑚𝑎𝑥(1 − IA𝑐(𝑣 + 𝑢), 1 − 𝐼𝐵(𝑢))] 

                        = 𝑖𝑛𝑓
𝑢∈𝑍2

[𝑚𝑎𝑥(𝐼𝐴(𝑣 + 𝑢), 1 −  𝐼𝐵(𝑢))]      = 𝐼𝐴⊖̃𝐵(𝑣) 

  𝐹(A𝑐⊕̃𝐵)𝑐(𝑣)  = 1 − 𝐹(A𝑐⊕̃𝐵)(𝑣)                                                                        
   = 1 − 𝑖𝑛𝑓

𝑥∈𝑅𝑛
𝑚𝑎𝑥(1 − FA𝑐(𝑣 + 𝑢), 1 − 𝐹𝐵(𝑢))    

     = 𝑠𝑢𝑝
𝑢∈𝑍2

[1 − 𝑚𝑎𝑥(1 − FA𝑐(𝑣 + 𝑢), 1 − 𝐹𝐵(𝑢))] 

      = 𝑠𝑢𝑝
𝑢∈𝑍2

[𝑚𝑖𝑛(1 − F𝐴(𝑣 + 𝑢), 𝐹𝐵(𝑢))]      = 𝐹𝐴⊖̃𝐵(𝑣) 

⟨T(A𝑐 ⊕̃B)c , I(A𝑐 ⊕̃B)c , F(A𝑐 ⊕̃B)c⟩ = ⟨𝑇𝐴⊖̃𝐵,  𝐼𝐴⊖̃𝐵, 𝐹𝐴⊖̃𝐵⟩. 

4.4.2. Proposition the Duality Theorem Closing 
let A and B be two neutrosophic sets, neutrosophic opening and neutrosophic  closing are also 

dual operation i.e. 

(A𝑐 •̃ B)c =  ⟨T(A𝑐 •̃ B)c , I(A𝑐 •̃ B)c , F(A𝑐 •̃ B)c⟩,  where  for all  x∈ 𝑋 

T(A𝑐  •̃ B)c(𝑣) = 1 − 𝑇A𝑐 •̃ 𝐵(𝑣) 
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     𝑇(𝐴𝑐 •̃ 𝐵)𝑐(𝑣) = 1 −  𝑖𝑛𝑓
𝑢∈𝑍2

𝑚𝑎𝑥 [𝑠𝑢𝑝
𝑧∈𝑅𝑛

𝑚𝑖𝑛(𝑇𝐴𝑐(𝑣 − 𝑢 + 𝑤), 𝑇𝐵(𝑤)), 1 − 𝑇𝐵(𝑢)] 

=  𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛 [1 − 𝑠𝑢𝑝
𝑧∈𝑅𝑛

𝑚𝑖𝑛(𝑇𝐴𝑐(𝑣 − 𝑢 + 𝑤), 𝑇𝐵(𝑤)), 𝑇𝐵(𝑢)] 

           = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛 [ 𝑖𝑛𝑓
𝑧∈𝑅𝑛

𝑚𝑎𝑥(1 − 𝑇𝐴𝑐(𝑣 − 𝑢 + 𝑤), 1 − 𝑇𝐵(𝑤)), 𝑇𝐵(𝑢)] 

         = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛 [ 𝑖𝑛𝑓
𝑧∈𝑅𝑛

𝑚𝑎𝑥(𝑇𝐴𝑐(𝑣 − 𝑢 + 𝑤), 1 − 𝑇𝐵(𝑤)), 𝑇𝐵(𝑢)]     = 𝑇𝐴 ∘̃ 𝐵(𝑣) 

      I(A𝑐 •̃ B)c(𝑣) = 1 − 𝐼A𝑐 •̃𝐵(𝑣) 

      𝐼(𝐴𝑐 •̃ 𝐵)𝑐(𝑣) = 1 − 𝑖𝑛𝑓
𝑢∈𝑍2

𝑚𝑎𝑥 [𝑠𝑢𝑝
𝑧∈𝑅𝑛

𝑚𝑖𝑛(𝐼𝐴𝑐(𝑣 − 𝑢 + 𝑤), 𝐼𝐵(𝑤)), 1 − 𝐼𝐵(𝑢)] 

                       = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛 [1 − 𝑠𝑢𝑝
𝑧∈𝑅𝑛

𝑚𝑖𝑛(𝐼𝐴𝑐(𝑣 − 𝑢 + 𝑤), 𝐼𝐵(𝑤)),  𝐼𝐵(𝑢)] 

= 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛 [ 𝑖𝑛𝑓
𝑧∈𝑅𝑛

𝑚𝑎𝑥(1 − 𝐼𝐴𝑐(𝑣 − 𝑢 + 𝑤), 1 − 𝐼𝐵(𝑤)),  𝐼𝐵(𝑢)] 

                = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛 [ 𝑖𝑛𝑓
𝑧∈𝑅𝑛

𝑚𝑎𝑥(𝐼𝐴(𝑣 − 𝑢 + 𝑤), 1 − 𝐼𝐵(𝑤)),  𝐼𝐵(𝑢)]      = 𝐼𝐴 ∘̃ 𝐵(𝑣) 

F(Ac •̃ B)c(v) = 1 − FAc •̃ B 

𝐹(𝐴𝑐 •̃ 𝐵)𝑐(𝑣) = 1 − 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛 [ 𝑖𝑛𝑓
𝑧∈𝑅𝑛

𝑚𝑎𝑥(1 − 𝐹𝐴(𝑣 − 𝑢 + 𝑤), 1 − 𝐹𝐵(𝑤)), 𝐹𝐵(𝑢)]     

𝐹(𝐴𝑐 •̃ 𝐵)𝑐(𝑣) = 𝑖𝑛𝑓
𝑢∈𝑍2

𝑚𝑎𝑥 [1 − 𝑖𝑛𝑓
𝑧∈𝑅𝑛

𝑚𝑎𝑥(1 − 𝐹𝐴(𝑣 − 𝑢 + 𝑤), 1 − 𝐹𝐵(𝑤)), 𝐹𝐵(𝑢)]     

         𝐹(𝐴𝑐 •̃ 𝐵)𝑐(𝑣) = 𝑖𝑛𝑓
𝑢∈𝑍2

𝑚𝑎𝑥 [𝑠𝑢𝑝
𝑧∈𝑅𝑛

𝑚𝑖𝑛(1 − 𝐹𝐴(𝑣 − 𝑢 + 𝑤), 𝐹𝐵(𝑤)), 1 − 𝐹𝐵(𝑢)] 

                         = F𝐴 ∘̃ 𝐵(𝑣) 

⟨T(A𝑐 •̃ B)c , I(A𝑐 •̃ B)c , F(A𝑐 •̃ B)c⟩ = ⟨T𝐴 ∘̃ 𝐵, I𝐴 ∘̃ 𝐵, 𝐹𝐴 ∘̃ 𝐵⟩. 

. 

Lemma 1:     for any 𝐴 ∈ 𝒩(𝑋),  and   the neutrosophic   universal set  1𝒩,  we   have  that 

A ⊕̃ 1𝒩 ⊆ 𝐴,   A ⊕̃ 1𝒩 = ⟨𝑇A⊕̃1𝒩
, 𝐼A⊕̃1𝒩

 , 𝐹𝐴⊕̃1𝒩
⟩ 

Proof: 

 𝑇𝐴⊕̃1𝒩
(𝑣) = 𝑠𝑢𝑝

𝑢∈𝑍2
𝑚𝑖𝑛(𝑇𝐴(𝑣 + 𝑢), 1)                    = 𝑠𝑢𝑝

𝑢∈𝑍2
(𝑇𝐴(𝑦 + 𝑥)) = 𝑇𝐴(𝑣) 

𝐼𝐴⊕̃1𝒩
(𝑣)  = 𝑠𝑢𝑝

𝑢∈𝑍2
𝑚𝑖𝑛(𝐼𝐴(𝑣 + 𝑢), 1)                   = 𝑠𝑢𝑝

𝑢∈𝑍2
(𝐼𝐴(𝑦 + 𝑥)) = 𝐼𝐴(𝑣) 

𝐹𝐴⊕̃1𝒩
(𝑣) = 𝑖𝑛𝑓

𝑢∈𝑍2
𝑚𝑎𝑥(1 − 𝐹𝐴(𝑣 + 𝑢), 1 − 0)      = 1(𝑣)  

                 ⟨TA, IA , 1⟩ ⊆ ⟨TA, IA , FA⟩ = A 
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Lemma 2:  for any 𝐴 ∈ 𝒩(𝑋), and the neutrosophic empty set 0𝒩, we have that 

𝐀 ⊕̃ 0𝒩 ⊆ 𝐴𝑐,    A ⊕̃ 0𝒩 = ⟨𝑇A⊕̃ 0𝒩
, 𝐼A⊕̃ 0𝒩

 , 𝐹𝐴⊕̃0𝒩
⟩ 

Proof: 

𝑇𝐴⊕̃0𝒩
(𝑣) = 𝑠𝑢𝑝

𝑢∈𝑍2
𝑚𝑖𝑛(𝑇𝐴(𝑣 + 𝑢), 0)                = 0(𝑣) 

𝐼𝐴⊕̃0𝒩
(𝑣)  = 𝑠𝑢𝑝

𝑢∈𝑍2
𝑚𝑖𝑛(𝐼𝐴(𝑣 + 𝑢), 0)                 = 0(𝑣) 

𝐹𝐴⊕̃0𝒩
(𝑣) = 𝑖𝑛𝑓

𝑢∈𝑍2
𝑚𝑎𝑥(1 − 𝐹𝐴(𝑣 + 𝑢), 1 − 1)    = 𝑖𝑛𝑓

𝑢∈𝑍2
(1 − 𝐹𝐴(𝑣 + 𝑢))  = 𝐹𝐴𝑐(𝑣)  

                 ⟨0, 0 , FAc⟩ ⊆ ⟨TAc , IAc , FAc⟩ = Ac 

4.5. Properties of the Neutrosophic Morphological Operations 
In this section, we investigate the basic properties of the neutrosophic morphological operation 

(dilation, erosion, opening and closing), which we defined in §4.  

4.5.1. Properties of the Neutrosophic Dilation 
Proposition 1 

The neutrosophic dilation satisfies the following properties: ∀  A, B ∈ 𝒩(Z2) 

i. Commutativity:               A⨁̃B = B ⊕̃ A 

ii. Associativity:   (A ⊕̃ B) ⊕̃ C = A ⊕̃ (B ⊕̃ C). 
iii. Monotonicity: (increasing in both arguments): 

a)  A ⊆ B ⟹ 〈TA⊕̃C , 𝐼A⊕̃C , 𝐹A⊕̃C〉 ⊆ 〈TB⊕̃C , 𝐼B⊕̃C , 𝐹B⊕̃C〉 

TA⊕̃C ⊆ TB⊕̃C ,    IA⊕̃C ⊆ IB⊕̃C   𝑎𝑛𝑑  FA⊕̃C ⊇ FB⊕̃C 

b)  A ⊆ B ⟹ 〈TC⊕̃A , 𝐼C⊕̃A , 𝐹C⊕̃A〉 ⊆ 〈TC⊕̃B , 𝐼C⊕̃B , 𝐹C⊕̃B〉 

TC⊕̃A ⊆ TC⊕̃B ,   IC⊕̃A ⊆ IC⊕̃B  𝑎𝑛𝑑    FC⊕̃A ⊇ FC⊕̃B 

Proof: 
i), ii), iii) Obvious. 

Proposition2:  for any family (𝐴𝑖|𝑖 ∈ 𝐼) 𝑖𝑛 𝒩(Z2) 𝑎𝑛𝑑 𝐵 ∈ 𝒩(Z2) 

a) 〈T∩
i∈I

Ai⊕̃B, I ∩
i∈I

Ai⊕̃B, F ∩
i∈I

Ai⊕̃B〉 ⊆ 〈T∩
𝑖∈I

(A𝑖⊕̃B), I ∩
𝑖∈I

(A𝑖⊕̃B), F ∩
i∈I

(A𝑖⊕̃B)〉 

𝑇 ∩
𝑖∈𝐼

A𝑖⊕̃B ⊆ 𝑇 ∩
𝑖∈𝐼

(A𝑖⊕̃B),  𝐼 ∩
𝑖∈𝐼

A𝑖⊕̃B ⊆ 𝐼 ∩
𝑖∈𝐼

(A𝑖⊕̃B)   and 𝐹 ∩
𝑖∈𝐼

A𝑖⊕̃B ⊇ 𝐹 ∪
𝑖∈𝐼

(A𝑖⊕̃B) 

b) 〈TB⊕̃ ∩
𝑖∈I

A𝑖
, IB⊕̃ ∩

𝑖∈I
A𝑖

, FB⊕̃ ∩
𝑖∈I

A𝑖
〉 ⊆ 〈T∩

𝑖∈I
(B⊕̃A𝑖), IT ∩

𝑖∈I
(B⊕̃A𝑖)

, FT ∩
i∈I

(B⊕̃A𝑖)
〉 

𝑇𝐵⊕̃ ∩
𝑖∈𝐼

A𝑖
⊆ 𝑇 ∩

𝑖∈𝐼
(B⊕̃A𝑖),  𝐼𝐵⊕̃ ∩

𝑖∈𝐼
A𝑖

⊆ 𝐼 ∩
𝑖∈𝐼

(B⊕̃A𝑖)  and  𝐹𝐵⊕̃ ∩
𝑖∈𝐼

A𝑖
⊇ 𝐹 ∪

𝒊∈𝑰
(B⊕̃A𝑖) 

      Proof:    a)    

                  〈𝑇 ∩
𝑖∈𝐼

𝐴𝑖⊕̃𝐵, 𝐼 ∩
𝑖∈𝐼

𝐴𝑖⊕̃𝐵, 𝐹 ∩
𝑖∈𝐼

𝐴𝑖⊕̃𝐵〉 ⊆ 〈𝑇 ∩
𝑖∈𝐼

(𝐴𝑖⊕̃𝐵), 𝐼 ∩
𝑖∈𝐼

(𝐴𝑖⊕̃𝐵), 𝐹 ∩
𝑖∈𝐼

(𝐴𝑖⊕̃𝐵)〉 
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𝑇 ∩
𝑖∈𝐼

𝐴𝑖⊕̃𝐵 (𝑣) = 𝑠𝑢𝑝
𝑢∈𝑍𝑛

𝑚𝑖𝑛 (𝑇∩
𝑖∈𝐼

𝐴𝑖
(𝑣 + 𝑢), 𝑇𝐵(𝑢))       = 𝑠𝑢𝑝

𝑢∈𝑍𝑛
𝑚𝑖𝑛 (𝑖𝑛𝑓 

𝑖∈𝐼
 𝑇𝐴𝑖

(𝑣 + 𝑢), 𝑇𝐵(𝑢)) 

                         = 𝑠𝑢𝑝
𝑢∈𝑍𝑛

𝑖𝑛𝑓
𝑖∈𝐼

(𝑚𝑖𝑛𝑇𝑨𝒊
(𝑣 + 𝑢), 𝑇𝐵(𝑢))         ≤ 𝑖𝑛𝑓

𝒊∈𝑰
𝑠𝑢𝑝
𝑢∈𝑍𝑛

(𝑚𝑖𝑛𝑇𝑨𝒊
(𝑣 +

𝑢), 𝑇𝐵(𝑢)) 

                                ≤ ∩
𝑖∈𝐼

𝑇(𝐴𝑖⊕̃𝐵)(𝑣)                                        ≤ 𝑇 ∩
𝑖∈𝐼

(𝐴𝑖⊕̃𝐵)(𝑣)  

       𝐼 ∩
𝑖∈𝐼

𝐴𝑖⊕̃𝐵 (𝑣) = 𝑠𝑢𝑝
𝑢∈𝑍𝑛

𝑚𝑖𝑛 (𝐼 ∩
𝒊∈𝑰

𝑨𝒊
(𝑣 + 𝑢), 𝐼𝐵(𝑢)) 

                                = 𝑠𝑢𝑝
𝑢∈𝑍𝑛

𝑚𝑖𝑛 (𝑖𝑛𝑓
𝑖∈𝐼

 𝐼𝑨𝒊
(𝑣 + 𝑢), 𝐼𝐵(𝑢))          = 𝑠𝑢𝑝

𝑢∈𝑍𝑛
𝑖𝑛𝑓
𝑖∈𝐼

(𝑚𝑖𝑛  𝐼𝑨𝒊
(𝑣 +

𝑢), 𝐼𝐵(𝑢)) 

                         ≤ ∩
𝒊∈𝑰

𝑠𝑢𝑝
𝑢∈𝑍𝑛

(𝑚𝑖𝑛  𝐼𝑨𝒊
(𝑣 + 𝑢), 𝐼𝐵(𝑢))             ≤ ∩

𝑖∈𝐼
𝐼(𝐴𝑖⊕̃𝐵)(𝑣)       

                       ≤ 𝐼 ∩
𝑖∈𝐼

(𝐴𝑖⊕̃𝐵)(𝑣)                     

      𝐹 ∩
𝒊∈𝑰

𝑨𝒊⊕̃𝑩(𝑣) = 𝑖𝑛𝑓
𝑢∈𝑍𝑛

𝑚𝑎𝑥 (1 − 𝐹∩
𝒊∈𝑰

𝑨𝒊
(𝑣 + 𝑢), 1 − 𝐹𝐵(𝑢)) 

                               = 𝑖𝑛𝑓
𝑢∈𝑍𝑛

𝑚𝑎𝑥 (1 − 𝑖𝑛𝑓
𝑖∈𝐼

 𝐹𝑨𝒊
(𝑣 + 𝑢), 1 − 𝐹𝐵(𝑢)) 

                               = 𝑖𝑛𝑓
𝑢∈𝑍𝑛

𝑚𝑎𝑥 (𝑠𝑢𝑝
𝑖∈𝐼

(1 −  𝐹𝑨𝒊
(𝑣 + 𝑢)) , 1 − 𝐹𝐵(𝑢)) 

                              = 𝑖𝑛𝑓
𝑢∈𝑍𝑛

𝑠𝑢𝑝
𝑖∈𝐼

(𝑚𝑎𝑥 𝐹𝑨𝒊
(𝑣 + 𝑢), 1 − 𝐹𝐵(𝑢)) 

                              ≥ 𝑠𝑢𝑝
𝑖∈𝐼

𝑖𝑛𝑓
𝑢∈𝑍𝑛

(𝑚𝑎𝑥 𝐹𝑨𝒊
(𝑣 + 𝑢), 1 − 𝐹𝐵(𝑢)) 

                            ≥ ∪
𝑖∈𝐼

𝑖𝑛𝑓
𝑢∈𝑍𝑛

(𝑚𝑎𝑥𝐹𝐴𝑖
(𝑣 + 𝑢), 1 − 𝐹𝐵(𝑢))        ≥ 𝐹 ∪

𝑖∈𝐼
(𝐴𝑖⊕̃𝐵)(𝑣) 

b) The proof is similar to a). 

 Proposition 3:     for any    family    (𝐴𝑖|𝑖 ∈ 𝐼) 𝑖𝑛 𝒩(Z2)  𝑎𝑛𝑑   𝐵 ∈ 𝒩(Z2) 

a) 〈𝑇 ∪
𝑖∈𝐼

A𝑖⊕̃B, 𝐼 ∪
𝑖∈𝐼

A𝑖⊕̃B, 𝐹 ∪
𝑖∈𝐼

A𝑖⊕̃B〉 ⊇ 〈𝑇 ∪
𝑖∈𝐼

(A𝑖⊕̃B), 𝐼 ∪
𝑖∈𝐼

(A𝑖⊕̃B), 𝐹 ∪
𝑖∈𝐼

(A𝑖⊕̃B)〉 

𝑇 ∪
𝑖∈𝐼

A𝑖⊕̃B ⊇ 𝑇 ∪
𝑖∈𝐼

(A𝑖⊕̃B),  𝐼 ∪
𝑖∈𝐼

A𝑖⊕̃B ⊇ 𝐼 ∪
𝑖∈𝐼

(A𝑖⊕̃B)and   𝐹 ∪
𝑖∈𝐼

A𝑖⊕̃B ⊆  𝐹 ∩
𝑖∈𝐼

(A𝑖⊕̃B) 

b) 〈𝑇𝐵⊕̃ ∪
𝑖∈𝐼

A𝑖
, 𝐼𝐵⊕̃ ∪

𝑖∈𝐼
A𝑖

, 𝐹𝐵⊕̃ ∪
𝑖∈𝐼

A𝑖
〉 ⊇ 〈𝑇 ∪

𝑖∈𝐼
(A𝑖⊕̃B), 𝐼 ∪

𝑖∈𝐼
(A𝑖⊕̃B), 𝐹 ∪

𝑖∈𝐼
(A𝑖⊕̃B)〉 

𝑇𝐵⊕̃ ∪
𝑖∈𝐼

A𝑖
⊇ 𝑇 ∪

𝑖∈𝐼
(A𝑖⊕̃B),  𝐼𝐵⊕̃ ∪

𝑖∈𝐼
A𝑖

⊇ 𝐼 ∪
𝑖∈𝐼

(A𝑖⊕̃B)   𝑎𝑛𝑑   𝐹𝐵⊕̃ ∪
𝑖∈𝐼

A𝑖
⊆ 𝐹 ∩

𝑖∈𝐼
(A𝑖⊕̃B) 

Proof:   b) 
〈𝑇𝐵⊕̃ ∪

𝑖∈𝐼
𝐴𝑖

, 𝐼𝐵⊕̃ ∪
𝑖∈𝐼

𝐴𝑖
 , 𝐹𝐵⊕̃ ∪

𝑖∈𝐼
𝐴𝑖

〉 ⊇ 〈𝑇 ∪
𝑖∈𝐼

(𝐵⊕̃𝐴𝑖), 𝐼 ∪
𝑖∈𝐼

(𝐵⊕̃𝐴𝑖) , 𝐹 ∪
𝑖∈𝐼

(𝐵⊕̃𝐴𝑖)〉 
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   𝑇𝐵⊕̃ ∪
𝑖∈𝐼

𝐴𝑖
 (𝑣) = 𝑠𝑢𝑝

𝑢∈𝑍𝑛
𝑚𝑖𝑛 (𝑇𝐵(𝑣 + 𝑢), 𝑇∪

𝑖∈𝐼
𝐴𝑖

(𝑢))     = 𝑠𝑢𝑝
𝑢∈𝑍𝑛

𝑚𝑖𝑛 (𝑇𝑩(𝑣 + 𝑢), 𝑠𝑢𝑝
𝑖∈𝐼

𝑇𝑨𝒊
(𝑢))                               

                     ≥ 𝑠𝑢𝑝
𝑢∈𝑍𝑛

(𝑠𝑢𝑝 
𝑖∈𝐼

 𝑚𝑖𝑛𝑇𝑩(𝑣 + 𝑢), 𝑇𝑨𝒊
(𝑢))          ≥ ∪

𝒊∈𝑰
(𝑠𝑢𝑝

𝑢∈𝑍𝑛
 𝑚𝑖𝑛𝑇𝑩(𝑣 + 𝑢), 𝑇𝑨𝒊

(𝑢)) 

                 ≥ ∪
𝑖∈𝐼

𝑇(𝐵⊕̃𝑨𝒊)(𝑣 + 𝑢)                                     ≥ 𝑇 ∪
𝑖∈𝐼

(𝐵⊕̃𝑨𝒊)(𝑣)                  

𝐼𝐵⊕̃ ∪
𝑖∈𝐼

𝐴𝑖
 (𝑣) = 𝑠𝑢𝑝

𝑢∈𝑍2
𝑚𝑖𝑛 (𝐼𝑩(𝑣 + 𝑢), 𝐼 ∪

𝒊∈𝑰
𝑨𝒊

(𝑢))                = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛 (𝐼𝑩(𝑣 + 𝑢), 𝑠𝑢𝑝
𝑖∈𝐼

 𝐼𝑨𝒊
(𝑢)) 

                             ≥ 𝑠𝑢𝑝
𝑢∈𝑍2

(𝑠𝑢𝑝
𝑖∈𝐼

 𝑚𝑖𝑛  𝐼𝑨𝒊
(𝑣 + 𝑢), 𝐼𝑨𝒊

(𝑢))        ≥ ∪
𝒊∈𝑰

(𝑠𝑢𝑝
𝑢∈𝑍2

 𝑚𝑖𝑛 𝐼𝑨𝒊
(𝑣 + 𝑢), 𝐼𝑨𝒊

(𝑢)) 

                    ≥ ∪
𝑖∈𝐼

𝐼(𝐵⊕̃𝐴𝑖)(𝑣)                                              ≥ 𝐼 ∪
𝑖∈𝐼

(𝐵⊕̃𝐴𝑖)(𝑣)               

        𝐹 ∪
𝒊∈𝑰

𝑨𝒊⊕̃𝐴𝑖
(𝑣) = 𝑖𝑛𝑓

𝑢∈𝑍𝑛
𝑚𝑎𝑥 (1 − 𝐹𝑩(𝑣 + 𝑢), 1 − 𝐹∪

𝒊∈𝑰
𝐴𝑖

(𝑢))   

                   = 𝑖𝑛𝑓
𝑢∈𝑍𝑛

𝑚𝑎𝑥 (1 −  𝐹𝑩(𝑣 + 𝑢), 1 − 𝑠𝑢𝑝
𝑖∈𝐼

𝐹𝐴𝑖
(𝑢)) 

                 = 𝑖𝑛𝑓
𝑢∈𝑍𝑛

𝑚𝑎𝑥 (1 −  𝐹𝑩(𝑣 + 𝑢), 𝑖𝑛𝑓
𝑖∈𝐼

 (1 − 𝐹𝐴𝑖
(𝑢))) 

                ≤ 𝑖𝑛𝑓
𝑢∈𝑍𝑛

(𝑖𝑛𝑓
𝑖∈𝐼

 𝑚𝑎𝑥( 1 −  𝐹𝑩(𝑣 + 𝑢), 1 − 𝐹𝐴𝑖
(𝑢))) 

                         ≤ 𝑖𝑛𝑓
𝑖∈𝐼

𝑖𝑛𝑓
𝑢∈𝑍𝑛

(𝑚𝑎𝑥(1 −  𝐹𝑩(𝑣 + 𝑢), 1 − 𝐹𝐴𝑖
(𝑢))) 

                ≤ ∩
𝑖∈𝐼

𝑖𝑛𝑓
𝑢∈𝑍𝑛

𝑚𝑎𝑥 (1 −  𝐹𝐵(𝑣 + 𝑢), 1 − 𝐹𝐴𝑖
(𝑢))          ≤ 𝐹 ∩

𝑖∈𝐼
(𝐵⊕̃𝐴𝑖)(𝑣) 

a) The proof is similar to b). 

 4.5.2. Proposition (properties of the neutrosophic erosion): 

Proposition 1: 

The neutrosophic erosion satisfies the monotonicity, ∀A, B, C ∈ 𝒩(Z2). 

a) A ⊆ B ⟹ 〈TA⊖̃C , 𝐼A⊖̃C , 𝐹A⊖̃C〉 ⊆ 〈TB⊖̃C , 𝐼B⊖̃C , 𝐹B⊖̃C〉 

T𝐀⊖̃𝐂 ⊆ T𝐁⊖̃𝐂   ,    I𝐀⊖̃𝐂 ⊆ I𝐁⊖̃𝐂   𝑎𝑛𝑑   F𝐀⊖̃𝐂 ⊇ F𝐁⊖̃𝐂 

b)  A ⊆ B ⟹ 〈TC⊖̃A , 𝐼C⊖̃A , 𝐹C⊖̃A〉 ⊇ 〈TC⊖̃B , 𝐼C⊖̃B , 𝐹C⊖̃B〉 

T𝐂⊖̃𝐀 ⊇ T𝐂⊖̃𝐁  ,   I𝐂⊖̃𝐀 ⊇ I𝐂⊖̃𝐁   𝑎𝑛𝑑    F𝐂⊖̃𝐀 ⊆ F𝐂⊖̃𝐁 

Note that: dislike the dilation operator, the erosion does not satisfy commutativity and 
associativity.   

Proposition 2: 

for any family  (𝐴𝑖|𝑖 ∈ 𝐼) 𝑖𝑛 𝒩(Z2)𝑎𝑛𝑑 𝐵 ∈ 𝒩(Z2) 

a) 〈T∩
i∈I

Ai⊖̃B, I ∩
i∈I

Ai⊖̃B , F ∩
i∈I

Ai⊖̃B〉 ⊆ 〈T∩
i∈I

(Ai⊖̃B), I ∩
i∈I

(Ai⊖̃B) , F ∩
i∈I

(Ai⊖̃B)〉 
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𝑇 ∩
𝐢∈𝐈

𝐀𝐢⊖̃𝐁 ⊆ 𝑇 ∩
𝐢∈𝐈

(𝐀𝐢⊖̃𝐁),  𝐼 ∩
𝐢∈𝐈

𝐀𝐢⊖̃𝐁 ⊆ 𝐼 ∩
𝐢∈𝐈

(𝐀𝐢⊖̃𝐁)    and𝐹 ∩
𝐢∈𝐈

𝐀𝐢⊖̃𝐁 ⊇ 𝐹 ∪
𝐢∈𝐈

(𝐀𝐢⊖̃𝐁) 

b) 〈TB⊖̃ ∩
i∈I

Ai
 , IB⊖̃ ∩

i∈I
Ai

FB⊖̃ ∩
i∈I

Ai
〉 ⊇ 〈T∩

i∈I
(B⊖̃Ai), I ∩

i∈I
(B⊖̃Ai), F ∩

i∈I
(B⊖̃Ai)〉 

𝑇𝐵⊕̃ ∩
𝑖∈𝐼

A𝑖
⊇ 𝑇 ∪

𝑖∈𝐼
(B⊕̃A𝑖),  𝐼𝐵⊕̃ ∩

𝑖∈𝐼
A𝑖

⊇ 𝐼 ∪
𝑖∈𝐼

(B⊕̃A𝑖)  and𝐹𝐵⊕̃ ∩
𝑖∈𝐼

A𝑖
⊆ 𝐹 ∩

𝑖∈𝐼
(B⊕̃A𝑖) 

Proof:     a) 
〈T∩

i∈I
Ai⊖̃B, I ∩

i∈I
Ai⊖̃B , F ∩

i∈I
Ai⊖̃B〉 ⊆ 〈T∩

i∈I
(Ai⊖̃B), I ∩

i∈I
(Ai⊖̃B) , F ∩

i∈I
(Ai⊖̃B)〉 

𝑇 ∩
𝑖∈𝐼

𝐴𝑖⊖̃𝐵 (𝑣) = 𝑖𝑛𝑓
𝑢∈𝑍𝑛

𝑚𝑎𝑥 (𝑇∩
𝑖∈𝐼

𝐴𝑖
(𝑣 + 𝑢), 1 − 𝑇𝐵(𝑢)) 

= 𝑖𝑛𝑓
𝑢∈𝑍𝑛

𝑚𝑎𝑥 (𝑖𝑛𝑓
𝑖∈𝐼

 𝑇𝑨𝒊
(𝑣 + 𝑢), 1 − 𝑇𝐵(𝑢)) 

≤ 𝑖𝑛𝑓
𝑢∈𝑍𝑛

𝑖𝑛𝑓
𝑖∈𝐼

(𝑚𝑎𝑥 𝑇 𝑨𝒊
(𝑣 + 𝑢), 1 − 𝑇𝐵(𝑢)) 

                              ≤ ∩
𝒊∈𝑰

𝑖𝑛𝑓
𝑢∈𝑍𝑛

(𝑚𝑎𝑥 𝑇𝑨𝒊
(𝑣 + 𝑢), 1 − 𝑇𝐵(𝑢))                  ≤ ∩

𝑖∈𝐼
𝑇(𝐴𝑖⊖̃𝐵)(𝑣) 

     𝐼 ∩
𝑖∈𝐼

𝐴𝑖⊖̃𝐵 (𝑣) = 𝑖𝑛𝑓
𝑢∈𝑍𝑛

𝑚𝑎𝑥 (𝐼 ∩
𝑖∈𝐼

𝐴𝑖
(𝑣 + 𝑢), 1 − 𝐼𝐵(𝑢)) 

                        = 𝑖𝑛𝑓
𝑢∈𝑍𝑛

𝑚𝑎𝑥 (𝑚𝑖𝑛
𝑖∈𝐼

 𝐼𝑨𝒊
(𝑣 + 𝑢), 1 − 𝐼𝐵(𝑢)) 

                      ≤ 𝑖𝑛𝑓
𝑢∈𝑍𝑛

𝑚𝑖𝑛
𝑖∈𝐼

(𝑚𝑎𝑥 𝐼 𝑨𝒊
(𝑣 + 𝑢), 1 − 𝐼𝐵(𝑢)) 

                              ≤ ∩
𝒊∈𝑰

𝑖𝑛𝑓
𝑢∈𝑍𝑛

(𝑚𝑎𝑥 𝐼𝑨𝒊
(𝑣 + 𝑢), 1 − 𝐼𝐵(𝑢))                    ≤ ∩

𝑖∈𝐼
𝐼(𝐴𝑖⊖̃𝐵)(𝑣) 

        𝐹 ∩
𝒊∈𝑰

𝑨𝒊⊖̃𝑩(𝑣) = 𝑠𝑢𝑝
𝑢∈𝑍𝑛

𝑚𝑖𝑛 (1 − 𝐹∩
𝒊∈𝑰

𝑨𝒊
(𝑣 + 𝑢), 𝐹𝐵(𝑢)) 

                      = 𝑠𝑢𝑝
𝑢∈𝑍𝑛

𝑚𝑖𝑛 (1 − 𝑖𝑛𝑓
𝑖∈𝐼

 𝐹𝑨𝒊
(𝑣 + 𝑢), 𝐹𝐵(𝑢)) 

                      = 𝑠𝑢𝑝
𝑢∈𝑍𝑛

𝑚𝑖𝑛 (𝑠𝑢𝑝 
𝑖∈𝐼

(1 −  𝐹𝑨𝒊
(𝑣 + 𝑢)) , 𝐹𝐵(𝑢)) 

                     ≥ 𝑠𝑢𝑝
𝑢∈𝑍𝑛

𝑠𝑢𝑝
𝑖∈𝐼

(𝑚𝑖𝑛1 −  𝐹𝑨𝒊
(𝑣 + 𝑢), 𝐹𝐵(𝑢)) 

                              ≥ ∪
𝑖∈𝐼

𝑠𝑢𝑝
𝑢∈𝑍𝑛

(𝑚𝑖𝑛1 −  𝐹𝑨𝒊⊖̃𝑩(𝑣 + 𝑢), 𝐹𝐵(𝑢))          ≥ 𝐹 ∪
𝑖∈𝐼

(𝐴𝑖⊖̃𝐵)(𝑣) 

b) The proof is similar to a). 

Proposition 3:   for any family (𝐴𝑖|𝑖 ∈ 𝐼) 𝑖𝑛 𝒩(Z2) 𝑎𝑛𝑑 𝐵 ∈ 𝒩(Z2) 

a) 〈𝑇 ∪
𝑖∈𝐼

A𝑖⊖̃B, 𝐼 ∪
𝑖∈𝐼

A𝑖⊖̃B , 𝐹 ∪
𝑖∈𝐼

A𝑖⊖̃B〉 ⊇ 〈𝑇 ∪
𝑖∈𝐼

(A𝑖⊖̃B), 𝐼 ∪
𝑖∈𝐼

(A𝑖⊖̃B) , 𝐹 ∪
𝑖∈𝐼

(A𝑖⊖̃B)〉 

𝑇 ∪
𝒊∈𝑰

𝐀𝒊⊖̃𝐁 ⊇ 𝑇 ∪
𝒊∈𝑰

(𝐀𝒊⊖̃𝐁),  𝐼 ∪
𝒊∈𝑰

𝐀𝒊⊖̃𝐁 ⊇ 𝐼 ∪
𝒊∈𝑰

(𝐀𝒊⊖̃𝐁) and 𝐹 ∪
𝒊∈𝑰

𝐀𝒊⊖̃𝐁 ⊆  𝐹 ∩
𝑖∈𝐼

(𝐀𝒊⊖̃𝐁) 

b) 〈𝑇𝐵⊖̃ ∪
𝑖∈𝐼

A𝑖
, 𝐼𝐵⊖̃ ∪

𝑖∈𝐼
A𝑖

 ,  𝐹𝐵⊖̃ ∪
𝑖∈𝐼

A𝑖
〉 ⊆ 〈𝑇 ∪

𝑖∈𝐼
(𝐵⊖̃A𝑖) , 𝐼 ∪

𝑖∈𝐼
(𝐵⊖̃A𝑖) , 𝐹 ∪

𝑖∈𝐼
(𝐵⊖̃A𝑖)〉 

𝑇𝐵⊖̃ ∪
𝑖∈𝐼

A𝑖
⊆ 𝑇 ∩

𝑖∈𝐼
(𝑩⊖̃𝐀𝒊),  𝐼𝐵⊖̃ ∪

𝑖∈𝐼
A𝑖

⊆ 𝐼 ∩
𝑖∈𝐼

(𝑩⊖̃𝐀𝒊)  𝑎𝑛𝑑 𝐹𝐵⊖̃ ∪
𝑖∈𝐼

A𝑖
⊇ 𝐹 ∪

𝒊∈𝑰
(𝑩⊖̃𝐀𝒊) 
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Proof: a) 
〈𝑇 ∪

𝑖∈𝐼
A𝑖⊖̃B,  𝐼 ∪

𝑖∈𝐼
A𝑖⊖̃B,  𝐹 ∪

𝑖∈𝐼
A𝑖⊖̃B〉 ⊇ 〈𝑇 ∪

𝑖∈𝐼
(A𝑖⊖̃B),  𝐼 ∪

𝑖∈𝐼
(A𝑖⊖̃B),  𝐹 ∪

𝑖∈𝐼
(A𝑖⊖̃B)〉 

𝑇 ∪
𝑖∈𝐼

𝐴𝑖⊖̃𝐵 (𝑣) = 𝑖𝑛𝑓
𝑢∈𝑍𝑛

𝑚𝑎𝑥 (𝑇∪
𝑖∈𝐼

𝐴𝑖
(𝑣 + 𝑢), 𝑇𝐵(𝑢)) 

                       = 𝑖𝑛𝑓
𝑢∈𝑍𝑛

𝑚𝑎𝑥 (𝑠𝑢𝑝
𝑖∈𝐼

𝑇𝑨𝒊
(𝑣 + 𝑢), 𝑇𝐵(𝑢))     = 𝑖𝑛𝑓

𝑢∈𝑍𝑛
𝑠𝑢𝑝
𝑖∈𝐼

(𝑚𝑎𝑥𝑇𝑨𝒊
(𝑣 +

𝑢), 𝑇𝐵(𝑢)) 

                                ≥ ∪
𝒊∈𝑰

𝑖𝑛𝑓
𝑢∈𝑍𝑛

(𝑚𝑎𝑥𝑇𝑨𝒊
(𝑣 + 𝑢), 𝑇𝐵(𝑢))         ≥ ∪

𝑖∈𝐼
𝑇(𝐴𝑖⊖̃𝐵)(𝑣)       

                     ≥ 𝑇 ∪
𝑖∈𝐼

(𝐴𝑖⊖̃𝐵)(𝑣)   

𝐼 ∪
𝑖∈𝐼

𝐴𝑖⊖̃𝐵 (𝑣) = 𝑖𝑛𝑓
𝑢∈𝑍𝑛

𝑚𝑎𝑥 (𝐼 ∪
𝑖∈𝐼

𝐴𝑖
(𝑣 + 𝑢), 𝐼𝐵(𝑢)) 

                               = 𝑖𝑛𝑓
𝑢∈𝑍𝑛

𝑚𝑎𝑥 (𝑠𝑢𝑝
𝑖∈𝐼

 𝐼𝑨𝒊
(𝑣 + 𝑢), 𝐼𝐵(𝑢))       = 𝑖𝑛𝑓

𝑢∈𝑍𝑛
𝑠𝑢𝑝
𝑖∈𝐼

(𝑚𝑎𝑥 𝐼𝑨𝒊
(𝑣 +

𝑢), 𝐼𝐵(𝑢)) 

                      ≥ ∪
𝒊∈𝑰

𝑖𝑛𝑓
𝑢∈𝑍𝑛

(𝑚𝑎𝑥 𝐼 𝑨𝒊
(𝑣 + 𝑢), 𝐼𝐵(𝑢))           ≥ ∪

𝑖∈𝐼
𝐼(𝐴𝑖⊖̃𝐵)(𝑣)       

                    ≥ 𝐼 ∪
𝑖∈𝐼

(𝐴𝑖⊖̃𝐵)(𝑣)                  

       𝐹 ∪
𝒊∈𝑰

𝑨𝒊⊖̃𝑩(𝑣) = 𝑠𝑢𝑝
𝑢∈𝑍𝑛

𝑚𝑖𝑛 (1 − 𝐹∪
𝒊∈𝑰

𝑨𝒊
(𝑣 + 𝑢), 𝐹𝐵(𝑢)) 

                     = 𝑠𝑢𝑝
𝑢∈𝑍𝑛

𝑚𝑖𝑛 (1 − 𝑠𝑢𝑝
𝑖∈𝐼

 𝐹𝑨𝒊
(𝑣 + 𝑢), 𝐹𝐵(𝑢)) 

                    = 𝑠𝑢𝑝
𝑢∈𝑍𝑛

𝑚𝑖𝑛 (𝑖𝑛𝑓
𝑖∈𝐼

(1 −  𝐹𝑨𝒊
(𝑣 + 𝑢)) , 𝐹𝐵(𝑢)) 

                              = 𝑠𝑢𝑝
𝑢∈𝑍𝑛

𝑖𝑛𝑓
𝑖∈𝐼

(𝑚𝑖𝑛 1 − 𝐹𝑨𝒊
(𝑣 + 𝑢), 𝐹𝐵(𝑢)) 

              ≤ 𝑖𝑛𝑓
𝑖∈𝐼

𝑠𝑢𝑝
𝑢∈𝑍𝑛

(𝑚𝑖𝑛1 −  𝐹𝑨𝒊
(𝑣 + 𝑢), 𝐹𝐵(𝑢)) 

                    ≤ ∩
𝑖∈𝐼

𝑠𝑢𝑝
𝑢∈𝑍𝑛

(𝑚𝑖𝑛 1 − 𝐹𝐴𝐼⊖̃𝐵(𝑣 + 𝑢), 𝐹𝐵(𝑢))     ≤ 𝐹 ∩
𝑖∈𝐼

(𝐴𝑖⊖̃𝐵)(𝑣) 

      b) The proof is similar to a). 

4.5.3. Proposition    (properties of the neutrosophic closing): 

The neutrosophic closing satisfies the following properties 

Proposition 1:  The neutrosophic closing satisfies: 

 Monotonicity,   ∀  A, B, C ∈ 𝒩(Z2) 

 A ⊆ B ⟹ 〈TA•̃C , 𝐼A•̃C , 𝐹A•̃C〉 ⊆ 〈TB•̃ C , 𝐼B • ̃C , 𝐹B•̃ C〉 

TA•̃C ⊆ TB•̃C   ,    IA•̃C ⊆ IB•̃C   𝑎𝑛𝑑  FA•̃C ⊇ FB•̃C 

Proposition 2:   For any family   (𝐴𝑖|𝑖 ∈ 𝐼)  𝑖𝑛 𝒩(Z2)   𝑎𝑛𝑑    𝐵 ∈ 𝒩(Z2) 

〈T∩
i∈I

Ai•̃B , I ∩
i∈I

Ai•̃B , F ∩
i∈I

Ai•̃B〉 ⊆ 〈T∩
i∈I

(Ai•̃B), I ∩
i∈I

(Ai•̃B) , F ∩
i∈I

(Ai•̃B)〉 
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𝑇∩
i∈I

Ai•̃B ⊆ 𝑇∩
i∈I

(Ai•̃B) ,  𝐼 ∩
i∈I

Ai•̃B ⊆ 𝐼 ∩
i∈I

(Ai•̃B)   𝑎𝑛𝑑  𝐹∩
i∈I

Ai•̃B ⊇ 𝐹∪
i∈I

(Ai•̃B) 

Proposition 3:  For any family  (𝐴𝑖|𝑖 ∈ 𝐼) 𝑖𝑛 𝒩(Z2)   𝑎𝑛𝑑   𝐵 ∈ 𝒩(Z2) 
〈𝑇∪

𝑖∈𝐼
A𝑖•̃B,  𝐼 ∪

𝑖∈𝐼
A𝑖•̃B ,  𝐹∪

𝑖∈𝐼
A𝑖•̃B〉 ⊇ 〈𝑇∪

𝑖∈𝐼
(A𝑖•̃B),  𝐼 ∪

𝑖∈𝐼
(A𝑖•̃B),  𝐹∪

𝑖∈𝐼
(A𝑖•̃B)〉 

𝑇∪
𝑖∈𝐼

A𝑖•̃ B ⊇ 𝑇∪
𝑖∈𝐼

(A𝑖•̃ B),  𝐼 ∪
𝑖∈𝐼

A𝑖•̃ B ⊇ 𝐼 ∪
𝑖∈𝐼

(A𝑖•̃ B)  𝑎𝑛𝑑 𝐹∪
𝑖∈𝐼

A𝑖•̃ B ⊆  𝐹∩
𝑖∈𝐼

(A𝑖•̃ B) 

Proof:   The proof is similar to the procedure used in propositions §4.5.1 and §4.5.2. 

4.5.4. Proposition    (properties of the neutrosophic opening): 
The neutrosophic opening satisfies the following properties 

Proposition 1:  The neutrosophic opening satisfies: 

 Monotonicity:   ∀   A, B, C ∈ 𝒩(Z2) 

A ⊆ B ⟹ 〈TA ο̃ C , 𝐼A ο ̃C , 𝐹A ο̃ C〉 ⊆ 〈TB ο̃ C , 𝐼B ο̃ C , 𝐹B ο̃ C〉 

T𝐀∘̃ 𝐂 ⊆ T𝐁∘̃ 𝐂   ,    I𝐀 ∘̃ 𝐂 ⊆ I𝐁 ∘ ̃𝐂   𝑎𝑛𝑑  F𝐀∘̃  𝐂 ⊇ F𝐁 ∘ ̃𝐂 

Proposition 2:   For any family  (𝐴𝑖|𝑖 ∈ 𝐼) 𝑖𝑛 𝒩(Z2) 𝑎𝑛𝑑 𝐵 ∈ 𝒩(Z2) 

〈T∩
𝑖∈I

A𝑖 ο ̃B, I ∩
𝑖∈I

A𝑖 ο̃ B , F ∩
𝑖∈I

A𝑖 ο̃ B〉 ⊆ 〈T∩
𝑖∈I

(A𝑖 ο ̃B), I ∩
𝑖∈I

(A𝑖ο̃ B) , F ∩
𝑖∈I

(A𝑖 ο ̃B)〉 

𝑇∩
𝑖∈I

A𝑖 ο̃B ⊆ 𝑇∩
𝑖∈I

(A𝑖 ο̃ B),  𝐼 ∩
𝑖∈I

A𝑖ο ̃B ⊆ 𝐼 ∩
𝑖∈I

(A𝑖 ο ̃B)  and  𝐹∩
𝑖∈I

A𝑖 ο̃B ⊇ 𝐹∪
𝑖∈I

(A𝑖ο̃ B ) 

Proposition 3:   For any family  (𝐴𝑖|𝑖 ∈ 𝐼) 𝑖𝑛 𝒩(Z2) 𝑎𝑛𝑑 𝐵 ∈ 𝒩(Z2) 
〈𝑇∪

𝑖∈𝐼
A𝑖 ο̃ B,  𝐼 ∪

𝑖∈𝐼
A𝑖 ο ̃B, 𝐹∪

𝑖∈𝐼
A𝑖 ο̃ B〉 ⊇ 〈𝑇∪

𝑖∈𝐼
(A𝑖ο̃ B), 𝐼 ∪

𝑖∈𝐼
(A𝑖 ο ̃B ),  𝐹∪

𝑖∈𝐼
(A𝑖 ο̃B)〉 

𝑇∪
𝑖∈𝐼

A𝑖 ο̃ B ⊇ 𝑇∪
𝑖∈𝐼

(A𝑖 ο̃ B),  𝐼 ∪
𝑖∈𝐼

A𝑖 ο̃B ⊇ 𝐼 ∪
𝑖∈𝐼

(A𝑖 ο ̃B) and 𝐹∪
𝑖∈𝐼

A𝑖 ο̃ B ⊆  𝐹∩
𝑖∈𝐼

(A𝑖 ο ̃B ) 

Proof   The proof is similar to the procedure used in propositions §4.5.1 and §4.5.2. 

5. Conclusion 

In this paper, our aim was to establish a foundation for what we called, Neutrosophic 
Mathematical Morphology. It is a new approach to Mathematical Morphology based on 
neutrosophic set theory. Several basic definitions for Neutrosophic Morphological operations were 
extracted and a study of its algebraic properties was presented. In addition, we were able to prove 
that Neutrosophic Morphological operations inherit properties and restrictions of fuzzy 
Mathematical Morphology. In future, we plane to apply the introduced concepts in Image 
Processing. For instance, Image Smoothing, Enhancement and Retrieval, as well as in medical 
imaging.   
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Smooth Neutrosophic Preuniform Spaces 

Abstract 

As a new branch of philosophy, the neutrosophy was presented by Smarandache in 1998. It was 
presented as the study of origin, nature, and scope of neutralities; as well as their interactions with 
different ideational spectra. The aim of this paper is to introduce the concepts of smooth 
neutrosophic preuniform space, smooth neutrosophic preuniform subspace, and smooth 
neutrosophic preuniform mappings. Furthermore, some properties of these concepts will be 
investigated. 

Keywords 

Fuzzy sets, neutrosophic sets, smooth neutrosophic preuniformity, smooth neutrosophic 
preuniform subspace, smooth neutrosophic preuniform mappings. 

1. Introduction 

In 1984, R. Badard [[3], [4]] introduced the concept of a fuzzy preuniformity and he discussed 
the links between fuzzy preuniformity and fuzzy pretopology. In 1986, R. Badard [6] introduced 
the basic idea of smooth structure, Badard et al. [5] (1993) investigated some properties of smooth 
preuniform. Ramadan et al. [10] (2003) introduced smooth topologies induced by a smooth 
uniformity and investigated some properties of them. In 1983 the intuitionistic fuzzy set was 
introduced by Atanassov [[1], [2], [7]], as a generalization of fuzzy sets in Zadeh’s sense [16], 
where besides the degree of membership of each element there was considered a degree of non-
membership. Smarandache [[13], [14], [15]], defined the notion of neutrosophic set, which is a 
generalization of Zadeh’s fuzzy sets and Atanassov’s intuitionistic fuzzy set. Neutrosophic sets 
have been investigated by Salama et al. [[11], [12]]. The purpose of this paper is to introduce the 
concepts of smooth neutrosophic preunifrm space, smooth neutrosophic preuniform subspace, and 
smooth neutrosophic preuniform mappings.  We also investigate some of their properties.  

2. Preliminaries 
In this section we use X  to denote a nonempty set, I  to denote the closed unit interval [0, 

1], oI  to denote the interval ]1,0( , 1I  to denote the interval )1,0[ , and XI to be the set of all 
fuzzy subsets defined on X . By 0  and 1  we denote the characteristic functions of   and X , 
respectively. The family of all neutrosophic sets in X  will be denoted by )X( . 

mailto:mohamedelgayyar@hotmail.com
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2.1. Definition [14], [15]. A neutrosophic set A  (NS for short) on a nonempty set X is 
defined as: Xx,)x(F),x(I),x(T,xA AAA   where ]1,0[X:F,I,T  , and 3)x(F)x(I)x(T0 AAA   
representing the degree of membership (namely )x(TA ), the degree of indeterminacy (namely, 

)x(IA ), and the degree of non-membership (namely )x(FA ); for each element Xx to the set A . 

2.2. Definition [13], [14]. The Null (empty) neutrosophic set N0  and the absolute 
(universe) neutrosophic set N1  are defined as follows: 

               Xx,0,1,1,x1,Xx,1,0,0,x0:TypeI NN    

               Xx,0,0,1,x1,Xx,1,1,0,x0:TypeII NN   

2.3. Definition [11], [12]. A neutrosophic set A is a subset of a neutrosophic set B , ( BA ), 
may be defined as: 

           Xx,)x(F)x(F),x(I)x(I),x(T)x(TBA:TypeI BABABA   

           Xx,)x(F)x(F),x(I)x(I),x(T)x(TBA:TypeII BABABA   

2.4. Definition [11], [12]. The Complement of a neutrosophic set A , denoted by coA , is 
defined as: 

                   )x(T),x(I1),x(F,xcoA:TypeI AAA   

                  )x(F1),x(I1),x(T1,xcoA:TypeII AAA   

2.5. Definition [11], [12] . Let )X(B,A  then: 

 ))x(F),x(Fmin()),x(I),x(Imax()),x(T),x(Tmax(,xBA:TypeI BABABA   

 ))x(F),x(Fmin()),x(I),x(Imin()),x(T),x(Tmax(,xBA:TypeII BABABA  

))x(F),x(Fmax()),x(I),x(Imin()),x(T),x(Tmin(,xBA:TypeI BABABA  

))x(F),x(Fmax()),x(I),x(Imax()),x(T),x(Tmin(,xBA:TypeII BABABA   

      )x(F),x(I),x(F1,xA,)x(T1),x(I),x(T,xA][ AAAAAA   

 

2.6. Definition [11], [12] . Let Ji},A{ i   be an arbitrary family of neutrosophic sets, then: 

                         )x(Finf),x(Isup),x(Tsup,xA:TypeI
iii A

ji
A

ji
A

ji
i

Ji 
   

                           )x(Finf),x(Iinf),x(Tsup,xA:TypeII
iii A

ji
A

ji
A

ji
i

Ji 
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                           )x(Fsup),x(Iinf),x(Tinf,xA:TypeI
iii A

ji
A

ji
A

ji
i

Ji 
  

                          )x(Fsup),x(Isup),x(Tinf,xA:TypeII
iii A

ji
A

ji
A

ji
i

Ji 
  

2.7. Definition [11], [12]. The difference between two neutrosophic sets A  and B defined 
as coBAB\A  . 

2.8. Definition [11], [12].Every intuitionistic fuzzy set A  on X  is NS having the form
)x(F)),x(F)x(T(1),x(T,xA AAAA  , and every fuzzy set  A  on X  is NS having the form

Xx,)x(T1,0),x(T,xA AA  . 

2.9. Definition [8]. Let  Y  be a subset of X and XIA ; the restriction of A  on Y is denoted 
by Y/A . For each YIB , the extension of B  on X , denoted by XB , is defined by: 

                                      









YXxif5.0
Yxif)x(B

BX  

2.10. Definition [6].  A smooth topological space (STS) is an ordered pair ),X(  , where X  is a 

nonempty set and II: X   is a mapping satisfying the following properties: 

)A()A(,Ji,A)3O(
)A()A()AA(,IA,A)2O(

1)1()0()1O(

i
Ji

i
Ji

i

2121
X

21








 

2.11. Definition [5]. A fuzzy preuniform structure *U on X  is a family of fuzzy sets in
XX , called entourages which satisfies: 

XX**
2

*
1

Iv,u,Uvthen,vuandUuIf)FP(

Xy,x,
yxif,1
yxif,0

)y,x(

:diagonaltheiswhere,Uueveryfor,u)FP(















 

The pair )U,X( * is said to be a fuzzy preuniform space. 

2.12. Definition [5]. Let )U,X( * be a fuzzy preuniform space, the following potential 
properties are considered: 

   ).x,y(u)y,x(uwhere,Uuthatassertcanwe,UueveryFor)FP( 1*1*
3    

            In this case, )U,X( *  is said to be symmetrical. 

  .Uvuthatassertcanwe,Uv,ueveryFor)FP( **
4   
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           In this case, )U,X( *  is said to be of type D. 

  
}Xz:)y,z(v)z,x(vsup{)y,x(vv

where,uvvthatsuchUvexiststhere,UueveryFor)FP( **
5



  

         In this case, )U,X( *  is said to be of type S. 
Note that a fuzzy preunifom space which is symmetrical, of type D and of type S is a fuzzy 

uniform space as defined by Hutton [9]. 

2.13. Definition [5]. A smooth preuniform structure U on X  is a fuzzy set in the fuzzy 

sets in XX . U is an element of 
XXII



which satisfies: 

   
Xy,xeveryfor,1)y,x)(XX(where,1)XX(U)SP(

Iv,u,)u(U)v(Uvu)SP(

Iueveryfor0)u(Uu)SP(

3

XX
2

XX
1











 

The pair )U,X( is said to be a smooth preuniform space. 

2.14. Definition [5]. Let )U,X( be a smooth preuniform space, the following potential 
properties are considered: 

   ).x,y(u)y,x(uwhere,)u(U)u(Uhavewe,IueveryFor)SP( 11XX
4    

    In this case, )U,X(  is said to be symmetrical. 

   
)v(U)u(U)vu(Uwritecanwe)SP(frombut

),v(U)u(U)vu(Uhavewe,Iv,ueveryFor)SP(

2

XX
5



 

 

    In this case, )U,X(  is said to be of type D. 

    XX

Iv
6 Iueveryfor,)u(U})uvv:)v(U{suphaveweIf)SP(

XX








 

    In this case, )U,X(  is said to be of type S. 

3. Smooth Neutrosophic Preuniform Spaces 
Now, we will define two types of smooth neutrosophic preuniform spaces, 
 a smooth neutrosophic preuniform space (SNPS) take the form )U,U,U,X( FIT  and the 

mappings  II:U,U,U XXFIT  represent the degree of membership, the degree of indeterminacy, 
and the degree of non-membership respectively.  

3.1. Smooth Neutrosophic preuniform Spaces of type I   

3.1.1. Definition. A smooth neutrosophic preuniformity )U,U,U( FIT  of type I satisfying the 
following axioms: 
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0)XX(Uand,1)XX(U)XX(U)SNPI(

Iv,u,)u(U)v(Uand),u(U)v(U),u(U)v(Uvu)SNPI(

Iueveryfor,1)u(Uand0)u(U)u(Uu)SNPI(

FIT
3

XXFFIITT
2

XXFIT
1











)U,U,U,X( FIT  

is said to be a smooth neutrosophic preuniform space of type I 

).u(U)u(Uand),u(U)u(U),u(U)u(U

:havewe,IueveryFor)SNPI(
1FF1II1TT

XX
4









 
In this case, )U,U,U,X( FIT  is said to be symmetrical. 

).v(U)u(U)vu(U

and),v(U)u(U)vu(U),v(U)u(U)vu(U

writecanwe)SNPI(frombut),v(U)u(U)vu(U

and),v(U)u(U)vu(U),v(U)u(U)vu(U

:havewe,Iv,ueveryFor)SNPI(

FFF

IIITTT
2

FFF

IIITTT

XX
5









 

 
In this case, )U,U,U,X( FIT  is said to be of type D. 

.Iueveryfor,)u(U})uvv:)v(U{inf

and,)u(U})uvv:)v(U{sup),u(U})uvv:)v(U{sup

:haveweIf)SNPI(

XXFF

Iv

II

Iv

TT

Iv

6

XX

XXXX















 
In this case, )U,U,U,X( FIT  is said to be of type S. 

3.1.2. Example. Let }b,a{X  . Define the mappings II:U,U,U XXFIT  as: 















otherwise,0
uif,5.0

XXuif,1
)u(UT

 















otherwise,0
uif,6.0

XXuif,1
)u(UI

 















otherwise,1
uif,3.0

XXuif,0
)u(UF

 
Then )U,U,U,X( FIT  is a smooth neutrosophic preuniform space of type I on X . 

3.1.3.Remark. Both TU and IU with their conditions are smooth preuniformities. 

3.1.4.Proposition. Let Ji)}F
iU,I

iU,T
iU{(   be a family of smooth neutrosophic preuniformitiess 

on X . Then )U,U,U(and)U,U,U( F
i

I
i

T
i

Ji

F
i

I
i

T
i

Ji 
  are smooth neutrosophic preuniformities on X . 
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Proof. First, for )U,U,U( F
i

I
i

T
i

Ji
 : 

.0)XX(Uinfand,1)XX(Usup)XX(Usup

Then.Jieveryfor,0)XX(Uand,1)XX(U)XX(U)SNPI(

.)u(Uinf)v(Uinfand),u(Usup)v(Usup

,)u(Usup)v(Usuphence,)u(U)v(Uand),u(U)v(U

,)u(U)v(UhaveweJieveryforThen.vuthatsuchIv,uLet)SNPI(

.1)u(Uinfand0)u(Usup)u(Usuphence,Jieveryfor,1)u(U

and0)u(U)u(UthatfollowsIt.uandIuLet)SNPI(

F
i

Ji
I
i

Ji

T
i

Ji

F
i

I
i

T
i3

F
i

Ji
F
i

Ji
I
i

Ji

I
i

Ji

T
i

Ji

T
i

Ji

F
i

F
i

I
i

I
i

T
i

T
i

XX
2

F
i

Ji
I
i

Ji

T
i

Ji

F
i

I
i

T
i

XX
1



























 
Second, the proof for  )U,U,U( F

i
I
i

T
i

Ji
  is similar to the first 

3.1.5.Proposition. Let Ji)}F
iU,I

iU,T
iU{(  be a family of smooth neutrosophic preuniformitiess 

on X .Then: 

(i)   If every )F
iU,I

iU,T
iU(  is symmetrical, then )U,U,U( F

i
I
i

T
i

Ji
  and  

     )U,U,U( F
i

I
i

T
i

Ji
 are also symmetrical. 

(ii)  If every )F
iU,I

iU,T
iU(  is of type D , then )U,U,U( F

i
I
i

T
i

Ji
  is also of type D  

(iii)  If every )F
iU,I

iU,T
iU(  is of typeS , then )U,U,U( F

i
I
i

T
i

Ji
  is also of type S  

Proof.  and),u(U)u(U),u(U)u(Uthen,IuLet)i( 1I
i

I
i

1T
i

T
i

XX    

)u(Usup)u(Usupand

),u(Uinf)u(Uinf),u(Uinf)u(Uinfalso),u(Uinf)u(Uinfand

),u(Usup)u(Usup),u(Usup)u(Usuphence,Ji)u(U)u(U

1F
i

Ji

F
i

Ji

1I
i

Ji
I
i

Ji
1T

i
Ji

T
i

Ji
1F

i
Ji

F
i

Ji

1I
i

Ji

I
i

Ji

1T
i

Ji

T
i

Ji

1F
i

F
i
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.)v(Usup)u(Usup)vu(Usupand),v(Uinf)u(Uinf)vu(Uinf

),v(Uinf)u(Uinf)vu(Uinfhence,Ji)v(U)u(U)vu(U

and),v(U)u(U)vu(U),v(U)u(U)vu(Uthen,Iv,uLet)ii(

F
i

Ji

F
i

Ji

F
i

Ji

I
i

Ji
I
i

Ji
I
i

Ji

T
i

Ji
T
i

Ji
T
i

Ji
F
i

F
i

F
i

I
i

I
i

I
i

T
i

T
i

T
i

XX













.)u(Uinf})uvv:)v(Uinf{inf

and,)u(Usup})uvv:)v(Usup{sup),u(Usup

})uvv:)v(Usup{supthen,Iu,)u(U})uvv:)v(U{inf

and,)u(U})uvv:)v(U{sup),u(U})uvv:)v(U{supLet)iii(

F
i

Ji
F
i

JiIv

I
i

Ji

I
i

JiIv

T
i

Ji

T
i

JiIv

XXF
i

F
i

Iv

I
i

I
i

Iv

T
i

T
i

Iv

XX

XX

XXXX

XXXX





























 Next, we will 

introduce a kind of subspace of a smooth neutrosophic preuniform space and some hereditary 
properties. 

3.1.6.Definition. Let A  be a nonempty subset of X  and let AAIu  . We define the extension 
of u to XX , denoted XXu   by: 

                                   


 

 otherwise,5.0
Ay,xif,)y,x(u

)y,x(u XX  

3.1.7.Definition. Let A  be a nonempty subset of X . We define the subdiagonal XX
A I   

by: 

                                   


 


otherwise,0

Ayxif,1
)y,x(A  

One may notice that  )( coAA  

3.1.8. Proposition. Let )U,U,U,X( FIT  be a smooth neutrosophic preuniform space and let A  

be a nonempty subset of X , and the mappings II:U,U,U AAF
A

I
A

T
A   defined by: 

               












 }AA{\Iu,)u(U

AAuif,1
)u(U AA

coAXX
T

T
A , 

               












 }AA{\Iu,)u(U

AAuif,1
)u(U AA

coAXX
I

I
A , and 

               












 }AA{\Iu,)u(U

AAuif,0
)u(U AA

coAXX
F

F
A  , where 

1)y,x)(AA(  for every Ay,x  .Then )U,U,U( F
A

I
A

T
A is a smooth neutrosophic preuniformity 

on A  . 
Proof. :haveweIu,Then.AindiagonalthebeILet)SNPI( AAAAA

1
   

     
.1)u(Uand0)u(U)u(U1)u(Uand

0)u(U)u(U)u(u
F
A

I
A

T
AcoAXX

F
coAXX

I
coAXX

T
coAXX

A
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),u(U)v(U,So).u(U)v(Uand),u(U

)v(U),u(U)v(Uhence),v(

)u(thatfollowsitThen.vuthatsuchIv,uLet)SNPI(

T
A

T
AcoAXX

F
coAXX

F
coAXX

I
coAXX

I
coAXX

T
coAXX

T
coAXX

coAXX
AA

2














 
).u(U)v(Uand),u(U)v(U F

A
F
A

I
A

I
A  .definitionthefromrwardstraightfoisproofThe)SNPI( 3  

3.1.9. Definition. The smooth neutrosophic preuniform space )U,U,U,A( F
A

I
A

T
A  is called a 

subspace of )U,U,U,X( FIT  and  )U,U,U( F
A

I
A

T
A  is called the smooth neutrosophic preuniformity 

on A  induced by )U,U,U( FIT . 

3.1.10. Proposition. Let )U,U,U( FIT be a smooth neutrosophic preuniformity on X , A be a 

nonempty subset of X and )U,U,U( F
A

I
A

T
A  be the corresponding smooth neutrosophic preuniformity 

on A  induced by )U,U,U( FIT .Then the properties )SNPI( 4 and )SNTI( 5 are hereditary. 

Proof. :followsitThen.IuLet)SNPI( AA
4

  

.)u(U)u(Uand)u(U)u(Uthatprovecanwe,Similarly

).y,x()u(

otherwise,5.0
Ay,xif,)y,x(u

otherwise,5.0
Ay,xif,)x,y(u

)x,y(u)y,x()u(

because),u(U))u((U))()u((U

))u((U)u(U)u(Uthatfindwe,AAuIf)2(

.0)u(U)u(Uand

,1)u(U)u(U)u(U)u(Uthatfindwe,AAuIf)1(

1F
A

F
A

1I
A

I
A

XX
1

1
XX

1
XX

1T
AcoAXX

1T1
coA

1
XX

T

1
coAXX

T
coAXX

TT
A

1F
A

F
A

1I
A

I
A

1T
A

T
A


































 




 











   

.)v(U)u(U)vu(Uand)v(U)u(U)vu(Uthatprovecanwe

,Similarly).v(U)u(U))v(U)u(U

))v()u((U))vu((U)vu(U

:lysuccessiveobtainweThen.Iv,uLet)SNPI(

F
A

F
A

F
A

I
A

I
A

I
A

T
A

T
AcoAXX

T
coAXX

T
coAXXcoAXX

T
coAXX

TT
A

AA
5















 
3.1.11. Definition. Consider two ordinary sets Y,X and a mapping f from X into Y .The fuzzy 

product ff   is defined as the following mapping: 

                      
XX

YYXX

Iu),u)(ff(u

II:ff









 

where )u)(ff(   is defined as the following fuzzy set in YY : 



 



otherwise,0
)f(rngy,yif,}y)x(fandy)x(f,Xx,x:)x,x(usup{

)y,y(

IYY:)u)(ff(

2122112121
21 
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3.1.12. Definition. Consider two ordinary sets Y,X .Let f be a mapping from X to Y and 
YYIv  .Then the inverse image of v  under )ff(   is defined as the following fuzzy set in XX : 

     
Xx,x)),x(f),x(f(v)x,x()ff(v)x,x(

IXX:)v()ff(

21212121

1



 


 

3.1.13. Definition. A map YX:f   is called weakly smooth neutrosophic preuniform with 
respect to the smooth neutrosophic preuniformities )U,U,U( F

1
I
1

T
1 on X  and )U,U,U( F

2
I
2

T
2 on Y  iff 

for every YYIv  we have:  

            
.1))v()ff((U1)v(Uand

,0))v()ff((U0)v(U,0))v()ff((U0)v(U
1F

1
F
2

1I
1

I
2

1T
1

T
2









 

3.1.14. Definition. A map YX:f   is called smooth neutrosophic preuniform with respect to 
the smooth neutrosophic preuniformities )U,U,U( F

1
I
1

T
1 on X  and )U,U,U( F

2
I
2

T
2 on Y  iff for every 

YYIv  we have:  
).v(U))v()ff((Uand,)v(U))v()ff((U,)v(U))v()ff((U F

2
1F

1
I
2

1I
1

T
2

1T
1  

 
3.1.15. Definition. A map YX:f   is called smooth neutrosophic direct preuniform with 

respect to the smooth neutrosophic preuniformities )U,U,U( F
1

I
1

T
1 on X  and )U,U,U( F

2
I
2

T
2 on Y  iff 

for every XXIu  we have:  
).u(U))u)(ff((Uand,)u(U))u)(ff((U,)u(U))u)(ff((U F

1
F
2

I
1

I
2

T
1

T
2   

3.1.16. Definition. A map YX:f   is called a (weakly) smooth neutrosophic homeomorphism 
with respect to the smooth neutrosophic preuniformities )U,U,U( F

1
I
1

T
1 on X  and )U,U,U( F

2
I
2

T
2 on 

Y  iff f is bijective and 1f,f   are (weakly) smooth neutrosophic preuniform. 

3.1.17. Proposition. Let )U,U,U,X( F
1

I
1

T
1 and )U,U,U,Y( F

2
I
2

T
2 be two smooth neutrosophic 

preuniform spaces and YX:f   a bijective mapping. The following statements are equivalent: 
(i) f is a smooth netrosophic homeomorphism. 
(ii)f is smooth netrosophic preuniform and smooth netrosophic direct preuniform 
Proof. )ii()i(  .Let f  be a smooth neutrosophic homeomorphism, then f is smooth 

neutrosophic preuniform, and for every  XXIu   we have: 

           
.)u(U))u()ff((Uand

,)u(U))u()ff((U,)u(U))u()ff((U
F
1

111F
2

I
1

111I
2

T
1

111T
2









 

Applying the definitions and from the bijectivity of f  we obtain the following result for 
Yy,y 21  : 

.preuniformdirecticneutrosophsmooth isfhence,)u(U))u)(ff((U

and,)u(U))u)(ff((U),u(U))u)(ff((USo).y,y))(u)(ff((

)x,x(u))y(f),y(f(u)y,y)(ff(u)y,y)(u()ff((

F
1

F
2

I
1

I
2

T
1

T
221

212
1

1
1

21
11

21
111
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)i()ii(   Let f be smooth neutrosophic preuniform and smooth neutrosophic direct preuniform, 

then for every XXIu   we have: 

).u(U))u)(ff((U))u()ff((Uand),u(U))u)(ff((U

))u()ff((U),u(U))u)(ff((U))u()ff((U
F
1

F
2

111F
2

I
1

I
2

111I
2

T
1

T
2

111T
2









 

m.eomorphishomicneutrosophsmootha
isfhence,preuniformicneutrosophsmooth isfthen,bijectiveisfBecause 1

 
3.1.18. Proposition. Let YX:f  be a bijective and smooth neutrosophic direct preuniform 

mapping with respect to the smooth neutrosophic preuniformities )U,U,U( FIT on X  and 

)U,U,U( FIT  on Y and let A  be a nonempty subset of X , then the restriction mapping   

                            )U,U,U),A(f()U,U,U,A(:f F
)A(f

I
)A(f

T
)A(f

F
A

I
A

T
AA/   

Is smooth neutrosophic direct preuniform. 
Proof. For every AAIu  we have: 

              

),))u))(f()f((((U))u))(f()f(((U

),))u))(f()f((((U))u))(f()f(((U

),))u))(f()f((((U))u))(f()f(((U

)A(fcoYYA/A/
F

A/A/
F

)A(f

)A(fcoYYA/A/
I

A/A/
I

)A(f

)A(fcoYYA/A/
T

A/A/
T

)A(f













 

              

)).u)(ff((U)u(U)u(U

and)),u)(ff((U)u(U)u(U

)),u)(ff((U)u(U)u(U

AcoXX
F

AcoXX
FF

A

AcoXX
I

AcoXX
II

A

AcoXX
T

AcoXX
TT

A













 

Applying the definitions and from the bijectivity of f  we obtain the following result for
Yy,y 21  : 

).y,y))(u)(ff((
otherwise,5.0

Ax,xandy)x(f,y)x(fif,)x,x(u
Acoxxandy)x(f,y)x(fif,1

otherwise,5.0
)A(fy,yif,)y,y)(u))(f()f((

)A(fcoyyif,1

)y,y)())u))(f()f((((

21AcoXX

21221121

212211

2121A/A/

21

21)A(fcoYYA/A/





































.preuniformdirecticneutrosophsmoothisfhence),u(U))u))(f()f(((U

and),u(U))u))(f()f(((U),u(U))u))(f()f(((U,So

A/
F
AA/A/

F
)A(f

I
AA/A/

I
)A(f

T
AA/A/

T
)A(f




 

3.2. Smooth Neutrosophic Preuniform Spaces of type II 
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In this part we will consider the definitions of type II. In a similar way as in type I, we can state 
the following definitions and propositions. The proofs of the propositions in type II will be similar 
to the proofs of the propositions in type I. 

3.2.1. Definition. A smooth neutrosophic preuniformity )U,U,U( FIT  of type II satisfying the 
following axioms: 

0)XX(U)XX(Uand,1)XX(U)SNPII(

Iv,u),u(U)v(Uand,)u(U)v(U,)u(U)v(Uvu)SNPII(

Iueveryfor,1)u(U)u(Uand0)u(Uu)SNPII(

FIT
3

XXFFIITT
2

XXFIT
1











)U,U,U,X( FIT

is said to be a smooth neutrosophic preuniform space of type II. Also, for type II: 

).u(U)u(Uand),u(U)u(U),u(U)u(U

:havewe,IueveryFor)SNPII(
1FF1II1TT

XX
4









 
In this case, )U,U,U,X( FIT  is said to be symmetrical. 

).v(U)u(U)vu(U

and),v(U)u(U)vu(U),v(U)u(U)vu(U

writecanwe)SNPII(frombut),v(U)u(U)vu(U

and),v(U)u(U)vu(U),v(U)u(U)vu(U

:havewe,Iv,ueveryFor)SNPII(

FFF

IIITTT
2

FFF

IIITTT

XX
5









 

 
In this case, )U,U,U,X( FIT  is said to be of type D. 

.Iueveryfor,)u(U})uvv:)v(U{inf

and,)u(U})uvv:)v(U{inf),u(U})uvv:)v(U{sup

:haveweIf)SNPII(

XXFF

Iv

II

Iv

TT

Iv

6

XX

XXXX















 
In this case, )U,U,U,X( FIT  is said to be of type S. 

3.2.2. Example. Let }b,a{X  . Define the mappings II:U,U,U XXFIT  as: 















otherwise,0
uif,5.0

XXuif,1
)u(UT

 

    














otherwise,1
uif,4.0

XXuif,0
)u(UI  

   














otherwise,1
uif,7.0

XXuif,0
)u(UF  

Then )U,U,U,X( FIT is a smooth neutrosophic preuniform space of type II on X . 
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3.2.3. Remark. TU with its conditions is smooth preuniformity. 
Note that: the propositions (3.1.4) and (3.1.5) are satisfied for type II. 
Proposition.  
Let )U,U,U,X( FIT  be a smooth neutrosophic preuniform space and let A  be a nonempty 

subset of X , and the mappings II:U,U,U AAF
A

I
A

T
A   defined by: 













 }AA{\Iu,)u(U

AAuif,1
)u(U AA

coAXX
T

T
A , 













 }AA{\Iu,)u(U

AAuif,0
)u(U AA

coAXX
I

I
A , 

and       












 }AA{\Iu,)u(U

AAuif,0
)u(U AA

coAXX
F

F
A    . 

Then  )U,U,U( F
A

I
A

T
A  is a smooth neutrosophic preuniformity on A  . 

Proof. Similar to the procedure used to prove proposition (3.1.8). 
Also, )U,U,U,A( F

A
I
A

T
A  is a subspace of )U,U,U,X( FIT  and  )U,U,U( F

A
I
A

T
A  is called the smooth 

neutrosophic preuniformity on A  induced by )U,U,U( FIT . 
Note that: the proposition (3.1.10) is satisfied for type II. 
For smooth neutrosophic preuniform mappings in type II we can state the following definitions: 
Definition.  
A map YX:f   is called weakly smooth neutrosophic preuniform with respect to the smooth 

neutrosophic preuniformities )U,U,U( F
1

I
1

T
1 on X  and )U,U,U( F

2
I
2

T
2 on Y  iff for every YYIv   we 

have: 

.1))v()ff((U1)v(U

and,1))v()ff((U1)v(U,0))v()ff((U0)v(U
1F

1
F
2

1I
1

I
2

1T
1

T
2









3.2.6. Definition. A map YX:f   is called smooth neutrosophic preuniform with respect to 
the smooth neutrosophic preuniformities )U,U,U( F

1
I
1

T
1 on X  and )U,U,U( F

2
I
2

T
2 on Y iff for every 

YYIv  we have: 
).v(U))v()ff((Uand,)v(U))v()ff((U,)v(U))v()ff((U F

2
1F

1
I
2

1I
1

T
2

1T
1  

 
3.2.7. Definition. A map YX:f   is called smooth neutrosophic direct preuniform with 

respect to the smooth neutrosophic preuniformities )U,U,U( F
1

I
1

T
1 on X  and )U,U,U( F

2
I
2

T
2 on Y  iff

for every XXIu  we have: 
).u(U))u)(ff((Uand,)u(U))u)(ff((U,)u(U))u)(ff((U F

1
F
2

I
1

I
2

T
1

T
2   

Note that the definition (3.1.16), and the propositions (3.1.17) , (3.1.18) are satisfied for type 
II.
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4. Conclusion

  In this paper, the concepts of smooth neutrosophic preuniform structures were introduced. 
In two different types we’ve presented the concepts of smooth neutrosophic preuniform 
space, smooth neutrosophic preuniform subspace, smooth neutrosophic preuniform 
mappings. Due to unawareness of the behaviour of the degree of indeterminacy, we’ve 
chosen for IU  to act like TU  in the first type, while in the second type we preferred that 

IU behaves like FU .Therefore, the definitions given above can also be modified in several 
ways depending on the behaviour of IU . 
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1 INTRODUCTION

Established by Florentin Smarandache, neutrosophy [10] was presented as the study of origin, nature,
and scope of neutralities, as well as their interactions with different ideational spectra. The main idea
was to consider an entity, ”A” in relation to its opposite ”Non-A”, and to that which is neither ”A” nor
” Non-A ”, denoted by ”Neut-A”. And from then on, neutrosophy became the basis of neutrosophic
logic, neutrosophic probability, neutrosophic set, and neutrosophic statistics. According to this theory
every idea ”A” tends to be neutralized and balanced by ”neutA” and ”nonA” ideas - as a state of
equilibrium. In a classical way ”A”, ”neutA”, and ”antiA” are disjoint two by two. Nevertheless, since
in many cases the borders between notions are vague and imprecise, it is possible that ”A”, ”neutA”,
and ”antiA” have common parts two by two, or even all three of them as well.

In [10], [11], [12] , Smarandache introduced the fundamental concepts of neutrosophic sets, that
had led Salama et al.( see for instance [1], [2], [3], [4], [5], [6], [8], [9], and the references therein) to
provide a mathematical treatment for the neutrosophic phenomena which already existed in our real
world. Hence, neutrosophic set theory turned out to be a generalization of both the classical and fuzzy
counterparts.

In [4], Salama introduced the concept of neutrosophic crisp sets as a triple structure of the form,
AN “ xA1,A2,A3y. The three components - A1,A2, and A3 - refer to three classes of the elements of the
universe X with respect to an event A. Where A1 is the class containing those elements that are fully
supportive to A, A3 for those elements that totally against A, and A2 for those elements that stand in
a distance from being with or against A. The three classes are subsets of X. Furthermore, in [7] the
authors suggested three different types of such neutrosophic crisp sets depending on whither there is
an overlap between the three classes or not, and whither their union covers the universe or not.

The purpose of this paper is to investigate the elements of the universe which have not been
subjected to the classification; those elements belonging to the complement of the union of the three
classes. Hence, a fourth component is to be added to the already existed three classes in Salama’s
sense.
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For the purpose of this paper, we will categorize the neutrosophic crisp sets of some universe X
into two categories according to whither the union of the three classes covers the universe or not. The
first category will contain all the neutrosophic crisp sets whose components do not cover the universe,
whether they are mutually exclusive or they have some common parts in-between; two by two, or
even all the three of them. While the second category will contain the remaining neutrosophic crisp
sets whose components cover the whole universe.

The remaining of this paper is organized as follows: in (sec. 2) we introduce some basic definition
necessary for this work. The concept of the ultra neutrosophic crisp sets is introduced in (sec. 3).
Furthermore, four types of ultra neutrosophic crisp sets’ operations and its properties are presented in
(sec. 4) and (sec. 5). Hence, the product and relation between ultra neutrosophic crisp sets are defined
in (sec. 6), (sec. 7) and (sec. 8). Finally, conclusions are drawn and future directions of research are
suggested in (sec. 9).

2 PRELIMINARIES

2.1 Neutrosophic Crisp Sets

2.1.1 Definition [4] For any arbitrary universe X, a neutrosophic crisp set AN is a triple AN “

xA1,A2,A3y, where Ai P PpXq, i “ 1, 2, 3.
The three components of AN represent a classification of the elements of X according to some event A;
the subset A1 contains all the elements of X that are fully supportive to A, A3 contains those elements
that totally against A, and A2 contains those elements that stand in a distance from being with or
against A.

If we consider the event A in the ordinary sense, each neutrosophic crisp set will be in the form
AN “ xA1, φ,Ac

1y, while in the fuzzy sense it will be in the form AN “ xA1, φ,A3y, where A3 Ď Ac
1.

Moreover, in the intuitionistic fuzzy sense AN “ xA1, pA1 Y A3q
c,A3y.

2.1.2 Definition [4] The complement of a neutrosophic crisp set is defined as:

coAN “ xcoA1, coA2, coA3y

2.1.3 Definition [7] A neutrosophic crisp set AN “ xA1,A2,A3y is called:

– A neutrosophic crisp set of type1, if satisfying that:
Ai X A j “ φ,where i ‰ j and

Ť3
i“1 Ai Ă X, @i, j “ 1, 2, 3

– A neutrosophic crisp set of type2, if satisfying that:
Ai X A j “ φ,where i ‰ j and

Ť3
i“1 Ai “ X, @i, j “ 1, 2, 3

– A neutrosophic crisp set of type3, if satisfying that:
Ş3

i“1 Ai “ φ, and
Ť3

i“1 Ai “ X, @i, j “ 1, 2, 3

2.2 Neutrosophic Crisp Sets Operations of Type 1 [7]

For any two neutrosophic crisp sets AN and BN, we have that:

AN Ď BN if A1 Ď B1,A2 Ď B2, and A3 Ě B3,

AN “ BN if and only if Ai “ Bi for i “ 1, 2, 3.

Hence, we can define the following:

AN Y BN “ xA1 Y B1,A2 Y B2,A3 X B3y

AN X BN “ xA1 X B1,A2 X B2,A3 Y B3y
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2.3 Neutrosophic Crisp Sets Operations of Type 2 [7]

For any two neutrosophic crisp sets AN and BN, we have that:

AN Ď BN if A1 Ď B1,A2 Ě B2, and A3 Ě B3,

AN “ BN if and only if Ai “ Bi for i “ 1, 2, 3.

Hence, we can define the following:

AN Y BN “ xA1 Y B1,A2 X B2,A3 X B3y

AN X BN “ xA1 X B1,A2 Y B2,A3 Y B3y

3 ULTRA NEUTROSOPHIC CRISP SETS

In this section we consider elements in X which do not belong to any of the three classes of the
neutrosophic crisp set defined in (2.1.1).

3.1 Definition

Let X be any given universe, the ultra neutrosophic crisp set is defined as:

Ă “ xA1,A2,A3,MAy, where MA “ cop
3

ď

i“1

Aiq

The family of all ultra neutrosophic crisp sets in X will be denoted by ŬpXq.

3.2 Definition

The complement of any ultra neutrosophic crisp set Ă, is defined as:

coĂ “ xcoA1, coA2, coA3, coMAy

4 ULTRA NEUTROSOPHIC CRISP SETS OPERATIONS

4.1 Ultra Operations of Type I

For any two ultra neutrosophic crisp sets Ă and B̆, we have that:

Ă ĎI B̆ if A1 Ď B1,A2 Ď B2,A3 Ě B3, and MA Ě MB,

Ă “ B̆ if and only if Ai “ Bi fori “ 1, 2, 3 and MA “ MB.

Hence, we can define the following:

ĂZI B̆ “ xA1 Y B1,A2 Y B2,A3 X B3,MA XMBy

Ă `I B̆ “ xA1 X B1,A2 X B2,A3 Y B3,MA YMBy

4.2 Ultra Operations of Type II

For any two ultra neutrosophic crisp sets Ă and B̆, we have that:

Ă ĎII B̆ if A1 Ď B1,A2 Ě B2,A3 Ě B3, and MA Ě MB,

Ă “ B̆ if and only if Ai “ Bi fori “ 1, 2, 3 and MA “ MB.

Hence, we can define the following:

ĂZII B̆ “ xA1 Y B1,A2 X B2,A3 X B3,MA XMBy

Ă `II B̆ “ xA1 X B1,A2 Y B2,A3 Y B3,MA YMBy

New Trends in Neutrosophic Theory and Applications 

397



4.3 Ultra Operations of Type III

For any two ultra neutrosophic crisp sets Ă and B̆, we have that:

Ă ĎIII B̆ if A1 Ď B1,A2 Ď B2,A3 Ě B3 and MA Ď MB,

Ă “ B̆ if and only if Ai “ Bi fori “ 1, 2, 3 and MA “ MB.

Hence, we can define the following:

ĂZIII B̆ “ xA1 Y B1,A2 Y B2,A3 X B3,MA YMBy

Ă `III B̆ “ xA1 X B1,A2 X B2,A3 Y B3,MA XMBy

4.4 Ultra Operations of Type IV

For any two ultra neutrosophic crisp sets Ă and B̆, we have that:

Ă ĎIV B̆ if A1 Ď B1,A2 Ě B2,A3 Ě B3 and MA Ď MB,

Ă “ B̆ if and only if Ai “ Bi fori “ 1, 2, 3 and MA “ MB.

Hence, we can define the following:

ĂZIV B̆ “ xA1 Y B1,A2 X B2,A3 X B3,MA YMBy

Ă `IV B̆ “ xA1 X B1,A2 Y B2,A3 Y B3,MA XMBy

4.5 Definition

– The difference between any two ultra neutrosophic crisp sets Ă and B̆, is defined as ĂzB̆ “ Ă` coB̆.
– The symmetric difference between any two ultra neutrosophic crisp sets Ă and B̆, is defined as

Ă
À

B̆ “ ĂzB̆Z B̆zĂ.

5 PROPERTIES OF ULTRA NEUTROSOPHIC CRISP SETS

Knowing that the four components A1,A2,A3, and MA are crisp subsets of the universe X, we can
prove that for all the Types (I, II, III, and IV) the ultra neutrosophic crisp sets operations verify the
following properties:
1. Associative laws: ĂZ pB̆Z C̆q “ pĂZ B̆q Z C̆

Ă ` pB̆ ` C̆q “ pĂ ` B̆q ` C̆
2. Commutative laws: ĂZ B̆ “ B̆Z Ă

Ă ` B̆ “ B̆ ` Ă
3. Distributive laws: ĂZ pB̆ ` C̆q “ pĂZ B̆q ` pĂZ C̆q

Ă ` pB̆Z C̆q “ pĂ ` B̆q Z pĂ ` C̆q
4. Idempotent laws: ĂZ Ă “ Ă

Ă ` Ă “ Ă
5. Absorption laws: ĂZ pĂ ` B̆q “ Ă

Ă ` pĂZ B̆q “ Ă
6. Involution law: copcoĂq “ Ă
7. DeMorgan’s laws: copĂZ B̆q “ coĂ ` coB̆

copĂ ` B̆q “ coĂZ coB̆
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Proof

For explanation, we will show the proof of the first associative law for type I, the proof of the first
distributive law for type II, the proof of the first absorption law for type III, and the proof of the first
DeMorgan’s law for typeIV. using the definitions

iq ĂZI pB̆ZI C̆q “ xA1 Y pB1 Y C1q,A2 Y pB2 Y C2q,A3 X pB3 X C3q,MA X pMB XMCqy

“ xpA1 Y B1q Y C1, pA2 Y B2q Y C2, pA3 X B3q X C3, pMA XMBq XMCqy

“ pĂZI B̆q ZI C̆
iiq ĂZII pB̆ `II C̆q “ xA1 Y pB1 X C1q,A2 X pB2 Y C2q,A3 X pB3 Y C3,MA X pMB YMCqy

“ xpA1 Y B1q X pA1 Y C1q, pA2 X B2q Y pA2 X C2q, pA3 X B3q Y pA3 X C3q,

pMA XMBq Y pMA XMCqy

“ pĂZII B̆q `II pĂZII C̆q
iiiq ĂZIII pĂ `III B̆q “ xA1 Y pA1 X B1q,A2 Y pA2 X B2q,A3 X pA3 Y B3q,MA Y pMA XMBqy

“ xA1,A2,A3,MAy

“ Ă
ivq copĂZIV B̆q “ xcopA1 Y B1q, copA2 X B2q, copA3 X B3q, copMA YMBqy

“ xcoA1 X coB1, coA2 Y coB2, coA3 Y coB3, coMA X coMBqy

“ coĂ `IV coB̆

Note that: the same procedure can be applied to prove any of the laws given in (5) for all types: I, II,
II, and IV.

5.1 Proposition

Let Ăi, i P J, be an arbitrary family of ultra neutrosophic crisp sets on X; then we have the following:
1. Type I:

�
iPJIĂi “ x

Ş

iPJ Ai1,
Ş

iPJ Ai2,
Ť

iPJ Ai3,
Ť

iPJ MAiy
Ţ

iPJ Ăi “ x
Ť

iPJ Ai1,
Ť

iPJ Ai2,
Ş

iPJ Ai3,
Ş

iPJ MAiy

2. Type II:
�

iPJ Ăi “ x
Ş

iPJ Ai1,
Ť

iPJ Ai2,
Ť

iPJ Ai3,
Ť

iPJ MAiy
Ţ

iPJ Ăi “ x
Ť

iPJ Ai1,
Ş

iPJ Ai2,
Ş

iPJ Ai3,
Ş

iPJ MAiy

3. Type III:
�

iPJ Ăi “ x
Ş

iPJ Ai1,
Ş

iPJ Ai2,
Ť

iPJ Ai3,
Ş

iPJ MAiy
Ţ

iPJ Ăi “ x
Ť

iPJ Ai1,
Ť

iPJ Ai2,
Ş

iPJ Ai3,
Ť

iPJ MAiy

4. Type IV:
�

iPJ Ăi “ x
Ş

iPJ Ai1,
Ť

iPJ Ai2,
Ť

iPJ Ai3,
Ş

iPJ MAiy
Ţ

iPJ Ăi “ x
Ť

iPJ Ai1,
Ş

iPJ Ai2,
Ş

iPJ Ai3,
Ť

iPJ MAiy

6 THE ULTRA CARTESIAN PRODUCT OF ULTRA NEUTROSOPHIC CRISP
SETS

Consider any two ultra neutrosophic crisp sets, A on X and B on Y; where Ă “ xA1,A2,A3,MAy and
B̆ “ xB1,B2,B3,MBy

The ultra cartesian product of Ă and B̆ is defined as the quadruple structure:

Ăˆ B̆ “ xA1 ˆ B1,A2 ˆ B2,A3 ˆ B3,MA ˆMBy

where each component is a subset of the cartesian product X ˆ Y;

Ai ˆ Bi “ tpai, biq : ai P Ai and bi P Biu,@i “ 1, 2, 3 and
MA ˆMB “ tpma,mbq : ma P MA and mb P MBu
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6.1 Corollary

In general if Ă ‰ B̆, then Ăˆ B̆ ‰ B̆ˆ Ă

7 ULTRA NEUTROSOPHIC CRISP RELATIONS

An ultra neutrosophic crisp relation R̆ from an ultra neutrosophic crisp set Ă to B̆, namely R̆ : Ă Ñ B̆,
is defined as a quadruple structure of the form R̆ “ xR1,R2,R3,RMy, where Ri Ď Ai ˆ Bi,@i “
1, 2, 3 and RM Ď MA ˆMB,
that is

Ri “ tpai, biq : ai P Ai and bi P Biu

RM “ tpma,mbq : ma P MA and mb P MBu

7.1 Domain and Range of Ultra Neutrosophic Crisp Relations

For any ultra neutrosophic crisp relation R̆ : Ă Ñ B̆, we define the following:

– The ultra domain of R̆, is defined as:
uDompR̆q “ xdompR1q, dompR2q, dompR3q, dompRMqy

– The ultra range of R̆, is defined as:
uRngpR̆q “ xrngpR1q, rngpR2q, rngpR3q, rngpRMqy

– The Domain of R̆, is defined as:
DompR̆q “ dompR1q Y dompR2q Y dompR3q Y dompRMq

– The Range of R̆, is defined as:
RngpR̆q “ rngpR1q Y rngpR2q Y rngpR3q Y rngpRMq

7.2 Corollary

From the definitions given in 7.1, one may notice that for any ultra neutrosophic crisp relation
R̆ : Ă Ñ B̆, we have:

– The domain of R̆ is a crisp subset of X, namely, DompR̆q Ď X.

– The range of R̆ is a crisp subset of Y, namely, RngpR̆q Ď Y.

– The ultre domain of R̆ is a quadruple structure whose components are crisp subsets of X; further-
more, dompRiq Ď Ai, i “ 1, 2, 3 and dompRMq Ď MA

– The ultre range of R̆ is a quadruple structure whose components are crisp subsets of Y; further-
more, rngpRiq Ď Bi, i “ 1, 2, 3 and rngpRMq Ď MB

7.3 Definition

An ultra neutrosophic crisp inverse relation R̆
´1

is an ultra neutrosophic crisp relation from an ultra
neutrosophic crisp set B̆ to Ă, R̆

´1
: B̆ Ñ Ă, and to be defined as a quadruple structure of the form:

R̆
´1
“ xR´1

1 ,R´1
2 ,R´1

3 ,R´1
M y, where R´1

i Ď Bi ˆ Ai,@i “ 1, 2, 3 and RM Ď MB ˆMA,
that is:

R´1
i “ tpbi, aiq : pai, biq P Riu

R´1
M “ tpmb,maq : pma,mbq P RMu
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7.4 Corollary

For any ultra neutrosophic crisp relation R̆ : Ă Ñ B̆, we have that :

DompR̆
´1
q “ RngpR̆q RngpR̆

´1
q “ DompR̆q

uDompR̆
´1
q “ uRngpR̆q uRrngpR̆

´1
q “ uDompR̆q

8 COMPOSITION OF ULTRA NEUTROSOPHIC CRISP RELATIONS

Consider the three ultra neutrosophic crisp sets: Ă of X, B̆ of Y and C̆ of Z; and, the two ultra
neutrosophic crisp relations: R̆ : Ă Ñ B̆ and S̆ : B̆ Ñ C̆; where R̆ “ xR1,R2,R3,RMy, and S̆ “

xS1,S2,S3,SMy. The composition of R̆ and S̆, is denoted and defined as:
R̆d S̆ “ xR1 ˝ S1,R2 ˝ S2,R3 ˝ S3,RM ˝ SMy such that,
Ri ˝ Si : Ai Ñ Ci, where, Ri ˝ Si “ tpai, ciq : Dbi P Bi, pai, biq P Ri and pbi, ciq P Siu;
RM ˝ SM : MA Ñ MC, where, RM ˝ SM “ tpma,mcq : Dmb P MB, pma,mbq P RM and pmb,mcq P SMu

8.1 Corollary

For any two ultra neutrosophic crisp relations: R̆ : Ă Ñ B̆ and S̆ : B̆ Ñ C̆;

uDompR̆d S̆q Ď uDompR̆q

uRngpR̆d S̆q Ď uRngpS̆q

8.2 Corollary

Consider the three ultra neutrosophic crisp relations: R̆ : Ă Ñ B̆, S̆ : B̆ Ñ C̆, and K̆ : C̆ Ñ D̆; we have
that:

R̆d pS̆d K̆q “ pR̆d S̆q d K̆

9 CONCLUSION AND FUTURE WORK

In this paper we have presented a new concept of neutrosophic crisp sets, called ”The Ultra Neu-
trosophic Crisp Sets”, as a quadrable structure. The first three components represent a classification
of the universe of discourse with respect to some event; while the fourth component deals with the
elements which have not been subjected to that classification. While the elements of the first and the
third are considered to be well defined, there is a blurry about the behavior of the elements in both
second and fourth components. Consequently, four types of set’s operations were established and the
properties of the new ultra neutrosophic crisp sets were studied according to different expectations
about the performance of the second and the fourth components. Moreover, the definition of the
relation between two ultra neutrosophic crisp sets were given. Finally, the concepts of product and
composition of ultra neutrosophic crisp sets were introduced.
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Neutrosophic Crisp Closed Region and Neutrosophic Crisp 

Continuous Functions 

Abstract 

In this paper, we introduce and study the concept of "neutrosophic crisp closed set "and 
"neutrosophic crisp continuous function. Possible application to GIS topology rules are touched 
upon. 

Keywords 

Neutrosophic crisp closed set, neutrosophic crisp set; neutrosophic crisp topology; neutrosophic 
crisp continuous function. 

1. Introduction

The idea of "neutrosophic crisp set" was first given by Salama and Smarandache [8].
Neutrosophic crisp operations have been investigated by Salama and Alblowi  [4, 5], Salama [6], 
Salama and Smarandache [7, 8], Salama, and Elagamy [9], Salama et al. [10]. Neutrosophy  has 
laid the foundation for a whole family of new mathematical theories, generalizing both their crisp 
and fuzzy counterparts [13]. Here we shall present the  neutrosophic crisp version of these concepts. 
In this paper, we introduce and study the concept of "neutrosophic crisp closed set "and 
"neutrosophic crisp continuous function".   

2. Terminologies

We recollect some relevant basic preliminaries, and in particular the work of Smarandache in 

[11,12], and Salama and Alblowi  [4, 5], Salama [6], . Salama and Smarandache [7, 8], Salama, 

and Elagamy [9], Salama et al. [10]. 

2.1 Definition: 

Let X be a non-empty fixed set. A generalized neutrosophic crisp set )(GNCS  A is an object having 

the form A = <A ,A2,A3>, where A1, A2, A3  X and A1∩A2∩A3=𝜙. 

mailto:rsalama44@gmail.com
mailto:ihanafy@hotmail.com
mailto:majdedabash@yahoo.com
mailto:hewayda2011@eng.psu.edu.eg
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2.2 Definition [8,10] 

As defined in [10] a neutrosophic crisp topology (NCT) on a non-empty set X  is a family,  , 
of neutrosophic crisp subsets of X  satisfying the following axioms: 

 1NCT  ∅𝑁 , 𝑋𝑁 ∊ , 

 2NCT 1 2G G   for any 21,GG , 

 3NCT   }:{ JiGG ii . 

In this case the pair  ,X   is called a neutrosophic crisp topological space (NCTS ) and the 
elements of  are called neutrosophic crisp open sets, (NCOS). A neutrosophic crisp set F is said 
to be neutrosophic crisp closed if and only if its complement, Fc, is  neutrosophic crisp open. 

2.3 Definition [7] 

Let (𝑋, 𝛤) be 𝑁𝐶𝑇𝑆 and 𝐴 = 〈𝐴1, 𝐴2, 𝐴3〉 be a 𝑁𝐶𝑆 in 𝑋. Then the neutrosophic crisp closure 
of 𝐴 (𝑁𝐶𝑐𝑙(𝐴)) and neutrosophic interior crisp (𝑁𝐶𝑖𝑛𝑡(𝐴)) of 𝐴 are defined by 

 𝑁𝐶𝑐𝑙(𝐴)= ∩ {𝐾: 𝐾 is an 𝑁𝐶𝐶𝑆 in 𝑋 and 𝐴 ⊆ 𝐾} 

 𝑁𝐶𝑖𝑛𝑡 (𝐴)=∪ {G: G is an 𝑁𝐶𝑂𝑆 in 𝑋 and G ⊆ 𝐴) , 

where 𝑁𝐶𝑆 is a neutrosophic crisp set and 𝑁𝐶𝑂𝑆 is a neutrosophic crisp open set. It can be also 
shown that 𝑁𝐶𝑐𝑙(𝐴) is a neutrosophic crisp closed set(𝑁𝐶𝐶𝑆) and 𝑁𝐶𝑖𝑛𝑡(𝐴) is a neutrosophic crisp 
open set (𝑁𝐶𝑂𝑆) in 𝑋.  

3. Neutrosophic Crisp Co-Topology

3.1 Definition

Let (,) be a neutrosophic crisp topological space, a neutrosophic crisp set A in (,) is said
to be neutrosophic crisp closed ( NC-closed), if NCcl(A)  G whenever A  G and G is 
neutrosophic crisp open set.  

3.2 Proposition 

If A and B are neutrosophic crisp closed sets, then AB is neutrosophic crisp closed set. 

3.3 Remark 
The intersection of two neutrosophic crisp closed (NC-closed )  sets need not be neutrosophic 

crisp closed set. 

3.4 Example 

Let  = {a,b,c,d,e,f,g} and that A = <{a,b},{b,c},{b,d}>, B = <{a,c},{d,c},{a,c}> are two 
neutrosophic crisp sets on X. Then },,,{ BAT NN  is a neutrosophic crisp topology on . Define 
the two neutrosophic crisp sets 1A  and 2A as follows, 

1A = <{b,d},{a,d,e,f,g},{a,b}> 

2A = <{a,c},{a,b,e,f,g},{a,c}> 
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1A  and 2A are neutrosophic crisp closed set but 1A  2A  is not a neutrosophic crisp closed set. 

3.5 Proposition 

Let (,) be a neutrosophic crisp topological space. If B is neutrosophic crisp closed set and B 
 A  NCcl (B), then A is NC-closed. 

Definition 
(Defining NC topology by closed sets). A NC topology on a set X is given by defining " NC open 

set" of X. Since NC closed  sets are just exactly the complement of NC open sets, it is possible to 
define NC topology by giving a collection of NC closed sets. Let К be a collection of NC subsets 
of 𝑋 satisfying  

 1NCT  ∅𝑁 , 𝑋𝑁 ∊ К, 

 2NCT KGG  21  for any KGG 21, , 

 3NCT KJiGKG ii  }:{ . 

Then define 𝛵 by:     𝛵:={X-C |C∊К} 

Is a NC topology, i.e. it satisfyies Definition(2.2). On the other hand, if 𝛵 is a NC topology, i.e. 
the collection of NC-open sets, then К:={X-U|U∊𝛵}.    

In this case the pair ),( KX  is called a neutrosophic crisp Co-topological space )(NCKS  and the 
elements of K are called neutrosophic crisp closed sets, ( NCCS  for short). 

3.6 Proposition 

In a neutrosophic crisp topological space (,), = (the family of all neutrosophic crisp closed 
sets) iff every neutrosophic crisp subset of (,) is a neutrosophic crisp closed set. 

Proof. 

Suppose that every  neutrosophic crisp set of (,) is NC-closed, and let A. Since A  A and 
A is NC-closed, NCcl(A)  A. However, we have that A NCcl(A), for each set A. Hence, NCcl 
(A) = A. thus, A. Therefore, T. Now, consider B  , then cB   . Hence B, That 
is,   . Therefore =. 

Conversely, suppose that A be a neutrosophic crisp set in (,), and B is a neutrosophic crisp 
open set in (,)  such that A  B. By hypothesis, B is NC-closed. By definition of any 
neutrosophic crisp closure set, we have that  NCcl(A)  B. Therefore A is NC-closed set. 

3.7 Proposition 

Let (,𝛵) be a neutrosophic crisp topological space. A neutrosophic crisp set A is neutrosophic 
crisp open iff B  NCnt (A), whenever B is neutrosophic crisp closed and    B  A. 

Proof 

Let A a neutrosophic crisp open set and B be a NC-closed, such that B  A. Now, AB    cA
 cB and cA is a neutrosophic crisp closed set  cc BANCcl )( . That is, B = ccB )(  

ccANCcl ))(( . But ccANCcl ))(( = NCint (A). Thus, B  NCint (A).  Conversely, suppose that A 
be a neutrosophic crisp set, such that 
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)int(ANCB  whenever B is neutrosophic crisp closed and B  A. Let cA  B  cB  A. 
Hence  by assumption )int(ANCBc  . that is, BANC c ))int(( . But cANC ))int(( = )( cANCcl . 

 Hence  BANCcl c )( . That is cA is  neutrosophic crisp closed set. Therefore, A is neutrosophic 
crisp open set 

3.8 Proposition 

If (A)  B  NCcl(A)  and if A is neutrosophic crisp closed set then B is also neutrosophic crisp 
closed set. 

4. Neutrosophic Crisp Continuous Functions

4.1 Definition

(c) If 321 ,, AAAA   is a NCS in X, then the neutrosophic crisp image of A under ,f
denoted by ),(Af  is the a NCS in Y defined by .)(),(),()( 321 AfAfAfAf 

(d) If 𝑓 is a bijective map then 𝑓-1: 𝑌 ⟶ 𝑋  is a map defined such that:  
for any NCS 321 ,, BBBB   in Y, the neutrosophic crisp preimage of B, denoted by ),(1 Bf  is a 
NCS in X defined by .)(),(),()( 3

1
2

1
1

11 BfBfBfBf  

Here we introduce the properties of images and preimages some of which we shall frequently use 
in the following sections . 

4.2 Corollary 
Consider, the two families of neutrosophic crisp sets; 

A= {Ai: iI, AiX} and B = {Bj: jJ, Bj Y}; and let f  be a function such that  :   . 

(a) ),()( 2121 AfAfAA  ),()( 2
1

1
1

21 BfBfBB  

(b) ))((1 AffA   and if f is injective, then ))((1 AffA  . 

(c) BBff  ))(( 1  and if f is surjective, then ,))(( 1 BBff  . 

(d) ),())( 11
ii BfBf   ),())( 11

ii BfBf    

(e) );()( ii AfAf  );()( ii AfAf  and if f is injective, then  );()( ii AfAf 

(f) 
NN XYf  )(1

NNf   )(1 . 

(g) ,)( NNf   NN YXf )(  if f is subjective. 

Proof 
    Obvious. 



New Trends in Neutrosophic Theory and Applications 

407 

4.3 Proposition 

Consider the function  YXf : , then f  is said to be neutrosophic crisp continuous iff  the 
preimage of each neutrosophic crisp closed set in Y is a neutrosophic crisp closed set in X. 

4.4 Proposition 

Consider the function  YXf : , then f  is said to be neutrosophic crisp continuous iff  the 
image of each neutrosophic crisp closed set in X is a neutrosophic crisp closed set in Y. 

4.5 Proposition  
The following are equivalent to each other: 

(a)  ),(),(: 21  YXf   is neutrosophic crisp continuous . 

(b)  ))(())(( 11 BfNCIntBNCIntf    for each NCCS B in Y. 

(c) ))(())(( 11 BNCClfBfNCCl    for each N NCCS B in Y. 

4.6 Example 

Let  2,Y  be a NCTS and YXf : be a function. In this case  2
1

1 :)(    HHf is a NCT on 
X. Indeed, it is the coarsest NCT on X which makes the function YXf :  neutrosophic crisp 
continuous. One may call it the initial neutrosophic crisp  topology  with respect to .f  

4.7 Definition 

Let (,) and (,S) be two neutrosophic crisp topological space, then  

 (a) A bijective map :(,) (,S) is called neutrosophic crisp  irresolute if the inverse image 
of every neutrosophic crisp closed set in (,S) is neutrosophic crisp closed in (,). Equivalently 
if the inverse image of every neutrosophic crisp open set in (,S) is neutrosophic crisp open in 
(,). 

(b) A map :(,) (,S) is said to be strongly neutrosophic crisp continuous if (A) is both 
neutrosophic crisp open and neutrosophic crisp closed in (Y,S) for each neutrosophic crisp  set A 
in (X,T). 

(c) A map  : (,)  (,S) is said to be perfectly neutrosophic crisp continuous if 1(B) is 
both neutrosophic crisp open and neutrosophic crisp closed in (,) for each neutrosophic crisp 
open set B in (,S). 

4.8 Proposition 

Let (,) and (,S) be any two neutrosophic crisp topological spaces.  Let  : (,)  (,S) be 
neutrosophic crisp continuous. Then for every neutrosophic crisp set A in , (NCcl(A))  
NCcl((A)). 

4.9 Proposition 

Let (,) and (,S) be any two neutrosophic crisp topological spaces.  Let  : (,)  (,S) be 
neutrosophic crisp continuous. Then for every neutrosophic crisp set A in , NCcl(1(A))  
1(NCcl(A)). 
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Definition 

Let  1,X  and  2,Y  be two NCTSs and  let YXf :  be a function. Then f  is said to be 
open iff the neutrosophic crisp image of each NCS in 1  is a NCS in 2 . 

Definition 

Consider the two neutrosophic crisp co-topologios  1, KX  ,  2, KY   and function YXf :

the function f is said to be neutrosophic crisp closed iff (A) ∈ K2 ,∀ A∈ K1 . 

Or equivalently, -1(B) ∈ K1 , ∀ B ∈ K2 . 

Definition  

Consider the two neutrosophic crisp topologios  1,TX  ,  2,TY   and function YXf :  the 
function f is said to be neutrosophic crisp closed iff (A) ∈ T2 ,∀ A∈ T1 . 

Or equivalently, -1(B) ∈ T1 , ∀ B ∈ T2 . 

4.10 Proposition  

 Let (,) and (,S) be any two neutrosophic crisp topological spaces. If A is a neutrosophic 
crisp closed set in (,) and if  : (,)  (,S) is neutrosophic crisp continuous and neutrosophic 
crisp closed then (A) is neutrosophic crisp closed in (,S). 

Proof. 

 Let G be a neutrosophic crisp- open in (,S). If (A)G, then A  1(G) in (,). Since A is 
neutrosophic crisp closed and 1(G) is neutrosophic crisp open in (,), NCcl(A)  1(G), (i.e) 
(NCcl(A)  G. Now by assumption, (NCcl(A)) is neutrosophic crisp closed and   NCcl((A))  
Ncl((NCcl(A))) = (NCcl(A))  G. Hence, (A) is NC-closed. 

4.11 Proposition 

If the function YXf : is neutrosophic crisp continuous, then it is neutrosophic crsip closed. 
Whereas, the converse need not be true, as shown in Example 4.12.   

4.12 Example 

Let  =a,b,c,d,e,f,g and  =a,b,c. Define neutrosophic crisp sets A and B as follows: 
A = <{d,a} ,{f,g}, {c,b}> 

B = <{f,a}, {e,f},{d,c} >  

Then the family  = 𝜙N, 𝑋N, A is a neutrosophic crisp topology on  and S = 𝜙N, 𝑋N, B is 
a neutrosophic crisp topology on . Thus (,) and (,S) are neutrosophic crisp topological spaces. 
Define  

 : (,)  (,S) as (a) = b , (b) = a, (c) = c. Clearly  is NC-closed continuous. Now  is 
not neutrosophic crisp continuous, since 1(B)   for B  S.  

Definition 

If the function YXf :  is neutrosophic crisp continuous, then it is neutrosophic crisp open. 
Whereas, the converse need not be true, as shown in Example 4.13.  
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4.13  Example   

Let  = a,b,c,d,e,f,g. Define the neutrosophic crisp sets A and B as follows. 

A = <{f,g}, {d,a} , {c,b}> 
B = <{f,a}, {d,c} , {e,f}> and 

C = <{b,d}, {c,d} , {d,a}> 

 = 𝜙N, 𝑋N, A ,B   and 

S = 𝜙N, 𝑋N, C  

are neutrosophic crisp topologies on . Thus (,) and (,S) are neutrosophic crisp topological 
spaces. Define  : (,)  (,S) as follows (a) = b, 

(b) = b, (c) = c. Clearly  is NC-continuous. Since 
D = <{d,a}, {c,f} , {g,e}> 

is neutrosophic crisp open in (,S), 1(D) is not neutrosophic crisp open in (,). 

4.14  Proposition  

Let (,) and (,S) be any two neutrosophic crisp topological space. If  :  (,)  (,S) is 
strongly NC-continuous then  is neutrosophic crisp continuous. 

The converse of Proposition 4.16 is not true. See Example 4.17 

4.15 Example  

Let  =a,b,c. Define the neutrosophic crisp sets A and B as follows. 
A = <{d,e}, {f,h} , {c,a}> 

B = <{g,e}, {q,z} , {b,a}>and  

C = <{a,c}, {f,a} , {h,d}> 

 = 𝜙N, 𝑋N, A ,B and S = 𝜙N, 𝑋N, C are neutrosophic crisp topologies on . Thus (,) 
and (,S) are neutrosophic crisp topological spaces. Also define  :(,) (,S) as follows      (a) 
= a, (b) = c, (c) = b. Clearly  is neutrosophic crisp continuous. But  is not strongly NC-
continuous. Since D = <{c,f},{e,c},{b,g,d}> 

Is a neutrosophic crisp open set in (,S), 1(D) is not neutrosophic crisp open in (,). 

4.16 Proposition 

Let (,) and (,S) be any two neutrosophic crisp topological spaces.  If : (,)  (,S) is 
perfectly NC-continuous then  is strongly NC-continuous. 

The converse of Proposition 4.16 is not true. See Example 4.17 

4.17 Example  

Let  = a,b,c,d,e,f,g. Define the neutrosophic crisp sets A and B as follows. 

A = <{f,g}, {d,a} , {c,b}>,  B = <{f,a}, {d,c} , {e,f}>  and 

C = <{b,b}, {c,d} , {d,a}> 
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 = 𝜙N, 𝑋N, A ,B and S = 𝜙N ,𝑋N, C are neutrosophic crisp topologies space on . Thus 
(,) and ( ٍٍ ٍ,S) are neutrosophic crisp topological spaces. Also define  :  (,)  (,S) as 
follows (a) = a, (b) = (c) = b. Clearly  is strongly NC-continuous. But  is not perfectly NC 
continuous. Since D = <{d,a},{b,b}, {c,d}> is aneutrosophic crisp open set in (,S), 1(D) is 
neutrosophic crisp open and not neutrosophic crisp closed in (,). 

4.18 Proposition 

Let (,) and (,S) be any neutrosophic crisp topological spaces. If : (,)  (,S) is strongly 
neutrosophic crisp continuous then  is strongly NC-continuous. 

The converse of proposition 4.20 is not true. See Example 4.21 

4.19 Example 

 Let  = a,b,c,d,e,f,g and define the neutrosophic crisp sets A and B as follows. 
A = <{sb,b}, {d,a} , {c,d}> 

B = <{e,f }, {d,c} , {f,a}> and 

C = <{f,g}, {c,b} , {d,a}> 

 = 𝜙N, 𝑋N, A ,B and S = 𝜙N, 𝑋N, C are neutrosophic crisp topologies on . Thus (,) 
and ( ٍٍ ٍ,S) are neutrosophic crisp topological spaces. Also define  :  (,)  (,S) as follows: 
(a) = a, (b) = (c) = b. Clearly  is strongly NC-continuous. But  is not strongly neutrosophic 
crisp continuous. Since 

          D = <{d,a}, {f,g} , {c,b}> 

be a neutrosophic crisp set in (,S), 1(D) is neutrosophic crisp open and not neutrosophic 
crisp closed in (,). 

4.20  Proposition 

Let (,),(,S) and (,R) be any three neutrosophic crisp topological spaces. Suppose  : (,) 
 (,S), g : (,S)  (,R) be maps. Assume  is neutrosophic crisp irresolute and g is NC-
continuous then g   is NC-continuous. 

4.21  Proposition 

Let (,)  , (,S) and (,R) be any three neutrosophic crisp topological spaces. Let  :  (,)  
(,S), g : (,S)  (,R) be map, such that  is strongly  NC-continuous and g is NC-continuous. 
Then the composition g   is neutrosophic crisp continuous. 

4.22 Definition 

A neutrosophic crisp topological space (,) is said to be neutrosophic crisp 1/2 if every 
neutrosophic crisp closed set in (,) is neutrosophic crisp closed in (,). 

4.23  Proposition 

Let (,),(,S) and (,R) be any neutrosophic crisp topological spaces. Let  :  (,)  (,S) 
and  g : (,S)  (,R) be mapping and (,S) be neutrosophic crisp 1/2 if  and g are NC-
continuous then the composition g   is NC-continuous. 
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The proposition 4.11 is not valid if (,S) is not neutrosophic crisp 1/2. 

4.24 Example 

 Let  = a,b,c,d,e,f,g. Define the neutrosophic crisp sets A,B and C as follows. 
A = <{d,c},{d,a} , {c,b}> 

B = <{f,g},{b,b},{e,f}> and 

C = < {f,a}, {c,d},{d,a}> 

Then the family =𝜙N, 𝑋N, A, S=𝜙N, 𝑋N, B and R=𝜙N,𝑋N,C are neutrosophic crisp 
topologies on . Thus (,),(,S) and (,R) are neutrosophic crisp topological spaces. Also 
define  :  (,)  (,S) as (a) = b, (b) = a, (c) = c and g : (,S)  (,R) as g(a) = b, g(b) = 
c, g(c) = b. Clearly  and g are NC-continuous function. But g   is not NC-continuous. For cC
is neutrosophic crisp closed in (,R). 1(g1 cC ) is not NC closed in (,). 

G   is not NC-continuous. 

5. Conclusion

In this paper, we presented a generalization of the neutrosophic crisp topological space. The
basic definitions of neutrosophic crisp closed set "and "neutrosophic crisp continuous function. 
with some of their characterizations were deduced. Furthermore, we constructed a neutrosophic 
crisp open and closed functions, with a study of a number its properties. 
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A New Order Relation on the Set of Neutrosophic Truth Values 

Abstract 
In this article, we discuss all possible cases to construct an atom of matter, antimatter, or 

unmatter, and also the cases of contradiction (i.e. impossible case). 

1. Introduction
Anti-particle in physics means a particle which has one or more opposite properties to its

"original particle kind". If one property of a particle has the opposite sign to its original state, this 
particle is anti-particle, and it annihilates with its original particle. 

The anti-particles can be electrically charged, color or fragrance (for quarks). Meeting each 
other, a particle and its anti-particle annihilate into gamma-quanta. 

This formulation may be mistaken with the neutrosophic <antiA>, which is strong opposite to 
the original particle kind. The <antiA> state is the ultimate case of anti-particles [6]. 

In [7], F. Smarandache discusses the refinement of neutrosophic logic. Hence, <A>, <neutA> 
and <antiA> can be split into: <A1>, <A2>, ...; <neutA1>, <neutA2>, ...; <antiA1>, <antiA2>, ...; 
therefore, more types of matter, more types of unmatter, and more types of antimatter. 

One may refer to <A>, <neutA>, <anti-A> as "matter", "unmatter" and "anti-matter". 
Following this way, in analogy to anti-matter as the ultimate case of anti-particles in physics, 

the unmatter can be extended to "strong unmatter", where all properties of a substance or a field 
are unmatter, and to "regular unmatter", where just one of the properties of it satisfies the unmatter. 

2. Objective
The aim is to check whether the indeterminacy component 𝐼 can be split to sub-indeterminacies

𝐼1, 𝐼2, 𝐼3, and then justify that the below are all different:
𝐼1 ∩ 𝐼2 ∩ 𝐼3, 𝐼1 ∩ 𝐼3 ∩ 𝐼2,  𝐼2 ∩ 𝐼3 ∩ 𝐼1,  𝐼2 ∩ 𝐼1 ∩ 𝐼3, 𝐼3 ∩ 𝐼1 ∩ 𝐼2,  𝐼3 ∩ 𝐼2 ∩ 𝐼1.       (1) 

3. Cases
Let 𝑒 , 𝑒+, 𝑃, 𝑎𝑛𝑡𝑖𝑃 , 𝑁, 𝑎𝑛𝑡𝑖𝑁 be electrons, anti-electrons, protons, anti-protons, neutrons, anti-

neutrons respectively, also ∪ means union/OR, while ∩ means intersection/AND, and suppose: 
𝐼 = (𝑒 ∪  𝑒+) ∩ (𝑃 ∪  𝑎𝑛𝑡𝑖𝑃) ∩ (𝑁 ∪  𝑎𝑛𝑡𝑖𝑁)                   (2)

The statement (2) shows indeterminacy, since one cannot decide the result of the 
interaction if it will produce any of the following cases: 

mailto:smarand@unm.edu
mailto:hodaesmail@yahoo.com
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1. (𝑒 ∪  𝑒+) ∩ (P ∪  antiP) ∩ (N ∪  antiN) → 𝑒 ∩  P ∩  antiN,

which is unmatter type (a), see reference [2]; 
2. (𝑒 ∪  𝑒+) ∩ (N ∪  antiN) ∩ (P ∪  antiP) → 𝑒+  ∩  N ∩  antiP,

which is unmatter type (b), see reference [2]; 
3. (P ∪  antiP) ∩ (N ∪  antiN) ∩ (𝑒 ∪  𝑒+) → P ∩  N ∩  𝑒+ = 𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛;

4. (P ∪  antiP) ∩ (𝑒 ∪  𝑒+) ∩ (N ∪  anti N) → antiP ∩  e ∩  𝑎𝑛𝑡𝑖N =

𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛;

5. (N ∪  antiN) ∩ (𝑒 ∪ 𝑒+) ∩ (P ∪  antiP) → N ∩  e ∩  P,

which is a matter; 
6. (N ∪  antiN) ∩ (P ∪  antiP) ∩ (𝑒 ∪  𝑒+) → antiN ∩  𝑎𝑛𝑡𝑖P ∩ 𝑒+,

which is antimatter. 

4. Comment
It is obvious that all above six cases are not equal in pairs; suppose:

𝑒 ∪  𝑒+ = 𝐼1 =  𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦,
P ∪  antiP = 𝐼2 = 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦,
N ∪  antiN = 𝐼3 = 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦.

Consequently, the statement (2) can be rewritten as: 
𝐼 = 𝐼1 ∩ 𝐼2  ∩  𝐼3

but we cannot get the equality for any pairs in eq. (1). 

5. Remark
This example is a response to the article [4], where Florentin Smarandache stated that "for each

application we might have some different order relations on the set of neutrosophic truth values; 
(…) one can get one such order relation workable for all problems", and also to a commentary in 
[5], that "It would be very useful to define suitable order relations on the set of neutrosophic truth 
values". 
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Expanding Comparative Literature into Comparative Sciences 

Clusters with Neutrosophy and Quad-stage Method 

Abstract 
By using Neutrosophy and Quad-stage Method, the expansions of comparative literature 

include: comparative social sciences clusters, comparative natural sciences clusters, comparative 
interdisciplinary sciences clusters, and so on. Among them, comparative social sciences clusters 
include: comparative literature, comparative history, comparative philosophy, and so on; 
comparative natural sciences clusters include: comparative mathematics, comparative physics, 
comparative chemistry, comparative medicine, comparative biology, and so on. In addition, 
comparative literature itself can also be expanded. Under the two main categories of research and 
practice, comparative literature can be expanded into: comparative literature research, comparative 
literature practice (including comparative essay, comparative fiction, comparative poetry, 
comparative drama, and so on), comparative literature research and practice, and so on. This paper 
discusses the applications of comparative method in comparative sciences clusters and their various 
branches. Point out that in the existing fields of social sciences and natural sciences, many sprouts 
of comparative sciences clusters can be found, but a wide range of the achievements of comparative 
sciences clusters, still are the virgin lands to be developed.  

Keywords 
Comparative, comparative sciences clusters, comparative social sciences clusters, comparative 

natural sciences clusters, comparative interdisciplinary sciences clusters, comparative literature, 
comparative history, comparative philosophy, comparative mathematics, comparative physics, 
comparative chemistry, comparative medicine, comparative biology, comparative essay, 
comparative fiction, comparative poetry, comparative drama. 

1. Introduction
Comparative literature is the literary branch running comparative study (research) about the

relationship between two or more kinds of literatures. It consists of influence study, parallel study, 
interdisciplinary study, and so on. 

At present, the research method of comparative literature has expanded into other areas, and 
establish many disciplines such as comparative sociology, comparative jurisprudence, and so on. 
But the expansion is not enough. In this paper, we try to expand comparative literature into 
comparative sciences clusters (including comparative social sciences clusters, comparative natural 
sciences clusters, comparative interdisciplinary sciences clusters, and so on).  
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2. Basic Contents of Neutrosophy and Basic Contents of Quad-stage
Neutrosophy is proposed by Prof. Florentin Smarandache in 1995. Neutrosophy is a new branch 

of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions 
with different ideational spectra. 

This theory considers every notion or idea <A> together with its opposite or negation <Anti-
A> and the spectrum of "neutralities" <Neut-A> (i.e. notions or ideas located between the two 
extremes, supporting neither <A> nor <Anti-A>). The <Neut-A> and <Anti-A> ideas together are 
referred to as <Non-A>. 

Neutrosophy is the base of neutrosophic logic, neutrosophic set, neutrosophic probability and 
statistics used in engineering applications (especially for software and information fusion), 
medicine, military, cybernetics, and physics. 

Neutrosophic Logic is a general framework for unification of many existing logics, such as 
fuzzy logic (especially intuitionistic fuzzy logic), paraconsistent logic, intuitionistic logic, etc. The 
main idea of NL is to characterize each logical statement in a 3D Neutrosophic Space, where each 
dimension of the space represents respectively the truth (T), the falsehood (F), and the 
indeterminacy (I) of the statement under consideration, where T, I, F are standard or non-standard 
real subsets of ]-0, 1+[ without necessarily connection between them. 

More information about Neutrosophy can be found in references [1，2]. 

Quad-stage (Four stages) is presented in reference [3], it is the expansion of Hegel’s triad-stage 
(triad thesis, antithesis, synthesis of development). The four stages are "general theses", "general 
antitheses", "the most important and the most complicated universal relations", and "general 
syntheses". They can be stated as follows. 

The first stage, for the beginning of development (thesis), the thesis should be widely, deeply, 
carefully and repeatedly contacted, explored, analyzed, perfected and so on; this is the stage of 
general theses. It should be noted that, here the thesis will be evolved into two or three, even more 
theses step by step. In addition, if in other stage we find that the first stage’s work is not yet 
completed, then we may come back to do some additional work for the first stage. 

The second stage, for the appearance of opposite (antithesis), the antithesis should be also 
widely, deeply, carefully and repeatedly contacted, explored, analyzed, perfected and so on; this 
is the stage of general antitheses. It should be also noted that, here the antithesis will be evolved 
into two or three, even more antitheses step by step. 

The third stage is the one that the most important and the most complicated universal relations, 
namely the seedtime inherited from the past and carried on for the future. Its purpose is to establish 
the universal relations in the widest scope. This widest scope contains all the regions related and 
non-related to the "general theses", "general antitheses", and the like. This stage's foundational 
works are to contact, grasp, discover, dig, and even create the opportunities, pieces of information, 
and so on as many as possible. The degree of the universal relations may be different, theoretically 
its upper limit is to connect all the existences, pieces of information and so on related to matters, 
spirits and so on in the universe; for the cases such as to create science fiction, even may connect 
all the existences, pieces of information and so on in the virtual world. Obviously, this stage 
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provides all possibilities to fully use the complete achievements of nature and society, as well as 
all the humanity's wisdoms in the past, present and future. Therefore this stage is shortened as 
"universal relations" (for other stages, the universal relations are also existed, but their importance 
and complexity cannot be compared with the ones in this stage). 

The fourth stage, to carry on the unification and synthesis regarding various opposites and the 
suitable pieces of information, factors, and so on; and reach one or more results which are the best 
or agreed with some conditions; this is the stage of "general syntheses". The results of this stage 
are called "synthesized second generation theses", all or partial of them may become the beginning 
of the next quad-stage. 

For realizing the innovations in the areas such as science and technology, literature and art, and 
the like, it is a very useful tool to combine neutrosophy with quad-stage method. For example, in 
reference [4], expanding Newton mechanics with neutrosophy and quad-stage method, and 
establishing New Newton Mechanics taking law of conservation of energy as unique source law; 
in reference [5], negating four color theorem with neutrosophy and quad-stage method, and "the 
two color theorem" and "the five color theorem" are derived to replace "the four color theorem"; 
in reference [6], expanding Hegelian triad thesis, antithesis, synthesis with Neutrosophy and Quad-
stage Method; in reference [7], interpretating and expanding Laozi’s governing a large country is 
like cooking a small fish with Neutrosophy and Quad-stage Method; in reference [8], interpretating 
and expanding the meaning of “Yi” with Neutrosophy and Quad-stage Method; in reference [9], 
Creating Generalized and Hybrid Set and Library with Neutrosophy and Quad-stage Method.  

Applying Neutrosophy and Quad-stage Method, will significantly help us to consider all 
possible situations. Therefore, Neutrosophy and Quad-stage Method can play a very important role 
to expand comparative literature. 

3. Expanding Comparative Literature with Neutrosophy and Quad-stage Method
The process of expanding comparative literature can be divided into four stages. 
The first stage (stage of "general theses"), for the beginning of development, the thesis (namely 

"comparative literature") should be widely, deeply, carefully and repeatedly contacted, explored, 
analyzed, perfected and so on. 

Currently, "comparative literature" has become a complex subject. Its research achievements 
absorb the research results of traditional world literature, as well as a variety of other areas even 
including natural science research; in fact, the inherent discipline bounds have been broken, and 
beyond the limitations of region and time, put the Asian-African literature, European-American 
literature, and so on, as well as classical literature, modern literature, and so on, into one or more 
overall structures or frames. 

For example, in the research (study) of comparative literature, the literature can be compared 
with social sciences (philosophy, psychology, linguistics, history, sociology, anthropology, and so 
on), and the natural sciences (mathematical statistics, computer technology, system theory, 
information theory, and so on), as well as other artistic disciplines (painting, sculpture, architecture, 
music, film, and so on). 
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Of course, we should also see that different scholars may have different viewpoints and 
interpretations for "comparative literature" and the related problems, and the different opinions 
and arguments will be endless from generation to generation. 

In the second stage (the stage of "general antitheses"), the opposites (antitheses) should be 
discussed carefully. Obviously, there are more than one opposites (antitheses) of comparative 
literature here. 

For example, according to the viewpoint of Neutrosophy, if "comparative literature" is 
considered as the concept <A>, the opposite <Anti-A> may be: "non-comparative literature" (such 
as comparative sociology, comparative jurisprudence, and so on); while the neutral (middle state) 
fields <Neut-A> including: "undetermined comparative literature" (neither "comparative 
literature", nor "non-comparative literature"; or, sometimes it is "comparative literature", and 
sometimes it is "non-comparative literature; and so on". 

In the third stage, considering the most important and the most complicated universal relations 
to link with "comparative literature". The purpose of this provision stage is to establish the 
universal relations in the widest scope.  

For "comparative literature", different people will have different research methods and findings; 
even if for the same person, at different times and in different situations, he or she may also apply 
different research methods and reach different research results. Therefore, pursuing the unique 
right research method and research result do not seem to make sense. So the advisable method of 
work is to collect all people’s research methods and research results from ancient times to modern 
times, and plus own research methods and research results, to form the so-called "full research 
methods and research results", and to store up them as Think Tank; while once we need to apply 
them, then immediately the one or several best research methods and research results can be elected, 
or according to the information in Think Tank and the reality to obtain one or several best 
programmes temporarily, thus we can be invincible.  

Now we list some specific research methods and results. 
The first school of comparative literature in the world is France school. Characterized by 

respecting the facts, and emphasizing the textual studies; and the research achievements occupy a 
glorious page in the history of world literature. 

Later, United States school is appeared and takig "parallel study" as the symbol, the scholars of 
this school consider that literature as a discipline should compare with other disciplines. 

At present, in United Kingdom, Russia, China and other countries, comparative literature 
studies have achieved fruitful results. 

In the fourth stage, the comprehensive results of the front three stages can be used to expand 
"comparative literature" with a variety of ways and means. Here we mainly according to 
Neutrosophy and Quad-stage method to seek expanded results. 

According to Neutrosophy and Quad-stage method, if the social sciences can be considered as 
<A>, then the natural sciences can be considered as the opposite <Anti-A>, and the 
interdisciplinary sciences can be considered as <Neut-A> (neutral A). 
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Firstly, link to social sciences, "comparative literature" should be expanded into "comparative 
social sciences", or "comparative social sciences clusters" including comparative literature, 
comparative history, comparative philosophy, and so on. 

Secondly, link to natural sciences, "comparative literature" should be expanded into 
"comparative natural sciences", or "comparative natural sciences clusters" including comparative 
mathematics, comparative physics, chemistry, comparative medicine, comparative biology, and so 
on. 

Thirdly, link to interdisciplinary sciences, "comparative literature" should be expanded into 
"comparative interdisciplinary sciences", or "comparative interdisciplinary sciences clusters" 
including comparative mathematical medicine, comparative mathematical biology, and so on. 

In addition, the "comparative literature" itself can also be expanded. In addition, comparative 
literature itself can also be expanded. In references [10], under the two main categories of research 
and practice, comparative literature can be expanded into: comparative literature research, 
comparative literature practice (Including comparative essay, comparative fiction, comparative 
poetry, comparative drama, and so on), comparative literature research and practice, and so on. 
For the sake of convenience of classification, and to distinguish with other forms of work, naming 
the essay created by comparative method as comparative essay, the fiction created by comparative 
method as comparative fiction, the poetry created by comparative method as comparative poetry, 
the drama created by comparative method as comparative drama, and so on. 

4. Applications of comparative method in comparative sciences clusters and their

branches 
"Comparison" means: according to the certain standards and methodologies, to identify 

advantages and disadvantages, same and different, beauty and ugliness, and so on between two or 
more things.  

The principle of comparison: there shall be the object to be compared with, as well as the 
common comparative foundation, and the certain standards and methods, and so on; as comparing, 
we should try to consider all possible situations. 

Based on the above concepts and principles, comparative method can be widely used in 
comparative sciences clusters and their various branches, and provide a variety of ways and broad 
space for development. 

Firstly we discuss the comparative objects. In comparative sciences clusters and their various 
branches, the comparative objects can be selected within the large range, the medium range, and 
the small range. 

Secondly we discuss the comparative standards. The comparative standards can be selected as: 
advantages and disadvantages, same and different, beauty and ugliness, and so on. As taking 
advantages and disadvantages as the comparative standard, the comparative result can be decided 
by experts, by ordinary scholars and readers, and by all the people (including experts, ordinary 
scholars and readers). 

As for the methods and ways for comparison, they are also numerous. For example, to compare 
according to the time sequence, according to the different spatial locations; or according to the 
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longitudinal direction and transverse direction; as well as qualitative comparison, quantitative 
comparison, macro-comparison, micro-comparison; and the combination of different methods and 
ways. 

It needs to be emphasized that, when comparing, we should try to consider all possible situations. 
This is also the great feature of comparative sciences clusters and their various branches. 

As for how to consider all possible situations, we will discuss this problem in another paper. 
It should be noted that, in the existing fields of social sciences and natural sciences, many 

sprouts of comparative sciences clusters can be found, but a wide range of the achievements of 
comparative sciences clusters, still are the virgin lands to be developed. 

5. Conclusions
Applying Neutrosophy and Quad-stage Method, as well as comparative methods and ways in 

comparative sciences clusters and their various branches, will play an extremely important role to 
promote the development of social sciences, natural sciences, interdisciplinary sciences, and so 
on; and continue to make new achievements. 
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Neutrosophic theory and applications have been expanding in 

all directions at an astonishing rate especially after the 

introduction the journal entitled “Neutrosophic Sets and 

Systems”. New theories, techniques, algorithms have been 

rapidly developed. One of the most striking trends in the 

neutrosophic theory is the hybridization of neutrosophic set with 

other potential sets such as rough set, bipolar set, soft set, 

hesitant fuzzy set, etc. The different hybrid structure such as 

rough neutrosophic set, single valued neutrosophic rough set, 

bipolar neutrosophic set, single valued neutrosophic hesitant 

fuzzy set, etc. are proposed in the literature in a short period of 

time. Neutrosophic set has been a very important tool in all 

various areas of data mining, decision making, e-learning, 

engineering, medicine, social science, and some more. 

The Book “New Trends in Neutrosophic Theories and 

Applications” focuses on theories, methods, algorithms for 

decision making and also applications involving neutrosophic 

information. Some topics deal with data mining, decision 

making, e-learning, graph theory, medical diagnosis, probability 

theory, topology, and some more.  


	First Part.pdf
	Combined_1.pdf
	ttttttt - Copy.pdf
	wwww.pdf

	Third Part.pdf



