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GALOIS LEVEL AND CONGRUENCE IDEAL
FOR p-ADIC FAMILIES OF FINITE SLOPE SIEGEL MODULAR FORMS

ANDREA CONTI

ABSTRACT. We consider families of Siegel eigenforms of genus 2 and finite slope, defined as local pieces of
an eigenvariety and equipped with a suitable integral structure. Under some assumptions on the residual
image, we show that the image of the Galois representation associated with a family is big, in the sense
that a Lie algebra attached to it contains a congruence subalgebra of non-zero level. We call Galois level
of the family the largest such level. We show that it is trivial when the residual representation has full
image. When the residual representation is a symmetric cube, the zero locus defined by the Galois level
of the family admits an automorphic description: it is the locus of points that arise from overconvergent
eigenforms for GL2, via a p-adic Langlands lift attached to the symmetric cube representation. Our
proof goes via the comparison of the Galois level with a “fortuitous” congruence ideal, that describes
the zero- and one-dimensional subvarieties of symmetric cube type appearing in the family. We show
that some of the p-adic lifts are interpolated by a morphism of rigid analytic spaces from an eigencurve
for GL2 to an eigenvariety for GSp,. The remaining lifts appear as isolated points on the eigenvariety.
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1. INTRODUCTION

Drawing inspiration from earlier work of H. Hida and J. Lang, the paper [CIT15] studied the image
of the Galois representations associated with p-adic families of modular forms, more precisely eigenforms
of finite slope for the action of a Hecke algebra unramified outside of a fixed tame level. Such a family is
defined by equipping a local piece of the eigencurve of the given tame level with an integral structure. A
result of [CIT15] states that the Galois representation attached to a family has big image in the following
sense: there is a ring B and a Lie subalgebra & of gl,(B) attached to Im p, in a meaningful way, such
that & contains [-sl3(B) for a non-zero ideal [ of B. This can be seen as an analogue, for a p-adic family,
of a classical result of Ribet and Momose on the image of the p-adic Galois representation attached
to a classical eigenform [Ri75, Mo81]. We call Galois level of the family the largest ideal [ with the
above property. The arguments in [CIT15] rely strongly on the work of Hida and J. Lang for ordinary
families [Hil5, Lal6], in particular on the study by J. Lang of the self-twists of the Galois representations
attached to families. A new ingredient in the positive slope case is relative Sen theory, that replaces
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ordinarity in some crucial steps. Another result of [CIT15] is an automorphic description of the Galois
level of a family: the geometric points of its zero locus are the p-adic CM points of the family. This is
also a generalization of a theorem of Hida in the ordinary case. The proof goes via the comparison of the
Galois level with a fortuitous congruence ideal, that encodes the information on the CM specializations
of the family. We call this ideal “fortuitous” because, contrary to what happens in the ordinary case,
the CM specializations of a non-CM family do not correspond to congruences with CM families, that do
not exists when the slope is positive.

In this paper we find analogous results for p-adic families of Siegel modular forms of genus 2 and finite
slope. We think that our work in this setting shows that the big image properties of Galois representations
and their relations to congruences are part of a picture that can be extended to more general reductive
groups. We remark that Hida and Tilouine already have some results for ordinary p-adic families of
GSp,-eigenforms that are residually of “twisted Yoshida type” [HT15]. Their arguments rely on the
Galois ordinarity of the families and on R = T results, both of which are not available when the slope
is positive. They obtain congruences between families that are lifts from GLy,p, for a quadratic field
F', and families that are not; their congruence ideals are then traditional ones and not fortuitous ones.
In light of the results of the present paper, we think that fortuitous congruences should be regarded as
general phenomena, that appear whenever we consider families of eigenforms for a reductive group that
arise as p-adic Langlands lifts from a group of smaller rank.

The paper can be divided in two parts. In the first one (Sections 2 to 9) we define two-parameter
families of GSp,-eigenforms of finite slope and we attach Galois representations to them; we then prove
that the image of these representations is big in a Lie theoretic sense, assuming that the residual repre-
sentation is either of full image or a symmetric cube. In the second part (Sections 10 to 16) we prove that
the size of the Galois representation attached to a two-parameter family is related to the congruences of
the family with lifts of eigenforms for a smaller group, constructed via a p-adic Langlands transfer. In the
first half we need to solve many technical problems when passing from genus 1 to genus 2, whereas the
second half is substantially different from its genus 1 counterpart. We present our results and arguments
in more detail below.

Fix a prime p and an integer M not divisible by p. Let H3! be an abstract Hecke algebra unramified
outside Mp and of Iwahoric level at p. In their paper [AIP15], Andreatta, Iovita and Pilloni constructed
a rigid analytic object Do, that we call the GSp,-eigenvariety, and a map from H3! to the ring of
analytic functions on Ds, interpolating the systems of Hecke eigenvalues associated with the p-stabilized
Siegel modular forms of genus 2 and tame level M. The eigenvariety D5 is equipped with a map to the
two-dimensional weight space W, that is the rigid analytic space associated with the formal scheme
Spf Zp[[(Z))?]] by Berthelot’s construction [dJ95, Section 7]. To our purposes it is important that
families be defined integrally, so we cannot work globally on irreducible components of the eigenvariety.
We consider instead an admissible domain Dj, on Dy consisting of the points of slope bounded by a
rational number h and of weight in a wide open disc in the weight space. If the radius of this disc is
sufficiently small with respect to h, the restriction of the weight map to D, is a finite map thanks to a
result of Bellaiche (Proposition 5.1). A suitably chosen integral structure on the weight disc induces an
integral structure on Dj,. This means that we can define a local profinite ring I° and a map H)! — I° that
interpolates the systems of Hecke eigenvalues of the classical eigenforms appearing in Dj,. An argument
by Chenevier gives a Galois pseudocharacter on Dy, that we lift to a representation p: Gg — GSp,(I°)
(Lemma 5.9). We define the “self-twists” of p as automorphisms of I° that induce an isomorphism of p
with one of its twists by a Dirichlet character (Definition 6.1). We write If for the subring of elements of
I° fixed by all the self-twists. We define a certain completion B of I§[1/p] and a Lie subalgebra Lie(Im p)
of gsp,(B) attached to Im p (see Section 8.1). We assume that p is Z,-regular (Definition 4.2) and that
the residual representation p is either full or of symmetric cube type (Definition 4.3). Our first main
result is the following.

Theorem 1.1. (Theorem 9.1) There exists a non-zero ideal | of B such that [ - sp,(B) C Lie(Im p).

We call Galois level of the family the largest ideal [ satisfying the inclusion of Theorem 1.1. We give
here a summary of the proof of Theorem 1.1, that takes up Sections 6 to 9. We first show that, under
our assumptions on p, there exists a classical weight such that p specializes to a representation with
big image at all points of this weight appearing on the family (Theorem 4.4). Here we need the recent
classicality result contained in [BPS16, Theorem 5.3.1]. Another essential ingredient is a result of Pink
(Theorem 4.5), that we use to show that the representation associated with a GSp,-eigenform that is
not a lift from a smaller group has big image with respect to the ring fixed by its self-twists. This is an
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analogue of the result of Ribet and Momose for GLo-eigenforms. We rely on a result proved in the second
part of the paper (see Corollary 4.1) to show that a form which is not a lift satisfies the assumptions of
Pink’s theorem.

Once a classical weight with the desired properties is chosen, we follow a strategy of J. Lang to obtain
some information on the image of p. As a first step we need to show that a big image result holds for
the product of the specializations of p of a given weight, rather than just for a single one (Proposition
7.13). The argument here relies on Goursat’s Lemma and on the classification of subnormal subgroups
of symplectic groups by Tazhetdinov. Afterwards we use the result of the first step to construct some
non-trivial unipotent elements in the image of p. In order to do this we need to prove an analogue of
[Lal6, Theorem 3.1], that allows us to lift the self-twists of the specializations of p at our chosen weight
to self-twists of p itself. The arguments of J. Lang about the lifting of the self-twists to automorphisms
of a suitable deformation ring can be translated to the genus 2 case with little effort, but descending to a
self-twist of the family requires some specific ingredients. Precisely, we prove that we can twist a family
of GSp,-eigenforms by a Dirichlet character to obtain a new family (Lemma 6.10) and we rely on the
étaleness of the eigenvariety above our chosen weight.

In Section 8 we show how the relative Sen theory of [CIT15, Section 5] can be extended to the group
GSpy, in order to associate a Sen operator with p. The eigenvalues of this operator are given explicitly
by the interpolation of the Hodge-Tate weights of the classical specializations of the family (Proposition
8.13). The exponential of the Sen operator induces by conjugation a structure of Z,[[T7, T]]-Lic algebra
on Lie(Im p), so that the special elements we constructed generate a non-trivial congruence subalgebra.
This proves Theorem 1.1.

When p has full image the Galois level of the family is trivial (Corollary 16.2), so the main focus of the
rest of the paper is the case where p is a symmetric cube. We can give two definitions of a symmetric cube
locus on the eigenvariety: an automorphic one, as the locus of points whose system of Hecke eigenvalues
is obtained from that of an overconvergent GLs-eigenform via a symmetric cube morphism of Hecke
algebras, and a Galois one, as the locus of points whose Galois representation is the symmetric cube of
that associated with an overconvergent GLs-eigenform. An important result is the following.

Theorem 1.2. (Theorem 14.1) The automorphic and Galois definitions of the symmetric cube locus are
equivalent.

Theorem 1.2 plays an essential role in describing the Galois level of the family by automorphic means.
Note that this result and its role in our work are completely new with respect to the genus 1 case: there
the only possible congruences are of CM type and it is trivial to see that a point of small Galois image,
contained in the normalized of a torus, is a p-adic CM point (see [CIT15, Remark 3.11]).

The proof of Theorem 1.2 goes via the theory of (¢, T')-modules. It is known by Emerton’s work that
a Galois representation is associated with an overconvergent GLs-eigenform, up to a twist, if and only
if it is trianguline. Thanks to the recent work of Kedlaya, Pottharst and Xiao on triangulations over
eigenvarieties, we know that the “only if” part also holds for overconvergent GSp,-eigenforms (Theorem
13.3). By combining these results we reduce Theorem 1.2 to the proposition below. Let V be a two-
dimensional representation of the absolute Galois group of Q,.

Proposition 1.3. (Proposition 13.12) If Sym®V is trianguline then V is a twist of a trianguline repre-
sentation by a character.

We prove Proposition 1.3 by adapting to our situation some arguments of Di Matteo [DiM13]. We also
show an analogue of Proposition 1.3 where “trianguline” is replaced by “de Rham” (Corollary 13.10);
in this case the proof goes via nonabelian cohomology. Proposition 1.3 allows us to prove that if a
p-old point of symmetric cube type of D} is classical, then it is obtained from a classical point of an
eigencurve for GLo, via the classical Langlands lift attached to the symmetric cube representation by
Kim and Shahidi [KS02].

We study further the symmetric cube locus and show that it is Zariski-closed with zero- and one-
dimensional irreducible components. The one-dimensional part of the locus can be constructed as the
image of a morphism from an eigencurve for GLg, of a suitable tame level, to D} (Section 12.3). This
morphism is obtained by interpolating p-adically the classical symmetric cube Langlands lift. This
interpolation argument goes back to Chenevier’s work on the p-adic Jacquet-Langlands correspondence
[ChO5], but we prefer to use some results of Bellaiche and Chenevier [Bel2, Section 7.2.3] that allow us to
move more easily from an eigenvariety to the other when changing of weight spaces, Hecke algebras and
compact operators (see Section 11.1). The zero-dimensional components of the symmetric cube locus
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are given by isolated p-adic Langlands lifts, that cannot be interpolated due to the fact that their slopes
do not vary analytically. The appearance of such points is related to the existence of more than one
crystalline period for the corresponding Galois representation (Remark 14.10).

Restricting once again our attention to a local piece of the eigencurve describing a family, we define a
symmetric cube congruence ideal that measures the locus of symmetric cube specializations of the family
(Definition 15.1). We call it a fortuitous congruence ideal: since there are no two-parameter families
of symmetric cube type, the congruences detected by this ideal are symmetric cube specializations of a
family that is not globally a symmetric cube. Thanks to Theorem 1.2, that serves as a bridge between
the automorphic and Galois sides, we can relate the congruence ideal with the Galois level of the family.

Theorem 1.4. (Theorem 16.1) The sets of prime divisors of the Galois level and of the symmetric cube
congruence ideal coincide outside of a finite and explicit bad locus.

We think that the results of this paper can be generalized by allowing for different residual represen-
tations, hence different types of congruences, or by replacing GSp, by other reductive groups for which
an eigenvariety has been constructed. We hope to come back to this problem in a later work.
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Notations. We fix some notations and conventions. In the text p will always denote a prime number
strictly larger than 3. Most argument work for every odd p; we specify when this is not sufficient. We
choose algebraic closures Q and @p of Q and Q,, respectively. If K is a finite extension of Q or Q, we
denote by Gy its absolute Galois group. We equip G with its profinite topology. We denote by O
the ring of integers of K. If K is local, we denote by my the maximal ideal of O. For every prime p we
fix an embedding ¢,,: Q — @p, identifying Gg, with a decomposition group of Gg. This identification
will be implicit everywhere. We fix a valuation v, on @, normalized so that v,(p) = 1. It defines a norm
given by |- | = p~ (). We denote by C, the completion of @p with respect to this norm.

All rigid analytic spaces will be considered in the sense of Tate (see [BGR84, Part C]). Let K/Q,
be a field extension and let X be a rigid analytic space over K. We denote by O(X) the K-algebra of
rigid analytic functions on X, and by O(X)° the Og-subalgebra of functions with norm bounded by 1
(we often say “functions bounded by 1” meaning that they are bounded in norm). When f: X — Y
is a map of rigid analytic spaces, we denote by f*: O(Y) — O(X) the map induced by f. There is a
Grothendieck topology on X, called the Tate topology; we refer to [BGR84, Proposition 9.1.4/2] for the
definition of its admissible open sets and admissible coverings.

We say that X is a wide open rigid analytic space if there exists an admissible covering {X;};cn of
X by affinoid domains X; such that, for every i, X; C X;41 and the map O(X;y1) — O(X;) induced by
the previous inclusion is compact.

There is a notion of irreducible components for a rigid analytic space X; see [Con99] for the details.
We say that X is equidimensional of dimension d if all its irreducible components have dimension d.

We denote by A? the d-dimensional rigid analytic affine space over Q,. Given a point x € A%(C,)) and
r € pU, we denote by By(z,7) the d-dimensional closed disc of centre z and radius r. It is an affinoid
domain defined over C,. We denote by By(z,r~) the d-dimensional wide open disc of centre z and radius
7, defined as the rigid analytic space over C, given by the increasing union of the d-dimensional affinoid
discs of centre z and radii {r; };eny with r; < 7 and lim; 1o 7, = r. With an abuse of terminology we
refer to By(x,r) as the d-dimensional “closed disc” and to By(x,r~) as the d-dimensional “open disc”,
even though both are open sets in the Tate topology.

Let X be an affinoid or a wide open rigid analytic space. We denote by O(X){{T'}} the ring of power
series > . a; T with a; € O(X) and lim; |a;|r* — 0 for every r € RT. This is the ring of rigid analytic
functions on X x Al
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Let S be any subset of X(C,). We say that S is:

(1) a discrete subset of X(C,) if SN A is a finite set for any open affinoid A C X(C,);

(2) a Zariski-dense subset of X (C,) if, for every f € O(X) vanishing at every point of S, f is identically
Z€ro;

(3) an accumulation subset of X (C,) if for every x € S there exists a basis B of affinoid neighborhoods
of z in X such that for every A € B the set SN A(C,) is Zariski-dense in A (this term is borrowed
from [BC09, Section 3.3.1]).

Let g > 1 be an integer and let s be the g x g antidiagonal unit matrix (8; n—i(%,7))1<i,j<g- Let Jg4 be

s

0

Jg, defined over Z; for every ring R the R-points of this group are given by

GSpyy(R) = {A € GLy(R) | 3v(A) € R st. "AJA = v(A)J}.

For g = 1 we have GSpy = GLg. The map A — v(A) defines a character v: GSp,(R) — R*. We refer
to v as the similitude factor and we set Spy,(R) = {A € GSpy,(R)|v(A) = 1}.

We denote by By the Borel subgroup of GSp,, such that for every ring R the R-points of By are the
upper triangular matrices in GSpQg(R). We let Tj; be the maximal torus such that for every ring R the
R-points of T, are the diagonal matrices in GSp,,(R2). We write U, for the unipotent radical of B,.
We have By = T,U,. We will always speak of weights and roots for GSp,, with respect to the previous
choice of Borel subgroup and torus. For every root o we denote by U® the corresponding one-parameter
unipotent subgroup of GSp,,. For every prime ¢, we write [, ¢ for the Iwahori subgroup of Gszg(Qg)
corresponding to our choice of Borel subgroup. For every n > 1 we denote by 1,, the n X n unit matrix.

Let g be a positive integer. For every prime ¢ and every integer n > 0 we define some compact open
subgroups of GSp,,(Ag) by:

(1) T@(e7) = {h € GSpay(Z)| he = 1z (mod £")};

(2) T3 (¢") = {h € GSpy,(Z) | by (mod (") € Uy(Z/0°Z)};

(3) T (47) = {h € GSpyy(Z) | he (mod ") € By(Z/1"Z)}.

In particular for n = 1 the ¢-component of T'g(¢) is the Iwahori subgroup of GSp,(Qy). Let N be an
arbitrary positive integer. Write N = [], £} for some distinct primes ¢; and some n; € N. We set
Fgg)(N) =) Fgg)(ﬁz“) for 7=2,0,1. For g =1 we will omit the upper index (1).

We denote by gsp,, the Lie algebra of GSp,, and by sp,, its derived Lie algebra, which is the Lie
algebra of sp,,. We denote by Ad: GSpy, — Aut(sp,,) the adjoint action of GSp,, on sp,,. It is an

irreducible representation of GSp,,.
By “classical modular form for GSp,” we always mean a vector-valued modular form.

the 2¢g x 2¢g matrix < N ) We denote by GSp,, the algebraic group of symplectic similitudes for

2. PRELIMINARIES ON EIGENVARIETIES

In this section we define the basic objects with which we are going to work: weight spaces, Hecke
algebras and eigenvarieties. We recall some of their properties.

2.1. The weight spaces. We choose once and for all u = 1+p as a generator of Z. This choice deter-
mines an isomorphism Z = (Z/(p—1)Z) x Zy. Let g be a positive integer. Consider the Iwasawa algebra
Zyl[[(Z})?]]. A construction by Berthelot [dJ95, Section 7] attaches to the formal scheme Spf Z,[[(Z,; )?]]
a rigid analytic space that we denote by W,. If A is a Q,-algebra, the A-points of W, are the contin-
uous characters (Z,)? — A*. Denote by (Z/(p/—\l)Z)g the group of characters of (Z/(p — 1)Z)9. The
following map gives an isomorphism from W, to a disjoint union of g-dimensional open discs By(0,17)

indexed by (Z/(p — 1)Z)9:
Ng: Wy = (Z/(p — 1)Z)9 x Bgy(0,17),
k= (Klz)p-zyes (B(u, 1,000 1) = Lk(Lu, 1,000, 1) = 1,00 k(1,0 T u) — 1),

We write A, for the algebra Z,[[Th,Ts, ..., T,]] of formal series in g variables over Z,. It is the ring
of rigid analytic functions bounded by 1 on a connected component of the weight space.
We denote by wyy, : Z5 — Zy[[(Z,;)?]]* the universal character of W,. For every affinoid domain
A = Spm R and every inclusion t4: A < W, we set ka4 = 1 o kyy,. We call k4 the universal character
associated with A. By [Bu07, Proposition 8.3] there exists € p< such that k4 is r-analytic, in the sense
5



that it can be extended to a character ((Z,)9 - By(1,7)) — R*. The radius of analyticity of x4 is the
largest such r; we denote it by r, .

We call arithmetic primes the primes of Zp[[(Z;)g]]@)ZP(Cp of the form Py . = (k1,ka,..., kg, 1 +T1 —
e1(w)ukr,1 4+ Ty — ea(w)uk2, ..., 1 + Ty — g4(u)uks) for a g-tuple of integers k = (k1,k2,...,k,;) and a
finite order character : (Z,)? — C). We will always take as € the trivial character 1; in this case we
write P, = Py,1. We say that a Qp-point r: Z,; — Q, of W is classical if it is the specialization of kyy,
at Py, for some k € Z9.

2.2. The abstract Hecke algebras. The abstract Hecke algebras we consider are tensor products of
a Iwahori-Hecke algebra at p and of the spherical Hecke algebras at all primes outside of a finite set
containing p.

2.2.1. The abstract spherical Hecke algebra. Let £ be a prime. Let G be a Z-subgroup scheme of GSp,,
and let K C G(Qy) be a compact open subgroup. For v € G(Qy) we denote by 1([K+yK]) the character-
istic function of the double coset [KyK]. Let H(G(Qy), K) be the Q-algebra generated by the functions
1([K~K]) for v € G(Qy), equipped with the convolution product. We call spherical (or unramified)
Hecke algebra of GSp,, at £ the Q-algebra H(GSp,,(Qr), GSpy,(Z¢)). It is generated by the elements
T, = 1([GSpay, (Ze)diag (Li, (ag—2;, £21;)GSpyy(Ze))), for i = 0,1,...g, and (T%)~". Note that our

operator Te(%) is often denoted by Ség) in the literature.

2.2.2. The abstract dilating Twahori-Hecke algebra. The Hecke algebra H(T,(Qy), Ty(Z,)) carries a nat-
ural action of the Weyl group W, = 7, x (Z/2Z) of GSp,,, where .7, is the group of permuta-
tions of {1,2,...,g}: if diag(utl,...,Z/tg,tg_l,...7t;1) is an element of the torus, .7, acts by per-
muting the ¢;’s and the non-trivial element in each Z/2Z sends ¢; to t; L. We denote the action of
we W, onteT(Qg) by t — w.t. The twisted Satake transform Sggsng : H(GSpy, (Qr), GSpyy(Ze)) —
H(Ty(Q¢), Ty(Z¢)) induces an isomorphism of H(GSpy,(Qe), GSpy,(Z¢)) onto its image, which is the
subalgebra of H(T,(Q¢),Ty(Z¢)) consisting of Wy-invariant elements. In particular H(Ty(Qy), Ty(Zy)) is
a Galois extension of H(GSpy,(Qr), GSpy,(Ze)) of Galois group Wj,.

Fori=0,1,...,g let t{) = 1([diag (L;, {lag—s;, €21,)Ty(Z;)]). Note that %) = Spy, (T1)- The set

(tg,gi))i:lw-,g generates the extension H(Ty(Qy), Ty (Ze)) over H(GSpy,(Qe), GSpa,(Ze)).

We call an element v € T,(Z,) dilating if v,(a(y)) < 0 for every positive root . Let T,(Z¢)~ be
the subset of T,(Z;) consisting of dilating elements and let H(T,(Q¢),Ty(Z))~ be the Q-subalgebra of
H(Ty(Qe), Ty(Zy)) generated by the functions 1([yTy(Ze)]) with v € T4(Qp) . The functions 1([vT4(Z,)])
with v € T(Q)~ also form a basis of H(T(Qy),T,(Z¢))™ as a Q-vector space.

Remark 2.1. Everyy € T(Qy) can be written in the form v = y1v5 * with 1,2 € T(Z¢)~. A character
x: H(Ty(Qp), Ty(Ze))~ — Q, can be extended uniquely to a character x°**: H(Ty(Qq), Ty(Ze)) — Q,
by setting x> ([YT'(Ze)]) = x([11T(Z)]))x([72T(Ze)] L) for some v1 and 2 as before. It can be easily
checked that x*** is well-defined.

Let H(GSpa, (Qr), 14,¢)~ be the subalgebra of H(GSpy, (Q¢), Iy,¢) generated by the functions 1([1, ¢vIg ¢])
with v € T(Ze)~. We call H(GSpa,(Qr), Iy,0)~ the dilating Iwahori-Hecke algebra at (. It is generated
by the elements Ul(i') = 1([I,.¢diag (1;, {1og_o;, £*1;)1, 4]), for i = 0,1,...,g, and (Ué%))’l.

We define a morphism of Q-algebras L?jli H(GSpay(Qr), 1g.0)~ — H(Ty(Qe), Ty(Ze))~ by sending

1(1g.0v14.0) to L(Ty(Ze)¥Ty(Ze)) for every v € T(Ze)~. The map Lf:[ is an isomorphism; this can be
proved as [BC09, Proposition 6.4.1]. \
Let p be a prime and N be a positive integer such that (N,p) = 1. Set

Hy? = Q) H(GSpay(Qr), GSpyy (1))
Q,¢4Np
and
My =Hy'? @ H(GSpay(Qp), Ig,p) -
We call Hév the abstract Hecke algebra spherical outside N and Iwahoric dilating at p.

The algebra Hév acts on the space of classical vector-valued modular forms for GSp,,(Q) of level
I'1(N)NTy(p). With an abuse of notation we will consider the elements of one of the local algebras as
elements of ’Hév via the natural inclusion (tensoring by 1 at all the other primes).

6



2.2.3. The Hecke polynomials. We record here some explicit formulas for the minimal polynomials
Pmm(tég) X) of the elements t(Q) over H(GSpa,(Q¢), GSpy,(Z¢)) when g is 1 or 2.

For g = 1, the element t§,1) = 1([diag (1, £)T1(Zs)]) generates the degree two extension H (11 (Qy), T1(Zy))
of H(GL2(Qy), GL2(Zy)). Let w be the only non-trivial element of the Weyl group of GLy. The minimal
polynomial of t§ 1) is Pmm(t(l))(X )= (X — téll))(X — (tgll))“’) An explicit calculation gives
(2.1) Pain(t4): X) = (X =) (X = (tf])") = X* ~ TV X 077,

For g = 2, the degree eight extension H(T2(Qy),T2(Z¢)) over H(GSp,(Qr), GSp,(Z¢)) is generated
by %) = 1([diag (1,4, ¢, 0*)T2(Z))) and t{y = 1([diag (1, 1,£,£)Ts(Z)]). Each of them has an orbit
of order four under the action of the Weyl group. If t = diag (vt1, vta,t; ", t; ") is an element of the
torus we denote by wp, wy, wo the generators of the Weyl group satisfying ¢*° = diag (vts, vty t;l, tl_l),

w1 = diag(ytfl,utg,tl,tgl), tw2 = diag(ytl,ytgl,tfl,tg). Note that th) is invariant under wg. The
calculation in the proof of [An87, Lemma 3.3.35] gives

Pain(t233 X) = (X = #3) (X = <t§2>>w1><x—<t§?§>"’2><x—<t§?§>w2>=

(2.2) 1_p@ s (2)22 2(2)\ 2 _ 43 (2) 6 ((2)
=X"-T,5X°+ (T;5)" - _ETz,o)X _ETZZT X +0(T,, ).
Since tE ) = (t; ))( (2 ))“’1 is invariant under w;, we can also write
(2.3)
2 2) (2w 2)\ws 4 (2)\wiw 2) (,(2)\w 2)\wy (4(2)\ywyw
Prin(tg:1) (X) = (X = 3 (23)" (X = ()" (3)" ) (X — 5 (53)") (X = (t£3)" (t2)"*).

2.2.4. Normalized systems of Hecke eigenvalues. For this reason we introduce their standard normaliza-
tion, depending on the weight, before passing to the p-adic setting. Let f be a classical GSp,-eigenform
of level I'1(N) N To(p) and weight k = (ki,ka,...,kg). Let x: HY — @, be the system of Hecke
eigenvalues associated with f.

Definition 2.2. For g € {1,2}, let x"'™: ’Hév — @p be the character defined by
_ Xnorm|HNp — X|H§Vp;
Xnorm(Ulgf?) =p =1 (ki =) fori=1,2,... g (where the exponent of p is 0 fori = g).

We call x™°™ the normalized system of Hecke eigenvalues associated with f.

2.3. The eigenvariety machine. We recall some elements of Buzzard’s “eigenvariety machine” [Bu07].
We call eigenvariety datum a 5-tuple (W, H, (M (A, w)) 4w, ($4,w)Aw,n) Where:

(1) there exists an integer g > 1 such that W = W, is the g-dimensional weight space defined in the
previous section;

) (A, w) varies over the couples consisting of an affinoid A C W and w € Q satisfying p~ < r,,;

) for every (A, w) with A = Spm R, M (A, w) is a projective Banach R-module;

) H is a commutative ring;

) ¢aw: M — Endpg cont (M (A, w)) is an action of H on M (A, w);

) m € H is an element such that ¢4 ,(n) is a compact operator on M (A, w) for every (A4, w);

) when A and w vary the modules M (A, w) with their H-actions satisfy the compatibility properties
assumed in [Bu07, Lemma 5.6].

Let K be a finite extension of Q. A morphism A: H — K is called a K -system of eigenvalues for the
given datum if there exists a point kK € W(K), an affinoid A = Spm R containing &, a rational w and an
element m € M(A,w) ®r K (where R — K is the evaluation at k) such that ¢4 ., (T)m = X\(T)m for all
TeH.

Theorem 2.3. For every eigenvariety datum (W, H, (M (A, w))Aw, (®aw)aw,n) there exists a triple
(D, ¢, w) consisting of

(1) a rigid analytic space D over Qp,

(2) a morphism of Q,-algebras ¢: H — O(D)°,

(3) a morphism of rigid analytic spaces w: D — W (called the weight morphism ),

with the following properties:

(1) (n) is invertible in O(D);



(2) for every finite extension K/Q, the map
D(K) — Hom(H, K),
z = (T = (T)(2)),

induces a bijection between the K-points of D and the K-systems of eigenvalues for the given datum.

(2.4)

We call (D, v, w) the eigenvariety for the given datum.

We often leave 1 and w implicit and just refer to D as the eigenvariety. Since the space W, is
equidimensional of dimension g, [Ch04, Proposition 6.4.2] implies that D is also equidimensional of
dimension g.

Thanks to property (1) in Theorem 2.3, we can give the following definition.

Definition 2.4. Let sl: D(C,) — R2° be the function defined by sl(z) = v,(¢(n)(z)) for every x €
D(C,). We call sl(z) the slope of x.

Remark 2.5. The function sl: D(C,) — R is locally constant. In particular sl is bounded over A(C,)
for every affinoid subdomain A of D.

Definition 2.6. We call ordinary eigenvariety for the given datum the largest open subvariety Dord of
D with the property that 1¥(n)|pera € (O(D°T4)°)*.

2.4. The cuspidal GSp, -eigencurve. Let g be a positive integer. Let p be an odd prime and let N
be a positive integer such that (N,p) = 1. Let ’Hév be the abstract Hecke algebra for GSp,,, spherical
outside N and Iwahoric dilating at p. Let W, be the g-dimensional weight space. For every affinoid
A = Spm R C W, and every sufficiently large rational number w, Andreatta, Iovita and Pilloni [AIP15,
Section 8.2] defined a Banach R-module M (A, w) of w-overconvergent cuspidal GSp,,-modular forms
of weight 14 and tame level 'y (V). For each (A, w) there is an action ¢ HY — Endg cont My (A, w).

Set U = [T, US%. 1t is shown in [AIP15, Section 8.1] that (W,, HY, (My(A,w)) A,uw, (69) A, Us”)
is an eigenvariety datum. The eigenvariety machine constructs from this datum a rigid analytic variety
over Qp, equidimensional of dimension g. We call it the GSp,,-eigenvariety of tame level N and we
denote it by Dév. It is equipped with a weight morphism wy: Dév — Wy and a map 1) : Hév — O(Dé\’),
that interpolates the normalized systems of Hecke eigenvalues of classical cuspidal GSp,,-eigenforms of
tame level I'y (V). The images of the elements Ti(f;) and Ui(,%)v 1 <i < g, belong to O(D))°.

When g = 1 we call DYV the eigencurve. It was constructed by Coleman and Mazur in [CM98] for
N =1 and p > 2, building on earlier ideas of Coleman. Their construction was extended to all N and p
by Buzzard in [Bu07].

We call a point =z € Dév (Cp) classical if the system of Hecke eigenvalues associated with x by the map
(2.4) is that of a classical modular form f of level I'y(N) N T (p) and weight wgy(z). In this case wy(x)
is clearly a classical weight.

There is a slope function sl: Dév (C,) — R given by Definition 2.4. By Coleman’s classicality result, a
point of DM of weight k > 2 and slope h < k—1 is classical. An analogue for general genus is given by the
result below. Let x be a @p—point of DY of weight k = (kq, ko, ..., kg) € Z9, so that k1 > ko > ... > k.

Proposition 2.7. ([BPS16, Theorem 5.3.1], see also Remark 1 in the Introduction of loc. cit.) If

sl(z) < kg — w then the point x is classical.

2.4.1. The non-CM eigencurve. We say that a classical point of DY is a CM point if it corresponds to a
classical CM modular form. We say that an irreducible component of DJ is a CM component if all its
classical specializations are CM points.

Remark 2.8. By [Hil5, Proposition 5.1], if an ordinary irreducible component of the eigencurve contains
a classical CM eigenform of weight k > 2 then the component is CM. In particular there exist CM
irreducible components of the ordinary eigencurve, and every ordinary CM classical point belongs to a
CM component. On the contrary, the CM classical points of the positive slope eigencurve form a discrete
set (recall that this means that they are finite in each affinoid domain). This is a consequence of [CIT15,
Corollary 3.6], where it is shown that the eigencurve DT=" contains a finite number of CM classical
points.

Let Div’g be the Zariski-closure in DI of the set of non-CM classical points. We call Div’g the non-CM
eigencurve. The upper index G stands for “general”, since CM components are exceptional among the
irreducible components of Di¥.



Remark 2.9. It follows from Remark 2.8 that ’Div’g is the union of all the non-CM irreducible compo-

nents of DI¥. In particular ’Div’g s equidimensional of dimension 1 and it contains the positive slope
eigencurve. Moreover the set of non-CM classical points is an accumulation and Zariski-dense subset of

N,G
pNI.

3. THE GALOIS PSEUDOCHARACTERS ON THE EIGENVARIETIES

In this section p is a fixed prime, M is a positive integer prime to p and ¢ is 1 or 2. For a point
z € D} (C,) we denote by ev,: O(D)') — C,, both the evaluation at 2 and the map GSp,,(O(D)')) —

GSpy, (C,) induced by ev,. Recall that the GSp, -eigenvariety Dé\/f is endowed with a morphism
by HY = O(D))
that interpolates the normalized systems of Hecke eigenvalues associated with the cuspidal GSpy,-

eigenforms of level 'y (V) N Tg(p). Also recall that the images of Ti(j) and Ui(’%)7 1 <i < g, are elements
of (’)(’Dé”)o. For a classical point x € Déw (@p) let ¥, = ev, o1hy. Let f, be the classical GSp, -eigenform

having system of Hecke eigenvalues ¢, and let p,: Gg — GSpy, (@p) be the p-adic Galois representation
attached to f,. When x varies, the traces of the representations p, can be interpolated into a pseudochar-
acter with values in O(Déw )°. This is the main result of this section. Unfortunately the pseudocharacter
obtained this way cannot be lifted to a representation with coeflicients in (’)(Dé‘/f )°. We will be able to

obtain a lift only by working over a sufficiently small admissible subdomain of ch (see Section 5.3).

3.1. Classical results on pseudocharacters. We refer to [Ro96, Sections 2 and 3] for the definition
and basic properties of pseudocharacters. In this subsection d is a positive integer, A is a commutative
ring with unit and R is an A-algebra with unit (not necessarily commutative). If G is a group and T: G —
A is a map, we say that T is a pseudocharacter if it can be extended to a pseudocharacter A[G] — A.
Recall that if 7: R — My(A) is a representation, the map Tr(7): R — A is a pseudocharacter of
dimension d. Thanks to the following result of Carayol, 7 is uniquely determined by the pseudocharacter
Tr(7).

Theorem 3.1. [Ca94] Suppose that A is a complete noetherian local ring. Let A’ be a semilocal extension
of A. Let 7': R — My(A’) be a representation. Suppose that the traces of 7' belong to A. Then there
exists a representation T: R — Mg4(A), unique up to isomorphism over A, such that T is isomorphic to
7" over A'.

Under some hypotheses on the ring A it is known that every pseudocharacter arises as the trace of a
representation. The first of the following two theorems is due to Taylor when char(A4) = 0 and Rouquier
when char(A) > d; the second one was proved independently by Nyssen and Rouquier.

Theorem 3.2. [Ta91, Ro96] Suppose that A is an algebraically closed field of characteristic either 0 or
greater than d. Let T: R — A be a d-dimensional pseudocharacter. Then there exists a representation
T7: R — My(A) such that Tr(r) =T.

Theorem 3.3. [Ny96]/Corollary 5.2][Ro96] Suppose that A is a local henselian ring in which d! is
invertible and let F denote the residue field of A. Let T': R — A be a pseudocharacter of dimension d
and T': R — T be its reduction modulo the mazimal ideal of A. Suppose that there exists an irreducible

representation T: R — Mg(F) such that Tr(7) = T. Then there is an isomorphism R/kerT = My(A)
and the projection R — R/kerT is a representation lifting T.

3.2. The characteristic polynomial of a pseudocharacter. We introduce a notion of characteristic
polynomial of a pseudocharacter. Let 7: G — GLg4(A) be a representation and let 7' = Tr(7). For
g € G let a1, a,...,aq be the eigenvalues of 7(g). For every n € N we have T(¢") = Z?Zl al’, so
the functions T'(g") generate over Q the ring of symmetric polynomials with rational coefficients in
the variables aq,aq,...,a,. We deduce that there exist polynomials fi, fo,..., fa € Q[z1,22,...,24],

independent og g, such that det(1 — X7(g)) = 1+ S0, f1(T(g),T(g?), ..., T(g")) X"

Definition 3.4. If T: G — A is a d-dimensional pseudocharacter, we let Pepar(T): G — A[X]98=¢ be
the polynomial defined by

d
Pchar(T) =1 + Z fl(T(g)vT(QQ)ﬂ e 7T(gd))Xi7
i=1
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where f1, fa,..., fa are as in the discussion above. We call Pepay(T) the characteristic polynomial of T

For example for d = 2 we have

(3.1) Perar(T)(9) =1 - T(g) X + (T(g>2—T(92)> X2

2
Note that Chenevier constructed in [Chl4] objects called “determinants” that include information on
the characteristic polynomials of the elements of the group algebra. In our setting we do not need this
tool; the polynomial associated with T' by Definition 3.4 is the one mentioned in [Ch14, Note 7].

For later use we introduce the notion of symmetric cube of a two-dimensional pseudocharacter.

Definition 3.5. Let T: G — A be a two-dimensional pseudocharacter. The symmetric cube of T' is the
pseudocharacter Sym>T: G — A defined by

SymT(g) = T(g)2(3T(922) —T(9)%)

This definition is justified by the remark below.

Remark 3.6. Let 7: G — GL2(A) be a representation and let T = Tr(r). Then the trace of the
representation Sym>7: G — GSpy(A) is Sym>T. In particular Pchar(Sym3T)(g) = Sym?’PChar(T)(g).
We deduce from the definition of Penar that the equality Pchar(SymBT) = SymBPChar(T) must hold for
every pseudocharacter T: G — A (not necessarily defined as the trace of a representation).

3.3. Interpolation of the classical pseudocharacters. As before let g € {1,2}. Every classical point
of Dé” admits an associated Galois representation. In this section we interpolate the trace pseudochar-
acters attached to these representations to construct a pseudocharacter over the eigenvariety.

We remind the reader that for every ring R we implicitly extend a character of the Hecke algebra
"Hg/[ — R* to a morphism of polynomial algebras Hf]\/f [X] — R[X] by applying it to the coeflicients.
Recall that we fixed an embedding Gg, < Gg for every prime ¢, hence an embedding of the inertia
subgroup I, in Gg. As usual Frob, denotes a lift of the Frobenius at £ to Gg,.

Let S°' denote the set of classical points of D!]]‘/[. Let x € S°'. We keep the notations ev,, .., p, as in

the beginning of the section. We let T;,: Gg — @p be the pseudocharacter defined by T, = Tr(p,).

Proposition 3.7. There exists a pseudocharacter Tg: Gg — O(Déw) of dimension 2g with the following

properties:

(1) for every prime £ not dividing Np and every h € I, we have Ty(h) = 2, where 2 € O(D}") denotes
the function constantly equal to 2;

(2) for every prime £ not dividing Np we have Pehar(Ty)(Frobe)(X) = wg(Pmin(tzg;; X));

(3) for every x € S we have ev, o T, =T,.

Proof. The pseudocharacter T, is constructed via the interpolation argument of [Ch04, Proposition 7.1.1].
Its properties are a consequence of those of the classical representations. See [Col6, Theorem 3.5.10] for
a detailed proof of the proposition. O

Remark 3.8.
(1) Let x € Dy(@p). Consider the 2g-dimensional pseudocharacter T,,: Gg — @p defined by T, =

evy o Toy. By Theorem 3.2 there exists a Galois representation p,: Gg — GL4(Q)) satisfying T, =
Tr(ps). We will see in Section 5.3 that, when p, is absolutely irreducible, p, is isomorphic to a

representation Gg — GSpy(Q,).

(2) When x varies in a connected component of D), the residual representation p,: Gg — GSpy,(Q,)
is independent of x. We call it the residual representation associated with the component.

4. BIG IMAGE OF GALOIS REPRESENTATIONS ATTACHED TO GSp,-EIGENFORMS

Let N be a positive integer and let p be a prime not dividing N. Let F' be a GSp,-eigenform of level
I'1(N). Let prp: Gg — GSpy(Q,) be the p-adic Galois representation associated with F. It is defined
over a p-adic field K. Under the technical condition of “Z,-regularity” of pr, and an assumption on
the associated residual representation, we prove that the image of pr is “big” when F is not a lift from
a GLg-eigenform. An important ingredient of the proof is a result that we will prove later, Theorem
13.18(i). More precisely we need the corollary that we state below.
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Corollary 4.1. (Corollary 13.19) Suppose that there exists a representation p': Go — GL2(Q,) sat-
isfying prp = Sym®p'. Then F is the symmetric cube lift of a GLa-eigenform, defined by Corollary
10.4.

Another crucial ingredient is a theorem of Pink that we recall below (Theorem 4.5).

In the following definitions, let E be a finite extensions of Q,. Let R be a local ring with maximal ideal
mp and residue field F. Let 7: Gg — GSp,(R) be a representation. Let PGSp,(R) = GSp,(R)/R*,
where R* is identified with the subgroup of scalar matrices. We denote by 7: Gg — GSp,(F) the
reduction of 7 modulo mg. Recall that 75 is the torus consisting of diagonal matrices in GSp,. We give
a notion of Z,-regularity of 7, analogous to that in [HT15, Lemma 4.5(2)].

Definition 4.2. We say that T is Zy-regular if there exists d € Im T NT5(R) with the following property:
if a and o/ are two distinct roots of GSp, then a(d) # o'(d) (mod mg). If d has this property we call it
a Z,-regular element.

From now on we focus on representations that are either “residually full” or “residually of symmetric
cube type”, in the sense of the definition below. Note that these two types of representations appear in
[Pil12, Section 5.8] as examples of those for which he can construct a sequence of Taylor-Wiles primes.

Definition 4.3. We say that T is:
(1) residually full if there exists a non-trivial subfield F' of F and an element g € GSp,(F) such that
Sp4(F') € g(ImT)g~" C GSpy(F');
(2) residually of symmetric cube type if there exist a non-trivial subfield ' of F and an element g €
GSp,(F) such that
Sym?SLy(F') € g(Im7)g~! € Sym3GLy(F').
We also say that T is full in case (i) and of symmetric cube type in case (ii).

We write sp,(K) for the Lie algebra of Sp,(K) and Ad : GSp,(K) — End(sp,(K)) for the adjoint
representation. Let F' and pgj,: Gg — GSpy(Ok) be as in the beginning of the section. Let E be the
subfield of K generated over Q, by the set {Tr(Ad(p(9)))}geq,- Let Op be the ring of integers of E.
For a GLa-eigenform f, we denote by py, the associated p-adic Galois representation. We will prove the
following result.

Theorem 4.4. Assume that pr,, s Zy-reqular and that one of the following two conditions is satisfied:
(1) prp is residually full;
(i) F is not a p-stabilization of the symmetric cube lift of a GLa-eigenform, defined by Corollary 10.4.

Then the image of pr, contains a principal congruence subgroup of Sp,(Og).
For use in the proof of of Theorem 4.4 we state a result of Pink.

Theorem 4.5. [Pink98, Theorem 0.7] Let L be a local field and let H be an absolutely simple connected
adjoint group over L. Let T' be a compact Zariski-dense subgroup of H(L). Suppose that the adjoint
representation of T is irreducible. Then there exists a closed subfield E of L and a model Hg of H over
E such that T is an open subgroup of Hg(E).

We also need the following lemma.

Lemma 4.6. Let G be a profinite group and let G; be a normal open subgroup of G. Let L be a field.
Let 7: G — GSpy(L) be a continuous representation. Suppose that:

(1) there exists a representation 1| : Gy — GLa(L) such that T|g, = Sym>7;

(2) the image of T{ contains a principal congruence subgroup of SLa(L);

(3) there exists a character n: G — L* such that det T = nS.

Then there exists a finite extension v: L — L' and a representation 7": G — GLa(L') such that toT =
Sym?37'.

Proof. We show that there is a finite extension L’ of L such that to7(G) € Sym*GLy(L/). For g €

GSp,(L) let Ad(g): GSpy(L) — GSp4(L) be conjugation by g. Since G; is an open normal subgroup

of G, 7(G) normalizes 7(G1). Let g be an arbitrary element of 7(G). The map Ad(g) restricts to

an automorphism Ad (g)|-(g,) of 7(G1). Since 7|g, = Sym®7/, the symmetric cube map induces an

isomorphism 7(G1) = 77(G1). Hence Ad(g) induces an automorphism Ad(g)’ of 7{(G1), which is a

subgroup of GLo(L) containing a congruence subgroup of SLo(L). By applying Corollary 6.16 to the
11



map Ad (g)': 71(G1) = 71(G1) we deduce that there exists hy, € GLy(L), a field automorphism o of L
and a character : 7(G1) — L™ such that

(4.1) Ad () (z) = p(x)hgahy"

for every x € G;. Since every operation in Equation (4.1) is L-linear, the automorphism o must be the
identity. Moreover Ad (g)’ is induced by Ad (g), so by taking characteristic polynomials on both sides of
the equation we obtain that ¢ is trivial. Hence Equation (4.1) gives Ad(g)|-(g,) = Ad (SymShg)|T(g1),
so the element g(Sym?’hg)_1 centralizes 7(G1) and by Schur’s lemma it is a scalar v414 for some v, € L.
Choose a set of representatives S for the finite group G/G;. Let L’ be the finite extension of L obtained
by adding the cubic roots of the elements in the set {v,|g € 7(S)}. Let ¢: L — L’ be the inclusion.
For g € 1o7(S) we have ¢(y,14) € Sym®GLy(L’) by construction of L', so t(g) = t(y,14 - Sym®hy,) €
Sym®GLy(L'). For every g € 7(G) we can write ¢ = g1g» with g; € 7(G;) and go € 7(S). Since
7(G1) € Sym®GLy(L) we obtain t(g) = ¢(g1)t(g2) € Sym*GLy(L').
For every g € G, let 7'(g) be the unique element of GLo(L’) that satisfies:
(1) Sym’7'(g) = to7(9);
(2) det7'(g) = von(g).
Such an element exists by the result of the previous paragraph. Then the map 7/: Gg — GL2(L’) defined
by g — 7/(g) is a representation satisfying Sym>7’ = 1o 7. d
The rest of the section is devoted to the proof of Theorem 4.4. Let (Im pg)" be the derived subgroup
of Impp, and let G = (Impp,p) N Sps(K). We denote by G the Zariski-closure of G in Spy(K). As in
[HT15, Section 3], we will show first that under the hypotheses of Theorem 4.4 we have G = Sp,(K),
and second that G is p-adically open in G. We will replace the ordinarity assumption in loc. cit. by that
of Zy-regularity. Let G denote the connected component of the identity in G.
Let H be any connected, Zariski-closed subgroup of Sp,, defined over K. As in [HT15, Section 3.4]
we have six possibilities for the isomorphism class of H over K:
(1) H = Spy;
(2) H= SL2 X SLQ,
(3) H = SLy embedded in a Klingen parabolic subgroup;
(4) H = SLy embedded in a Siegel parabolic subgroup;
(5) H = SLy embedded via the symmetric cube representation SLs — Sp, (in this case we write
H = Sym®SL,);
(6) H = {1}.
We show that only (1) is possible for H = G".

Lemma 4.7. If condition (i) or (ii) in Theorem 4.4 holds, then G = Spy.

Proof. Let mg be the maximal ideal of O and let Fx = Og /mg. The group (Im pp,,)’ is contained in
G°(Ok). By reducing modulo mg we obtain that the derived subgroup (Im prp) of Impp , is contained
in G° (Fk). If pp,p is residually full, then the only choice for the isomorphism class of G is G Spy.
If pp,p is residually of symmetric cube type, then either G Sp, or [E= Sym?>SLs.

Suppose that [e= Sym>SL,. We show that there exists a GLa-eigenform f such that Prp = Sym?’pf’p.
This will contradict the second part of condition (ii) of Theorem 4.4, concluding the proof of Lemma
4.7. Since G (K) is of finite index in G(K), Lemma 4.6 implies that G(K) C Sym®SLy(K), so Im pPrp C
Sym®GLs (K). Hence there exists a representation p’ satisfying pp, = Sym?p’. Since PF,p is associated
with a GSp,-eigenform, Corollary 4.1 implies that p’ is associated with a GLg-eigenform f. O

The proof of Theorem 4.4 is completed by the following proposition.

Proposition 4.8. Suppose that G = Sp,(K). Then the group G contains an open subgroup (for the
p-adic topology) of Sp,(E).

Proof. Consider the image G®* of G under the projection Sp,(K) — PGSp,(K). It is a compact

subgroup of PGSp,(K). Since G =2 Sp,(K), the group G*¢ is Zariski-dense in PGSp,(K). By Theorem

4.5 there is a model H of PGSp, over E such that G® is an open subgroup of H(E). By the assumption

of Z,-regularity of p, there is a diagonal element d with pairwise distinct eigenvalues. The group H(FE)

must contain the centralizer of d in PGSp,(F), which is a split torus in PGSp,(F). Since H is split and

H xp K = PGSp,,k, H is a split form of PGSp, over E. Then H must be isomorphic to PGSp, over
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E by unicity of the quasi-split form of a reductive group. Hence G* is an open subgroup of PGSp,(F).
Since the map Sp,(K) — PGSp,(K) has degree 2 and G N Sp,(F) surjects onto G* N PGSp,(E), G
must contain an open subgroup of Sp,(FE). In particular G contains a principal congruence subgroup of
Sp4(Ok). O

Theorem 4.4 states that, when pp , is either full or of symmetric cube type, the image of pr is large
if and only if F' is not a lift of an eigenform from a smaller group, the only possible such lift under these
assumptions being associated with the symmetric cube representation of GLo. We think that a similar
result should hold under more general assumptions on the residual representation, and that it would
follow from Pink’s theorem together with an analogue of Corollary 4.1 for the other possible Langlands
lifts to GSpy.

5. FINITE SLOPE FAMILIES OF GSp, -EIGENFORMS

In this section we define families of finite slope GSp, -eigenforms of level I'y (V) N [o(p), extending
the definitions given in [CIT15, Section 3.1] for g = 1. Our goal is to define such families integrally. In
the following sections we will only use families of genus 1 or 2, but we can give the definitions for general
genus with no extra effort.

Let p be a prime number and let NV be a positive integer prime to p. For g > 1 let Dév’h be the
GSp,,-eigenvariety of tame level T'1(N). Let h € Q**. Since the slope sl: Dév’h((Cp) — R29 is the
valuation of a rigid analytic function on D_(I]V * the locus of Cp-points = € Dév satisfying sl(x) < h admits
a structure of rigid analytic subvariety of D_(I]V . We denote it by D!Ix 5, Recall that we always identify the
g-dimensional weight space W, with a disjoint union of open discs of centre 0 and radius 1. A standard
way to obtain an integral structure on an admissible domain of an eigenvariety is to use the integral
structure on the weight space via the weight map. The restriction of the weight map to Dév " is in
general not finite if A > 0, but it becomes finite when restricted to a sufficiently small admissible domain
in ’Dév . This is assured by a result of Bellaiche that we recall below. For every affinoid subdomain V

o N,h _ 1N,k h . N,h
of Wg, let Dy = D" xoe V and let wg = wy plpyn: Dy = V.

Proposition 5.1. (Bellaiche)

(1) For every k € W;(Qy,) there exists an affinoid neighborhood Vi, . of k in Wy such that the map
w‘ZVhw s finite.
(2) When h varies in QT* and k varies in W, the set {(wgyh ) Viw) Ihw s an admissible affinoid

covering of D_f]v.

In Bellaiche’s terminology, a pair (V}, x, h) such that V}, ., has the property described in (1) is called an

adapted pair. Part (1) of Proposition 5.1 follows from the fact that the characteristic power series of U1§2)
acting on modules of overconvergent eigenforms is strictly convergent, in particular from the calculation
in [Bel2, Proposition I1.1.12] and the fact that the map from the eigenvariety to the spectral variety
is finite. Part (2) follows from (1) together with the admissibility of Buzzard’s covering of the spectral
variety ([Bu07, Theorem 4.6]) and the construction of the eigenvariety (see [Bel2, Theorem I1.3.3]).

Remark 5.2.
(1) Ewery affinoid neighborhood of k € Wg contains a wide open disc centred in k. Proposition 5.1
implies that there exists a radius vy, . € pY such that

h . N,k

w - _ . — By(k, 7,
ngg(erh,,m) g,Bg(K,ThYK) g( ’ h’n)

is a finite morphism.

(2) Thanks to Hida theory for GSp, we know that the ordinary eigenvariety Déw’o is finite over Wg.
Hence we can take ro ,, =1 for every k.

(8) We would like to have an estimate for vy, ., independent of k and with the property that ry, ., — 0 for
h — 0, in order to recover the ordinary case in this limit. This is not available at the moment for the
group GSpy,. An estimate of the analogue of this radius is known for the eigenvarieties associated
with unitary groups compact at infinity by the work of Chenevier [Ch04, Théoréme 5.3.1].
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5.1. Families defined over Z,. For our purpose of studying the images of Galois representations, we
will need to have our finite slope families defined over Z,. For this reason we specialize to families over
weight discs for which we can construct a Zj,-model. For simplicity we only work on the connected
component Wy. Recall that we defined coordinates T3, 73, ...,T, on Wy. Let x be a point of W; with

coordinates (K1, K2, . . ., Kq) In Z.g; for instance we can take as x the arithmetic prime Py for some k € Z9.
. N,k
#Bg(ryry )" g, By (k)
Such a radius is non-zero thanks to Remark 5.2(1). Let s, be a rational number satisfying rj, = p*». We
define a model for B,(k,r, ) over Q, by adapting Berthelot’s construction for the wide open unit disc

(see [dJ95, Section 7]). Write s, = 2 for some a,b € N. For i > 1, let s; = s, + 1/2° and r; = p~*i. Set

Let 7, be the largest radius in p@ such that the map w — By(k, 13, ;) is finite.

A:i = Zp<t17 t27 e 7tga Xi>/(t?za - pa+2lei)j:1,2,myg

and A,, = A}, [p~']. Set B, = Spm A,,. Then B; is a Q,-model of the disc of centre x and radius r;. We
define morphisms A7 =~ — A7 by

Xi+1'_>an7;27
tj—tjforj=1,2,...,9,

They induce compact maps A, , — A,, which give open immersions B; < B;y,. We define B, =
Hgi B, where the limit is taken with respect to the above immersions. Let Ay, = O(Bg,)°. Then
Agp = l'&liO(Spm B))° = 1£1Z A7 We call Ay the genus g, h-adapted Iwasawa algebra; we leave
its dependence on x implicit. We define ¢1,t2,...,t; € Az as the projective limits of the variables
t1,t2,. .., ty, respectively, of A7 .

There is a map of Zy-algebras ¢} , Ap — Ap g defined by T} — t; +x; for j =1,2,...,g. The inclusion
tg,n: Bgn — Wy induced by Ly makes By}, into a Q,-model of By(k, ), ), endowed with the integral
structure defined by Ag .

Let n, be an element of @p satisfying v,(nn) = sp. Let K = Qp(n) and let Op, be the ring of
integers of K. The algebra A, is not a ring of formal series over Z,, but there is an isomorphism
Ap Rz, O, = Oh[[tl,tg, R ,tg”.

We say that a prime of Ay is arithmetic if it lies over an arithmetic prime of A;. By an abuse of
notation we will write again P for an arithmetic prime of A, j lying over the arithmetic prime Py of Ag.

Remark 5.3. Let k = (k1,kq,...,kqg) be a cohomological weight for GSp,,. There exists a prime P of
Ag.n lying over the prime Py of Ay, if and only if the classical weight k belongs to the disc By(0,7));
otherwise we have PyAj, = Ay. This happens if and only if vy(k;) > —vp(ry) — 1 for i=1,2,...,g, as we
can see via a simple calculation.

Let Dévélg , be the rigid analytic space and wg , be the morphism fitting in the cartesian diagram

N N,h
Dg,h XW; Bg,h — Dg

(5'1> J{“’g,h Jwg

Lg,h °
—
By n Wy

- . . N,h
The rigid analytic space Dé\fh is a model of Dg,Bg(n,r;,ﬁ)

defined over Q, since the map ¢4, may not be. We say that a C,-point of Dé\f 5, is classical if it is a

over a p-adic field, but it is not necessarily

. . N,h
classical point of D" oL
gaBg(Kv"'h‘,{)

Let Ty, = O(Dgh)o. We call Ty}, the genus g, h-adapted Hecke algebra; we leave its dependence on
 implicit again. The morphism wy j induces w;h: Ap,g = T4 n. Thanks to our choice of 7y, w;’h gives

Ty n a structure of finite Ay p-algebra. The Dévh — Dévg (e ) appearing in the diagram induces a
’ IV R R
N,h o . . N N,h o : :
map (’)(D%BQ(K,T;N)) — Ty n, that we compose with 1,: H,' — O(Dg,Bg(n,r;ﬁ)) to obtain a morphism

’lpg)hi /Hév — Tg,h-

For a prime P of T, ;, we denote by evep: Ty, — Z), the evaluation at 3. We say that 9 is a classical
point of Spec Ty ;, if evey o9y p: ’Hév — Z, is the system of Hecke eigenvalues attached to a classical
GSp,,-eigenform. These systems of eigenvalues also appear at classical points of Dé\f -
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Definition 5.4. We call family of GSp, -eigenforms of slope bounded by h an irreducible component I
of Dgh, equipped with the integral structure defined by T .

We will usually refer to an I as in the definition simply as a finite slope family. Let I° = O(I). Then
I° is a finite Ap-algebra and I is determined by the surjective morphism 6: Ty — I°. We sometimes
refer to this morphism as a finite slope family. The family I is equipped with maps we: I — By
and g : 'Hév — I° induced by wg , and g4 p, respectively. The notation © denotes the fact that we are
working with integral objects. When introducing relative Sen theory in Section 8 we will need to invert
p and we will drop the © from all rings.

Remark 5.5. Since Ay, is profinite and local and Ty p, is finite over Ay, Ty, is profinite and semilocal.
The connected components of Dgf[jg': . are in bijection with the mazimal ideals of Ty p. Let I and 6 be as

above. Then ker 0 is contained in the unique mazximal ideal my corresponding to the connected component
of Dé\{h containing I. The Ap-algebra 1° is profinite and local with mazimal ideal mpo = O(my).

Proposition 2.7 implies that every family I contains at least a classical point. By the accumulation
property of classical point and the irreducibility of I, the classical points are a Zariski dense subset of
I. Hence the set of classical points of SpecI® is also Zariski dense in Specl®. Every classical point of
Specl® lies over an arithmetic prime of Spec Ay 4.

5.2. Non-critical points on families. Let 6: T, — I° be a family of GSp,-eigenforms.

Definition 5.6. We call an arithmetic prime P, C Ay j non-critical for I° if:

(1) every point of Specl® lying over Py is classical;

(2) the map w;’BM: Agn — I° is étale at every point of Specl® lying over Py.

We call Py, critical for I° if it is not non-critical. We also say that a classical weight k is critical or
non-critical for I° if the arithmetic prime Py, has that property.

Remark 5.7. By Proposition 2.7, if k is a classical weight belonging to By and h < kg — w then
k satisfies condition (i) of Definition 5.6. We do not know of a simple assumption on the weight that
guarantees that the second condition is also satisfied.

For later use we state a simple lemma.
Lemma 5.8. The set of non-critical arithmetic primes is Zariski-dense in Ay,.

Proof. This follows from Proposition 2.7 and the fact that the locus of étaleness of the morphism Ag ;, —
I° is Zariski-open in I°. The proof is detailed in [Col6, Proposition 4.1.17]. O

5.3. The Galois representation associated with a finite slope family. Let g = 2. For h € Q™%
and k € W3, let 1, . be the radius chosen in the beginning of Section 5.1. Let & be the set of all wide open
subdomains D of D) with the property that D is a connected component of (w§ . . )™ (Ba(k, k)
for some h and k. It follows from Proposition 5.1(ii) that & is an admissible covering of the eigenvariety
DY.

Let D € &. The pseudocharacter Tp: Gg — O(DLY)° given by Proposition 3.7 induces a pseudochar-
acter Tp: Gg — O(D)°. Since D is connected O(D)° is local; it is also compact by [BC09, Lemma
7.2.11] because D is wide open. Let Tp be the reduction of Tp modulo the maximal ideal of O(D)°. By
Theorem 3.2 Tp is the trace of a representation pp: Gg — GL4(F,).

Note that pp, only depends on the irreducible component of D in which D is contained. Let & be the
subset of & consisting of the domains D for which 7}, is absolutely irreducible. Let D)™ = [ J pegin D;
it is a union of connected components of D37 and it admits &** as an admissible covering. For D € D',
Theorem 3.3 gives a representation pp: Gg — GL4(O(D)°) that has Tp as its associated pseudocharacter
and is uniquely determined up to isomorphism. This is actually a symplectic representation, but we only
need this property in the specific case that we treat below, where D is a finite slope family as defined in
Section 5.1. The construction we presented in this paragraph will be useful in Section 13.1.

Let Ty 5, be the genus 2, h-adapted Hecke algebra. For simplicity let Tj, = Ty . We implicitly replace
T}, by one of its local components. Let 6: Tj, — I° be a finite slope family of GSp,-eigenforms. The
Galois representation associated with 6 can be constructed in the same way as for the domains D € &
of the previous paragraph, but we define it here in more detail and prove some additional properties.
Let Fr, be the residue field of Tj,. The pseudocharacter T5: Gg — O(DY)° induces pseudocharacters
Tr,: Gg — Tp and T, : Gg — Fr,. By Theorem 3.2 the pseudocharacter T, is associated with
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a representation pr, : Gg — GL4(F,), unique up to isomorphism. We call pr, the residual Galois
representation associated with T},.

We assume from now on that the representation py, is absolutely irreducible.

By the compactness of Gq there exists a finite extension F’ of Fr, such that py, is defined on F’. Let
W (Fr,) and W (F’) be the rings of Witt vectors of Fr, and F', respectively. Let T}, = Ty @w (,, ) W (F).
We consider T, as a pseudocharacter Gg — T}, via the natural inclusion Tj, < T},. Then Tr, satisfies the
hypotheses of Theorem 3.3, so there exists a representation pr/ : Gg — GL4(T},) such that Trpry = Tr,.
By Proposition 3.7, for every prime ¢ not dividing Np we have

(5.2) Tx(Dr,)(Froby) = rpas o Yo (T33).

In particular Tr(Dry, )(Froby) is an element of T},. Since Ty, is complete, Chebotarev’s theorem implies
that Tr,(g) is an element of T}, for every ¢ € Gg. By Theorem 3.1 there exists a representation
pr,, : Gg — GL4(T},) that is isomorphic to pr, over Tj.

The morphism 0: T, — I° induces a morphism GL4(Tp) — GL4(I°) that we still denote by 6.
Let pro: Gg — GL4(I°) be the representation defined by pre = 6o pp,. Recall that we set ¢y =
0o rDéwéhh ° Q/JQZ IH%/[ — I°. Let

Iy = An[{Tr(pe(9)) boecil-
Since Ay, C I3, C I°, the ring I, is a finite Aj-algebra. In particular I, is complete. We keep our usual
notation for the reduction modulo an ideal *B of I,. We say that a point P of Specly, is classical if it
lies under a classical point of SpecI°.
By Proposition 3.7 we have Pepar(Tr(pre)(Froby)) = ¢9(Pmin(t§722);X)), so we deduce that I3, =
An[{Tr(po(g))}geay)- Since the traces of pro belong to I, Theorem 3.1 provides us with a representation

po: Go — GLy(I,)

that is isomorphic to pro over I°. Thanks to the following lemma we can attach to 6 a symplectic
representation.

Lemma 5.9. There exists a non-degenerate symplectic bilinear form on (I5,.)* that is preserved up to a
scalar by the image of py.

Proof. The argument of the proof is similar to that in [GT05, Lemma 4.3.3] and [Pill12, Proposition
6.4]. We show that py is essentially self-dual by interpolating the characters that appear in the essential
self-duality conditions at the classical specializations. We deduce that Im py preserves a bilinear form
on (I3,)* up to a scalar. Such a form is non-degnerate by the irreducibility of ps and it is symplectic
because its specialization at a classical point is symplectic. The details of the proof can be found in
[Col6, Proposition 4.1.20]. O

Thanks to the lemma, up to replacing it by a conjugate representation, we can suppose that py takes
values in GSp,(I3,). We call pp: Gg — GSp,(I%,) the Galois representation associated with the family
0: Ty, — I%,. In the following we will work mainly with this representation, so we denote it simply by p.
We write F for the residue field of I, and p: Gg — GSp,(F) for the residual representation associated
with p.

Remark 5.10. Let f be a GSpy-eigenform appearing in the family 8. Let € be the central character,
(k1, ko) the weight and 1y : HY — @p the system of Hecke eigenvalues of f. Let py,p, be the p-adic Galois
representation attached to f and let ¢ be a prime not dividing Mp. Then det py,,(Froby) = €6wf(Té(f))) =

g4 (0)x(0)2*1+k2=3)  The determinant of p(Froby) interpolates the determinants of py.,(Froby) when f
varies over the forms corresponding to the classical primes of the family. Note that c¢ is independent of
the choice of the form f in the family. Since the classical primes are Zariski-dense in 17, the interpolation

is unique and coincides with det p(Froby) = Zng(Te%)) =e(O)(uS(1+T1) (1 + Ty))lesx(®)/log(w) ¢ A, .
where € is the central character of the family. By density of the conjugates of the Frobenius elements in
G, we deduce that

det p(g) = e(g)(u (L +T1)(1 + Tp)) s/ 1osl) € Ay
for every g € Gy.
Remark 5.11.

(1) Since the set of classical points of Specl® is Zariski-dense and the map I3, — I° is injective, the set
of classical points of Speclly, is also Zariski-dense.
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(2) Let B be a classical point of Specl® lying over a point Py of Specly,.. Then the reduction of
pie: Gg = GL4(I°) modulo B is isomorphic over I° /B to the reduction of p modulo Pry; in particular
it only depends on Py up to isomorphism over a suitable coefficient ring.

6. SELF-TWISTS OF (GALOIS REPRESENTATIONS ATTACHED TO FINITE SLOPE FAMILIES

Given a ring R, we denote by Q(R) its total ring of fractions and by R™"™ its normalization. Now
let R be an integral domain. For every homomorphism o: R — R and every v € GSp,(R) we define
~v? € GSp,(R) by applying o to each coefficient of the matrix . This way o induces an automorphism
[]7: G(R) — G(R) for every algebraic subgroup G C GSp, defined over R. For such a G and any
representation p: Gg — G(R), we define a representation p”: Gg — G(R) by setting p?(g) = (p(g))”
for every g € Go.

Let S be a subring of R. We say that a homomorphism ¢: R — R is a homomorphism of R over S
if the restriction of o to S is the identity. The following definition is inspired by [Ri85, Section 3] and
[Lal6, Definition 2.1].

Definition 6.1. Let p: Gg — GSp,(R) be a representation. We call self-twist for p over S an automor-
phism o of R over S such that there is a finite order character ne: Go — R* and an isomorphism of
representations over R:

(6.1) P° =1, @ p.
We list some basic facts about self-twists. The proofs are straghtforward.

Proposition 6.2. Let p: Gg — GSpy(R) be a representation.

(1) The self-twists for p over S form a group.

(2) If R is finite over S then the group of self-twists for p over S is finite.

(3) Suppose that the identity of R is not a self-twist for p over S. Then for every self-twist o the
character 1, satisfying the equivalence (6.1) is uniquely determined.

(4) Under the same hypotheses as part (8), the association o — 1, defines a cocycle on the group of
self-twist with values in R*.

(5) Let S[TrAd p] denote the ring generated over S by the set {Tr(Ad (p)(9))}gea,- Then every element
of S[TrAd p] is fixed by all self-twists for p over S.

Let 6: Tj, — I° be a family of GSp,-eigenforms as defined in Section 5. Let p: Gg — GSp,(I%,.) be
the Galois representation associated with 6. Recall that I3, is generated over Aj; by the traces of p. We
always work under the assumption that p: Gg — GSp,(F) is absolutely irreducible. Let I' be the group
of self-twists for p over A;. We omit the reference to Ay, from now on and we just speak of the self-twists
for p. Let I$ be the subring (I3,)" of I3, consisting of the elements fixed by every o € I'. We can study
the order of T' thanks to an argument similar to that of the proof of [Lal6, Proposition 7.1].

Lemma 6.3. The only possible prime factors of card(I") are 2 and 3.
Proof. Let £ be any prime not dividing Np. Consider the element

(Trp(Froby))*

(6-2) U7 det p(Froby)

of I,. For every o € T" and every g € G Equation (6.1) gives Trp?(g) = n(g)Trp(g) and det p?(g) =
n(g)* det p(g). In particular aJ = ay for every o € I, so a, € I§. By Remark 5.10 we have det p(Frob,) =
e(0)x(0)2(k1+k2=3) € A, where € is the central character of the family 6 and y: Gg, — Z, denotes the
cyclotomic character. In particular det p(Frob,) € I§.

Consider the Galois extension of I§ defined by I' = I [aé/ 1 det p(Froby)'/4, (4], where (4 is a primitive
fourth root of unity. Equation (6.2) gives an inclusion I3, C I, hence an inclusion I' C Gal(I'/I§). Since
I’ is obtained from I by adding some fourth roots, the order of an element of Gal(I'/I§) cannot have
prime divisors greater than 3. This concludes the proof. ([
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6.1. Lifting self-twists from classical points to families. Keep the notations as above. Let P, C Ay,
be any non-critical arithmetic prime, as in Definition 5.6. The representation p reduces modulo P;l7,
to a representation pp, : Gg — GSp,(I3,/P:lf,). Let ¢ € I' and let 77: Gg — (I3,)* be the character
associated with &. The automorphism & fixes A;, by assumption, so it induces a ring automorphism p,
of I,/ PI%,. The character 7: Gg — I3, induces a character 77p, : Gg — (I3,/Pl%,.) . The isomorphism
p° 2T ® p over I§, gives an isomorphism of representations over I3, /Pl :

I
(6.3) Pp, =P, @ ppy.-
Since P is non-critical I° is étale over Ay, at Py, hence I3, is also étale over Ay, at P;. In particular
Py is a product of distinct primes in I3,; denote them by Fq,Ps,...,FBq4. Since op, is an automor-

phism of I%, /Pl = ]_[1.:1 I5, /%, there is a permutation s of the set {1,2,...,d} and isomorphisms
oy, 17 /Bi — 19,/PBs) for i = 1,2,...,d such that 5|H%r/% factors through ow,. The character 7z,

can be written as a product H?Zl 7y, for some characters g, : Gg — (I%,./%:)*. From the equivalence
(6.3) we deduce that

ng“ = B (i) ® PBsciy:
The goal of this subsection is to prove that if we are given, for a single value of ¢, data s(i), oy, and
77‘43 satisfying the isomorphism above for a single value of i, there exists an element of I' giving rise to
oy, and 7y, via reduction modulo Py. This result is an analogue of [Lal6, Theorem 3.1]. We state it
precisely in the proposition below.

Proposition 6.4. Leti,j € {1,2,...,d}. Leto: I3, /Bi — I3, /B, be a ring isomorphism and n,: Gg —
(I3, /%)~ be a character satisfying

(6.4) PR, = Mo @ pp; -

Then there exists ¢ € I' with associated character 7: Gg — (I3,)* such that, via the construction of the
previous paragraph, s(i) = j, op, = 0 and g, = 1.

In order to prove the proposition we first lift ¢ to an automorphism ¥ of a deformation ring for p and
then we show that ¥ descends to a self-twist for p. This strategy is the same as that of the proof of [Lal6,
Theorem 3.1], but there are various complications that we have to take care of. In particular, in order to
descend from the deformation space to p, we show that twisting a family of GSp,-eigenforms by a Dirichet
character gives another family of GSp,-eigenforms and we subsequently rely on the non-criticality of the
arithmetic prime Pj.

Before proving Proposition 6.4 we give a corollary. Let P € {P:1,%B2,...,Ba}. Let pp: Gg —
GSp, (15, /%) be the reduction of p modulo P and let I'y; be the group of self-twists for py over Z,,. Let
I'(P) = {o € T'|o(P) = P}; it is a subgroup of I'. Let ¢ € T" and let 77: Gg — (I3,/B)* be the finite
order character associated with . Via reduction modulo B, & and 7} induce a ring automorphism oy
of I, /% and a finite order character ny: Gg — (I3,/9)* satisfying p%f X Noy ® pyp. Hence o is an
element of I'z. The map I'(P) — 'y defined by & — oo is a morphism of groups.

Corollary 6.5. The morphism I'(B) — DIy is surjective.
Proof. This results from Proposition 6.4 by choosing B; = ‘B; =‘B. O

6.1.1. Lifting self-twists to the deformation ring. We keep the notations from the beginning of the section.
Let QNP denote the maximal extension of Q unramified outside Np and set Gg” = Gal(Q™?/Q). Then p

factors via G(g P by Proposition 3.7. In this subsection we consider p as a representation G(g P — GL4(I5,)

via the natural inclusion GSp,(I5,) < GL4(I3,). Coherently, we consider Gg P as the domain of all the
representations induced by p and we take as their range the points of GL4 on the corresponding coefficient
ring. Note that the equivalence (6.4) implies that 7, also factors via Gg P so we see it as a character of
this group. For simplicity we write n = 1,.

Recall that we write mye for the maximal ideal of I3, and F for the residue field I3, /mre. Let W be
the ring of Witt vectors of F. The residual representation p: Gg P — GL4(TF) is absolutely irreducible by
assumption. By the results of [Ma89], the problem of deforming p to a representation with coefficients
in a Noetherian W-algebra is represented by a universal couple (R, Y)Y consisting of a Noetherian
W-algebra R; and a representation pUmV Ggp — GL4(R5).

By the universal property of Rz there exists a unique morphism of W-algebras a;: Rz — I%, satisfying
p=arop™. Let ev;: I, — I5,/%; and ev,: I3, — I3, /B, be the two projections. The proposition
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below follows from arguments completely analogous to those of [Lal6, Section 3.1]. The details of the
proof can be found in [Col6, Section 4.4].

Proposition 6.6.

(1) The automorphism & of F is trivial.

(2) There is an isomorphism p =7 Q p.

(8) There exists an automorphism ¥ of R such that:
(i) ¥ is a lift of o in the sense that o oev;oay =evjoaroX;
(ZZ) N Opuniv =1no ﬁuniv‘

Recall that p is the Galois representation associated with the finite slope family 8. Our next step
consists in showing that the representation p* is associated with a family of GSp,-eigenforms of a suitable
tame level and of slope bounded by h. Thanks to property (ii) in Proposition 6.6(3) it is sufficient to
show that the representation 1 ® p is associated with such a family.

6.1.2. Twisting classical eigenforms by finite order characters. We show that the twist of a representation
associated with a classical Siegel eigenform by a finite order Galois character is the Galois representation
associated with a classical Siegel eigenform of the same weight but possibly of a different level. By
an interpolation argument we will deduce the analogous result for the representation associated with a
family of eigenforms.

Let f be a cuspidal GSp,-eigenform of weight (k1, k2) and level I'1 (M) and let py,,: Gg — GSpy(Q,)

be the p-adic Galois representation attached to f. Let n: Gg — @; be a character of finite order mg
prime to p. We see 1 as a Dirichlet character when convenient.

Proposition 6.7. There exists a cuspidal Siegel eigenform f&n of weight (ky,k2) and level Ty (lem(M, mg)?)
such that the p-adic Galois representation associated with f ® 1 is n ® py.

Our proof relies on the calculations made by Andrianov in [An09, Section 1]. He only considers the
case k1 = ko, but as we will remark his work can be adapted to vector-valued forms. For A € M, (R)
we write A > 0 if A is positive semi-definite and A > 0 if A is positive-definite. Recall that f, seen
as a function on a variable Z in the Siegel upper half-plane H" = {X +iY | X, Y € M, (R) and Y > 0},
admits a Fourier expansion of the form f(Z) =3 c4n a0 aaq”?, where ¢ = e>™Tr(AZ) and

1
A" = {AZ (ajk)m e M, <2Z) |tA=A and ajj € Z for1 <j< n} .

The weight (k1, ko) action of ( é g ) € GSp,(C) on f is defined by
A B _ kl_kQ k;2 AZ + B
(6.5) ( c D ) .f = (Sym (Std) ® det *2(Std))(CZ + D) f (CZ D)

where Std denotes the standard representation of GLg. As in [An09], we define the twist of f by 7 as
fon= 3 g(Tr(4)aaq’.

AeAn, A>0
Note that Andrianov considers a family of twists by 1 depending on an additional 2 x 2 matrix L, but
we only need the case L = 1.
Recall that p(A) denotes the similitude factor of A.

Lemma 6.8. Let 1 be a Dirichlet character of conductor m and f be a cuspidal form of weight (ki,ks)

and level T1(M). Let M' = lem(mg, N)2.

(1) The expansion f @ n defines a cuspidal form of level T'y(M') (cf. [An09, Proposition 1.4]).

() 114 € GSn(C), MDA ©1) = AN mIATm)F) & 1 (o 408, Thooren
2.3]).

Proof. The proof relies on the same calculations as the proofs of [An09, Proposition 1.4 and Theorem
2.3], that are stated for scalar Siegel modular forms. Note first that all the steps in these proofs only
involve the action of upper unipotent matrices on f via formula (6.5). The action of such matrices is
clearly independent of the weight of f, hence all calculations are still true upon replacing the weight (k, k)
action with the weight (k1,k2) action for some k, ki, k2 € N. We deduce that the conclusions of [An09,
Proposition 1.4 and Theorem 2.3] hold for vector-valued Siegel modular forms. With the notations of
[An09], the calculations of loc. cit. produce a form f ® n of level I'(M’) from a form f of level ['(M).
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We can modify these levels to match those in Lemma 6.8 by observing that I'y (n2) C I'(n) C I'y(n) for
every n > 1. O

We are now ready to prove Proposition 6.7.

Proof. We see the form f of level I'y(M) as a form of level I'y(lem(M,mg)) and the character n of
conductor m as a character of conductor lem(M, mg). By applying Lemma 6.8(1) with m = lem(M, my)
we can construct a form f ® n of level I'y(lem(M,mg)?). Let prgyp: Gg — GSpy(Q,) be the p-adic
Galois representation associated with f ® 1. We show that preynp, =1 ® pf,p.

For every congruence subgroup I' C GSp,(C) and every prime ¢, we denote by Ty, Ty1 and
Ty the Hecke operators associated with the double classes [['diag (¢,¢,¢,¢)T], [[diag (1,4, ¢,¢*)T'] and
[[diag (1,1, ¢, £)T], respectively. We do not specify the congruence subgroup with respect to which we
work, since this does not create confusion in the following. Lemma 6.8(2) gives, for every prime £ { Mmy,
the relations Tg70(f®77) = T](f2)Tg70(f) ®n, Tg71(f®77) = 77(62)T471(f) ®n and T[72(f®7]) = T](é)Tgvg(f) Xn.

Recall that for every £1 Mmgp we have

det(l — pf’p(FrObg)X) = Xf(X4 — T[’QXS + ((Tz’2)2 — Tg’l — €2Tg’0)X2 — KST[’QTZ’OX + 56(Tg,0)2)

where x ¢ is the character of the Hecke algebra defining the system of eigenvalues of f. The equality still
holds if we replace f by f ®n. Via the relations obtained at the end of the previous paragraph we can
check that det(1 — (n® py.p) (Frobg) X) = det(1 — pfgn,p(Frobe) X) for every £ Mmgp. This implies that
the representations n ® py,, and pygy,, , are equivalent. O

Under the hypotheses of the previous proposition we prove the following.

Corollary 6.9. Let M’ = lem(mg, M)2. Let x be a classical p-old point of DY having weight (ki1, k),
slope h and associated Galois representation p,. Then there exists a classical p-old point x, of Dy '
having weight (ki,kz), slope h and associated Galois representation py, =1 ® pg.

Proof. Since x is p-old, it corresponds to the p-stabilization of a GSp,-eigenform f of level M and weight
(k1,k2). Let f ® n be the eigenform of weight (k1, ko) and level M’ given by Proposition 6.7. We show
that it admits a p-stabilization of slope h.

We are working under the assumption that the conductor of 7 is prime to p, so we can compute

Xsen(Pain(tya) = X5 (X* = n(0)Tp2X° + (0(0)Tp.2)” = 0(p)* Ty — p*0(p)* Ty0) X+
=0 () T3.2) (1(p)* Tp,0) X + p°(0(p)*T,0)%)-
Let {ci}i=1,..4 be the four roots of xy( m,n(t(?%)). Then Equation (6.6) shows that the roots of

Xron(Paan(12D) are {n(p)oi)ior,..a

Suppose that f is p-old. Recall that we identify U(2) with t( % via the isomorphism L? of Section
2.2.2. By the discussion in the proof of Prop. 10.13 there are eight p-stabilizations of f ® 7, one
for each compatible choice of U(Q) and (UISQ))“’1 among the roots of Xf(Pmm(tl()’%))' Let f5* be a p-
stabilization of f with slope h. Since U( ) = (U(z)) (UIE?:,))““, there are 4,7 € {1,2,3,4} such that
X fst (U,g )) = o?a;. Then by the remark of the previous paragraph there exists a p-stabilization (f ®@n)st
of f ®n such that X(f@,,)st(U,gQ)) = (n(p)a;)*(n(p)a;) = n(p)*aZa;. In particular the slope of (f @ n)s
is UP(X(f®n)st(U1§2))) = 3v,(n(p)) + h. Since p is prime to the conductor of i we have that n(p) is a unit,
hence the slope of (f ®7)*t is h. The level of (f @n)* is T'y (M) Ny (p), so it defines a point of D', [

(6.6)

Consider the family 6: T;, — I° fixed in the beginning of the section. For every p-old classical point x
of 0, let x, be the point of the eigenvariety DM " provided by Corollary 6.9. Let 7}, be a radius adapted
to h for the eigenvariety D)’ ". Let A}, be the genus 2, h-adapted Iwasawa algebra for DM " and let T,
be the genus 2, h-adapted Hecke algebra of level M’. Note that r, < 7, so there is a natural map
Lp: Ah — A?L
Lemma 6.10. There exists a finite A}, -algebra J°, a family 0': T, — J° and an isomorphism a: I, &x, A), —
J5, such that the representation pg : Gg — GSp,(I5,) associated with 0" satisfies pgr =1 @ o pg.
Proof. Let S be the set of p-old classical points of 6. Let S’ be the subset of S consisting of the points
with weight in the disc B(0,7,). We see S’ as a subset of the set of classical points of DY’ via the
natural inclusion D} < DY, Thanks to the conditions on the weight and the slope we can identify S’

with a set of classical points of T,. Note that S’ is infinite.
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Let S; = {z, |z € S}, that is also contained in the set of classical points of D', For every & € S’
the weight and slope of x,, coincide with the weight and slope of z. In particular S;] can be identified
with an infinite set of classical points of Tj,. Since T}, is a finite A} -algebra, the Zariski-closure of 5] in
T/, contains an irreducible component of T},. Such a component is a family defined by a finite A} -algebra
J° and a morphism ¢’: T}, — J°.

Let pgr: Gg — GSp4(J5,) be the Galois representation associated with 6'. Let Sg, be the subset of
S, consisting of the points that belong to ¢'; it is Zariski-dense in J° by definition of ¢'. Let S9 =
{x € 8|z, € Sgl}. For every z € S let po,= be the specialization of pp at x and let per ., be the
specialization of pgs at ;. By the definition of the correspondence z +— x, we have pg ., = n® pg . over
@p for every z € 5. Hence the representation 1N ® pp.o coincides with ¢y, o pgr on the set Sg,. Since this
set is Zariski-dense in J, there exists an isomorphism «: ]I%YQA@ A ), — J%, such that pgr 2 nQ o py, as
desired. 0

Remark 6.11. With the notation of the proof of Lemma 6.10, all points of the set S;] belong to the
family ', because of the unicity of a point of Déwl given its associated Galois representation and slope.

By combining Lemma 6.10 and Proposition 6.6(3) we obtain the following.

Corollary 6.12. There exists a finite A} -algebra J°, a family 0': T}, — J° and an isomorphism
a: 13,@a, A, — J%, such that the representation pg: Gg — GSp,(JS,) associated with 0’ satisfies
por = o pz,

6.1.3. Descending to a self-twist of the family. We show that the automorphism ¥ of R defined in the
previous subsection induces a self-twist for p. This will prove Proposition 6.4. Our argument is an
analogue for GSp, of that in the end of the proof of [Lal6, Theorem 3.1]; it also appears in similar forms
in [Fi02, Proposition 3.12] and [DG12, Proposition A.3]. Here the non-criticality of the prime Py plays
an important role.

Proof. (of Proposition 6.4) Let p: Gg — GSp,(F) be the residual representation associated with p. Let
R5 be the universal deformation ring associated with p and let 7"V be the corresponding universal
deformation. As before let ar: Rz — 1T, be the unique morphism of W-algebras oy : Ry — I, satisfying
P >~ o ﬁuniv.

Consider the morphism of W-algebras aF = ayoX: Ry — I3,. We show that there exists an auto-
morphism o: I, — I%, fitting in the following commutative diagram:

ag o
Rﬁ I[Tr

(6.7) lz . l&

aI o
Ry —15 15,

We use the notations of the discussion preceding Lemma 6.10. Consider the morphism #®1: T;® A A, —
I°®a, A}, where the completed tensor products are taken via the map ¢, : Ap, — A},. For every Ajp-algebra
A we denote again by ¢, the natural map A — A®,, A}. The natural inclusion D! < D}’ induces a
surjection sp: T — Tp®4, A},. We define a family of tame level I'; (M’) and slope bounded by h by

oM = (0 @1)osp: T — I°®p, A

The Galois representation associated with 8™ is pgar = 1, 0 p: Gg — GSp, (13,84, A}). Let 6': T), — J°
be the family given by Corollary 6.12. We identify Hf}r@AhA;l with Jq, via the isomorphism o given
by the same corollary; in particular the Galois representation associated with 6’ is pg = p*: Gg —
Gsp4(]ISI‘r®Ah,AIh)'

Recall that we are working under the assumptions of Proposition 6.4. In particular we are given two
primes PB; and P, of I3, an isomorphism o: I3, /B; — I3, /B, and a character n,: Go — (I3,/B;)*
such that pg;, = 1e @ py;. Let P be the image of PB; via the map ¢p,: ]I%r@/\hA’h. The specialization of
por at P is pg,. Let f’ be the eigenform corresponding to B;. By Remark 6.11 there is a point of the
family 0" corresponding to the twist of f by n; let 5, be the prime of I3, &, A}, defining this point.
The specialization of po at P; ,, is 7 ® pg,, which is isomorphic to p§;, by assumption. Let f be the
eigenform corresponding to the prime ‘B;n The forms f’ and f{] have the same slope by Corollary 6.9
and their associated representations are obtained from one another via Galois conjugation (given by the
isomorphism ). Hence f’ and f; define the same point of the eigenvariety DM’ Such a point belongs
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to both the families " and ¢’. Since B is non-critical, T}, is étale at every point lying over Py, so the
families #" and # must coincide. This means that there is an isomorphism

~/ oy / pay /
g H%‘r®A}LAh - H'OTr®Ah h

such that pg = & o pM’. The isomorphism & induces by restriction an isomorphism A;l[Tr(pM/)} —
A}, [Tr(pgr)]. Note that A} [Tr(p™")] = 15 (I3,) and

AL[Tr(pg)] = A4 [Te(E o pM)] = &' (AL[Tr(p™)]) = & (A4 [Tx(en © p)]) = & (tn(An[Trp))) = & (e (I5,))-

In particular ¢’ induces by restriction an isomorphism ¢y, (I%.) — ¢ (I3,). Since ¢y, is injective we can
identify ¢’ with an isomorphism o: I3, — I%,. By construction ¢ fits in diagram (6.7). O
6.2. Rings of self-twists for representations attached to classical eigenforms. Let f be a clas-
sical GSp,-eigenform and py,,: Go — GSp4(@p) the p-adic Galois representation associated with f. Up
to replacing pr, with a conjugate we can suppose that it has coefficients in the ring of integers O of a
p-adic field K. Suppose that f satisfies the hypotheses of Theorem 4.4, i.e. py,, is of Sym?® type but f
is not the symmetric cube lift of a GLy-eigenform. Let I'¢ be the group of self-twists for p over Z, and
let Of(f be the subring of elements of Ok fixed by I'y. As in in Section 4 we define another subring of
Ok by O = Z,[Tr(Ad p)]. We prove that the two subrings of Ok we defined are actually the same.

Proposition 6.13. There is an equality o = Og.

Before proving the proposition we recall a theorem of O’Meara about isomorphisms of congruence
subgroups. Here g is a positive integer, F', F; are two p-adic fields and a, a; are two non-trivial ideals
in the rings of integers of F and F, respectively. Let V = F?9 and V; = F12'q7 both equipped with
the bilinear alternating form defined by the matrix J; defined in the introduction. Let o: F' — F}
be an isomorphism. We say that a map S of V into V; is o-semilinear if it is additive and satisfies
S(Av) = o(A)S(v) for every v € V and A € F. Let PSp,, and PGSp,, be the projective symplectic
groups of genus g.

Remark 6.14. Let o: F' — Fy be an isomorphism. Denote by x — x7 the isomorphism GSpy,(F) —
GSpy, (F1) obtained by applying o to the matrix coefficients. For every bijective, symplectic, o-semilinear
map S: V — Vi there exists v € GSpy, (F1) such that SxS~1 = vz~ for every x € GSp,(F).

By combining Remark 6.14 and [OMT78, Theorem 5.6.4], with the choices we made in the discussion
above, we obtain the following.

Theorem 6.15. Let A and Ay be subgroups of PGSpy,(F) and PGSpy,(F1), respectively, satisfying
Fpsng(p)(a) C A and FPszg(Fl)(a) C Ay. Let ©: A — Ay be an isomorphism of groups. Then there
exists an automorphism o of F' and an element v € PGSp,, (F) satisfying

Ox = ya’y 1

for every x € A.
From Theorem 6.15 we deduce a result on isomorphisms of congruence subgroups of GSp, (F).

Corollary 6.16. [OMT78, Theorem 5.6.5] Let A and Ay be two subgroups of GSpy, (F) satisfying I'r(a) C
A and T (a) C Ay. Let ©: A — Ay be an isomorphism of groups. Then there exists an automorphism
o of F, a character x: A — F* and an element v € GSpy,(F) satisfying

Oz = x(z)yz’y ™"

for every x € A.

Before proving Proposition 6.13 we fix some notations. Let End(sp,(K)) be the K-vector space of K-
linear maps sp,(K) — sp,(K) and let GL(sp4(K)) be the subgroup consisting of the bijective ones. Let
Aut(gsp,(K)) be the subgroup of GL(sp,(K')) consisting of the Lie algebra automorphisms of sp, (K). Let
mad be the natural projection GSp,(Ox) — PGSp,(Ok) and let Ad : PGSp,(K) — GL(sp,(K)) be the
injective group morphism given by the adjoint representation. Since sp, admits no outer automorphisms,
Ad induces an isomorphism of PGSp,(K) onto Aut(sp,(K)). For simplicity we write p = py,, in the
following proof (but recall that in the other sections p is the Galois representation attached to a family).
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Proof. (of Proposition 6.13) The inclusion O C (’)FKf follows from Proposition 6.2(5). We prove that
(’);(f C Og. Since Of(f and Op are normal, it is sufficient to show that an automorphism of Ok over Og

leaves O;f fixed. Consider such an automorphism o. Since Of is fixed by ¢ we have (Tr(Ad p)(g))? =
Tr(Ad p(g)) for every g € Gg, hence Tr(Ad p?(g)) = Tr(Adp(g)). The equality of traces induces an
isomorphism Adp” = Adp of representations of Gg with values in GL(sp,). This means that there
exists ¢ € GL(sp4(K)) satisfying

(6.8) Adp® =¢oAdpog™t.

We show that ¢ is actually an inner automorphism of sp,(K).

Clearly Ad induces an isomorphism 7aq (Im p) = Im Ad p. For every = € GL(sp,(K)) we denote by
O, the automorphism of GL(sp4(K)) given by conjugation by z. In particular we write Equation (6.8) as
Ad p? = ©4(Adp). By combining Theorems 4.4 and 6.15 we show that we can replace ¢ by an element
¢ € Aut(sp,(K)) still satisfying Ad p” = Oy (Ad p(¢)).

We identify PGSp,(Og) with a subgroup of PGSp,(O}) via the inclusion Op C O} given in the
beginning of the proof. Consider the group A = (waqImp) N PGSp,(Or) C PGSp,(Ok) and its
isomorphic image Ad (A) C GL(sp,). Since f satisfies the hypotheses of Theorem 4.4, Im p contains a
congruence subgroup I'o,(a) of GSp,(OF) of some level a C Og. It follows that maq Im p contains the
projective congruence subgroup PT'o, (a) of PGSp,(OFg), so A also contains PT'p,,(a). In particular A
satisfies the hypotheses of Theorem 6.15. Since Adp” = O4(Adp) we have an equality (Ad(A))7 =
O4(Ad (A)), where we identify both sides with subgroups of PGSp,(Og). Now ¢ acts as the identity on
PGSp4(Og), so the previous equality reduces to Ad (A) = O4(Ad (A)). Let © = Ad™1 00,0 Ad: A —
A. Since Ad is an isomorphism, the composition © is an automorphism. Moreover it satisfies

(6.9) 0,(Ad (8)) = Ad(O(3))

for every § € A. By Theorem 6.15 applied to FF = F; = K, A; = A and ©: A — A, there exists
an automorphism 7 of K and an element v € GSp,(K) such that ©(§) = v§"y~! for every § € A.
We see from Equation (6.9) that 7 is trivial. It follows that ©4(y) = Ad(y)oyoAd(y)~! for all
y € Ad(A). By K-linearity we can extend ©4 and ©4q () to identical automorphisms of the K-span
of Ad(A) in End(sp,(K)). Since A contains the projective congruence subgroup PTp, (a), its K-span
contains Ad (GSp,(K)); in particular it contains the image of Adp. Hence ©4 and ©4q(,) agree on
Ad p, which means that Equation (6.8) implies Ad p” = ©aq(4)(Adp). Then by definition of ©xq ()
we have Adp? = Ad(y)oAdpo(Ad(y))™! = Ad(ypy~!). We deduce that there exists a character
ne: Go — OF satisfying p?(g) = 1 (9)7p(g)7~" for every g € Gg, hence that p” 2 7, ® p. We conclude

that o is a self-twist for p. In particular o acts as the identity on O;f , as desired. O

Remark 6.17. Let p: Gg — GSpy(I3,) be the big Galois representation associated with a family
0: T, — I°. We can define a ring Ap[Tr(Ad p)] analogous to the ring O defined above. We have an
inclusion Ap[Tr(Ad p)] C I§ given by Proposition 6.2(5). However the proof of the inclusion O;f C Og
in Proposition 6.13 relied on the fact that Im py ), contains a congruence subgroup of GSp,(OF). Since we

do not know if an analogue for p is true, we do not know whether an equality between the normalizations
of Ap[Tr(Ad p)] and I holds.

Suppose that the GSp,-eigenform f appears in a finite slope family 6: T}, — I°. Let B be the prime
of I3, associated with f and suppose that BN Ay is a non-critical arithmetic prime Pj. Let Bo =P NIG.

We use Proposition 6.4 to compare O;f and the residue ring of I at Py, as in [Lal6, Proposition 6.2].

Proposition 6.18. There is an inclusion If /Po C OFKf.

Proof. Let 0 € T'y and let 17, : Gg — (I3,/%B)* be the character associated with 0. We use the notations
of Section 6.1. By Corollary 6.5 there exists a self-twist &: I3, /P — 13,/ with associated character
nz: Gg — (I3,/%B)* such that P is fixed under o, 6y = o and 1z = 7,. Since 5 € I and I§ = (I5,)"
we have I3 C (13,)(%), where (7) is the cyclic group generated by &. Since & leaves P fixed, we can
reduce modulo B the previous inclusion to obtain I /By C (HOTr)<5 ’/P. Again since o leaves P fixed
and & induces o modulo B, we have (I3,)( /P = (13, /B)(?, hence IS /Py C (13, /%), This holds for
every o, so Ig /By C (15, /P)*7. O

The following corollary summarizes the work of this section.
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Corollary 6.19. Let p = Gg — GSpy(I3,) be the representation associated with the family 0. Let
P be a prime of I3, corresponding to a classical eigenform f which is not a symmetric cube lift of a
GLa-eigenform. Let PBo = P NIG. Then the image of pp: Go — GSp,(I5,/B) contains a non-trivial
congruence subgroup of GSp,(I§/FBo).

Proof. As before let O = Z,[TrAd py]. By Theorem 4.4 the image of py contains a congruence subgroup
of GSp,(OFg). By combining Propositions 6.13 and 6.18 we obtain I /By C Op, hence the corollary. O

Remark 6.20. In [Lal6] and in [CIT15], where Galois images for families of GLa-eigenforms are
studied, the intermediate step given by Proposition 6.13 is not necessary. Indeed the fullness result for
the representation attached to a GLg-eigenform, due to Ribet and Momose [Mo81][Theorem 3.1][Ri85] is
stated in terms of the ring fived by the self-twists of the representation, hence an analogue of Proposition
6.18 is sufficient.

7. CONSTRUCTING BASES OF LATTICES IN UNIPOTENT SUBGROUPS

In this section we show that the image of the Galois representation associated with a family of GSp,-
eigenforms contains a “sufficiently large” set of unipotent elements.

7.1. An approximation argument. We prove a simple generalization of the approximation argument
presented in the proof of [HT15, Lemma 4.5]. We give the details of the proof since there is an imprecision
in the one presented in loc. cit.. In particular [HT15, Lemma 4.6] does not give the inclusion (4.3) in
loc. cit.; it is replaced by Lemma 7.2 below. Let G be a reductive group defined over Z. Let T and B
be a torus and a Borel subgroup of G, respectively. Let A be the set of roots associated with (G, T).

Proposition 7.1. Let A be a profinite local ring of residual characteristic p endowed with its profinite
topology. Let G be a compact subgroup of the level p principal congruence subgroup I'gay(p) of G(A).
Suppose that:

(1) the ring A is complete with respect to the p-adic topology;

(2) the group G is normalized by a diagonal Z,-regular element of G(A).

Let o be a root of G. For every ideal Q of A, let ng: G(A) — G(A/Q) be the natural projection,
inducing a map g ,o: UY(A) = U*(A/Q). Then mg(G)NU*(A/Q) = mo(GNU(A)).

Proof. Let o be a root of G. Since the inclusion mg(G NU*(A)) C mo(G) NU*(A/Q) is trivial, it is
sufficient to show that mg: GNU*(A) — 7g(G) NU*(A/Q) is surjective. The unipotent subgroups U®
and U™% generate a subgroup of G(A) isomorphic to SLa(A). We denote it by SLS(A). We identify
U*® with subgroups of SLS(A). Let 7% = TNSLS and B® = T*U®. We also write s[5, u*® t* b for
the Lie algebras of the SLY, U*® T* BT respectively. For every positive integer j, we denote by TQi
the natural projection G(A) — G(A/Q7), as well as its restriction SLS(A) — SLS(A/Q7). We define
some congruence subgroups of SLS (A) of level pQ’ by setting

TA(Q’) = {x € SL§ NTa(p) | mgi () = Lag},
70 (Q7) = {x € SLY NT A(p) | mqi () €?*(A/Q")} for 7 € {U, B}.
Note that we leave the level at p implicit. We set G7a(Q7) = G N9 (Q7) for 7 € {U, B}. Given
two elements X,Y € G(A), we denote by [X,Y] their commutator XY X 1Y ~1. For every subgroup

H C G(A) we denote by DH its commutator subgroup {[X,Y]| X,Y € H}. We write [-, ‘]pi for the Lie
bracket on gsp,,(A).

Lemma 7.2. For every j > 1 we have DI'yra (Q) C I'pa(Q%) NTya(Q7).

Proof. A matrix X € I'ya(Q?) can be written in the form X = UM where U € U® and M € T 4(Q7).
In particular its logarithm is defined, it satisfies exp(log X) = X and it is of the form log X = u+m
with u € u®(A4) C sI5(A) and m € Q’sl3(A). Now let X, X; € T'pa(Q?) and let log X = u + m and
log X1 = u; +m be decompositions of the type described above. Modulo Q% we can calculate

log[X, X1] = [log X, log X1]Lie = [u, u1]Lie + [m, u1]Lic + [u, m1]Lic + [m, mi]Lie-
Since u,u; € u® and m, m; € Q7sl5(A) we have [u, u1]rie = 0 and [m, m1]rie € Q%515 (A), so

log[X, Xl] = [m7U1]Lie + [U7m1]Lie (HlOd sz)-
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Now write m = u~% 4+ b* and m; = u; ® + b with «=%,u7® € Qu"%(A) and b=%,b;* € Q7b%(A).
Then [m, u1]Lie = [U™%, u1]Lic + [0%, u1]Lie, Which belongs to Q7b%(A) since [u™, u1]Lie € Q/t*(A) and
(b, u1]Lie € Q76%(A). In the same way we see that [u, m1]|Lie € bY(A). We conclude that log[X, X;] €
Q6% (mod Q%¥), so [X, X1] € T'ga(Q%). Trivially [X, X1] € T'ya(Q7), so this proves the lemma. O

Let d € G be a diagonal Z,-regular element. Since A is p-adically complete the limit lim, o ar"
defines a diagonal element § € G(A). Clearly the order of § in G(A) is a divisor a of p—1. By hypothesis
G is a compact subgroup of I'g(4)(p), so G is a pro-p group and § normalizes G. We denote by ad ()
the adjoint action of § on G(A).

Let T'4(p) be the principal congruence subgroup of SL§(A) of level p. Every element of I'4(p) has a
unique a-th root in T'4(p). Since ¢ is diagonal, it normalizes I' 4(p). We define a map A: T'4(p) — T'a(p)
by setting

1/a
A) = (x- (d (O)@)"@ " - (ad ()@ - (ad (%) (@)@ )

for every © € T'4(p). Note that A is not a homomorphism, but it induces a homomorphism of abelian
groups A*": T4 (p) /DL a(p) = Ta(p)/DLa(p)-

Lemma 7.3. (¢f. [HT15, Lemma 4.7]) If u € Tya(Q?) for some positive integer j, then mgs(A(u)) =
mgi(u) and A?(u) € Tya (Q%).

Proof. Let u € T'ya (Q7). We see that A maps QT 4(p) to itself, so it induces a map Ag; : Ta(p)/Q’T a(p) —
La(p)/QT a(p). For x € U*(A/Q7) we have mg;(ad (0)(z)) = ad (mgs(9))(z) = mgi(a(d))(x). From
this we deduce that Ag;(z) =z for z € U*(A/Q7). Since mg;(u) € U*(A/Q?) we obtain mgi (A(u)) =
Agi(mqi(u) = mqi (u).

Consider the homomorphism A2": T'4(p)/DT4(p) — Ta(p)/DLa(p). By a direct computation we
see that ad (0)(A*P(z)) = a(§)(A*"(z)) for every x € Ta(p)/DIL 4(p), so the image of A? lies in the
a(0)-eigenspace for the action of ad (6) on I'4(p)/DI'4(p). This space is U*(A)DI'4(p)/DI 4(p), as we
can see by looking at the Iwahori decomposition of T'4(p).

From the first part of the proposition it follows that A2P induces a homomorphism

AR Tye(Q7)/Dlye(Q7) = Tye(Q7)/Dlye (Q7).
By the remark of the previous paragraph
AR (Ty«(Q7)/DTya(Q7)) C Ty, (Q7)DI'y«(@Q7) /Dl ya (QY).
By Lemma 7.2 DI'ta (Q7) C T'pa (Q%) NTya(Q7), so
AP (Tya(Q7)/DTya(Q7)) C Tpa(Q¥) NTy«(Q’) /DTy« (Q).

We deduce that A(u) € I'pa (Q%) NTya(Q7).
By the same reasoning as above, A induces a homomorphism

AR : Tpa(Q¥)/Dlpa(Q%) = Ipa(Q¥) /Dl pa (Q%).

The image of Af” s in the a/(6)-eigenspace for the action of ad (§), that is U*(Q?)DI' g« (Q*) /DT pa (Q*7).
Note that D'« (Q%) C U%(Q%), so

AR, (Ppe(Q%)/DI'pe (Q¥)) C Tya (Q*) /DI pa (Q¥).
Since A(u) € T'ga(Q%) we conclude that A2%(u) € Tya (Q%). O

We look at GNUY(A) and mg(G) N SLy(A/Q) as subgroups of SL5(A) and SL§(A/Q), respectively.
Let w € mo(G) NUY(A/U). Choose u; € G and up € U¥(A) such that mg(u1) = mg(uz) = @. Then
uruy ' € Ta(Q), so uy € GNTya(Q). Note that G NTpa(Q) is compact since G and Ty« (Q) are pro-p
groups. By Lemma 7.3 we have mo(A2" (u1)) = @ and A%" (u1) € T'ya (Q?™) for every positive integer
m. Hence the limit lim,, . A% (u1) defines an element u € SLy(A) satisfying mg(u) = @. We have
u € GNT'ye(Q) because G NT'ya(Q) is compact. This completes the proof of the proposition. |

We give a simple corollary.

Corollary 7.4. Let p: Gg — GSpy(I3,) be the Galois representation associated with a finite slope family
0: Tj, — I°. For every root o of GSpy the group Im p N U*(I3,) is non-trivial.
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Proof. Let 3 be a prime of I° corresponding to a classical eigenform f which is not the symmetric
cube lift of a GLy-eigenform. Let O = Z,[Tr(Ad py)]. By Theorem 4.4 Im py contains a non-trivial
congruence subgroup of Sp,(Og). In particular Im pp N U* (15, /) is non-trivial for every root o. Now
we apply Proposition 7.1 to G = GSpy, T =15, B= By A=13,, G =Imp and @ =P. We obtain that
the projection Im pNU*(I%,) — Im pp NU (15, /B) is surjective for every a. In particular Im pNU*(1%,)
must be non-trivial for every a. O

7.2. A representation with image fixed by the self-twists. Let 0: T;, — I° be a finite slope family
with associated representation p: Gg — GSp,(I%,). As before we assume p to be residually irreducible
and Z,-regular. Let I" be the group of self-twist of p and let I§ be the subring of I3, consisting of
the elements fixed by I'. By restricting the domain of p and replacing it with a suitable conjugate
representation, we obtain a Z,-regular representation with coefficients in Ij. This is the main result of
this section.

We write 7, for the finite order Galois character associated with o € T'. Let Hy = ﬂoGF kern,. Since
T is finite Hyp is open and normal in Gg. Note that Tr(p(Hp)) C GSpy(I§). If p| g, is irreducible, then
by Theorem 3.1 there exists g € GL4(I3,) such that the representation p9 = gpg~! satisfies Im p9|p, C
GL4(I5). The hypothesis of irreducibility of p|g, can probably be checked in the cases we will focus on
(residually full or of symmetric cube type), but it would be too restrictive if we wanted to generalize our
work to other interesting cases (for instance to lifts from GLy/p with F'/Q real quadratic or from GL;/F
with F//Q CM of degree 4). For this reason we do not make the above assumption and we follow instead
the approach of [CIT15, Proposition 4.14], that comes in part from the proof of [Lal6, Theorem 7.5].

Proposition 7.5. There ezists an element g € GSp,(I3,) such that:

(1) gpg~*(Ho) C GSpy(Io);
(2) gpg~—'(Ho) contains a diagonal Z,-regular element.

Proof. Let V be a free, rank four I5,-module. The choice of a basis of V' determines an isomorphism
GL4(I5,) = Aut(V), hence an action of p on V. Let d be a Z,-regular element contained in Im p. We
denote by {e;};=1,.. 4 a symplectic basis of V such that d is diagonal. Until further notice we work in
this basis.

By definition of self-twist, for each o € I" there is an equivalence p° = 1, ® p. This means that there
exists a matrix C, € GSp,(I3,) such that

(7.1) p7(9) = 1:Cop(g)C "

Recall that we write mys for the maximal ideal of I3, and F for the residue field of I3,. Let Cy be the
image of C,, under the natural projection GSp,(I3,) — GSp,(F). We prove the following lemma.

,,,,,

Lemma 7.6. For every o € I' the matriz C, is diagonal and the matriz Cy is scalar.

Proof. Let o be any root of GSp, and u® be a non-trivial element of Im p N U*(I3,). Such a u® exists
thanks to Corollary 7.4. Let g% be an element of Gg such that p(¢%) = u®. By evaluating Equation
(7.1) at g* we obtain C,u*C, ! = (u*)?, which is again an element of U%(I3,). We deduce that C,
normalizes U*(Q(I3,)). This holds for every root «, so C, normalizes the Borel subgroups of upper and
lower triangular matrices in GSp,(Q(I3,)). Since a Borel subgroup is its own normalizer, we conclude
that C, is diagonal.

By Proposition 6.6(1) the action of I' on I, induces the trivial action of " on F. By evaluating Equation
(7.1) at g* and modulo mys we obtain, with the obvious notations, Cou®(C,)~" = (u®)? = u®. Since

C, is diagonal and u® € U%(F), the left hand side is equal to a(C,)u®. We deduce that a(C,) = 1.
Since this holds for every root «, we conclude that C, is scalar. O

We write C for the map I' — GSp,(I3,) defined by C(o) = C,. We show that C' can be modified
into a 1-cocycle C’ such that C’(o) still satisfies Equation (7.1). Define a map c: I'? — GSp,(I$,) by
c(o,7) = C;2CTC, for every o,7 € I'. By using multiple times Equation (7.1) we find that, for every
g € G, p(g) = nytnin-c(o,7)p(g)c(o, 7)~1. Recall that n7n, = n,, by Proposition 6.2(4), so the matrix
¢(o, 7) commutes with the image of p. Since p is irreducible, ¢(o, 7) must be a scalar.

For every o € T and every i € {1,2, 3,4} let (Cy); denote the i-th diagonal entry of C,. Define a map
C!: T — GSpy(13,) by Ci(0) = (Cy);*Cy. Let ci(o,7) = Cl(or)~1Ci(o)"Cl(T) for every o,7 € T and
i€{1,2,3,4}. Then

(7.2) ci(0,7) = ((Cor); H(Co)i(Cr)i) tela, 7).



Since (Cy,); H(C,)7(C,); is the i-th diagonal entry of ¢(o,7) and ¢(o,7) is scalar, (Cyr); *(Cy)i(Cr); is
independent of i and ((Cy,); ' (Cy)i(Cr)i)"te(o,7) = 14 for every i. From Equation (7.2) we deduce
that CJ is a 1-cocycle.

Set C! = C!(o). We have
(7.3) p7(9) = 16Cop(g)Cy ' = nsCrp(g)(Cy) "

By Lemma 7.6 C,, is scalar, so we C/ = (60);160 = 1,4 with the obvious notations.

Recall that {e;};=1,... 4 is our chosen basis of the free I, -module V', on which Gg acts via p. For every
v € V we write as v = Z?Zl Ai(v)e; its unique decomposition in the basis (e;)i=1,... 4, With A;(v) € I3,
for 1 <i < 4. For every v € V and every ¢ € I we set vl?l = (C7)~! Z?:l Ai(v)%e;. This defines an
action of I" on V since C is a 1-cocycle. Let VI denote the set of elements of V fixed by T'. The action
of T is clearly IS-linear, so VI has a structure of IS-submodule of V.

Let v € VIl and h € Hy. Then p(h)v is also in VI, as we see by a direct calculation using Equation
(7.3). We deduce that the action of Gg on V via p induces an action of Hy on VI, We will conclude

the proof of the proposition after having studied the structure of V7.

.....

Lemma 7.7. The I§-submodule VI of V is free of rank four and its I5,-span is V.

Proof. Choose i € {1,...,4}. We construct a non-zero, I'-invariant element w; € I3,e;. The submodule
I, e; is stable under I because C/ is diagonal. The action of I' on If,.e; induces an action of I on
the one-dimensional F-vector space I7,e; @ F. Recall that the self-twists induce the identity on F by

Proposition 6.6(1) and that the matrix C7, is tr1v1a1 for every o € T', so I acts trivially on I3, e; ®ps .

Now choose any v; € IT,e;. Let w; = ZUEF i Clearly w; is invariant under the action of I'. We
show that w; # 0. Let v;, w; denote the images of v; and w;, respectively, via the natural projection
[ei — Ife; @ F. Then w; = > 10 ’EU] = > oer Vi = card(I') - 9; because I' acts trivially on
[7ei @15, F. By Lemma 6.3 the only possible prime factors of card(T") are 2 and 3. Since we supposed
that p > 5 we have card(T") # 0 in F. We deduce that w; = card(T")7; # 0 in F, so w; # 0.

Note that {w;};=1,... 4 is an I3,-basis of V since w; # 0 for every . In particular the I§-span of the set
{w;}i=1,....4 is a free, rank four I§-submodule of V. Since VI has a structure of I§-module and w; € vl
for every i, there is an inclusion Z?Zl IGw; C VTl We show that this is an equality. Let v € VI, Write
v = Z?zl A\jw; for some \; € I3,. Then for every o € T' we have v = vl = Z?:l )\;’wl[-a] = Zle AJw;.
Since {w; }i=1,...4 is an I3,-basis of V, we must have \; = A7 for every . This holds for every o, so we
obtain A; € I§ for every i. Hence v = Z?Zl Aiw; € Z?Zl T w;.

The second assertion of the lemma follows immediately from the fact that the set {w;};=1,. 4 is
contained in VI and is an I3, -basis of V. O

Now let h € Hp. Let {w;}i=1,. 4 be an I§-basis of VI satisfying w; € I, e;, such as that provided
by the lemma. Since I3, - vl = v, {w;}i=1,....4 is also an I%,-basis of V. Moreover {w;};=1,. 4 is a
symplectic basis of V, since w; € I3, e; for every ¢ and {e;} is a symplectic basis. We show that the basis
{w;}i=1,....4 has the two properties we want.

(1) By previous remarks VIl is stable under p, so p(h)w; = Z?Zl ai;w; for some a;; € I§. This implies
that the matrix coefficients of p(h) in the basis {w;}i=1,. 4 belong to I§. Since {w;}i=1
symplectic basis, we have p(h) € GSp,(I5).

(2) By our choice of {e;}i=1,... 4, the Z,-regular element d is diagonal in this basis. Since w; € I3,¢e;, d
is still diagonal in the basis {w; }i=1, . 4.

,,,,,,,,,,

O
From now on we always work with a Z,-regular conjugate of p satisfying p(Hp) C GSp,4(I§).

7.3. Lifting unipotent elements. We give a definition and a lemma that will be important in the
following. Let B — A an integral extension of Noetherian integral domains. We call A-lattice in B an
A-submodule of B generated by the elements of a basis of Q(B) over Q(A). The following lemma is
essentially [Lal6, Lemma 4.10].

Lemma 7.8. Fvery A-lattice in B contains a non-zero ideal of B. Conversely, every non-zero ideal of
B contains an A-lattice in B.
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Let 6: Ty, — I° be a finite slope family of GSp,-eigenforms and let p: Gg — GSp4(I3,) be the
representation associated with 6. For every root «, we identify the unipotent group U*(I§) with I§ and
Im pNU(I§) with a Zy-submodule of I§. The goal of this section is to show that, for every o, ImpNU®
contains a basis of a Ap-lattice in I§. Our strategy is similar to that of [CIT15, Section 4.4], which in
turn is inspired by [HT15] and [Lal6]. We proceed in two main steps, by showing that:

(1) there exists a non-critical arithmetic prime Py C Ap such that Im ppgs N U(I5/PLlg) contains a
basis of a Ay, /Py-lattice in 1§/ PIg;
(2) the natural morphism Im p YU (I§) — Im pp,13 N U(I5/Pl7) is surjective, so we can lift a basis as
in point (1) to a basis of a Ap-lattice in I§.
Part (1) is proved via Theorem 4.4 and a result about the lifting of self-twists from pp, 13 to p (Proposition
6.4). Part (2) will result from an application of Proposition 7.1.
We start by showing that we can choose an arithmetic prime with special properties.

Lemma 7.9. Suppose that p is either full or of symmetric cube type. Then there exists an arithmetic

prime Py of Ay, such that:

(1) Py is non-critical for I° in the sense of Definition 5.6;

(2) for every prime P C I° lying above Py, the classical eigenform corresponding to B is not the sym-
metric cube lift of a GLa-eigenform.

Proof. Let X" be the set of non-critical arithmetic primes of Aj,. By Lemma 5.8 37" is Zariski-dense
in Ap. Let B be a prime of I° lying over a prime in X"°* and corresponding to the symmetric cube
lift of a GLs-eigenform f. Note that this is impossible if p is full, so every prime of X" satisfies
conditions (1) and (2) in this case. Let pgz and pys, be the Galois representations associated with 9 and
f, respectively, satisfying pp = Sym?’pﬁp. If the weight of f is k then the representation py¢,, is Hodge-
Tate with Hodge-Tate weights 0 and k—1. A simple calculation shows that Sym?®p t,p is Hodge-Tate with
Hodge-Tate weights (0, k — 1,2k — 2,3k — 3), hence ‘B lies over the arithmetic prime Praj_1 j41). The set
{P(2k—1,k+1) }k>2 is not Zariski-dense in Aj. In particular the set X" — {P(a_1 k+1) }x>2 is non-empty.
A prime in this set satisfies conditions (1) and (2). O

We fix for the rest of the section an arithmetic prime P of Aj satisfying the conditions (1) and (2)
in Lemma 7.9.

Let my denote the maximal ideal of I§. Let H = {g € Hy|p(g9) = 1 (mod my)}, that is a normal
open subgroup of Hy. Thanks to Proposition 7.5 we can suppose that p(Hy) C GSp,(I5). We define a
representation pg: H — Sp,(I§) by setting

po = plu @ det(p|a) /2.

Here the square root is defined via the usual power series, that converges on p(H). Even though our
results are all stated for the representation p, in an intermediate step we will need to work with pg and
its reduction modulo a prime ideal of I§. In order to transfer our results to pg we need to relate the
images of the two representations to each other.

7.4. Subnormal and congruence subgroups of symplectic groups. Let R be a local ring in which
2 is a unit. In the proof of [Lal6, Proposition 5.3], the author compares the images of p and py via
the classification of the subnormal subgroups of GLa(R) by Tazhetdinov. Our technique relies on the
analogous classification of the subnormal subgroups of Sp,(R), which is also due to Tazhetdinov [Taz85].
If N and K are two groups, we say that IV is a subnormal subgroup of K if there exists m € N and
subgroups K; of K, for i =0,1,2,...,m, such that

N=KoCKiCKyC...CK, =K

and K; is normal in K;,1 for every i € {0,1,...,m — 1}. We will only need the following result, that is
a corollary of [Taz85, Theorem)].

Theorem 7.10. If N is a subnormal subgroup of Sp,(R) and it is not contained in {£1}, then it contains
a non-trivial congruence subgroup of Spy(R).

Let Py be the arithmetic prime we chose in the beginning of the section. By the étaleness condition
in Definition 5.6, P,I° is an intersection of distinct primes of I°, so Pl is an intersection of distinct
primes of I§. Let 91,809, ...,Qq4 be the prime divisors of P;I§.

Let J be either PI§ or Q; for some i € {1,2,...,d}. Let p3: Hy — GSp,(I5/J) and poz: H —
Sp4(I§/J) be the reductions modulo J of p and pg, respectively. Let G = p3(H) and Gy = po5(H).
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Let f: GSp,(I3) — Sp,(I5) be the homomorphism sending g to det(g)~/2g. We have G = f(Go) by
definition of pg. We show an analogue of [CIT15, Proposition 4.22].

Lemma 7.11. The group G contains a non-trivial congruence subgroup of Sp,(I§/73) if and only if the
group Go contains a non-trivial congruence subgroup of Sp,(I5/7).

Proof. Clearly the group G NSp,(I§/7J) is a normal subgroup of G. Then the group f(G N Sp,(I5/73)) is a
normal subgroup of f(G). Now f(G) = Gy and f(G N Sp,(I5/3)) = G N Sp,(I§/T) since the restriction of
f to Sp,(I§/73) is the identity. Hence G N Sp,(I§/J) is a subnormal subgroup of Sp,(15/73) if and only if
Go is a subnormal subgroup of Sp,(I§/J3). Neither G N Sp,(I§/J) nor Gy is contained in {£1}, since the
image of py, contains a non-trivial congruence subgroup of Sp,(I§/9;) by Theorem 4.4. Hence Theorem
7.10 gives the desired equivalence. [l

The following is a consequence of Proposition 6.19 and Lemma 7.11, together with our choice of P.

Lemma 7.12. Let Q be a prime of I lying over P;. Then the image of pon contains a non-trivial
congruence subgroup of Sp,(I5/9Q).

Proof. By Proposition 6.19 the image of pgy contains a non-trivial congruence subgroup of Sp,(I§/9Q).
Since H is a finite index subgroup of G, the same is true if we replace pq by pa|g. Now the conclusion
follows from Lemma 7.11 applied to J = 9. O

7.5. Big image in a product. Lifting the congruence subgroup of Proposition 7.12 to I° does not
provide the information we need on the image of pg. We need the following fullness result for pp, .

Proposition 7.13. The image of the representation pp, contains a non-trivial congruence subgroup of
Sp, (I5/ Pi1g)-

The strategy of the proof is similar to that of [Lal6, Proposition 5.1]. There is an injective morphism
1§/ Pl — H;i=1 I5/9Qi. Let G be the image of Impg p, in H?zl I§/9; via the previous injection.
Proposition 7.13 will follow from Lemma 7.11, once we prove that G is an open subgroup of H?Zl I5/9;.
This is a consequence of a lemma of Ribet (Lemma 7.20) and the following.

Lemma 7.14. Let 1 <i < j <d. Then the image of G in I§/Q, x I§/Q; is open.

We will show that if the conclusion of the lemma is not true, then there is a self-twist o of p such that
o(9;) = 9, which is a contradiction since I§ is fixed by all self-twists. The first part of our proof follows
the strategy of [Lal6, Proposition 5.3], that is inspired by [Ri75, Theorem 3.5]. One of its ingredients
is Goursat’s Lemma, that we recall here. Let K; and Ky be two groups and let G be a subgroup of
K1 x Ko such that the two projections m1: G — Ky and mg: G — K5 are surjective. Let A7 = kermy
and Ny = ker m;. We identify N7 and N5 with 71 (N7) with m2(N2), hence with subgroups of G; and Ga,
respectively. Clearly A7 x N3 D G. The natural projections induce a map G — K1 /N7 x Ko /No.

Lemma 7.15. (Goursat’s Lemma, [Go1889, Sections 11 and 12][Bo, Exercise 4.8, Chapter 1]) The image
of G in K1 /N1 x Ko/ Ny is the graph of an isomorphism K1 /N1 = Ko /N>.

Another element of the proof of Lemma 7.14 is the isomorphism O’Meara’s theory of isomorphisms
of open subgroups of GSp, over local rings, that we recalled in Section 6.2.

Proof. (of Lemma 7.14) By Lemma 7.12 there exist two non-zero ideals [; and Iy of I§/Q; and I§/Q;,
respectively, such that I'ie /o, (I1) C Impg q, and I'e/n,(I2) C Impg q;. Recall that the domain of the
representation pg is the open normal subgroup H of Gg defined in the beginning of this subsection.
Consider the group

H, = {h cH ‘ h (mod Ql) S FHS/Di([l) and h (mod D]) S FHS/Q].([Q)}.

Since the subgroups I'ig /o, (I1) and I'i /g, (I2) are normal and of finite index in Sp4 (1§ /9Q;) and Sp,(I5/2;),
respectively, the subgroup Hi is normal and of finite index in H. It is clearly closed, hence it is also
open.

Let 1 <4 < j < d. The couple (4,j) will be fixed throughout the proof. Let K1 = po.a,(H1),
K2 = po,a;(Hp) and let Gy be the image of po(H1) in Ky x Kp. Note that Ky, Ko and Gy are profinite
and closed since they are continuous images of a Galois group. By definition of [1, [ and H; we have
Ky =T /0, () and Ky = I'gg /9, (l2). In particular KC; and Ky are normal and finite index subgroups
of Sp,(I§/9Q;) and Sp,(I5/9Q,), respectively. Define N7 and N> as in the discussion preceding Lemma
7.15. They are normal closed subgroups of K; and K, respectively, since they are defined as kernels
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of continuous maps. In particular N; and N3 are subnormal subgroups of Sp,(I§/Q;) and Sp,(I§/Q;),
respectively.

Suppose that N; is open in Ky and A is open in K. Then the product A7 x N is open in K1 x Ko.
Since Gy contains Ni x Ns, it is also open in K1 x Ky. The subgroup Ki x Ky = Tie /0, () X Tz /0, (l2)
is an open subgroup of I§/9Q; x I§/9Q;, so Gy is open in I§/9Q; x I§/Q,;. Then the conclusion of Lemma
7.14 is true in this case.

Now suppose that one among N7 and N5 is not open. Without loss of generality, let it be N7. Since N
is closed in the profinite group Xy, it is not of finite index in K;. By Lemma 7.15 there is an isomorphism
K1/N1 = Ko /N, hence N3 is not of finite index in Ky. In particular N and N> are not of finite index in
Sp4(I§/9;) and Sp,(I§/9Q;), respectively. Since N is subnormal and not of finite index in Sp,(I§/Q;),
it is contained in {£1} by Theorem 7.10. The same reasoning gives that N is contained in {£1}. By
definition of H the image of pg lies in Ty (mﬂg); this implies that the centres of K1 and Ky are trivial
since p > 2. We conclude that A7 =2 Ny = {1}.

By the result of the previous paragraph we have K1/N; =2 Ky and Ky/MNe = Ko. Hence Lemma
7.15 gives an isomorphism «: K3 = Ko such that, for every (z,y) € K1 x Ko, (z,y) € Go if and only
if y = a(x). By Corollary 6.16, applied to F' = Q(I§/9Q;), Fi = Q(I§/9Q;), A = K1, Ay = Ky, there
exists an isomorphism a: Q(I§/9Q;) — Q(I5/9Q;), a character x: K1 — Q(I§/Q,)* and an element
v € GSp,(Q(I5/9Q;)) such that for every z € K1 we have

(7.4) a(z) = x(2)ya(z)y 1,

where as usual we define o: Sp,(Q(I5/9Q:)) — Sp4(Q(I5/9Q;)) by applying « to the matrix coefficients.
Since the centre of ICy is trivial, the character x is also trivial. By recalling the definitions of Iy, Iy and
Go we can rewrite Equation (7.4) as po.a, (h) =75 "a(po,a, (k) ' for every h € Hy. The last equation
gives an isomorphism ‘

(75) £0,9;

of representations of Hy over Q(I§/9Q;). Denote by m; the projection I§ — I§/9Q;. By definition of
po we have polm, = pla, ® (det p|g,) /2. Define a character p: H; — Q(I3/Q;)* by setting p(h) =

T ((1?#%) for every h € H;. Then Equation 7.5 implies that

(6% ~
H, = P0,Q; ‘Hl

(76) P

We will use the isomorphism (7.6), together with Proposition 6.4, to construct a self-twist for p. Let
B; and P; be primes of I3, that lie above Q; and 95, respectively.

= e ®pa;lm

Lemma 7.16. The isomorphism «: Q(I§/Q;) — Q(I5/9Q;) and the character ¢: Hy — Q(I§/9Q;) can
be extended to an isomorphism a: Q(I3,/Bi) — QL. /B;)* and a character ¢: Gg — QI%./B;)*,
respectively, such that

(7.7) P, =P ® py,-

We prove Lemma 7.16 by the strategy presented in [Lal6, Section 5]. Let 7: Q(I,/%:) — Q, be an
arbitrary extension of a to Q(I3,/%:). Let Lo = Q(I5,/%;) - 7(Q(I3,/%:)). The following lemma can be
proved via obstruction theory, exactly as [Lal6, Lemma 5.6].

Lemma 7.17. There exists an extension ¢: Gg — L3 of ¢: Hy — L5 such that

(7.8) Pl =P @ pa.

In order to prove Lemma 7.16 it is sufficient to show that & restricts to an isomorphism I3, /B; —
I3, /%, and that @ takes values in I3, /B;. We write (I3,/9;)[@] for the subring of L, generated over
I, /%3, by the values of @.

Remark 7.18. Since $ ® py takes values in GL4((I5,/R,)[?]), the representation p¢ also takes values

in GL4((I3,./%B,)[@]). In particular a(Tr(p1(h))) € (I3,/%B;)[@] for every h € Hy. Since the traces of
the representation p1 generate the ring It /B; over Z,, we conclude that & restricts to an isomorphism

(I /Bi) ] = (T3 /B5)[]-

Lemma 7.19. (¢f. [Lal6, Lemma 5.7]) We have (I3, /%B:)[@] = 13, /B and (I3,/B;)[@] = 13,/%5;)-
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Proof. As before let x be the p-adic cyclotomic character. Recall that 3; and ; lie over the prime P
of A, with k = (k1, k2). By taking determinants in Equation (7.8) and using Remark 5.10 we obtain

y_ det(pY)  a(Pkithe—)
= det(pQ) - X2(k;1+k2*3)

Since the quantity on the right defines an element of I3, /9, the degree [(I,/%;)[¢]: I3,./%;] is at most
4. In particular the extension (I3,/%;)[#] is obtained from I3, /9; by adding a 2-power root of unit,
hence it is an unramified extension. The same is true for the extension (I3, /%;)[¢] over I3, /9B, thanks
to the isomorphism a.

Note that the residue fields of (I%,/%B:)[@] and (15, /%B,)[¢] are identified by & and those of I, /9B, and
1%, /%; coincide by the non-criticality of Py (see the étaleness condition in Definition 5.6). Let E and F
be the residue fields of (I3, /%;)[¢] and 1T, /PB; respectively. To conclude the proof it is sufficient to show
that E = [F. The isomorphism & induces an automorphism @ of the residue field E and the character @
induces a character : Gg — E*. Then E is the field F[@] generated over F by the values of . Let s
be an integer such that @ is the s-th power of the Frobenius automorphisms. By reducing Equation 7.9
modulo the maximal ideal of (I%,/%B;)[@] we obtain

(7.9)

4 ayAkithk=s))
= X2(k1 +ko —3)

= XQ(PS—l)(k1+k2—3)_
Since p is odd, 2(p* — 1) is a multiple of 4. In particular F[g?] C F[x*], that implies F[p] C F. We
conclude that E =, as desired. O

Thanks to Remark 7.18 and Lemma 7.19, &: L1 — Lq restricts to an isomorphism &: I3, /B; — I3, /%B;
and ¢ takes values in 1%, /9B,. Hence & and ¢ satisfy the hypotheses of Lemma 7.16.

We conclude the proof of Lemma 7.14. Set 0 = a: I3,/PB; — I3,/B; and n = ¢: Gg — I3,./B;.
Thanks to Lemma 7.16, o and 7 satisfy the hypotheses of Proposition 6.4. Hence there exists a self-twist
o: I3, — I3, for p over Ay that induces o. In particular o(;) = ;. Since *B; and B, lie over different
primes of I, the self-twist & does not fix I§, a contradiction. Recall that the assumption of this argument
is that N} is not open in K; or A5 is not open in 3. When this is not the case we already observed
that the conclusion of Lemma 7.14 holds, so the proof of the lemma is complete. O

We recall a lemma of Ribet. Let k be an integer greater than 2 and let G, G, ..., Gk be profinite
groups. Suppose that for every i € {1,2,...,k} the following condition holds:

(comm) if K is an open subgroup of G; the closure of the commutator subgroup of K is open in G;.
Let Gy be a closed subgroup of G; X Go X - -+ x Gi.

Lemma 7.20. [Ri75, Lemma 3.4] Suppose that for every i,j with 1 < i < j < k the image of Gy in
G; x Gj is an open subgroup of G; x G;. Then Gy is an open subgroup of Gi X Ga X -+ X G,.

We are ready to complete the proof of Proposition 7.12.

Proof. For 1 < i < k let G; be the image of posp,: H — Spy(I§/Q;). As before let Gy be the image
of Im pg,p, via the inclusion Sp,(I§/Pel§) — [, Sp4(I5/Q:15). The groups G; are profinite and they
satisfy condition (comm). The group Gy is closed since it is the continuous image of H. By Lemma 7.14
it is open in G; x G; for every 4,7 with 1 <14 < j < d. Hence Lemma 7.20 implies that Gy is open in
By Proposition 7.12 the group G; is open in Sp, (I§/ P I§) for every i, hence [ [, G; is open in [ [, Sp, (I5/Q;15).
We deduce that Gy is open in [ [, Spy(I§/Pl§), so Im pg p, is open in Sp,(I5/Pel§). In particular Im pg, p,
contains a non-trivial congruence subgroup of Sp, (I§/ PETIS)‘ This remains true if we replace Im pg p, by
Im pp,, thanks to Lemma 7.11 applied to J = F. 0

7.6. Unipotent subgroups and fullness. Recall that for a root o of GSp, we denote by U* the corre-
sponding one-parameter unipotent subgroup of GSp, and by u® the corresponding nilpotent subalgebra
of gsp,(R). We call “congruence subalgebra” of sp,(R) a Lie algebra of the form a-sp,(R) for some ideal
a of R. The lemma below follows from a simple computation with the Lie bracket.

Lemma 7.21. Let R be an integral domain and let & be a Lie subalgebra of sp,(R). The following are
equivalent:

(1) the Lie algebra & contains a congruence Lie subalgebra a - sp,(R) of level a non-zero ideal a of R;
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(2) for every root « of Sp,, the nilpotent Lie algebra ® Nu®(R) contains a non-zero ideal a, of R via
the identification u*(R) = R.
Moreover:
(i) if condition (1) is satisfied for an ideal a then condition (2) is satisfied if we choose a, = a for
every a;
(i) if condition (2) is satisfied for a set of ideals {an}o then condition (1) is satisfied for the ideal
a =[], a%, where the product is over all roots o of Spy.

A computation with commutators gives an analogue of Lemma 7.21 dealing with unipotent and
congruence subgroups rather than Lie algebras.

Lemma 7.22. Let R be an integral domain and let G be a subgroup of GSpy(R). The following are
equivalent:
(1) the group G contains a principal congruence subgroup I'r(a) of level a non-zero ideal a of R;
(2) for every root « of Sp,, the unipotent group G NU*(R) contains a non-zero ideal a, of R via the
identification U%(R) = R.
Moreover:
(i) if condition (1) is satisfied for an ideal a then condition (2) is satisfied if we choose a, = a for
every o;
(i1) if condition (2) is satisfied for a set of ideals {ay}o then condition (1) is satisfied for the ideal
a =[], aa, where the product is taken over all roots of Sp,.

Remark 7.23. In both Lemma 7.21 and Lemma 7.22, if there is an ideal &' of R such that the choice
a, = a’ for every a satisfies condition (2), then the choice a = (a')? satisfies condition (1).

By applying Proposition 7.13 and Lemma 7.22 to R = I§/P.l and G = Impg p, we obtain the
following corollary.

Corollary 7.24. For every root o of GSp, the group Impp, NU*(I§/P,I5) contains the image of an
ideal of 1§ / Pyl . B
7.7. Lifting the congruence subgroup. If « is a root of GSp,, G is a group, R is a ring and 7: G —
GSp4(R) is a representation, let U*(7) = 7(G)NU*(R). We always identify U*(R) with R, hence U*(7)
with an additive subgroup of R.

Recall that p: Hy — GSp,(I§) is the representation associated with a finite slope family : T}, — I°
and that pp, is the reduction of p modulo P,Ij. We use Corollary 7.24 together with Proposition 7.1 to
obtain a result on the unipotent subgroups of the image of p.

Proposition 7.25. For every root a of GSp,, the group U%(p) contains a basis of a Ap-lattice in IS.

Proof. Let my: I§ — I§/Pil§ be the natural projection. We denote also by m the induced map
GSp,(I§) — GSp,(I§/Pl5). For a root a of GSpy, let my: U(I§) — U~(I§/Pl§) be the projection
induced by . a

Let G =ImpNTasp,as)(p) and Gp, = mx(G). We check that the choices A =15, G = GSpy, T =T,
B = By, G =ImpNTgsp,ag)(p) and Q = P satisfy the hypotheses of Proposition 7.1:

— the group G is compact since Im p is the continuous image of a Galois group and FGSM(HS)(p) is a
pro-p group;
— by assumption Imp contains a diagonal Z,-regular element d, and since FGSP4(H8)(p) is a normal

subgroup of GSp,(A) the element d normalizes Im p N T'gsp, 13)(P)-

Hence by Proposition 7.1 7 induces a surjection G N U*(I§) — G N U(I§/Pl5). Let G* = G N
Ue(Ig) and G = G, NU(I5/PyIS). As usual we identify them with Z,-submodules of I§ and 15/ P,IS,
respectively.

By Corollary 7.24 there exists a non-zero ideal aj, of I§/P,I§ such that ap C Impp, N U(I5/PLS).
Set by = pag. Then by C G¢. By the result of the previous paragraph the map G — G¢ induced by
7 is surjective, so we can choose a subset A of G that surjects onto by. Let M be the Aj-span of A
in I3. Let b be the pre-image of by, via 7¢: I — I3/PI5. Clearly A C b, so M is a A,-submodule of
b. Moreover M/P,M = by, by the definition of A. Since A is local Nakayama’s lemma implies that the
inclusion M < b is an equality. In particular the Ap-span of G* contains an ideal of I§. By Lemma 7.8
this implies that G contains a basis of a Ap-lattice in I§. g
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8. RELATIVE SEN THEORY

Let 6: T}, — I° be a finite slope family. We keep the notations of the previous sections. Recall that
the image of the family in the connected component of unity of the weight space is a disc Ba(k,7h k)
adapted to the slope h. We make from now on the following assumption:

(exp) By (k,Th) C Bg(O,p‘l/p_l).

The only purpose of this assumption is to assure the convergence of an exponential series (see Section
8.4).

In Section 5 we defined a family of radii {r;};>1 and we let A,, be the ring of rigid analytic functions
bounded by 1 on B(0,r;). For every i > 1 there is a natural injection ¢, : Ap, — A,,. Set I}, o = I3®4, A7
We endow I7. , with its p-adic topology.

Remark 8.1.

(1) The ring I§ admits two inequivalent topologies: the profinite one and the p-adic one. The represen-
tation p is continuous with respect to the profinite topology on I but it is not necessarily continuous
with respect to the p-adic one.

(2) Since I is a finite Ay-algebra, 17, o is a finite A7 -algebra. There is an injective ring morphism
ty, 1§ = I7, 0 sending f to f @ 1. This map is continuous with respect to the profinite topology on
I§ and the p-adic topology on I 4.

We will still write ¢, for the map GSp,(I§) < GSpy(I7, o) induced by ¢ .

We associated with 6 a representation p|g,: Ho — GSpy(I) that is continuous with respect to the
profinite topologies on both its domain and target. By Remark 8.1(1) p| g, needs not be continuous with
respect to the p-adic topology on GSp,(If). This poses a problem when trying to apply Sen theory. For
this reason we introduce for every i the representation p,,: Ho — GSp,(I7, ) defined by p,, = ;.. © p|m,-
We deduce from the continuity of «;. that p,, is continuous with respect to the profinite topology on Hy
and the p-adic one on I} ;. Tt is clear from the definition that the image of p,, is independent of i as a
topological group.

There is a good notion of Lie algebra for a pro-p group that is topologically of finite type. For this
reason we further restrict Hy so that the image of p,, is a pro-p group. Let H,, = {g € Ho | pr,(9) = 14
(mod p)} and set H,, = H,, for every i > 1. The subgroup {M € GSp,(I;, o) | M = 14 (mod p)} is of
finite index in GSp,(I7, o). Note that this depends on the fact that we extended the coefficients to L., o,
since {M € GSp,(I5) | M = 14 (mod p)} is not of finite index in GSp,(Ip). We deduce that H,, is a
normal open subgroup of Gg. Let Kp, be the subfield of Q fixed by H,,. It is a finite Galois extension
of Q.

Recall that we fixed an embedding Gg, — G, identifying Gg, with a decomposition subgroup of Gg
at p. Let Hy, , = H,; NGg,. Let Ky, , be the subfield of Q, fixed by H,, ,,. The field Khp,, p will play

a role when we apply Sen theory. For every i, let G, = p,,(H,,) and Gl?ic = pr,(Hy; p)-

Remark 8.2. The topological Lie groups G, and G'°¢ are independent of v, in the following sense. For
positive integers i,j with ¢ < j let i Lo = Ino be the natural morphism induced by the restriction
of analytic functions A,, — A,,. Since H., = H,, = H,, by definition, L induces isomorphisms
b Gy, = G,, and Lyt Glr‘;C = GIT‘;C.
8.1. Big Lie algebras. As before let r be a radius among the r;, i € N>°. We will associate with
pr(Hy,) a Lie algebra that will give the context in which to apply Sen’s results. Our methods require
that we work with Q,-Lie algebras, so we define the rings A, = A7[p~'] and Lo = I7 5 [p~'].

Let a be a height two ideal of I 9. The quotient I, o/a is a finite-dimensional Q,-algebra. Let wq: I, o —
I, o/a be the natural projection. We still denote by 7, the induced map GSp, (I, o) — GSpy (I, 0/a).
Consider the subgroups G.q = T4(G,.) and GI°¢ = 7,(G1°¢) of GSp,(I,.0/a). They are both pro-p groups
and they are topologically of finite type since ’GSp4(]IT’0 /a) is. Note that it makes sense to consider the
logarithm of an element of G, 4 since this group is contained in {M € GSp,(I,o/fa)| M = 14 (mod p)}.

We attach to Gy o and G)°¢ the Q,-vector subspaces &, 4 and &,°¢ of gsp,(L,0/a) defined by

a a

Gra=Qp logG,, and Qii,og =Q, - log Grc.

r,a

The Q,-Lie algebra structure of gsp,(I.o/a) restricts to a Q,-Lie algebra structure on &, 4 and &°¢.
These two Lie algebras are finite-dimensional over Q, since gsp, (L, o/a) is.
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Remark 8.3. The Lie algebras &, o and Qﬁi,og are independent of r, in the following sense. For positive
integers 1,5 with i < j let tii Lo = Io be the natural morphism. By Remark 8.2 Lyl induces
isomorphisms ;7 : G, q = &,,.q and Lyt (’5},07% = Qﬁi,oca

Remark 8.4. The definitions of &, o and 61;’3 do not make sense if a is not a height two ideal. In this
case I,.o/a is not a finite extension of Q, and G, and GI°° need not be topologically of finite type. We
can define subsets &, 4 and QSITOS of 9sp4 (L, 0/a) as above but they do not have in general a Lie algebra
structure. In particular the choice a = 0 does not give Lie algebras for G, and G1°°.

Recall that there is a natural injection Ay — Ay, hence an injection Ag[p~!] — Ap[p~!]. For every
k = (k1,ko) the ideal PyAy[p~?] is either prime in Ap[p~!] or equal to An[p~']. We define the set of
“bad” ideals SR of Ay[p~!] as

Shad — L1+ Ty —u), A+ Ty —u?), 14+ Ty —u(l+T1)), (1 +T1)(1 +Tz) — u®)}.
Then we define the set of bad prime ideals of A,[p~!] as
SPad — P prime of Ap[p~]| PN Ax[p~!] € SR},
We will take care to define rings where the images of the ideals in SP2? consist of invertible elements.
The reason for this will be clear in Section 8.4. Let Sy be the set of ideals a of I, o of height two such
that a is prime to P for every P € S”d. Let S be the subset of prime ideals in Sy. We define the ring

B, = I&H ]IT,O/a)
aeSsy

where the limit of finite-dimensional Q,-Banach spaces is taken with respect to the natural transition
maps I, g/a; — L. o/as defined for every inclusion of ideals a; C as. We equip I, o/a with the p-adic
topology for every a and B, with the projective limit topology. There is a natural injection g, : I, o — B,
with dense image. There is an isomorphism of rings

(8.1) B, = [] @ro)p,

PeS)

where (I,.0) p = Jim, I,.0/P* with respect to the natural transition maps, but (8.1) is not an isomorphism

of topological rings if we equip (I,0), with the P-adic topology for every P. In this case the resulting
product topology is not the topology on B,., which is the p-adic one.
Now consider the sets

SPt={PNA|Pes™}, Sya={anAlacS}, Sy, ={an4,|acS5}.

For later use we define a ring
B, = @1 A, /a,
UESQ,A
where the limit of finite-dimensional Q,-Banach spaces is taken with respect to the natural transition
maps A,/a; — A,/ay defined for every inclusion of ideals a; C as. We equip A, /a with the p-adic
topology for every a and B, with the projective limit topology. There is a natural injection tp, : A, — B,
with dense image. There is an isomorphism of rings

(8.2) B.~ ] (4,

PeS; 4

where (A,)p = Jm, A,/ P? with respect to the natural transition maps, but (8.2) is not an isomorphism

of topological rings if we equip (717) p with the P-adic topology for every P. In this case the resulting
product topology is not the topology on B,., which is the p-adic one.

Remark 8.5. For every P € S**d we have P -B, = B,, since the limit defining B, is over ideals prime
to P. In the same way we have P - B, = B, for every P € S5,

Recall that I, is a finite A,-algebra. Then I, /a is a finite A,/(a N A, )-algebra for every a € Sy,
so the ring B, has a natural structure of topological B,-algebra. For every a € Sy the degree of the
extension I, o/a over A,/(aN A,) is bounded by that of I, over A,. We deduce that B, is a finite
B,-algebra.
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We proceed to define the Lie algebras of G, and G'°° as subalgebras of gsp,(B,.). Let

G, = lim &, and &= lim &,
aesSs aesSs

where &, , and ®!°¢ are the Lie algebras we attached to G, , and GI°¢. The Q,-Lie algebra structures

r.a r,a
on &, , and jS,og induce Q,-Lie algebra structures on &, and &\°°. We endow &, and &!°° with the
p-adic topology induced by that on gsp,(B,.).

When we introduce the Sen operators we will have to extend the scalars of the various rings and Lie
algebras to C,. We denote this operation by adding a lower index C, to the objects previously defined.
We still endow all the rings with their p-adic topology. Clearly I, o c, has a structure of finite A, c, -
algebra and B, c, has a structure of finite B, ¢ -algebra. The injections tp, and ¢p, induce injections

loc

with dense image i, c,: Ir0,c, = Brc, and tp, c,: Arc, = B, c,. The Lie algebras &,.c, and er,cp
are C,-Lie subalgebras of gsp, (B, c,).

Remark 8.6. The Q,-Lie algebras &, and 6190 do not have a priori any B, or B,.-module structure. As
a crucial step in our arguments we will use Sen theory to induce a B, c,-vector space (hence a B, c, -Lie
algebra) structure on suitable subalgebras of &, c, .

8.2. The Sen operator associated with a p-adic Galois representation. Let L be a p-adic field and
let R be a Banach L-algebra. Let K be another p-adic field, m be a positive integer and 7: Gal(K /K) —
GL,,(R) be a continuous representation. We recall the construction of the Sen operator associated with
7, following [Sen93].

We fix embeddings of K and L in @p. The constructions that follow will depend on these choices. We
suppose that the Galois closure L& of L over Qp is contained in K. If this is not the case we simply
restrict 7 to the open subgroup Gal(K/KL%!) c Gal(K/K). We denote by x: Gal(L/L) — ZX the
p-adic cyclotomic character. Let Lo, be a totally ramified Z,-extension of L. Let v be a topological
generator of I' = Gal(L./L). For a positive integer n, let I';, C I" be the subgroup generated by AP"
and L, = LY ) be the subfield of Lo, fixed by T,,. We have Loy = U,L,. Let L/, = L,K and
G' = Gal(L/L.).

Write R™ for the R-module over which Gal(K/K) acts via 7. We define an action of Gal(K/K) on
R™®1,C, by letting o € Gal(K/K) send x ®y to 7(0)(x) ® o(y). Then by [Sen93] there exists a matrix
M € GL,, (R@L(Cp), an integer n > 0 and a representation ¢: I, = GL,,,(R ®r, L!,) such that for all
o € G, we have

(8.3) M~ 7(0)o(M) = (o).

of My (R®LC,).

The limit in the definitions always exists and is independent of the choice of § and M.

Now suppose that R = L and that 7 is a Hodge-Tate representation with Hodge-Tate weights
hi,he,...,hy. Let ¢ be the Sen operator associated with 7; it is an element of M,,(C,). The fol-
lowing theorem is a consequence of the results of [Sen80].

Theorem 8.8. The characteristic polynomial of ¢ is [[i, (X — hy).

We restrict now to the case L = R = Q,, so that 7 is a continuous representation Gal(K/K) —
GL,,(Q,). Define a Q,-Lie algebra g C M,,(Q,) by g = Q, - log(7(Gal(K/K))). We say that g is the
Lie algebra of 7(Gal(K/K)). Let ¢ be the Sen operator associated with 7.

Theorem 8.9. [Sen73, Theorem 1] The Sen operator ¢ is an element of g@Qp(Cp.

Remark 8.10. The proof of Theorem 8.9 relies on the fact that 7(Gal(K/K)) is a finite dimensional
Lie group. It is doubtful that this proof can be generalized to the relative case.
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8.3. The relative Sen operator associated with p,.. Fix a radius r in the set {r; };en>0. Consider as
usual the representation p,: Hy — GSp,(I, o). We defined earlier a p-adic field Ky, ,. Write Gky, , for
its absolute Galois group. We look at the restriction p, |y, = Gy, , — GSpy(l.0) as a representation
with values in GLy4 (I, ). Recall that &1°¢ is the Lie algebra associated with the image of p,|c wu, - The
goal of this section is to prove an analogue of Theorem 8.9 for this representation, i.e. to attach to
p""lGKH , 2 “B,-Sen operator” belonging to 05%’«%?. We start by constructing various Sen operators via
Definition 8.7.

(1) The Qp-algebra I, is complete for the p-adic topology. We associate with p,|q P Sen operator
¢)7‘ S M4(]IT,O,(CP)'

(2) Let a € So. Then I, ¢/a is a finite-dimensional Q,-algebra. As usual write mq: I, 0 — L. o/a for the
natural projection. Denote by p, . the representation g OPT‘GKHT,,,: Gky,, — GLy(L0/a). We
associate with p,.q a Sen operator ¢, o € My((L;,0/a)®q,Cp).

(3) Let a € Sy. Let d be the Q,-dimension of I,o/a. Let k be a positive integer. An I, o/a-linear
endomorphism of (I,.o/a)* defines a Q,-linear endomorphism of the underlying Q,-vector space (@’;d.
This gives natural maps ag, : Mg(I.0/a) = Mzq(Q,) and a@p: GLy (L 0/a) = GLka(Qp) (we leave
the dependence of these morphisms on & implicit).Choose k¥ = 4 and consider the representation
pg’; = a(ap o pra: Gg = GL4q(Qp). We associate with pg‘; a Sen operator (;S(gﬁ € Muq(C,).

Note that Theorem 8.9 can be applied only to representations with coefficients in Q,, hence to con-
struction (3) above. We will prove that the operators constructed in (1), (2) and (3) are related, so
that it is possible to transfer information from one to the others. We write mqc, = m7a ® 1: Lo c, —
Iro,c,/alro0,.c,- We still write 7q,c, for the maps My(I.0,c,) = Ma(I-0,c,/al,0,c,) and GLy(Lo,c,) —
GL4(I0,c,/al0,c,) obtained by applying 74 c, to the matrix coefficients. As before we let d be the Q,-
dimension of I.o/a. For every positive integer k, we set ac, = ag, ® 1: My(I.o.c,/al.o0c,) = Mra(Cp)
and Oz(ép = Ozép ®1: GL (]IT,O,(C,]/C‘HT,O,(C,,) — GLkd(Cp)

Proposition 8.11. For every a € Sy the following relations hold:

(Z) (br,a = 7Tu,(Cp(¢r);'

(“) Gra = ac, ((z)r,a)-
Proof. We deduce this result from the construction of the Sen operator presented in Section 8.2. We
first specialize it to the representation pT‘GKH,. L Gk, , = GL4(I.0); in particular we choose m = 4,
K = Ky, and L = Q,. By the discussion preceding Definition 8.7, there exists a matrix My €
GL4(T;0,c,), an integer ng > 0 and a representation do: I'y, — GL4(]IT.70<§>Qp (Qp)7,,) such that for all

o € Gal(Q,/(Qy),,,) we have
(8.4 M pu(0)r (Mo) = 6o(0).

Let M()’u = 7Ta,(Cp (MO) S M4(H7.’07Cp/aﬂ7.707cp) and 50,a = Wu,Cp o (502 Fno — GL4((H,.,0/G)®QP (Qp){ﬂo)' By
applying 7, c, to both sides of Equation (8.4) we obtain
(85) Mo_,lpr,u(o—)a(MO,a) = 5O,a(0)
for every o € Gal(Q,/(Qp);,,)- Hence the choices M = My 4, n = ng and § = &y q satisfy Equation (8.3)
specialized to the representation p, . Then, by definition, the Sen operator associated with p;, 4 is
log (o
Brn = lim 28002(0))
o—1 log(x(c))

that coincides with 74 c,(¢).

For (ii), keep notations as in the previous paragraph. Let Mé?‘; = aép (Mpy.q) and 68’1’1 = a(ép °60,q. By
applying oz(ép to both sides of Equation (8.5) we obtain

(8.6) (M22)™ 975 a(0)o (Mgs) = b5 (0)
for every o € Gal(Q,/(Qp)},,)- Then the choices M = Mgﬂ, n=mng and § = (582 satisfy Equation (8.3)

specialized to the representation p%’u, so by definition the Sen operator associated with ng,a is

log(62»
¢%a — lim g( O,a(o—))'
0, o—1 log(x(0))
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A simple check shows that the right hand side is equal to ac, (¢r,q)- ([l

Recall that there is a natural inclusion ¢ : Iroc, < Brc,. It induces an injection My (Lo ¢, ) <
BT,CP sUyp sop yUsp
My (Br,cp) that we still denote by tp, c,. We define the B,.-Sen operator attached to Pr|GKH , as

¢B, = L]/E,,,,(Cp((lsr)'
By definition ¢p, is an element of My(B,c,). Since B.c, = @nae& I,0/a, it is clear that ¢p. =
1'&naes2 Ta,c,(¢r). Then Proposition 8.11(i) implies that
(8.7) 95, = lim r,a.

aesSs,

We use Proposition 8.11(ii) to show the following.
Proposition 8.12. The operator ¢p, belongs to the Lie algebra Q51°° In particular it belongs to &,.c, .

Proof. For every a € So, let d, be the degree of the extension I, o/a over Q,. Let QSITC:E’Q" be the

Lie subalgebra of My, associated Wlth the image of po%, defined by &100% = Q, - log(Im pet). Let

(’51:5%’ = Qﬁloc B ®q, Cp. Since Im pr o= aQ (Im pr,q) we can write

(8.8) G208 = ac, (B ).

The representation p % satisfies the assumptions of Theorem 8.9, so the Sen operator (b belongs

7,0,a

to &% By Proposition 8.11(ii) ¢T7a = ac, (¢r,a). Then Equation (8.8) and the injectivity of ac, give

r,a,Cp

(8.9) bra € 6% ¢,
Since 051“ = @CIESQ Q5r a.c,» Equations (8.7) and (8.9) imply that ¢g, € 1°° O

8.4. The exponential of the Sen operator. We use the work of the previous section to construct an
element of GL4(B,) that has some specific eigenvalues and normalizes the Lie algebra 61“ Such an
element will be used in Section 9 to induce a B, c,-module structure on some subalgebra of Gimcp, thus
replacing the matrix “p(o)” of [HT15] that is not available in the non-ordinary setting.

Let ¢, € M4(Hr,0,cp) be the Sen operator defined in the previous section. We rescale it to define an
element ¢/ = log(u)e,, where u = 1+ p. Let (T1,Tz) be the images in A, of the coordinate functions on
the weight space. The logarithms and the exponentials in the following proposition are defined via the
usual power series, that converge because of the assumption (exp) we made in the beginning of Section
8.

Proposition 8.13.
(1) The eigenvalues of ¢.. are 0, log(u=2(1 + Tg)), log(u=t(1+T1)) and log(u=3(1 +T1)(1 + Ty)).
(2) The operator ¢, belongs to My(I,.oc, )—P T, In particular the exponential series defines an element

exp(¢;) € GLa(Lr0,.c,)-
(8) The eigenvalues of exp(¢y.o) are 1, u™?(1+Ty), u ' (14+T1) and w3 (1 4+ T1)(1 + T3).

Proof. (of Proposition 8.13) We prove part (1). The p-adic Galois representation p; associated with a
classical eigenform f of weight (k1, ko) is Hodge-Tate with Hodge-Tate weights (0, ko —2, k1 —1, k1 +ka—3).
By Theorem 8.8 these weights are the eigenvalues of the Sen operator ¢; associated with ps. By
Proposition 8.11(i) the eigenvalues of ¢, interpolate those of the operators ¢y when f varies in the set
of classical points of A,.. Since such points form a Zariski-dense subset of Spec A,., the interpolation
is unique. A simple check shows that it is given by the function F': A, — (C;l, defined by F(T1,Ts) =
(0,1log(u=2(1 + T))/log(u), log(u=t(1 + T1))/ log(u),log(u=3(1 + T1)(1 + 1))/ log(u)). By normalizing
we obtain the eigenvalues given in the proposition.

Statements (2) and (3) follow immediately from (1). O

Let @, = tp, ., (exp(¢).o)). By definition ®g, is an element of GL4(B,.c,). We show that it has the
two properties we need. We define a matrix Cr, 1, € GSp,(B,.c,) by

Cry 1, = diag (u (1 + 1) (1 + To),u ' (1 + Th),u*(1 4+ T3),1).

Proposition 8.14.

(1) There exists v € GSpy(B,c,) satisfying ®p, = vCr, 7,7~
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(2) The element ®g_ normalizes the Lie algebra &,.c, .

Proof. The matrices ®p, and Cr, 1, have the same eigenvalues by Proposition 8.13(3). Hence there
exists v € GL4(B,.c,) satisfying the equality of part (1) if and only if the difference between any two
of the eigenvalues of ®p_ is invertible in B,. We check by a direct calculation that each one of these
differences belongs to an ideal of the form P -B, with P € S*2d hence it is invertible in B, by Remark
8.5. Since both ®p_and Cr, 1, are elements of GSp,(B,.c,), we can take v € GSp,(B,.c,)-

Part (2) follows from Proposition 8.12. (]

9. EXISTENCE OF A (GALOIS LEVEL IN THE RESIDUAL SYMMETRIC CUBE AND FULL CASES

We have all the ingredients we need to state and prove our first main theorem. Let h € QT%. Let T},
be a local component of the h-adapted Hecke algebra of genus 2 and level T'; (M) NTy(p). Suppose that
condition (exp) of Section 8 is satisfied and that the residual Galois representation py, associated with
T}, is either full or of symmetric cube type in the sense of Definition 4.3. Let 0: T}, — I° be a family, i.e.
the morphism of finite Ay, algebras describing an irreducible component of Tj,. Let p: Gg — GSp,(I3,)
be the Galois representation associated with 6. Suppose that p is Z,-regular in the sense of Definition
4.2. For every radius r in the set {r;};cn>0 defined in Section 5, let &, be the Lie algebra that we
attached to Im p in Section 8.1.

Theorem 9.1. There exists a non-zero ideal | of Iy such that
(9.1) [-sp,(B,) C &,
for every r € {r;}sen>o.

Let A Dbe the set of roots of GSp, with respect to our choice of maximal torus. Recall that for « € A
we denote by u® the nilpotent subalgebra of gsp, corresponding to «. Let r be a radius in the set
{riti>1. We set U = &, Nu*(B,) and Uc = &, c, Nu*(B,.c,), which coincides with U2 ®g,Cyp. Via
the isomorphisms u®(B,) = B, and u®(B,.c,) = B, c, we see Ll as a Q,-vector subspace of B, and il;ficp
as a Cp-vector subspace of B,.c, .

Recall that U denotes the one-parameter unipotent subgroup of GSp, associated with the root a.
Let H, be the normal open subgroup of Gg defined in the beginning of Section 8. Note that Proposition
7.25 holds with p|g, replaced by p|g,. since H, is open in Gg. Let U%(p|g,.) = U*(I§) N p(H,) and
U%(p;) = U*Npr(Hy). Via the isomorphisms U(Iy) = Iy and U*(1, o) = I, we identify U%(p|g,) and
U*(pr) with Z,-submodules of Iy and I, o, respectively. Note that the injection I§ — I7 ¢ induces an
isomorphism of Z,-modules U%(p|a,) = U*(py).

We define a nilpotent subalgebra of gsp,(I.o) by Ui == Q, - log(U*(p,)). We identify Ug , with a
Qp-vector subspace of I o. Note that the natural injection ¢, : I, o < B, induces an injection Ly =~ LY
for every a. 7

Lemma 9.2. For every a € A and every r there exists a non-zero ideal |* of Iy, independent of r, such
that the B,-span of U contains 1“B,.

Proof. Let d be the dimension of Q(I§) over Q(Ap). Let @ € A. By Proposition 7.25 the unipotent
subgroup U%(p|g,) contains a basis E = {e;};=1,... 4 of a Ap-lattice in I§. Lemma 7.8 implies that the
Ap[p~1]-span of E contains a non-zero ideal ¢ of Ty. Consider the map :“: U%(Iy) — u®(B,) given by
the composition
U®(Ty) < U*(I,.0) = u*(T,.0) = u*(B,),
where all the maps have been introduced above. Note that :*(U%(p|g,)) C U%. Let Ep, = (*(E). Since
t* is a morphism of Iy-modules we have
B, 4D B, -Eg, =B, - (Ay[p~']-Eg,) = B, - 1“(An[p™'] - E) D B, - 1*(1*) = [*B,..

By construction and by Remark 8.2 the ideal [* can be chosen independently of 7. O

Let 7 be an element of GSp,(B,.c,) such that &g = vCr, 1,7~ 15 it exists by Proposition 8.14(1). Let
&, = 7', c,7. For cach a € A let e =u*(Brc,)N&) . We prove the following lemma by an
argument similar to that of [HT15, Theorem 4.8].

Lemma 9.3. For every a € A the Lie algebra ﬂ:gp is a By c,-submodule of B, c,.
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Proof. By Proposition 8.14(2) the operator ®p_normalizes &, c,, hence Cr, 1, normalizes & c," Since

Cry 1, is diagonal it also normalizes ¢ . Moreover Ad (Cry,1,)u® = a(Cry 1, )u® for every u® € {L)'c .

Let a; and ay be the roots sending diag (t1,ta, vty ', vt; ') € Ty to t1/ty and v~ 13, respectively. With

respect to our choice of Borel subgroup, the set of positive roots of GSp, is {a1, @s, a1 + a9, 203 + as}.

The Lie bracket gives an identification [L)¢", 4172 = iJ.;Y:g:JraQ. Conjugation by Cr, 7, on the C,-vector
7,01

space u®' (B, c,) induces multiplication by a1 (Cr, 1) = u™?(1+1T3). Since u™? € Z and Ui c, is stable
under Ad (Cr, 1,), multiplication by 1475 on u® (B, c,) leaves ﬂ;’v’gpl stable. Now we compute

(14 T2) - 4812 = (14 To) - [}, 402%) = [(1+ Tz) - ) 4027 € WOE 40%) = s e,
where the inclusion (1 + T3) - 4]} C £2" is the result of the previous sentence. We deduce that
multiplication by 1+ T5 on u®*2(B, ¢ ) leaves ii::gpﬁaz stable.

Similarly, conjugation by Cr, 1, on the C,-vector space u®?(B,. c, ) induces multiplication by a2 (Cry 1,) =
w- 1551 Since u € ZX and ﬂ:,’gj is stable under Ad (Cr, 1,), multiplication by 1 4+ T5 on u®*?*(B, c,)

14T -
leaves 4()'c* stable. The same calculation as above shows that multiplication by Ut on uertez(B, ¢)

1+T15
leaves L)% rhez geable.
»~p

Having proved that multiplication by both 1 + 75 and H% leaves u:’g;JraQ stable, we deduce that

multiplication by (1+T5)- }i% = 14T also leaves il:’g:ra? stable. Since ﬂz”g:'mz is a Cp-vector space,

we obtain that the C,[T1, T]-module structure on u®+**(B,. ¢ ) induces a Cp[T1, T]-module structure

on ﬂl’g:rag. With respect to the p-adic topology il;”g;r” is complete and Cp[Ty,T5] is dense in B,.c,,
so the B,.c,-module structure on u***2(B,.¢ ) induces a B,.c,-module structure on 11:’5; taz
If 8 is another root, we can write
8 v,a1+ta VB—a1—a
B"'a(cp ’ ur,(Cp - BT,Cp ’ [ur,(C; 2’ur,Cp ' 2] c

Y,a1taz ((7,f—a1—az Yartaz ((v,B-ar—a2y _ (7.8
- [BT’(CP ’ ur,(Cp 7ur,(Cp } C [ur,C,, ’ur,(Cp ] - Ll7’([: ’

»~p

where the inclusion B,.c, -ﬂ:’€;+o‘2 C il:g:raz is the result of the previous paragraph. O

Proof. (of Theorem 9.1) Let Eg. C U7 be the set defined in the proof of Lemma 9.2. Let Eg c, =
{fe®1fe € Eg,} C Ul . Consider the Lie subalgebra By.c, - &rc, of gsp,(B,.c,). For every a € A we
have B,.c, - &.c, "u*(B.c,) = Brc, - 4. By Lemma 9.2 there exists an ideal [* of Iy, independent of
r, such that [ - B, c, C B¢, - 4. Let [p = HaeA [*. Then Lemma 7.21 gives an inclusion

(9.2) lo - 5]34(18%7@1)) C Br,(Cp . ®r,(Cp-

As before let v be an element of GSp,(B,c,) satisfying &, = ¥Cr, 1,7~ ', The Lie algebra I -
sp,(Br.c,) is stable under Ad (y™'), so Equation 9.2 implies that Iy - sp,(Brc,) =7 *(lo - sp4(Brc,))y C
7‘1(Br,@p -&,)y = B¢, ATIB,y = B¢, - ®). We deduce that, for every a € A,
lo - u® (BT,C,,) =u (BT’CJ Ny - 5Py (BT,CP) cu® (Bh(cp) N Br,Cp . ®Z,Cp =

= B¢, (W (Brc,) NS¢ )= Brc, LT .
By Lemma 9.3 iligp is a By c,-submodule of u,.(B,.c,), so B¢, -MZ”gp = ﬂ:”gp. Hence Equation (9.3)
gives

(9.4) lo - u*(Byc,) CUE

(9.3)

for every a. Set [; = [2. By Lemma 7.21 and Remark 7.23, applied to the Lie algebra &, c, and the set
of ideals {l;B,}nea, Equation (9.4) implies that [; - sp,(B,.c,) C 6:&,' Observe that the left hand side
of the last equation is stable under Ad (v), so we can write

(9.5) b spy(Brc,) = v(h - sp4(Brc,))y ™' CY8)c 77! =8¢,

To complete the proof we show that the extension of scalars to C, in Equation 9.5 is unnecessary, up
to restricting the ideal [;. By Equation 9.5 we have, for every a,

(9.6) li-Brc, CUc,
We prove that the above inclusion of C,-vector spaces descends to an inclusion [y - B, C U of Q,-vector
spaces. Let I be some index set and let {f;};e; be an orthonormal basis of C, as a Q,-Banach space,

satisfying 1 € {f;}ier. Let a be any ideal of L, belonging to the set Sy. Recall that the Q,-vector
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space B,./aB, = I, o/a is finite-dimensional. We write 7, for the projection B, — I,.o/a and also for its
restriction I, o — I, o/a. Let n and d be the Q,-dimensions of I, o/a and 74 (U%), respectively. Choose a
Qp-basis {v;}=1,...n of I, o/a such that {v;};=1, 4 is a Q,-basis of U

Let v be any element of m4(l;). Then v ® 1 € m4(l1)®g,C, and by Equation (9.6) we have v® 1 €
Ta(U2)@g, Cp. Now {0; @ fi}1<j<n;icr and {vj ® f;}1<j<d;ier are orthonormal Q,-basis of B, /a®q,C,
and Wu(ﬂ?)®@pCp, respectively. Hence there exists a set {\;;}1<j<a;ier C @, converging to 0 in the
filter of complements of finite subsets of {1,2,...,d} x I such that v@ 1 =3",_, ;7 Aji(v; @ f;). By
setting A;; = 0 for d < j < n we obtain a representation v ® 1 = Zj:1 _____ neiel Aji(v; ® fi) with respect
to the basis {v; ® fi}1<j<n:ier of (B,/a)®q,Cp. On the other hand there exist a; € Qp, j = 1,2,...,n,
such that v = 7 aju;, so v @1 = 3" a;(v; @ 1) is another representation of v ® 1 with respect
to the basis {’Uj ® fi}']_gjgn;iej. By the uniqueness of the representation of an element in a Q,-Banach
space in terms of a given orthonormal basis we must have a; = A;; if f; = 1. In particular a; = 0 for

d<j§n,sov=2§l:1
The discussion above proves that mq(l1) C mq(US) for every a € Sy. By taking a projective limit over
a with respect to the natural maps we obtain I - B, C 4%. Let [ = [2. From Lemma 7.21 and Corollary

7.23, applied to the Lie algebra &, ¢, and the set of ideals {1B,}aca, we deduce that
[-sp,(B,) C &,.

a;v; is an element of 7wy (U%).

By definition we have [ = I3 = [} = (HaEA [a)4. For every « the ideal [* provided by Lemma 9.2 is
independent of r, so [ is also independent of r. This concludes the proof of Theorem 9.1. (]

Definition 9.4. We call Galois level of 8 and denote by ly the largest ideal of Iy satisfying the inclusion
(9.1).

9.1. The Galois level of ordinary families. We explain how our arguments can be applied to an
ordinary family of GSp,-eigenforms in order to show a stronger result than Theorem 9.1. Let M be
a positive integer. Let T°'¢ be a local component of the big ordinary cuspidal Hecke algebra of level
T (M)NTo(p) for GSpy; it is a finite and flat Ay-algebra. With the terminology of Section 5 we consider
Tord as the genus 2, 0-adapted Hecke algebra of the given level. Suppose that the residual representation
Prora associated with T°' is absolutely irreducible and of Sym?® type in the sense of Definition 4.3. Let
6: T — I° be a family, i.e. the morphism of finite Ay algebras describing an irreducible component of
T°rd. Note that the algebra T°'¥ may different from the one given by the construction in Section 5 for
the choices h = 0 and r;, = 1; however all of our arguments and contructions are equally valid for the
algebra T°'4. None of them relied on the fact that the slope of the family was positive.

We keep all the notations we introduced for the family 6. Let p: Go — GSp,(I3,) be the Galois
representation associated with 6. Suppose that p is Z,-regular in the sense of Definition 4.2. Then we
have the following.

Theorem 9.5. There exists a non-zero ideal | of I§ and an element g of GSp,(I§) such that
(9.7) gLz (g™" C Imp.

The main difference with respect to the proof of Theorem 9.1 is that relative Sen theory is not
necessary anymore, since the exponential of the Sen operator defined in Section 8.4 is replaced by an
element provided by the ordinarity of p. This is the reason why we do not need the Lie-theoretic
constructions and we obtain a group-theoretic result. Note that this also makes the inversion of p
unnecessary. Theorem 9.5 is an analogue of [Lal6, Theorem 2.4], which deals with ordinary families of
GLy-eigenforms, and a generalization to the case where I° # Ay of [HT15, Theorem 4.8] for n = 2 and
families of residual symmetric cube type.

We only sketch the proof of the theorem, pointing out the differences with respect to that of Theorem
9.1.

Proof. Let u =1+ p, let x be the p-adic cyclotomic character and, for o € I, let ur(o): Go, — Iy
be the unramified character sending a lift of the Frobenius automorphism to o. By Hida theory the
ordinarity of 6 implies the ordinarity of the Galois representation p, in the sense that the restriction of p
to a decomposition group at p is a conjugate of an upper triangular representation with diagonal entries
given by

log(x) log(x) log(x)
(¢ (0 T 1+ 7)) 0 ur(a), - (1 1) S5 ur(8), X 72 - (1+ T) 5560 (), ux(9))
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for some «, 3,7,d € I;. Consider a conjugate of p that has the form displayed above. Up to conjugation
by an upper triangular matrix we can suppose that Im p contains a diagonal Z,-regular element. By
Proposition 7.5 we can further replace the representation with a conjugate by a diagonal matrix such
that p(Hp) C GSp,(I3). This is true because the basis we start with in the proof of Proposition 7.5 is
replaced by a collinear one.

We work from now on with the last one of the conjugates of the original p mentioned in the previous
paragraph; this choice gives the element g appearing in Theorem 9.5. It is clear from the form of p
that there exists an element o in the inertia subgroup at p such that p(c) = Cp, 1,, where Cp, 1, is the
matrix defined in Section 8.4. Hence Im p is stable under Ad Cr, 7, The same argument as in Lemma
9.3, with the nilpotent algebra il:;gp replaced by the unipotent subgroup U%(Im p) and the extension of
rings B, C B, replaced by Ay C I§, gives U*(Im p) a structure of Agz-module for every root a of Sp,.
By Proposition 7.25 U%*(Im p) contains a basis of a As-lattice in If for every a. Hence, by Lemma 7.8,
U%(Im p) contains a non-zero ideal of I§ for every a. By Proposition 7.22 the group Imp contains a
non-trivial congruence subgroup of Sp, (If). d

10. THE SYMMETRIC CUBE MORPHISMS OF HECKE ALGEBRAS

Let Sym®: GLy — GSp, be the morphism of group schemes over Z defined by the symmetric cube
representation of GLo. It fits in an exact sequence 0 — pu3 — GLy — GSp, of group schemes over Z.
If R is a ring we still denote by Sym® the morphism GLy(R) — GSp4(R) induced by the morphism of
group schemes. For every representation p of a group with values in GLy(R) we set Sym?®p = Sym? o p.

Kim and Shahidi proved the existence of a Langlands functoriality transfer from GL, to GL,4 associ-
ated with Sym®: GLy(C) — GL4(C) [KS02, Theorem B]. Thanks to an unpublished result by Jacquet,
Piatetski-Shapiro and Shalika [KS02, Theorem 9.1], this transfer descends to GSp,. We briefly recall
these results.

Let m = @, m, be a cuspidal automorphic representation of GL2(Aq), where v varies over the places
of Q. Let p, be the two-dimensional representation of the Weil-Deligne group of Q, attached to m,.
Consider the four-dimensional representation Sym®p, = Sym® o p, of the same group. By the local
Langlands correspondence for GL4, Sym?®p, is attached to an automorphic representation Sym®m, of
GL4(Q,). Define a representation of GL4(Ag) as Sym®r = &, Sym®r,. Then we have the following
theorems.

Theorem 10.1. [KS02, Theorem B| The representation Sym®rn is an automorphic representation of
GL4(Aq). If m is attached to a non-CM eigenform of weight k > 2, then Sym?® is cuspidal.

Theorem 10.2. [KS02, after Theorem 9.1] If 7 is attached to a non-CM eigenform of weight k > 2,
then there exists a globally generic cuspidal automorphic representation II of GSp,(Ag) such that Sym?®m
is the functorial lift of 11 under the embedding GSp,(C) — GL4(C).

10.1. Compatible levels for the classical symmetric cube transfer. If K is a compact open
subgroup of (}Sp4(i)7 we call level of K the smallest integer M such that K contains the principal
congruence subgroup of GSp4(z) of level M. Given an automorphic representation II of GSp,(Ag), we
call level of II the smallest integer M such that the finite component of I admits an invariant vector by
a compact open subgroup of GSp4(2) of level M.

Recall that we fixed for every prime ¢ an embedding Gg, < Gg. If 0: Gg — GL,(Q,) is a represen-
tation and £ # p is a prime, set oy = olg,,. We denote by N (o, £) the conductor of oy, defined in [Ser70].
The prime-to-p conductor of o is defined as N (o) = [[,, N(0, ). We recall a standard formula giving
N(o,£) for every £ prime to p (see [Liv89, Proposition 1.1]). Let I C Gg, be an inertia subgroup and
for k > 1 let I be its higher inertia subgroups. Let V' be the two-dimensional @p—vector space on which
Gq acts via 0. For every subgroup H C Gg let dp , be the codimension of the subspace of V fixed by
o(H). Then N(o,¥{) = "¢ where

dr, 7
(10.1) Ny = dr.o, + Z [I{k,lz].
>1 0k

Write II; for the component of 1I at the finite places and Il for the component of II at co. Since the

representation II given by the above theorem is globally generic, it does not correspond to a holomorphic

modular form for GSp,. However Ramakrishnan and Shahidi showed that the generic representation

I can be replaced by a holomorphic representation T2 such that IT; ® I1%°! belongs to the L-packet
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of II. This is the content of [RS07, Theorem A’], that we recall below. Note that in loc. cit. the theorem
is stated only for 7 associated with a form f of level I'o(IN) and even weight k& > 2, but Ramakrishnan
pointed out that the proof also works when f has level I'y (V) and arbitrary weight k& > 2. The theorem
also gives an information on the level of the representation produced by the lift.

Let m be the automorphic representation of GL3(Ag) associated with a cuspidal, non-CM eigenform
f of weight k > 2 and level I'; (V) for some N > 1. Let p be a prime not dividing N and let ps, be the
p-adic Galois representation attached to f.

Theorem 10.3. (see [RS07, Theorem A’]) There exists a cuspidal automorphic representation 11" =
®, el of GSp,(Aq), satisfying:

(1) T2 4s in the holomorphic discrete series;

(2) L(s,II"") = L(s,w, Sym®);

(3) TP s unramified at primes not dividing N;

(4) TI*°! admits an invariant vector by a compact open subgroup K of GSp,(Ag) of level N(Sym?’pf,p),

We deduce the following corollary.

Corollary 10.4. Let f be a cuspidal, non-CM GLs-eigenform of weight k > 2. For every prime £ let
pr.e be the l-adic Galois representation associated with f. There ewxists a cuspidal GSpy-eigenform F of
weight (2k — 1,k + 1) with associated £-adic Galois representation Sym?’pfyg for every prime £. For every
prime p not dividing N, the level of F' is a divisor of the prime-to-p conductor of Sym3pf,p.

Note that the weight (2k — 1,k + 1) is cohomological since k > 2.

Proof. Everything follows immediately from Theorem 10.3 except for the weight of F', that can be found
by writing the Hodge-Tate weights of Symgpf,p in terms of those of py . O

We denote by Sym?®f the cuspidal Siegel eigenform given by the corollary. Let N(f) and N(Sym?f)
be the levels of f and Sym® f, respectively. Thanks to the property (4) in Theorem 10.3 we can give an
upper bound for N(Sym? f) in terms of N(f) by comparing N(Sym®p; ) and N(py,,) for a prime p not
dividing N(f).

As before let o: Gg — GL,(Q,) be a representation and let o, = 0|Gg, for every prime (.

Lemma 10.5. For every prime £ # p we have N(Sym®ay) | N(04)?. In particular N(Sym®c) | N(0)3.

Proof. We use the notations of formula (10.1). We check that dp gyms, < 3du,, for every subgroup H
of Gy, so formula (10.1) gives N (Sym®a,£) | N(o,£)?. Since the prime-to-p conductor is defined as the
product of the conductors at the primes £ # p, we obtain that N (Sym®c) | N(0)3. O

Definition 10.6. Let N be a positive integer and let N = Hle 01 be its decomposition in prime factors,
with €; # {; if i # j. For every i € {1,2,...,d} seta; =1 ifa; =1 and a} = 3a; if a; > 1. We define
d al

N A

i=1"1

Corollary 10.7. Let N = N(f) and let M = M(N) be the integer given by Definition 10.6. Then
N(Sym®f) | M.

Proof. Let my = @), 7 be the automorphic representation of GLa(Ag) associated with f. Let mgy,sp =

an integer M, depending on N, by M =]

&)y Tsyma f,¢ be the automorphic representation of GSp,(Ag) associated with Sym? f. For every prime £
the Galois representations associated with the local components 7y, and mgy,3 7, are py e and Sym?’pf’g,
respectively. As before let N = ]_[d ¢¢% be the decomposition of N in prime factors. If £ 4 N the

= 7
representation 7y, is unramified, so Zwslyms #,¢ 18 also unramified.

Let ¢ € {1,2,...,d}. If a; = 1 the local component 7., is Iwahori-spherical, hence Steinberg.
Then the image of the inertia subgroup at ¢; via py,, contains a regular unipotent element u. The
image of the inertia subgroup at ¢; via Sym?p .0, contains the regular unipotent element Sym>u, so the
automorphic representation mgymsys e, is Iwahori-spherical. Hence the factor £; appears with exponent
one in N(Sym?®f).

Now suppose that a; > 1. Let p be a prime not dividing N. By Corollary 10.4 the power of ¢;
appearing in N(Sym®f) is a divisor of N(Sym®p;,,£;), that is a divisor of N(py.p,#;)® by Lemma 10.5.
By a classical result of Carayol N(pye,) is a divisor of £;*, hence the conclusion. O

Borrowing the terminology of [Lul4, Section 4.3], we say that Fgl)(N) and F§2) (M) are compatible

levels for the symmetric cube transfer.
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10.2. Constructing the morphisms of Hecke algebras. As usual we fix an integer N > 1 and a
prime p not dividing N. We work with the abstract Hecke algebras H1V, HL spherical outside N and
Iwahoric dilating at p. Let M be the integer given by Definition 10.6, depending on N. If f is a non-CM
GLs-eigenform of level I'; (), we denote by Sym?® f the classical, cuspidal GSp,-eigenform of level T'y (M)
given by Corollary 10.4. Our goal for this section is to determine the systems of Hecke eigenvalues of the
p-stabilizations of Sym®f in terms of that of a p-stabilization of f.

If x is a system of Hecke eigenvalues, we write x, for its local component at the prime ¢.

Remark 10.8. We will need multiple times the following simple computation. Let R be a ring and
let g € GLo(R). Let g act on R? via the standard representation and let P(g; X) = det(1 — X - g) =
X2 —TX + D be the characteristic polynomial of g. Then the characteristic polynomial of Sym>g is
P(Sym®¢; X) = X* — (T% — 2T D)X® + (T* — 3DT? + 2D?)X? — D3(T® 4 2T'D)X + D°.

If T, D € R are arbitrary and P(X) = X2 — TX + D, we define the symmetric cube of P(X) as
Sym*P(X) = X* — (T® - 2TD)X? 4 (T* — 3DT? 4 2D?)X? — D*(T® + 2T D)X + DS.
10.2.1. The morphism of unramified Hecke algebras. We define a morphism of unramified abstract Hecke

algebras and show that it has the desired property with respect to the system of eigenvalues of f and
Sym?® f outside Np.

Definition 10.9. For every prime £t Np, let
Ae: H(GSp4(Qy), GSpy(Zy)) — H(GL2(Qy), GLa(Zy))
be the morphism defined by
Tz(,20) (T(l))s7
T} o ~(T0))° + (= T3 (T[))! + (60— 4C) (T (1) ~ 3C(TG))°,
Tyy = (T4)) = 2T TY).
Let AN HéVp — H; NP be the morphism defined by ANP = ®€)(Np Ag.

Proposition 10.10. Let R be a ring. Let Xi\fp: ’Hf[p — R, x5 e Hs NP 5 R be two morphisms and let
p1: Gg = GLa(R), p2: Gg — GSpy(R) be two representations satisfying:

(1) for g =1,2 py is unramified outside Np;
(2) for g =1,2, every prime £ { Np and a lift Froby € Gg of the Frobenius at ¢,

det(1 — X p;(Froby)) = x N (Pain (1) X)):

l,g°
(3) there is an isomorphism py = Sym?®p;.

Then AN? is the only morphism H5? — HYP such that xY? = x N o ANP,

Proof. Let ¢ be a prime not dividing Np. By Equation (2.1) we have Pmin(té’ll);X) =X? - Tz(ll)(f)X +

s

gTz(,lo)- Hence hypothesis (2) with g = 1 gives
(10.2) det(1 — Xp;(Frobg)) = x}P(X2 — TY ()X + (T().
By the calculation in Remark (10.8) we can write
103) det(1 — XSym®p(Froby)) = X* — (T} — 201 )T, ) X+

H(TE)) =BT (TN + 20(T[0)*) X2 = (TP (T3)° + 2T TN X + (T)°.
By Equation (2.2) we have Pmin(tf;; X) = X' -T2 X3+ (1132~ T3 — T3 X2 ~ eBTé(?;TE%)X +
(6 (Té(?o))z7 so hypothesis (2) with g = 2 gives

det(1 — XSym?p(Froby)) = x2* (X* — T£(22)X3—|—

(T = TpY) = CT)X? — CTETEX + (1)),
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By comparing the coefficients of the right hand sides of Equations (10.3) and (10.4) we obtain the
relations

API) = NP (T D)8 + (40 = 2T T + (60 — 4 (T2 - 3T,
AP = P (T -2V, AT = T
We deduce that A; is the only morphism H(GSp,(Qe), GSp,(Z¢)) — H(GL2(Qy), GL2(Z,)) satistying

Np(Sym3f) = Xin o Ag. Since this is true for every £ Np, we conclude that AV? is the only morphism
HYP — HYP satisfying x5 " = x2'P o AN, O

As a special case of Proposition 10.10 we obtain the following corollary.

Corollary 10.11. Let f be a classical, non-CM GLa-eigenform f of level T'1(N) and system of eigen-
values Xi\fp: ’Hin — @p outside Np. Let Sym®f be the symmetric cube lift of f given by Corollary 10.4.
Then the system of eigenvalues XéVp of Sym?f outside Np is )de o VP HéVp — @p.

Proof. The corollary follows from Proposition 10.10 applied to R = @p, Xf]p and Xév P asin the statement,
p1 = prp and p2 = Pgyms s p- U

10.2.2. The morphisms of Iwahori-Hecke algebras. We study the systems of Hecke eigenvalues of the
p-stabilizations of Sym?®f.

Definition 10.12. For i € {1,2,...,8} we define morphisms
Nps HTo(Qy), To(7))™ = HTL(Q,), T3 (7).
Fori € {1,2,3,4} the morphism A, ,, is defined on a set of generators of H(T2(Qy), T2(Z,))~ as follows:
(1) My maps 1500 (50)%, 62 = 10D, 67 e (153
(9) day maps 150 @03, o8 s (G, 9 WD

= (
(3) Asp maps 50— (10003, 81 D@L, 7)o ! gtflf,
) hag maps 184 (07, 8 D ) 0
For i € {5,6,7,8} the morphism X\; p: H(T2(Qp), T2(Zy)) — H(T1(Qp), T1(Zy)) is given by
Aip=0°Xi—ap

where § is the automorphism of H(Th(Qp),T1(Zy)) defined on a set of generators of the subalgebra
H(T1(Qp), Ta(Zp)) ™ by

(1)y _ (1)
(10.5) St =t

p,0°

and extended in the unique way.

Let f* be a p-stabilization of a classical, cuspidal, non-CM GLy-eigenform f of level I'1(N). Let
X1,p: H(GL2(Qp), GL2(Z,)) — Q, and x3',: H(GL2(Qp), I1,5)~ — Q, be the systems of Hecke eigenval-
ues at p of f and f5, respectively. Note that x1 , is the restriction of Xﬁfp to the abstract spherical Hecke
algebra at p. Let (Sym®f)* be a p-stabilization of Sym®f. Let x2,: H(GSp,(Qy),GSpy(Z,)) — Q,
and x5',: H(GSpy(Qp), J2)~ — Q, be the systems of Hecke eigenvalues at p of Sym®f and (Sym®f)™,
respectively. Again x2 , is the restriction of th,p to the abstract spherical Hecke algebra at p.
Recall from Section 2.2.2 that for g = 1, 2 there is an isomorphism of Q-algebras L%,p P H(GSpay (Qp), Iy p) ™ —
H(Ty(Qp), Ty(Zy))~. Let Lgp H(Ty(Qp), Ty(Zy))~ — H(GSpyey(Qp), Iyp)~ be its inverse. In particular
X5 oLI“’ is a character H(T,(Qyp),Ty(Zy))~ — Q,. By Remark 2.1 the character X3 Iggp can be

extended uniquely to a character (x5, o Ig )P H(Ty(Qyp), Ty(Zy)) — Q..

Proposition 10.13. There exists i € {1,2,...,8} such that

To T1 \ext .
X2 OLIg (Xl OLIlp) o)\l,p'

Moreover, if N\p: H(T2(Qp), T2(Zy)) — H(T1(Qp), T1(Zy)) is another morphism satisfying x5' o L% =
(x5t o L}Pl )t o X\, then there exists i € {1,2,...,8} such that A\, = \; .
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Proof. In this proof we leave the composition with the isomorphism L? and L implicit and we consider
X3, and x3', as characters respectively of H(T1(Qy), T1(Zy))~ and H(Tg((@p) T5(Z,))~ for notational
ease. Let pr,: Go — GL2(Q,) be the p-adic Galois representation associated with f, so that the p-
adic Galois representation associated with Sym?f is Sym?p t.p- Via p-adic Hodge theory we attach to

pfp & two-dimensional @p—vector space Deyis(pyr,p) endowed with a @p—linear Frobenius endomorphism

. . 2
Peris(pt.p) satisfying det(1 — X eris(p1,p)) = X1.p(Prain (£ X))

We will use the notations of Section 2.2.3 for the elements of the Weyl groups of GLs and GSp,. Let

S%LX))’ ordered so that Xﬁt’p(tg%) =apand B, = Xﬁtp((tz()li)“’)
Let Deris(pPsyms ,p) be the 4-dimensional Q,-vector space attached to psyms f,, by p-adic Hodge theory.

Denote by @cris(Psyms3f,p) the Frobenius endomorphism acting on Deyis(psymsf,p)- It satisfies det(1 —

X@cris(Psyms f,p)) = Xg’p(Pmin(t;?%;X)) by [Ur05, Théoreme 1]. The coefficients of Pmin(t](fQ,X) belong
2

to the spherical Hecke algebra at p, so we have X;fp(Pmin(tf,%; X)) = Xz,p(Pmin(t( )

a, and 3, be the two roots of x1,,(Prin (¢

p,2; X)) From pSym3f,p =

Sym®p; , we deduce that

s 2
(10.6) X3 (Pain (t5:2: X)) = det(L = X peris(psyme ) = (X = ad) (X = apB,) (X — aB)(X = 57).
By developing the left hand side via the first equality of Equation (2.2) and the right hand side via
Equation (10.6) we obtain

(X — 35 () (X = X3, (1)) - (X — x5, (E9) ™)) (X — X3, ((8)“12)) =
= (X —al)(X — a2B,)(X — apB2)(X — B2).

In particular the sets of roots of the two sides must coincide. Since t(z) (t(2)) t(22) ) (th) )2 we have

= (
eight possible choices. Four choices for the 4-tuple x5' (t(z)) x5, ((t é?z))“’l ) X5 ((tfz))w"‘), x%t,p((tf%)wlw?')
are
(Cv?” O‘gﬂp, apﬂf;a 62)7 (O‘za O‘pﬂga agﬁp, 5;'), (agﬂpa a;, Bg, ap@?;)a (afyﬂpa 627 027 O‘pﬂg)~
The other four choices are obtained by exchanging o, with £, in the ones above.

Since t( ) = ti )( (2 2)“tand ¢, 2) (2 )(t(Q))w“”?, the displayed 4-tuples give for (X2p(t( )) le(t( )) sz(tfg))
the ch01ces

( y & Bpa )7( ; Saa?) 1370113;) ( p7 pﬂpaa /Bp) ( p7 pﬂp)

By writing a, = x5 p( 1()13) Bp = xi,p((tﬁi)w) and recalling that t( ) tz(ii (t( ))w the previous triples
take the form

O, ()2t (S ) X3t (#5)2)), Ot ()2 i, ()2 ()2 i, (),
O )2 s, L D)) 1, (ot s, (e, ()2 i, () () 2), 3t (e ).

The triples corresponding to the other four possibilities are obtained by replacing t]g o and t(l) in the
triples above by their images via the automorphism ¢ of H(7T1(Q,),T1(Z,)) defined by Equation (10.5).

Let \p: H(T2(Qp), Ta(Zp))~ — H(T1(Qp), T1(Zy)) be a morphism satisfying x5' = (x3')* o Ay o1y,
(recall that we leave the maps ngp implicit). By the arguments of the previous paragraph this happens
if and only if the triple (Ai,p(t,(f%), )\im(tfg), /\i,p(tff%)) coincides with one of the four listed in (10.7) or

the four derived from those by applying 0. A simple check shows that these triples correspond to the
choices A, = A, for i € {1,2,...,8}. O

(10.7)

Remark 10.14. Since all the Hecke actions we consider are for the algebras ”Hg/, g = 1,2, that are
dilating Iwahoric at p, we want to know whether the morphisms A, p, © € {1,2,...,8}, can be replaced
by morphisms A;, of dilating Hecke algebras that satisfy x%fp = Xsifp oA Equwalently, we look for the
values of i such that there exists a morphism A; ,: H(GSpy(Qp), L2p)” — H(GL2(Qy), [1,,)” making the
following diagram commute:

Iz
J2p

H(Gsp4(Qp)7 12,;0)7 — H(T2(Qp)v T2(Zp))7

JA;F p X}
H(GL2(Qp), [1,p) BTN H(TV(Qy), T (Zy))™ —2 H(TL(Qy), T1(Zy)).
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Clearly A;,, exists if and only if the image of A; , lies in H(T1(Qp), T1(Zy))~. A simple check shows that
this is true only fori € {1,2,3}.

10.2.3. The product morphisms. Now we can combine the results for the unramified and Iwahori-Hecke
algebras.

Definition 10.15. Let i € {1,2,3}. Let A\, ;: H(GSps(Qp), I2p)” — H(GL2(Qp), [1,5)~ be the mor-
phisms making diagram (10.14) commute. Let \;: HY — HY be the morphism defined by \; = )\N”®/\ZP

Keep the notations as before. Let x3": HY — @, be the character defined by
(1) X;tg = x3'y ° \i for every prime £ { Np;
st,z T X Iz,
(2) X2tp = (Xt p° Llll )&t o Aip © LT22 .
From Propositions 10.10 and 10.13 we deduce the following.
Corollary 10.16. For every i € {1,2,.. ,8Y, the form Sym®f has a p-stabilization (Sym?> f)St with

associated system of Hecke eigenvalues X2 . Conversely, if (Sym®f)s* is a p-stabilization of Sym? f with
associated system of Hecke eigenvalues x5, then there exists i € {1,2,...,8} such that x5 = Xét ot

Remark 10. 17 If XSt U and Xit’Q are the systems of Hecke eigenvalues of the two p-stabilizations of
f, then x5t OLI1 = (x5t OLT1 )e"t o d, where the superscript ext denotes extension of characters from

H(Ty(Qp), Ty(Z ))* to H(T, (Qp) 9(Zy)) and 6 is defined by Equation 10.5. For this reason the eight
forms F;, 1 < i < 8, can be constructed via the four maps N\;, 1 < i < 4, starting with the two p-
stabilizations of f. It will be useful to think of every GLs-eigenform of Iwahoric level at p as having four
symmetric cube lifts on the GSp,-eigencurve, rather than of a form of trivial level at p having eight lifts.

Let f5' be a p-stabilization of a classical, cuspidal, non-CM GLs-eigenform f. Let h be the slope of
f. For i € {1,2,3,4}, denote by Sym®(fs'); the GSp,-eigenform (Sym?®f)s* given by Corollary 10.16.
Thanks to Remark 10.17 the forms (Sym® f)$* with 5 < i < 8 coincide with (Sym? Et)i, 1 < i < 4, where
f3' is the p-stabilization of f different from f5t.

Recall that U(l) U(l) and U U(Q)U(Q) We defined the slope of a GSp,-eigenform of Iwahoric

level at p as the p-adic valuations of the normalized eigenvalue of U,(,g ) acting on the form. Let k£ and
h be the weight and slope, respectively, of f5'. The following derives from Proposition 10.13 via some
simple calculations.

Corollary 10.18. The slopes of the forms Sym®(f%);, with 1 <i < 4, are:

sI(Sym® (f3)1) = Th,sl(Sym® (f3")2) = sl(Sym®(f3")3) = k — 1 4 5k, sl(Sym® (f3')4) = 4(k — 1) — h.

If £5 is a p-old GLg-eigenform of level 'y (N)NTo(p), we write Xiz,fst for the system of Hecke eigenvalues
of Sym®(f*t);, 1 <i < 4. For a @p—point x of DY let xp: HY — @p be the system of Hecke eigenvalues
associated with x. For 1 <i <4, let Sisym3 be the set of @p—points x of Dé” defined by the condition

S Sisym3 <= Ja p-old GLg-eigenform f* of level I'(N) N Ty (p) such that x; = X je-

Then we have the following.
Corollary 10.19. Ifi # 1 then the set Sisym3 is discrete in D).

Proof. Let i € {1,2,3,4}. Let Dy be an affinoid domain on D). For z € Dy(C,) N SiSym37 there exists a
GLg-eigenform f of level 'y (N) such that x, = X;tfl Let f* be a p-stabilization of f and let 2% be the
corresponding point on Di¥. Since the systems of Hecke eigenvalues vary analytically on D) and DY
the set {27 [z € D2(Cp) N Sisym3} must be contained in D;(C,) for an affinoid domain D; on D¥. For
j =1,2, Remark 2.5 gives that the slope vp(wj(U]gj))) is bounded on D; by a constant ¢;. By imposing
that h < ¢; and sl(f5');) < ¢g in Corollary 10.18, we obtain an upper bound for k if 7 # 1. Since there

is only a finite number of classical GLo-eigenforms of given weight and level, the set Ssy,s ; N D2(Cp) is
finite if 7 # 1. O

Remark 10.20. As a consequence of Corollary 10.19 the only symmetric cube lifts that we can hope to

interpolate p-adically are those in the set Sf’ymd. We will prove in Section 14 that the Zariski closure of
this set is a 1-dimensional subvariety of D .
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10.2.4. An assumption on the residual Galois representation. Let p: Gg — GL2(F,) be a representation.
Let D{\,’ﬁ be the union of the connected components of DY having p as associated residual representation.
From now on we replace DY by a subspace of the form D{\fﬁ for some p; we do it implicitly, so we still
write DIV for D{Yﬁ. The only purpose of this choice is to assure that the symmetric cube morphism of
eigenvarieties we construct in Section 12.3 is a closed immersion; this will be a consequence of Lemma
10.21 below. .
There is a map Sym:f from the set of classical, non-CM, p-old points of D{\f , to the set Slsym of

3
Corollary 10.19; it maps a point  corresponding to an eigenform f to the point of Sls Y corresponding
to (Sym® f,)5".

Lemma 10.21. The map Sym:{’ 18 1njective.

Proof. If x1 and x5 are two points of D{\:ﬁ satisfying Sym? (z1) = Sym? (z3), then Sym®p,, = Sym®p,,.

This implies that p;, = pg, ® x for a character x: Gg — @: of order 3. Since p; = p, = p and p > 3, the
character y is trivial and p,, = p,,. We deduce that x; and x2 are two p-stabilizations of the same form
of trivial level at p. If they are distinct then Sym? (1) # Sym?(x2) by construction, a contradiction. We
conclude that x1 = zo. O

11. MORPHISMS OF BC-EIGENVARIETIES

We recall Bellaiche and Chenevier’s definition of eigenvarieties and some of their results, following
[BC09, Section 7.2.3]. We refer to their eigenvarieties as BC-eigenvarieties, in order to distinguish this
notion from the definition of eigenvariety we gave in Section 2.3 (a product of Buzzard’s eigenvariety
machine). We will use these results to interpolate the classical symmetric cube lifts given by Corollary
10.4 into a morphism of eigenvarieties. We remark that Ludwig [Lul4, Lul4] also relies on the results of
[BC09, Section 7.2.3]. We think that our approach may be more systematic.

As usual fix a prime p > 5. We call “BC-datum” a 4-tuple (g, H, 7, ") where:

— g is a positive integer;

— H is a commutative ring;

— n is a distinguished element of H;

— 7 is a subset of Hom(#,Q,) x Z°.

The superscript “cl” stands for “classical”. In our applications H will be a Hecke algebra and .7°' will
be a set of couples (¢, k) each consisting of the system of eigenvalues ¢ and the weight k of a classical
eigenform. In the proposition below Wy is the connected component of unity in the g-dimensional
weight space. Recall that we identify Z9 with the set of classical weights in Wg. Also recall that for
an extension L of @p and an L-point z of a rigid analytic space X we denote by ev,: O(X) — L the
evaluation morphism at x.

Definition 11.1. [BC09, Definition 7.2.5] A BC-eigenvariety for the datum (g, H,n,.7<) is a 4-tuple
(D, v, w, S consisting of

— a reduced rigid analytic space D over Qy,

— a ring morphism : H — O(D) such that ¥ (n) is invertible,

= a morphism w: D — W of rigid analytic spaces over Qy,

— an accumulation and Zariski-dense subset S C D(Q,) such that w(S®) C Z9,

satisfying the following conditions:

(1) the map
(11.1) v=(w,(n)""): D= W; x Gy,

induces a finite morphism D — v(D);
(2) there exists an admissible affinoid covering C of U(D) such that, for every V € C, the map

YRT*:HR,0(V) = O[T HV))

18 surjective;
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(3) the evaluation map
év: S — Hom(H,Q,) x Z¢,
= (Yo, w(2)),

where 1, = ev, o1, induces a bijection S — F.

(11.2)

We often refer to D as the BC-eigenvariety for the given BC-datum and leave the other elements of
the BC-eigenvariety implicit.

If a BC-eigenvariety for the given BC-datum exists then it is unique in the sense of the proposition
below.

Proposition 11.2. [BC09, Proposition 7.2.8] Let (Di,¢1,w1,S§) and (Da, 1), ws,SS) be two BC-
eigenvarieties for the same BC-datum (g, H,n,.7"). Then there is a unique isomorphism : Dy — Do
of rigid analytic spaces over Q, such that 1 = (* o g, w1 = wa o and ¢(S§h) = Ssh.

In the previous sections we defined various rigid analytic spaces via Buzzard’s eigenvariety machine.
We check that these spaces are BC-eigenvarieties for a suitable choice of BC-datum. As a first step we
prove the lemma below. Consider an eigenvariety datum (W°,H, (M (A, w))Aw, (@4a.w)aw,n) and let
(D, ¢, w) be the eigenvariety produced from this datum by Theorem 2.3.

Lemma 11.3. The triple (D, v, w) satisfies conditions (1) and (2) of Definition 11.1.

Proof. We refer to Buzzard’s construction (see [Bu07, Sections 4-5]). Let Z be the spectral variety for
the given datum. Let ¥ be the map defined by Equation (11.1). By construction of D we have 7(D) = Z
and the map v: D — Z is finite, so condition (1) of Definition 11.1 holds.

Let C be the admissible affinoid covering of Z defined in [Bu07, Section 4]. For V € Clet A = Spm R =
wg (V) be its image in W°. Let w € Q be sufficiently large, so that the module M (A, w) is defined. Let
M(A,w) = N & F be the decomposition associated with V' by Riesz theory, following the discussion and
the notations in [Bu07, Section 5]. Then O(r~!(V)) is the R-span of the image of H in Endpg contV.
Since O(V) is an R-module, the map 1: H® O(V) — O(r~1V) is surjective, hence condition (2) is also
satisfied. O

Suppose that there exists an accumulation and Zariski-dense subset S¢' of D such that the set
L = (g, w(@)) |z € SV}

is contained in Hom(H,@p) x Z9. Then (D, 1, w,S%) clearly satisfies condition (3) of Definition 11.1
with respect to the set .#°!, hence the following.

Corollary 11.4. The 4-tuple (D, ), w, S) is a BC-eigenvariety for the datum (g,H,n,.7<).

11.1. Changing the BC-datum. Let (D, 1, w, S) be a BC-eigenvariety for the datum (g, H,n,.#<).
Let S§' be an accumulation subset of S°' and let Dy be the Zariski closure of S§! in D. Let .7§! be the
image of S§! via the bijection S — . Let 1g: H — O(Dy) be the composition of 1: H — O(D) with
the restriction O(D) — O(Dy). Let wy = w|p,.

Lemma 11.5. The 4-tuple (Do, 1o, wo, SS') is a BC-eigenvariety for the datum (g, H,n, 7§).

Proof. We check that the conditions of Definition 11.1 are satisfied by (Dy, 10, wo, S§'), knowing that they
are satisfied by (D, 9, w, S). Let v = (w,¥(n)™1): D — W° x G, and let Z = v(D). Let Zy = (D).
Since v: D — Z is finite and Dy is Zariski-closed in D, the map vV|p,: Dy — Zp is also finite, hence (1)
holds.

Consider an admissible covering C of Z satisfying condition (2). Then {V N Zy}yec is an admissible
covering of Zy. Let V € C and V) =V N Z;. Consider the diagram

Heoow) X275 oF1(V))

| |

He0(Vo) 28 0w (V)

The horizontal arrows are given by the restriction of analytic functions. Since the left vertical arrow is
surjective, the right one is also surjective, giving (2).
By definition of S§! the map ev induces a bijection S§! — .Z¢!, so (3) is also true. O
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We prove some relations between BC-eigenvarieties associated with different BC-data.

Lemma 11.6. Let g1 and g2 be two positive integers with g1 < go. Let ©: W — W, be an immersion
of rigid analytic spaces that maps classical points of Wy, to classical points of Wy,. Let (g1, H, n, S5
and (g2, H,n,.7sY) be two BC-data satisfying

{(¥,0(k)) € Hom(H,Q,) x Z% | (v, k) € 77"} € 75

Let (Dy,91, w1, SSY) and (Da, b, we, S§') be the BC-eigenvarieties for the two data. Then there exists
a closed immersion of rigid analytic spaces {o: D1 — Da such that 11 = & oo, w1 = waoe and
Eo(S§Y) C SS.

Proof. Let DY = D, Xwe, Wy, , where the map Wg, — Wy is ©. Let ¢®:DP — Dy and w: DY — We,

be the natural maps fitting into the cartesian diagram

pe <°
1 ‘—>D2

be

o [S] o
Wy, —— W,

Then ¢© induces a ring morphism ¢®*: O(Dy) — O(DY). Let ¢ = (©* o1),. Note that (® is a closed
immersion.

Let .72 = {(¢, k) € Hom(H,Q,)xZ% | (1,0(k)) € #5'}. Then the 4-tuple (DY, (§ o 1ha, wP, (5" (SS)))
is a BC-eigenvariety for the datum (g1, H,n,.7?). By assumption .7 C .#°. Consider the Zariski-
closure D of &v 1 (.#)) in DP. Let «/: D} — D® be the natural closed immersion and let w} = w|p,
V) = (/)* o ¢®. By Lemma 11.5 the 4-tuple (D}, ¢}, w),&v (L)) is a BC-eigenvariety for the BC-
datum (g1, H,n, 7). Since (D1, ¢, wr,.7f") is a BC-eigenvariety for the same datum, Proposition 11.2
gives an isomorphism of rigid analytic spaces (: D; — D} compatible with all the extra structures. The
composition £g = (g ot/ o (: D; — Dy is a closed immersion with the desired properties. O

Let (g, H,m1,-") and (g, H, 2, ") be two BC-data that differ only by the choice of the distinguished
elements of H. Let (D1, 1, wy, S and (Do, ¥2, wa, SS') be BC-eigenvarieties for the two data. We say
that condition (Fin) is satisfied if the following holds:

(Fin) the map
/171722 Dy — W;; X Gm,
= (wi (), evg ot (12) 1)

induces a finite morphism Dy — vy 2(D;).

Lemma 11.7. Under assumption (Fin), there exists an isomorphism of rigid analytic spaces &,: D1 —
Dy such that 1y = & o b, w1 = wa &, and & (S5 = SS.

Proof. We check that the 4-tuple (Dy, 1, wy, SS) is a BC-eigenvariety for the datum (g, H, 79, ). All
properties of Definition 11.1 except (1) are satisfied because (D1, 41, w1, S§!) is a BC-eigenvariety for the
datum (g,H,n1,-"). Property (1) is satisfied thanks to hypothesis (Fin). Then (D1,%1,w;,S§') and
(Dg, g, w2, SS') are BC-eigenvarieties for the same datum, and Proposition 11.2 gives an isomorphism
of rigid analytic spaces D1 — D5 with the desired properties. O

Lemma 11.8. Let Hy and Ho be two commutative rings and let A: Ho — Hy be a ring morphism. Let
(g, H1,m,-75) and (g, Ha, n2, Z5Y) be two BC-data that satisfy m1 = A(n2) and

(11.3) S ={(WoNE)| (v,k) € 75}

Let (D1,v¢1, w1, S and (Da, v, wa, SS') be BC-eigenvarieties for the two data. Suppose that the map
I8 — S defined by (¥, k) — (Yo k) is a bijection. Then there ewists an isomorphism of rigid
analytic spaces §x: D1 — Da such that ¥y o A = £ o g, w1 = wa o &y and (S5 = S5l

Proof. Consider the 4-tuple (Di,%1 0\, w1, S§!). We show that it defines a BC-eigenvariety for the
datum (g, Ha,m2,-75'). Property (1) of Definition 11.1 is satisfied since vy o A(n2) = 1(m1) and the
map (w,1(n)1) is finite by property (1) relative to the datum (g,Hi,n1,-7¢"). Property (2) is a
consequence of equality (11.3) together with the fact that S§! is Zariski-dense in D;. Property (3) follows
immediately from equality (11.3).
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Now the 4-tuples (Dy, 1 o A\, wy, S$) and (Da, 19, w2, SS') define two BC-eigenvarieties for the datum
(g, Ha,m2,-751), so Proposition 11.2 gives a morphism &y: D; — D of rigid analytic spaces such that
10X = £ othy, w1 = wa 0 &y and £, (ST) = S, as desired. O

12. THE SYMMETRIC CUBE MORPHISM OF EIGENVARIETIES

Fix a prime p and an integer N > 1 prime to p. Let M be the integer given as a function of N by
Definition 10.6. Set A = A;, where A\;: H5 — H is the morphism given by Definition 10.15.

We work from now on with the curves DY xy,, Wy and DY xy, WS. We still denote them by DI
and DY in order not to complicate notations. Our aim is to construct a closed immersion DY — DM
interpolating the map defined by the symmetric cube transfer on the classical points. As in [Lul4] we
define two auxiliary eigenvarieties.

12.1. The first auxiliary eigenvariety. Recall that for every affinoid subdomain A = Spm R of W; and
for every sufficiently large rational number w there is a Banach R-module M7 (A, w) of w-overconvergent
modular forms of weight k4 and level N, carrying an action gf)}qﬂuz HY — Endg cont M1 (A, w). We let

HY act on M;(A,w) through the map
G =l o At MY — Endp cont Mi (A, w).
We have (bZiEX(U,(,Q)) = qbka;IX(U(Q)U(Q ) = b (AU 2)U(2 ) = (bAw(U(l (U(l)) ). This operator is

compact on Mj (A, w) since it is the composition of the compact operator ¢1 aux(U(l)) with a continuous
operator.

Definition 12.1. Let (D{\’[A,ﬂ}LA,wLA) be the eigenvariety associated with the datum
(va ,Hévv (Ml (Aa w))A,wa (¢,14,i1,lx)A,wa U,EQ))

by the eigenvariety machine.

Since WY is equidimensional of dimension 1, the eigenvariety D{\f » is also equidimensional of dimension
1.

We denote by S§!' the set of classical points of DY and by Sil’g the set of classical non-CM points of
DY. Recall that we defined a non-CM eigencurve D{V’g as the Zariski-closure of Sfl’g By Remark 2.9
the set Sfl’g is an accumulation subset of D{V’g and the weight map w¢: D] Y9 5 WY s surjective.

We define two subsets of DY, by

ST, h={re Dl x| ¥z = x5 o A for a classical, p-old GLy eigenform f},
Sl aux = 12 € D1,>\ |1 = xf o A for a classical, p-old, non-CM GL; eigenform f}.

Definition 12.2. Let Dl aux b€ the Zariski-closure of the set S§!

N
1,aux in Dl,)\‘

We denote by ¢1,aux: Hy — O(Dlauy) and w1 aux: D guye — WY the morphisms obtained from the
corresponding morphisms for Df’[ \-

12.2. The second auxiliary eigenvariety. We identify WY with B;(0,17) and WS with Bo(0,17)
via the isomorphisms 77 and 72 of Section 2.1. This way we obtain coordinates T' on Wy and (T3, T3)
on Ws.

Let k > 2 be an integer. Let f be a cuspidal GLy-eigenform of weight & and level T';(N) and let f5*
be a p-stabilization of f. Let F' = (Symsf)ﬁt be one of the p-stabilizations of Sym? f defined in Corollary
10.16. By Corollary 10.3 (Sym?’f)jt has weight (2k—1,k+1). In particular f* defines a point of the fibre
of DIV at T = u* — 1, and (Sym® f)3* defines a point of the fibre of DI at (T1,Ts) = (u?*~' —1,u*+t —1).
The map u* — 1+ (u?*~! — 1,4¥*! — 1) is interpolated by the morphism of rigid analytic spaces

L WY — Wy,
Te (w1 +T7)* - 1L,u(l+T)-1).
The map ¢ induces an isomorphism of Wy onto its image, that is the rigid analytic curve in W3 defined
by the equation u=3(1 +T3)? — (1 +T31) = 0. By construction ¢ induces a bijection between the classical
weights of Wy and the classical weights of WS belonging to ¢(Wy). Since the classical weights form an
accumulation and Zariski-dense subset of Wy, they also form an accumulation and Zariski-dense subset
of t(WVY).
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After Corollary 10.18 we defined for i € {1,2, 3,4} a set SiSymS c DM (@p). By construction of ¢, for
every i the weight of every point in SZ—S ym® is a classical weight belonging to ¢(WY). Since ((Wy) is a
one-dimensional Zariski-closed subvariety of WS, the image of the Zariski-closure in D! of Sis v under
the weight map is contained in «(W7). By Remark 10.20 the set Sisym3 is discrete in DY (Q,) if i > 2,

3
so the only interesting Zariski-closure is that of Sls yme

3

Definition 12.3. Let Dé\?aux be the Zariski closure of Slsym in DM and let 19 aux: Dé‘ffaux — DM be
the natural closed immersion. Define wa aux: Dé‘ffaux — WY and Y2 aux: ’Hév — O(Dé\gux) as W2 aux =
tmto w2|Dé‘{lux and w2,aux = L;,aux ° wQ-

12.3. Constructing the symmetric cube morphism. We construct morphisms of rigid analytic
spaces

N
51 . D 9 - Divauxa 52 1 ,aux - Dé\,{xuxa 53: Dé\j[aux - Déw

making the following diagrams commute:

D{V,g D{Vaux & DQ aux *> D
W) —=— Wp ——— W — W5
(12.1)
MY ——— HY ————— H) — 22— HY

| ! J !

O(Déw) & O(D2 aux) i) O(Dl aux) L) O(D]J_\I7g)

In order to construct &1, & and &3 we interpret the eigenvarieties appearing in the diagrams as BC-
eigenvarieties for suitably chosen BC-data and we rely on the results of Section 11.
We define two subsets .7 and .79 of Hom(H Y, Q,) x Z by

S ={(v,k) € Hom(H',Q,) x Z| ¢ = x4
for a cuspidal, classical, p-old GLg-eigenform f of weight k},
S = {(,k) € Hom(H{', Q,) x Z| ¥ = x;
for a cuspidal, classical, p-old, non-CM GLs-eigenform f of weight k}.

We define two subsets .77  and .7 zux of Hom(?—[év,@p) X 7 by

S5 =W, k) € Hom(Hy',Q,) x Z |4 = x50 A
for a cuspldal classical, p-old GLs-eigenform f of weight k},

1 aux — {(1/}’ ) € Hom(HéV?@p) X Z“/} = Xf oA
for a cuspidal, classical, p-old, non-CM GLs-eigenform f of weight k}.

Lemma 12.4.

(1) The 4-tuple (DY 4p1, w1, S§Y) is a BC-eigenvariety for the datum (1, HYV U£1)7yfl).

(2) The 4-tuple (D{V,wl,wl, SSY) is a BC-eigenvariety for the datum (1, HY (U,g2 ), . 7).

(3) The 4-tuple (D}’ g,whwl,SC 9 is a BC-cigenwariety for the datum (1, ’H MU, 719,

(4) The 4-tuple (D7 N Y1, wr 25T, 1) is a BC-eigenvariety for the datum (1, 7—[ U,Sz) Yfl)\)

(5) The 4-tuple (D; aux,i/q aux> Wi,aux, Of aux) is a BC-eigenvariety for the datum (1, HY ,UISQ) S mx)

Proof. Part (1) follows from Lemma 11.4.

For part (2), observe that the couple (wq, 1/)1(U,Sl))) satisfies condition (Fin) since )\(UZSQ)) = UZ(,B (U;’ll))7.
Hence Lemma 11 7 gives an isomorphism between the eigenvarieties for the data (1, HL, /\(Uzgz)),yfl)
and (1, HY 5” 1), as desired.

We prove part (3) Let év: S§! — .#F! be the evaluation map given in property (3) of Definition 11.1.
By definition the eigenvariety D{V’g is the Zariski-closure in D1V of the set Sfl’g. The image of Sfl’g in

S via 6v is #Y so our statement follows from Lemma 11.5 applied to S = §§' and S§' = S5,
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Part (4) follows from Definition 12.1 and Corollary 11.4.
The proof of part (5) is analogous to that of part (3). Let év: S\ — Yf})\ be the evaluation map.

By definition the eigenvariety D{', ,, is the Zariski-closure in Dy of the set S§',,.. The image of Sf.,
in yﬁl/\ via ev is Yf,laux, so the desired conclusion follows from Lemma 11.5 applied to S = Sf,\ and
Sgl = Sf}aux' U

Now consider the second auxiliary eigenvariety Dé‘ffaux. It is equipped with maps g aux: HY —
O(DY, ) and wa aux: DY%, — W3, Recall that D3 is defined as the Zariski-closure in D3’ of the

set §7 ¥ Define a subset S5t of Hom(HY, Q) x Z by
y;}aux = {(d)v k) € Hom(Hévv@p) X Z | ’l/) = XF
where F = (Sym?f)3* for a cuspidal classical non-CM GLg-eigenform f of weight k}.

Lemma 12.5. The 4-tuple (Dé‘j’aux, g, Wa, Sfyms) defines a BC-eigenvariety for the datum (1, HY, UZSQ), L ).

,aux

Proof. Tt is clear from the definitions of Sgl and 5”201 that the evaluation of (12 aux, W2,aux) at a point
3 3
z € Y™ induces a bijection S7Y™ — ¢! Then the lemma follows from Corollary 11.5 applied to the
3
choices D = DM, 5 = §V™ g0 =1 and 1o = ¢. O
Remark 12.6. The sets Yfll\ and fzc’laux coincide. Indeed (Sym?®f)3t is well-defined for every cuspidal
non-CM GLa-eigenform f, and a GSpy-eigenform F satisfies xp = xr o A if and only if F = (Sym?’f)ﬁt,
Let SS' be the set of classical points of D}’. Define a subset 75! of Hom(H}',Q,) x Z? by
IS ={(1, k) € Hom(?—lév,@p) x Z* |1 = xr for a cuspidal classical GSp,-eigenform F of weight k}.

Lemma 12.7. The 4-tuple (D))o, w5, SS") is a BC-eigenvariety for the datum (2,H%, U;(,Q), 5.
Proof. This is an immediate consequence of Corollary 11.4. O
We are ready to prove the existence of the morphisms fitting into diagram (12.1).

Proposition 12.8. There exists an isomorphism &1 : Df["g — DN

Laux Of Tigid analytic spaces over Q,
making the leftmost squares in the diagrams (12.1) commute.

Proof. Note that the map .79 — S ux defined by (¥, k) — (¢ o A, k) is a bijection by Remark 10.21.

Thanks to Lemma 12.4(3) and (5) we know that the 4-tuples (D9 4, wy, 5°9) and (DY s Y100 W aues S5 laus)
are BC-eigenvarieties for the data (1, HZ, )\(Uéz)), Yfl’g) and (1, HY, UISQ), S ), respectively. Hence

1,aux
Lemma 11.8 applied to the morphism A\: HY — H{ and the two data above gives the desired isomor-
phism &; : Div’g — D{Yaux. u

Proposition 12.9. There exists an isomorphism &y : D{Yaux — Dé\?aux of rigid analytic spaces over Q,
making the central squares in the diagrams (12.1) commute.

Proof. Lemmas 12.4(5) and 12.5 together with Remark 12.6 imply that the 4-tuples (D1, 1, w1, S5’ u)
and (Dé\faux,wg,wg,SS}aux) are both BC-eigenvarieties for the datum g = 1, H = HY, n = U,§2) and
S =7 = I Now the proposition follows from Proposition 11.2. O

,aux 2,aux"’

Proposition 12.10. There exists a closed immersion &3 Dé\faux — D of rigid analytic spaces over Qp
making the rightmost squares in the diagrams (12.1) commute.

Proof. This is a consequence of Lemma 11.6 applied to the BC-data (2, H2', UI(;Z)7 ) and (1, HY, UZSQ), I,
with the morphism W; — W, being «¢. (]

Finally, we can define the desired p-adic interpolation of the symmetric cube transfer.
Definition 12.11. We define a morphism &: D{V’g — DM of rigid analytic spaces over Qp by & =
§3082°¢&1.
Proposition 12.12. (1) The morphism £ is a closed immersion of eigenvarieties.
(2) The image of £ is equidimensional of dimension 1.

(3) The Zariski-closure of the set Sfym?’ in DY is equidimensional of dimension 1.
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Proof. Since the diagrams 12.1 are commmutative, £ is a morphism of eigenvarieties. It is a closed
immersion because & and &; are isomorphisms and &3 is a closed immersion, hence (1). Statement (2)
follows from (1) and the fact that the non-CM eigencurve D{V’g is equidimensional of dimension 1 (see

Remark 2.9). By construction the image of £ is the Zariski-closure of the set Sf’ yms, so we have (3). O

Remark 12.13. Let f be a classical, cuspidal, CM GLsg-eigenform of level T'1(N). Since f is CM, the
GSp,-eigenform Sym?®f provided by Corollary 10.4 may not be cuspidal. Suppose that it is not. Let = be
a point of DIV corresponding to a positive slope p-stabilization of f. By [CIT15, Corollary 3.6], x is a CM
point of a non-CM component I of DY. Let £(x) be the image of x via the morphism of Definition 12.11.
Then &(x) belongs to the cuspidal eigenvariety DY, but it is not cuspidal since Sym?®f is not. This means
that £(x) is a non-cuspidal specialization of a cuspidal family of GSp,-eigenforms. Brasca and Rosso
[BR16] constructed an eigenvariety for GSp, parametrizing the systems of Hecke eigenvalues associated
with the non-cuspidal overconvergent eigenforms and they glued it with DY, It should be possible to show
that a cuspidal and a non-cuspidal component of this glued eigenvariety cross at £(z).

Remark 12.14. We defined the morphism & on the union of connected components of a fized residual
Galois representation, in order to obtain a closed immersion (see Lemma 10.21). When the residual
representation varies, the morphisms obtained this way glue into a morphism of eigenvarieties DY — DM
that is 3 : 1 on its image. Working with this morphism is not of any interest to our purposes, since it is
never a problem to fir a residual Galois representation on DY

13. Ir Sym3p IS MODULAR THEN p IS MODULAR

The goal of this section is to show that if the symmetric cube of a continuous representation p: Gg —
GLs (@p) is associated with a classical or overconvergent GSp,-eigenform, then p is associated with a
classical or overconvergent, respectively, GLy-eigenform.

We refer to [Be02, Col08] for the definitions and results that we need from the theory of (¢, I')-modules.
As before F is a finite extension of Q,, fixed throughout the section. Let I' be the Galois group over E of
a Zy-extension of E and let Hp = Gg/I. Let % be the Robba ring over E. A (¢, T')-module over &' or
Z is a free module D of finite type carrying commuting actions of I' and ¢ and such that ¢(D) generates
D as a #Z-module. There is a functor D,j, that from the category of finite-dimensional E-representations
of G, and that of (¢, I')-modules of slope 0 on Z. This functor induces an equivalence between the two
categories.

We say that a (¢, I')-module D over Z is triangulable if it is obtained via successive extensions of
(¢, I')-modules of rank one. We say that the representation V' is trianguline if D,z (V') is triangulable.

13.1. Trianguline parameters of overconvergent GSp,-eigenforms. Let g = 1 or 2. Let I be
an overconvergent, finite slope GSp, -eigenform and let prj,: Gg — GSpy,(Q),) be the p-adic Galois
representation associated with F. As Berger observed in [Bell, Section 4.3], the following result is a

combination of [Ki03, Theorem 6.3] and [Col08, Proposition 4.3].
Theorem 13.1. If g = 1, the representation Pf,p\GQp is trianguline.

If g = 2, an analogue of Theorem 13.1 for pr, can be deduced from the work of Kedlaya, Pottharst
and Xiao [KPX]. Moreover the results of loc. cit. allow us to write the parameters of the triangulation
of pr,p in terms of a Hecke polynomial, as for classical points.

With the notations of Section 5, consider the locus Dé\/[ M wwhere the residual Galois representation is
irreducible on D) and its admissible covering &, Let D € & and let pp: Gg — GL4(O(D)) be the
representation constructed in Section 5. Keep the notations of [KPX] for Robba rings. Let Mp be the
(¢,T)-module over Zp(r) attached to pp. Then {Mp}pegi is a family of (¢, T')-modules over Dy
in the sense of [KPX, Section 2.1]. For z € D)™ (C,), let p,: Gg — GL4(Q,) and 1 : HY — Q,, be the
Galois representation and the system of Hecke eigenvalues, respectively, attached to z. Let M, be the
(¢, T')-module over #Z attached to p,. Denote by ev, the evaluation of rigid analytic functions on Déw o
at z. We identify the weight of 2 with a character (k1(z), ka(2)): (Z))* — C¥. Let id: Z¥ — ZX be

the identity. We still write 15 for the morphism of Q-algebras H3! — O(D)"™) induced by by : HY —
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O(DJ). Let §;, 1 < i < 4, be the characters QX — O(Dy"")* defined by
Gilzx =1, d1(p) Yo (USR);
dalgx =k /i, 0a(p) = $a(USD)™);
0l = ra/id®,  d3(p) = ba(US)2);
Oaly = kaka(p)/id®,  Ga(p) = va((US) " 2).
For o € Dy (C,), let 8, = evy 0 8;: QX — Q.

Remark 13.2. There is an equality

4
(13.1) [T(X = 6:(0) = Yo (Puin (t5): X))

i=1
in O(DY™)[X]. This is true when we specialize at a classical point , since in this case the poly-
nomial H?Zl(X — 6;.2(p)) coincides with the characteristic polynomial of the crystalline Frobenius act-
ing on Deis(ps) by a result of Berger (see [Col08, Proposition 1.8]). This polynomial coincides with
wm(Pmin(t@)'X)) by [Ur05, Théoreme 1]. Since the polynomials in Equation (13.1) have analytic coeffi-

2,p :
cients and coincide on the Zariski-dense subset of classical points of Dé\/[’m, they must be equal.

By specializing Equation (13.1) at any x € Dé\/f’i"(Cp), we obtain an equality Hle(X —0i(p) =
2 .=
Yo (Puin(t5); X)) in Q,[X].
The following is a consequence of [KPX, Theorem 6.3.13].

Theorem 13.3.

(1) For every x € Déw’irr((cp), the (o, T')-module M, is trianguline.

(2) There exist a Zariski open rigid analytic subspace Dy"™ of D™ such that for every x € DY(C,)
the (¢,T')-module M, is triangulable with parameters 0; .= Q) — Q.

Proof. Let & € Dy""™(C,). Let X be a union of irreducible components of Dy""™*(C,) containing  and

a classical point. By Coleman’s classicality criterion it will contain a Zariski-dense subset of classical
points. Consider the sheaf My of (¢, T')-modules on X obtained by restriction from that on D)™ If 2
is a classical point of X, then the eigenvalues of the crystalline Frobenius acting on Deis(p.) are §;(p),
1 <i <4, by the discussion in Remark 13.2. Then, with the terminology of [KPX, Definition 6.3.2], Mx
is a densely pointwise strictly trianguline (p,I')-module over Zx (7) with respect to the parameters J;,
1 <4 < 4, and the Zariski-dense set given by the classical points of X. Now [KPX, Corollary 6.3.13] gives
that M, is trianguline, hence part (1) of the theorem. Next [KPX, Corollary 6.3.10] gives a Zariski-open
subspace X of X such that, for y € X (C,p), the parameters of the triangulation of M, are exactly d; ,,
1 <i < 4. Repeating this argument for every choice of z and X gives part (2) of the theorem. O

Now let N be a positive integer prime to p and let M = M(N) be as in Definition 10.6. Let F' be
an overconvergent GSp,-eigenform corresponding to a point of Déw . Suppose that there is a GLa-
eigenform f of level N such that pp, = Sym3pf7p, with the usual notations. Let xp: HY — @p and

X HY — @p be the systems of Hecke eigenvalues of the two forms. Write xp = Xgp ® XrF,p and
Xfp = X}Vp ® Xf.p- Proposition 10.10 describes x2* in terms of those of X?’p. Thanks to Theorem
13.3(2) and Remark 13.2 we can describe xr, in terms of xy . Here the notations are the same as for
Proposition 10.13.
Proposition 13.4. There exists i € {1,2,3,4} such that

T T
(13.2) XFpoly, = (Xfpeo th’p)e"t ° Aip-
Moreover, if Ap: H(T2(Qyp), T2(Zy)) — H(T1(Qp), T1(Zy)) is another morphism satisfying xr,p © Lr}r;p =
(Xfpo Lﬁp)e"t o Ap, then there exists i € {1,2,3,4} such that A\, = A;p.

Proof. The proof is completely analogous to that of Proposition 10.13, once we replace Deis(py,p) and

Deiis(py,p) by the (p,I')-modules Dyig(pfp) and Dyig(pr,p), respectively. We use Theorem 13.3(2) and

Remark 13.2 to describe the parameters of the triangulations of the two (p, T')-modules in terms of Hecke

polynomials. O
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Let F' be a finite slope overconvergent GSp,-eigenform of tame level M.

Proposition 13.5. There are at most 2'dim@ Da:is(prp) overconvergent GSp,-eigenforms F' satisfying
P

~
PF'.;p = PFp-

Proof. The accumulation and Zariski-dense set Z of classical points of Déw T gatisfies the assumptions
(CRYS) and (HT) of [BC09, Section 3.3.2]. For every z € Z, wx(UIS,QQ)) is an eigenvalue of the crystalline

Frobenius acting on Deyis(pg). Then [BC09, Theorem 3.3.3] implies that, for every C,-point = of Déw’i”,

wx(U]S?Q)) is an eigenvalue of the crystalline Frobenius acting on D is(p,). Hence wl(UfQ)) can take at
most dimg De.is(pr,p) disctinct values. There are exactly two characters of the Iwahori-Hecke algebra
P

giving the same value for w$(U1§22) ), hence 2- dimg Deris (pr,p) choices for the system of Hecke eigenvalues
’ ¥

of F’ at p. Since the system of Hecke eigenvalues of F’ outside Np is determined by the associated Galois
representation, we obtain the desired result. O

Now let f be a finite slope overconvergent GLs-eigenform of tame level N. Proposition 13.5 implies
the following.

Corollary 13.6. There are at most 2 - dim@p D.is(p) finite slope overconvergent GSp,-eigenforms F'
of level M satisfying py,p = Sym3pf,p.

13.2. Non-abelian cohomology and semilinear group actions. We recall a few results from the
theory of non-abelian cohomology. Let S and T' be two pointed sets with distinguished elements s and
t, respectively. Let f: S — T be a map of pointed sets. We define the kernel of f by ker f = {s €
S| f(s) =t}. Thanks to this notion we can speak of exact sequences of pointed sets.

Let G be a topological group. Let A be a topological group endowed with a continuous action of G,
compatible with the group structure. For i € {0,1} let H'(G, A) be the continuous cohomology of G
with values in A. Then H! (G, A) has the structure of a pointed set with distinguished element given
by the class of the trivial cocycle. For i = 0 we have H°(G, A) = A%, the pointed set of G-invariant
elements in A; its distinguished point is the identity. Since A is not necessarily abelian, we have no
notion of continuous cohomology in degree greater than 1. Let B, C' be two other topological groups
with the same additional structures as A, and let

(13.3) 14585051

be a G-equivariant short exact sequence of topological groups. Then there is an exact sequence of pointed
sets

(13.4) 1— A% 5 BY 5 09 % HY(G, A) —» H(G,B) —» H'(G, ).

The connecting map J is defined as follows. Let ¢ € C¢ and let b € B such that 8(b) = c¢. Then d(c)
is the map given by g — a~1(b™! - g.b) for every g € G. We call (13.4) the long exact sequence in
cohomology associated with (13.3).

Now suppose that A and B are topological groups with the same structures as before, but C' is just
a topological pointed set with a continuous action of G that fixes the distinguished element of C'. Since
C is not a group we cannot define H'(G,C). However the pointed set H°(G,C) = C of G-invariant
elements of C' is well-defined; its distinguished element is the distinguished element of C.

Proposition 13.7. Let A, B, C be as in the discussion above. Suppose that
1-A—-B—-C—1

is an exact sequence of topological pointed sets. Then there is an exact sequence of pointed sets
1 A° & B¢ - ¢ % HY(G, A) — H'(G, B).

The connecting map § is defined as in the case of an exact sequence of groups. This definition does
not rely on the group structure of C.

Proof. We check exactness at every term as in the case of an exact sequence of groups. None of these
checks relies on the group structure of C. O

Let G be a topological group. Let B be a topological ring equipped with a continuous action of G,
compatible with the ring structure. Let n be a positive integer and let M be a free B-module of rank
n, endowed with the topology induced by that on B. We say that two semilinear actions of G on M are
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equivalent if they can be obtained by one another via a change of basis. We choose a basis (e1, e, ..., e,)
of M, hence an isomorphism GL(M) = GL,(B). We let G act on GL,,(B) via its action on B. Two
semilinear actions g(-); and g(-)2 of G on M are equivalent if and only if there exists A € GL(M) such
that g(z); = M - g(x)2 - (g(A))~! for every g € G and x € M. There is a bijection

(13.5)  {Equivalence classes of semilinear and continuous actions of G on M} <+ H'(G, GL,(B)).

Given a semilinear action of G on M, we define a € H(G, GL,,(B)) as the class of the cocycle that maps
g € Gq, to the matrix (af;); ; € GL2(B) satisfying g(e;) = >_; af,e; for every i € {1,2,...,n}.

We say that G acts trivially on M if there exists a basis (e}, €5, ..., e,) such that g.e; = e} for every
g € G and every i € {1,2,...,n}. The action of G is trivial if and only if the corresponding class in
H(G,GL,(B)) is trivial. We say that the action of G is triangular if there exists a basis with respect
to which the matrix (afj)i,j is upper triangular for every g € G.

13.3. Representations with a de Rham symmetric cube. Now suppose that B is a Cp,-algebra
equipped with a continuous action of Gg,, compatible with the ring structure and with the natural
action of Gg, on C,. Suppose that the subring of Gg,-invariant elements in B is Q,.

Recall that there is an exact sequence of algebraic groups over Z:

3
(13.6) 1= ps— GL> Sy_m) GL4,
where pus — GLg sends ¢ to ¢ - 1. Consider the exact sequence induced by (13.6) on the B-points:

Let Gg, act on each term via its action on B; this action is clearly continuous and compatible with the
group structure on each term. The above sequence is Gg,-equivariant. We split it into the short exact
sequence

(13.8) 1 — pg(B) % GL2(B) 5 (GLy/p3)(B) — 1
and the injection

3

(13.9) 1 — (GLa/p3)(B) 2™ GL4(B).

Both this sequences are Gg,-equivariant. Since Sym®GLy(B) is not normal in GL4(B) we cannot com-
plete (13.9) to a short exact sequence of groups. However we can complete it to an exact sequence
of pointed sets. Let H be the algebraic group Sym®GLy. Let [GLy4, H](B) be the set of right classes
{M -H(B)|M € GL4(B)}. We equip [GL4, H] with a structure of topological pointed set by giving it
the quotient topology and letting the class H(B) be the distinguished point. Let Gg, act on [GLy4, H|(B)
by g.(M - HB)) = (¢g.M) - H(B); this action is continuous and it leaves the distinguished point fixed.
Then there is a Gg,-equivariant exact sequence of topological pointed sets

(13.10) 1 = (GLa/p3)(B) — GL4(B) — [GLy, H|(B) — 1,

where the first two non-trivial terms also have a group structure compatible with the action of Gg,.
Thanks to Proposition 13.7 there is an exact sequence of pointed sets

1 — ((GL2/p3)(B))“% — (GLy(B))“% — ([GL4, H](B))“ —
(13.11) 1 )
— H (GQP,GLQ/,U,g(B)) — 5 H (GQP,GL4(B)).

Remark 13.8. Let [GLy, H](Q,) be the subset of (GL4, H|(B) consisting of right classes {M-H(B) | M €
GL4(Qp)}. Since Gg, acts on each term of (13.10) wia its action on B, we have

((GL2/p13)(B))“ = (GLz2/p13)(Qy),
(GL4(B))“ = GL4(Qy).
([GLs, H](B))% = [GL4, H](Qy).
In particular the map (GL4(B))%% — ([GLy, H|(B))S% that appears in the exact sequence (13.11) is

surjective. Hence the kernel of the map Hl(Sym3) 1s trivial, i.e. it contains only the distinguished point

of H'(Gqg,, GLa/us(B)).
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Now consider the short exact sequence of topological groups (13.8):
1 — p3(B) & GLy(B) — (GLy/u3)(B) — 1.
The associated long exact sequence of pointed sets is
1= (u3(B))“% — (GL2(B))“% — ((GLa/u3)(B))“% —

— H' (G, 13(B)) =% H'(Gq,,GLa(B) -5 H'(Gyg,, GLa/is)(B)).

Let M be a free B-module of rank 2, endowed with the topology induced by B. Suppose that Gq,

(13.12)

acts continuously on M. Then Sym®M is a free B-module of rank 4 endowed with the natural semilinear
action of Gq, induced by that on M. We use the exact sequences we constructed, together with the
bijection (13.5), to prove the second part of the following proposition.

Proposition 13.9.
(1) If the action of Gg, on M is trivial then the action of Gg, on Sym®M s trivial.

(2) If the action of Gg, on Sym?®M s trivial then there exists a subgroup H of Gq, of index 3 that acts
trivially on M.

Proof. The first statement is trivial. We prove the second one. The bijection (13.5) associates with
the action of Gg, on M a class ¢ € H'(Gg,,GL2(B)). Recall the maps H'(7) and H'(Sym?) that
appear in the sequences (13.12) and (13.11). The class in H'(Gg,, GL4(B)) associated with the action
of Gg, on Sym®M is (H'(Sym®) o H'())(c); by assumption it is trivial. By Remark 13.8 the kernel
of H'(Sym?) is trivial, hence (H'(7))(c) is trivial. By the exactness of (13.12) the class o belongs
to the image of H'(1): H'(Gq,,us(B)) — H'(Gg,,GL2(B)). Let 7 be an element of H'(Gg,, u3(B))
satisfying (H'(:))(7) = 0. Since C,, C B, u3(B) is the group of cubic roots of 1, that we simply denote by
us. Let y be the image of 7 via an isomorphism HI(GQP,Mg) =~ Qp/Qf’,. Let z € Q, be a representative
of y. The cocycle 7 is trivial on the subgroup H = Gal(Q,/Q,[z'/3]) of Gg,. Since o = (H'(2))(7),
o is also trivial on H. By definition of the bijection (13.5), the above implies that the action of H on
Sym?®M is trivial. The group H has index 1 or 3 in Gg,, as desired. O

Until the end of the section E is a p-adic field and V is a finite-dimensional E-vector space, endowed
with the p-adic topology and with a continuous action of G, .

By definition V' is de Rham if and only if the semilinear action of Gg, on Bqr ® V' is trivial, and
the analogous statement is true for Sym®V. Since a representation of Gy, is potentially de Rham if and
only if it is de Rham, Proposition 13.9 implies the following.

Corollary 13.10. The representation V of Gq, is de Rham if and only if Sym?V is de Rham.

13.4. Representations with a trianguline symmetric cube. Let D be a (¢, I')-module over Z. We
define a (¢, I')-module Sym® D over Z as follows by taking the underlying Z-module to be the symmetric
cube of D as a Z-module and letting I' and ¢ act in the natural way. We can check that pgy,s D(SymsD)
generates D as an Z-module.

As before E is a p-adic field and V' is an E-vector space carrying an E-linear action of Gg,. We use
the standard notations for twists of representations of G, by characters.

Remark 13.11. There is an isomorphism Sym®(Dyig(V)) = Dyig(Sym®V) of (p,T)-modules over Z.
We study the case where Sym®V is trianguline. The goal of this subsection is to prove the following.

Proposition 13.12. Suppose that V is irreducible.

(i) If the representation V is trianguline then Sym®V is trianguline.
(i) If the representation Sym®V is trianguline then either V is trianguline or V is a twist of a de
Rham representation. In particular V is a twist of a trianguline representation.

The first statement is immediate. The proof of the second one relies on a technique used by Di Matteo
in [DiM13], together with the classification of two-dimensional potentially trianguline representations
carried on by Berger and Chenevier in [BC10]. Di Matteo considers two representations V' and W such
that the tensor product representation V ® W is trianguline, and proves that in this case V and W are
potentially trianguline. We will adapt his arguments to our situation.

Let K be a p-adic field. Let B be a topological field equipped with a continuous action of Gg. Let
CE be the category of semilinear B-representations of G. The B-linear dual of an object of C& and
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the tensor product over B of two objects of C§ define new objects in the usual way. In this section all
duals and tensor products are in c{; except when stated otherwise.

Let n: Gk — B* be a cocycle. Let B(n) be a one-dimensional B-vector space with a generator e,
equipped with the semilinear action of Gk defined by g.e = n(g)e for every g € Gx. We simply write B
when 7 is the trivial cocycle. Clearly every one-dimensional object in C§ is isomorphic to B(n) for some
cocycle 7. Note that if 7 takes values in BE% then 7 is a character. For every object M of CK we set
M(n) = M @ B(n).

For every object M of Cj and every finite extension K’ of K, we consider M as an object of C§ " with
the action induced by the inclusion Gg: C Gk.

We say that an n-dimensional object M of C§ is triangulable if there exists a filtration

M=My>DMyD>DMyD>...OM,_1DODM,=0

where, for every ¢ € {1,2,...,n}, M; is a Gg-stable subspace of M and M;_;/M; is one-dimensional. If
there exists such a filtration that satisfies M;_1/M; = B(n;) for some characters n1,m2,...,0n: Gx —
BCx | then we say that M is triangulable by characters. These definitions are analoguous to those in the
beginning of [DiM13, Section 3], but we omit the specification “split” since we use Colmez’s terminology
for trianguline representations rather than Berger’s.

From now on M is a two-dimensional irreducible object in CE .

Lemma 13.13. Let X and X' be two irreducible objects in C . If X®@ X' has a one-dimensional quotient
in C& , then dimg X = dimpg X'.

Proof. The one-dimensional quotient of X ® X’ is isomorphic to B(#n) for a cocycle n: Gx — B. Consider
the following tautological exact sequence in C&:

0= keré —» X @ X' 5 B(n) — 0.

There is a Gi-equivariant map ¢’ : X — (X')*(n) sending = € X to the function ¢'(z) € (X')*(n) defined
by ' +— ¢(x @ x’) for every 2’ € X’. Since ¢ is non-zero, ¢’ is also non-zero. The representations X and
(X")*(n) are irreducible, hence the non-zero Gi-equivariant map ¢’ is an isomorphism. We conclude
that dimg X = dimg(X’)*(n) = dimp X'. O

Lemma 13.14. Suppose that Sym®M is triangulable by characters. Let n1,m2,m3,1n4: Gx — BEK be
the characters appearing in the triangulation of Sym>M. Then:

(i) there exists an irreducible object My of CK such that Sym®M = M; @ M;

(i) there is a decomposition Sym> M = @?:1 B(n;) in CK.

The central ingredients in the proof are [DiM13, Lemma 3.1.3] and the proof of [DiM13, Corollary
3.1.4].

Proof. Let Sym®>M =Y D> Y; DY, DY; DYy =0 be a filtration of Sym®M satisfying Yio1/Y, =2 B(m)
for 1 <4 < 4. In particular B(n;) is a quotient of Sym*M and B(74) is a subobject of Sym*M. Let
T, Sym® M — B(n) and 7: Sym®M ® M — Sym®M be the natural projections.

Consider the following exact sequence in Cj :

0 — kerm — Sym?*M @ M = Sym*M — 0

The surjection 7, o7m: Sym*M ® M — B(n;) defines a one-dimensional quotient of Sym*’M @ M. If
Sym?M is irreducible then Lemma 13.13 implies that dimg Sym®M = dimg M, which is a contradiction
since Sym®M is three-dimensional. Then Sym?M is reducible; this means that it admits a non-trivial
filtration in C& (i.e. a filtration in G k-stable subspaces). For simplicity, set X = Sym?M. All the maps
and the filtrations we write are in C§ . There are three possibilities:
(1) there is a filtration X = Xg D X; D X5 D X3 =0 with dimp(X;—1/X;) =1 fori=1,2,3;
(2) thereis a filtration X = Xy D X1 D Xo = 0 with dimg(X/X;) = 1, dimp X; = 2 and X, irreducible;
(3) there is a filtration X = Xy D X; D X3 = 0 with dimg(X/X;) = 2, dimgp X; = 1 and X/X;

irreducible;
Suppose that (1) holds. Since X is obtained from X/X;, X7 /X5 and X5 by successive extensions, X @ M
is obtained by successive extensions of (X/X1) ® M, (X1/X2) ® M and Xy ® M. Hence there exists
i € {1,2,3} such that the surjection X ® M — B(n;) induces a surjection X;_1/X; @ M — B(n).
Since X;_1/X; and M are irreducible, Lemma 13.13 implies that dimg(X;_1/X;) = dimg M = 2, a
contradiction since dimp(X;_1/X;) =1 for every i.
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Suppose that we are in case (2). As before, there exists ¢ € {1,2} such that X @ M — B(#n;) induces
a surjection 777’71 (Xi—1/X;) ® M — B(m). If i = 1 Lemma 13.13 implies that dimg(X/X;) = dimp M,
a contradiction. Hence there is an exact sequence

0—kerm, — X;0M L B(m).

Since X; and M are irreducible, this sequence splits by [DiM13, Lemma 3.1.3]. In particular there is a
section B(1n1) < X; ® M. By composing this section with the inclusion X1 ® M — X ® M and the
projection X ® M — Sym®M we obtain a section of the map ., hence a splitting of the exact sequence

0 — kerm,, — Sym*M Im, B(m) — 0.

By definition of m,, we have Y7 = kerm,,, so SymSM ~Y; ® B(n1). Now Ys is a subobject of Y7, hence
Y, @ B(11) is a subobject of Sym*M. There is an isomorphism Sym®M/ (Y, @ B(n1)) = Y1 /Y = B(n),
giving a projection ,,: Sym>M — B(nz). By replacing 7, with 7, in the above argument, we obtain
that the sequence

0 — kerm,, — Sym®M BN B(n2) — 0

splits. Then Sym®M = ker 7, ® B(n2). Since ker,, = Y, @ B(1;) we obtain Sym*M = Y, @ B(n,) @
B(12). We repeat the argument for the projection to B(n3) and we obtain a decomposition Sym?>M =
@le B(7;), together with maps m,, : X; ® M — B(n;).

Now consider the map v¥: X; ® M — Sym>M obtained by composing the inclusion X1 ® M — X @ M
with 7: X ® M — Sym®M. By the results of the previous paragraph, Sym>M =~ @?:1 B(7n;) and for
every i € {1,2,3,4} there is a map m,,: X1 ® M — B(1;). Hence ¢ is surjective. Since X; ® M and
Sym>®M are both 4-dimensional, v is an isomorphism. Moreover X; is irreducible, so part (1) of the
lemma is true with M; = X5.

Suppose that we are in case (3). Consider the map 1: X; ® M — Sym®M obtained by composing
the inclusion X; ® M — Sym?M ® M with the projection 7: Sym?M ® M — Sym®M. Since X,
is one-dimensional and M is irreducible, X7 ® M is irreducible. Hence the kernel of v is either 0 or
X1 ® M. In the first case the image of ¢ defines a two-dimensional irreducible subobject of Sym?®M,
contradicting the fact that Sym®M is triangulable. In the second case 7 factors via a surjective map
7 (X/X1) ® M — Sym*M. Since dimg((X/X1) ® M) = dimg Sym®M, m; is an isomorphism. Now
X/ X, is irreducible, so part (1) of the lemma is true with M; = X/Xj.

The decomposition of Sym®M given in part (2) of the lemma follows from part (1) and [DiM13,
Corollary 3.1.4]. O

We recall another result of [DiM13].

Lemma 13.15. [DiM13, Lemma 3.2.1] Let N and N’ be two objects of C& such that NQN' is triangulable
by characters. Let {n;}%_, be the set of characters Gx — BYX appearing in the triangulation of N @ N'.
Then nflm is a finite order character for every i € {1,2,...,d}.

The following lemma is proved in the same way as [DiM13, Theorem 3.2.2], with the difference that
we work in the language of (¢, T')-modules rather than in that of B-pairs. Recall that E is a p-adic field
and V' is a two-dimensional E-representation of Gg, .

Lemma 13.16. Suppose that V is irreducible. If Sym3V is trianguline, then V is potentially trianguline.

Proof. Consider the (p,T)-modules D,ig(V) and D,ig(Sym®V). They are free #-modules carrying a
semilinear action of Gg,. By Remark 13.11 there is an isomorphism of (¢, I")-modules D,ig(Sym?®V) =
SymBDrig(V). In particular this is an isomorphism of semilinear representations of Gg,, where we let
Gq, act via Gg, - T.

Since Sym®V is trianguline, Dy (Sym®V) is obtained by successive extensions of rank one (p,T')-
modules D;, 1 < ¢ < 4. By [Col08, Théoreme 0.2(i)], for every i € {1,2,3,4} there exists a character
ni: Qy — E* such that D; = %(n;). Note that E* = RCE, 50 ni|q,, takes values in ZCF.

Since V is irreducible, [DiM13, Corollary 2.2.2] implies that D,z (V) is irreducible as a semilinear
Z-representation of Gg,. In particular the choice M = D, (V) satisfies the assumptions of Lemma
13.14, hence part (2) of that lemma gives a Gg, -equivariant decomposition Dy (Sym®V) = @?:1 ZAUDE

Now by Lemma 13.15 there exists a finite extension L of E such that n; "nila, is trivial for every i.
Hence there is an isomorphism D (Sym®V)(ny ") = @?:1 X of Z-representations of G. This means
that D,ig(Sym®V)(n; ') is a trivial Z-representation of G. Let n': Gg — @; be a character satisfying
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Dyig(1t) = Z(m). Then Dy ((Sym*V) (') = (Dyig(Sym®V))(n; ). By [Be02, Theorem 0.2] (see the
formulation in [Col08, Proposition 1.8]) there is an isomorphism

Dy (Sym®V (u™1)) = (Z[1/t, T] ®2 Dyig(Sym® V)"

of filtered (¢, N)-modules. We know that G, acts trivially on Dy ((Sym®V)(n; ")), so the module
Dy ((Sym®V)(n; 1)) is four-dimensional. This means that (Sym*V)(u~') is a semi-stable representation
of Gr. In particular it is a de Rham representation of G .

Let p/(z) = p(x)/|p(z)|: Q) — Of. Let Ey be a finite extension of E that contains p/6 and let L,
be a finite extension of L such that u|g,, is trivial modulo the maximal ideal of Op. Then there exists
a character ~1/6: QX — E{° such that (u=/¢)% = ;=!. Since Sym?®(V (p~=1/6)) = (Sym*V)(x~") and
(Sym®V)(p~1) is de Rham, V(u~1/%) is also de Rham by Proposition 13.10. In particular V (u='/%) is
potentially trianguline, so its twist V' is still potentially trianguline by [Col08, Proposition 4.3]. O

In order to deduce Proposition 13.12 from Lemma 13.16 we need the following result by Berger and
Chenevier, who classified the two-dimensional potentially trianguline representations of Gg,. Here we
do not suppose that V is irreducible.

Theorem 13.17. [BC10, Théoreme A] If V is potentially trianguline, then it satisfies at least one of
the following conditions:

(1) V is trianguline;

(2) V is the direct sum of two characters or an induced representation;

(3) V is a twist of a de Rham representation by a character.

With this final ingredient we can prove Proposition 13.12.

Proof. The proof of (i) is straightforward. We show (ii). Since Sym®V is trianguline, V is potentially
trianguline by Lemma 13.16. Then V satisfies one of the three conditions listed in Theorem 13.17. By
assumption V' is irreducible, so it cannot satisfy (2). Hence (1) or (3) must hold, as desired. O

13.5. Representations with symmetric cube of automorphic origin. Let p;: Gog — GLQ(@p)

and pa: Gg — GSp,(Q,) be two continuous representations.

Theorem 13.18. Suppose that:

(1) p2 is odd and it is unramified outside a finite set of primes;

(2) the residual representation py associated with py is absolutely irreducible;
(3) p2 = Sym®p;.

Then the following conclusions hold.

(i) If po is associated with an overconvergent cuspidal GSp4-eigenform, then py is associated with an
overconvergent cuspidal GLg-eigenform.

(ii) If pa is associated with a classical cuspidal GSp4-eigenform, then py is associated with a classical
cuspidal GLo-eigenform.

Proof. Note that assumption (1) implies that the residual representation p; is absolutely irreducible.
We prove part (i). The representation ps is associated with an overconvergent cuspidal GSp,-eigenform
F, so it is trianguline by Theorem 13.1. By Proposition 13.12 the representation p; is a twist of a
trianguline representation. Then Theorem [Em14, Theorem 1.2.4(2)] implies that p; is the twist by a
character of a representations associated with an overconvergent cuspidal GLs-eigenform. We show that
the character occurring here can be taken to be trivial.
Let V be a two-dimensional E-vector space carrying an action of G, via p1 and let V be the associated

residual representation. Let a: Gg — @: be a character and N be a positive integer such that V(«) is
associated with an overconvergent cuspidal GLg-eigenform f of level I'y (V) N T'y(p). Let = be the point
of the eigencurve DIV corresponding to f. Let M be the positive integer associated with N by Definition
10.6. Let &: D{V’g — DM be the morphism of Definition 12.11. Let Sym®f be the overconvergent
GSp,-eigenform corresponding to the point £(z). The Galois representation associated with Sym?®f is
Sym®(V(a)).

For a continuous representation W of Gg,, we denote by ¢y the generalized Sen operator associated
with W (see [Ki03, Section 2.2] for the construction). Let (x1,%2) be the eigenvalues of ¢y . A calcula-
tion shows that ¢gymsy has eigenvalues (3K1, K1 + 2K2,2K1 + K2, 3K2). Since Sym3V is attached to an
overconvergent GSp,-eigenform we must have 3x; = 0, hence k1 = 0. Set kK = ko, so that the eigenvalues
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of ¢y are (0, k). Recall that the weight of the character « is defined by w(a) = log(a(u))/log(u), where
u is a generator of Z, . The eigenvalues of ¢y (o) are (w(a), k +w(a)). Since V' comes from an overcon-
vergent GLo-eigenform we must have w(a) = 0. In particular the eigenvalues of ¢gy,3y and Gsym?(V (a))
are the same. This means that Sym®V and Sym®(V («)) are associated with two overconvergent GSp,-
eigenforms F' and Sym®f of the same weight, given in our usual coordinates by (k+ 1,2k — 1). Let
Xr1.ms De the specialization at (k4 1,2k — 1) of the p-adic deformation of the cyclotomic character. The
determinants of Sym®V and Sym®(V'(«)) are given by the product of X, », with the central characters
of F and Sym?®f, respectively. In particular the two determinants differ by a finite order character. We
deduce that af, hence a, is a finite order character. By twisting the overconvergent GLsy-eigenform f
by the finite order character a=! we obtain an overconvergent GLs-eigenform with associated Galois
representation V.

We prove part (ii). Since ps is associated with a classical cuspidal GSp,-eigenform, it is a de Rham
representation. Then Proposition 13.10 implies that p; is also a de Rham representation. The represen-
tation pe is trianguline because it is de Rham, so part (i) of the theorem implies that p; is attached to
an overconvergent GLg-eigenform f. Since p; is de Rham, the form f is classical. O

Corollary 13.19. If p1, p2 satisfy the assumptions of Theorem 13.18 and ps is associated with a classical
cuspidal GSpy-eigenform F', then there exists a GLa-eigenform f such that F is the symmetric cube lift
Sym?®f given by Corollary 10.4.

Proof. The representation p; is attached to a classical cuspidal GLs-eigenform f by Theorem 13.18(ii).
Then ps is the p-adic Galois representation attached to the form Sym?®f. We conclude that F' = Sym?f.
O

14. THE SYMMETRIC CUBE LOCUS ON THE GSp,-EIGENVARIETY

In this section p is a prime number, N is a positive integer prime to p and M is the integer, depending
on N, given by Definition 10.6. Let T1: Gg — O(DY) and Tz: Gg — O(D)!) be the pseudocharacters
provided by Proposition 3.7. By an abuse of notation, if V; and V, are subvarieties of DIV and D!,
respectively, we still write ¢1: HIY — O(V;) and ¥y: HY — O(V,) for the compositions of 1 and 1
with the restrictions of analytic functions to V; and Vs, respectively. We also write Ty, : Gg — O(Vy)
and Ty,: Gg — O(Vs) for the compositions of T7 and T, with the restrictions of analytic functions to
V1 and Vs, respectively.

Theorem 14.1. Let V, be a rigid analytic subvariety of DY. Consider the following four conditions.

(1a) There exists a morphism of rings wél): Hf]p — O(V3) such that the following diagram commutes:

Np
/Hévp A inVP

[
gt
O(Vz)
(1b) There exists a pseudocharacter Ty, 1: Gg — O(Va) of dimension 2 such that

(14.2) Ty, = Sym®Ty, ;.

(2a) There exists a rigid analytic subvariety Vi of DY and a morphism of rings ¢: O(Vy) — O(V) such
that the following diagram commutes:

(14.1)

P2
(14.3) HP 25 gV Yy o) —2s O(0)
(2b) There exists a rigid analytic subvariety Vi of DN and a morphism of rings ¢: O(V1) — O(Vy) such
that
(14.4) Ty, = Sym®(¢ o Ty, ).
Then:

(i) (1a) and (1b) are equivalent;
(i) (2a) and (2b) are equivalent;
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(iii) (2b) implies (1b);
(iv) when Vo is a point, the four conditions are equivalent.

Proof. We prove (i), (ii), (iii) for an arbitrary rigid analytic subvariety Vs of D3.

(la) = (1b). Let wél): HYP — O(V,) be a morphism of rings making diagram (14.1) commute.
By the argument in the proof of Proposition 10.10, the commutativity of diagram (14.1) gives an equality

(14.5) o (Prin(t5: X)) = Sym® (8" (Prin(t0); X))).

Choose a character e; satisfying e = e. For every £ not dividing Np, let P, be a polynomial in
HIP[X]de8=2 satisfying:

(14.6) Sym*Py(X) = tho(Pain(t{; X));
and
(14.7) P(0) = ey - (1 4 T)lex(9)/ log(w)

Such a polynomial exists thanks to Equation (14.5) and to Remark 5.10, and it is clearly unique. The
roots of P, differ from those of ¥ (Ppin (té 2), X)) by a factor equal to a cubic root of 1.
By Chebotarev’s theorem the set {yFrobyy~ 1}&1\@;76(;@ is dense in Gg. The map

P: {7Frobey ™ Yynpsrecy — O(Va)[X]15=2,
vFrobey ™ = P,

is continuous with respect to the restriction of the profinite topology on Gg. This follows from the fact
that the maps

{¥Frobey ™ Yopnprec, — O(V2)[X]48=1
yFrobyy ™t = (P, mm(tf) X)) = Sym3P(’yFrobg'y*1)(X)
and

{vFr0b577l}Zpr; vE€Gq - O(VQ)X
yFrobyy ™! — P(yFrobyy™1)(0) = &1 - (1 + T))'0s(x(9))/ log(w)

are continuous on {WFrobg’y_l}&NpWeGQ. Hence P can be extended to a continuous map P: Ggp —
O(V2)[X]9%8=2, Now define a map Ty, 1: Gg — O(V2) by Ty, 1(g9) = (P(9)(1) + P(g)(—1))/2. We can
check that Ty, ; is a pseudocharacter of dimension 2. Its characteristic polynomial is P, so the fact that
Ty, = Sym®Ty, ; follows from Equation (14.6).

(1b) = (1a). Suppose that there exists a pseudocharacter Ty, 1: Gg — Oy, such that Ty, =
SymBTv,“,l. Then Pepar(Ty,) = Symchhar(Tv%l). By evaluating the two polynomials at Frob, we obtain
V3(Pavin (£33 X)) = Penar (T, ) (Froby) = Sym®Pepar (T4, 1) (Froby) =

(14.8) Ty, 1(Froby)? — Ty, 1 (Frob;) )

)

= Sym? (X2 — Ty, 1(Froby) X + 5

where the first equality is given by Proposition 3.7 and the last one comes from Equation (3.1). Let

1/)51): HYP: O(V,) be a morphism of rings satisfying

Ty, 1 (Froby)® — Ty, 1 (Froby) _
2

for every £1 Np. It is clear that such a morphism exists and is unique. Note that the right hand side of
Equation (14.9) is 1/)(1)( mln(t§11)7X))' Then Equation (14.8) gives

(149) X2 =Ty, 1(Frob)X + X2 — M@ X + e (1Y)

Yo (Prin(t15: X)) = Sym® (5" (Puin (145 X))).

Exactly as in the proof of Proposition 10.10, by developing the two polynomials and comparing their

coefficients we obtain that 1y = zbél) o ANP. Hence wg” fits into diagram (14.1).
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(2a) <= (2b). Let V; be a subvariety of D and let ¢: O(V;) — O(V3) be a morphism of rings.
We show that the couple (V1, ¢) satisfies (2a) if and only if it satisfies (2b). For g = 1,2 and every prime
¢+ Np Proposition 3.7 gives

(14.10) Patar (T, ) (Frobe) = 1 (Panin () X)).

The argument in the proof of Proposition 10.10 gives an equality
(14.11) AP (P (£09: X)) = Sym® (Pauin (115 X)).

Since the set {yFrobyy ™' }gnp; vec, is dense in Gg, the pseudocharacters Sym?(¢ o Ty,) and Ty, coincide
if and only if their characteristic polynomials coincide on Frob, for every £+ Np. By Equation (14.10)
the condition above is equivalent to

Sym®(¢ 0 Y1 (Punin (4,75 X)) = v2(Prin(3; X))
for every £ 1 Np. Thanks to Equation (14.11) the left hand side can be rewritten as

Sym® (¢ o 1 (Pauin (t0)3 X)) = é 0 1 (Sym® (Punin(t0}: X))) = ¢ 0 1 0 ANP(Pryin (19 X)).

When / varies over the primes not dividing Np the coefficients of the polynomials Pmin(tfg ; X) generate
the Hecke algebra Hév P Hence the equality of the right hand sides of the last two equations holds if and
only if ¢ o 1hy 0 ANP = 1)y,

(2b) = (1b). Suppose that condition (2b) is satisfied by some closed subvariety V; of DY and
some morphism of rings ¢: O(V1) — O(Vs). Consider the pseudocharacter Ty, 1 = ¢ o Ty, : Gg — O(Va).
Clearly Ty, 1 satisfies condition (1b).

It remains to prove that (1b) = (2b) when V; is a Q,-point of D3’. For this step we will need the
results we recalled in Section 13. Write xo for the point Vs; the system of eigenvalues 1),, is that of a
classical GSp,-eigenform. By Remark 3.8(1) Ty, is the pseudocharacter associated with a representation
Pz Gog — GL4(Q,). Let E be a finite extension of Q, over which p,, is defined. Suppose that z;
satisfies condition (1b). Let Ty, 1: Gg — Q, be a pseudocharacter such that T, = Sym*T,, 1. By
Theorem 3.2 there exists a representation pg,1: Gg — GL2(Q,) such that Ty, 1 = Tr(ps,,1). Then
Remark 3.6 implies that p,, = Sym?’pmJ. Since p,, is attached to an overconvergent GSp,-eigenform,
Theorem 13.18(ii) implies that p,, 1 is the p-adic Galois representation attached to an overconvergent
GLg-eigenform f. Such a form defines a point z; of the eigencurve DI¥.Thus the subvariety V; = x;
satisfies condition (2b). O

Remark 14.2. The four properties stated in Theorem 14.1 are stable when passing to a subvariety, in
the following sense. Let Vo and V) be two rigid analytic subvarieties of DY satisfying V5 C V. Let (%)
denote one of the conditions of Theorem 14.1. If (%) holds for Vo then it holds for V5. Thanks to the
theorem it is sufficient to prove this statement for * = 1b and x = 2b, in which cases it is trivial.

In light of Theorem 14.1 we give the following definitions.

Definition 14.3. (1) We say that a subvariety Vo of DY is of Sym® type if it satisfies the equivalent
conditions (2a) and (2b) of Theorem 14.1.
(2) The Sym®-locus of DY is the set of points of DI of Sym® type.

Remark 14.4. A variety Vs of Sym® type also satisfies conditions (1a) and (1b) of Theorem 14.1 thanks
to the implication (2b) = (10).

Let v: W} — W3 is the closed immersion constructed in Section 12.2. Let D3 be the one-dimensional
subvariety of D) fitting in the cartesian diagram
,Dé\,daux E— Dé\/[
I

The following lemma follows from a simple computation involving the generalized Hodge-Tate weights
of a point of Sym?® type.

Lemma 14.5. The Sym®-locus of D! is contained in the one-dimensional subvariety D%.
63



The Sym®-locus of D! admits a Hecke-theoretic definition thanks to condition (2b) of Theorem 14.1.
We elaborate on this. Consider the following maps:

Hy? o O(DY)
b
HY? " 0(D))
We define an ideal Zgy,,z of O(D3) b
Tsyms = 1 (ker(yz 0 AVP)) - O(DYY).
We denote by DQ’ s the analytic Zariski subvariety of DM defined as the zero locus of the ideal Lgyms-

Proposition 14.6.
(i) The Sym?-locus of DM s the set of points underlying DM,
(i) The variety D2 Sym? 0 of Sym?® type.

2,Sym3*

(iii) A rigid analytic subvariety Vo of DY is of Sym® type if and only if it is a subvariety of Dé”sym
(iv) A rigid analytic subvariety Vo of DY satisfies conditions (1a) and (1b) of Theorem 14.1 if and

only if it is a subvariety of D2 Sym?-

Proof. We prove (i). Let 3 be any Q,-point of D}’ and let ev,,: O(D3') — Q, be the evaluation at
xo. The system of eigenvalues corresponding to 3 is 1z, = vy, 0o ”Hév L @p. By definition x5 is
of Sym?® type if and only if there exists a morphism of rings evy, : O(DN) — @p such that the following
diagram commutes:

Hy'? o O(DYT) =2

J{AN;D eV

By elementary algebra the map ev,, exists if and only if ev,, (ker(i o ANP)) = 0. This is equivalent to
the fact that the point 3 is in the zero locus of the ideal Zgy,,s.

For (ii) it is sufficient to observe that there exists a morphism of rings =
fitting into the commutative diagram

S m3 O('D{V) - O(DéVISynﬁ)

Tsym3 © Y2

Np 1 ~Sym3
s Y s o(DY) s O(DY L)

(14.12) Hy'P

Such a E§ . exists since by definition of D2 sym? We have M Yo (ker(ANP o g 3)) = 0.

Note that the “if” implications of (iii) and (iv) follow from Lemma 14.2, together with Remark 14.4
for (iv).

To prove the other direction of (iii) we look again at diagram (14.3) for a subvariety Vs of D). In
order for V, to satisfy condition (2a) of Theorem 14.1 we must have ry, (ker(ANP o E§yms)) =0, 50 Vo is

contained in Dy .

Finally, let V, be a rigid analytic subvariety of D! satisfying conditions (1a) and (1b) of Theorem
14.1. Let z2 by a point of V. By Lemma 14.2 x4 satisfies conditions (1a) and (1b). By Theorem 14.1,
x2 also satisfies conditions (2a, 2b), so it is a point of D2 ‘Sym3+ We conclude that Vs is a subvariety of

M
D2,Sym3' O
Remark 14.7. By Proposition 14.6 the Sym®-locus in DM can be given the structure of a Zariski-closed
rigid analytic subspace. From now on we will always consider the Sym®-locus as equipped with this
structure and we will identify it with the subvariety DéWSymS of DM

Proposition 14.6(i) and Lemma 14.5 give the following.
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Corollary 14.8. The Sym?®-locus intersects each irreducible component of DM in a proper analytic
Zariski subvariety of dimension at most 1.

Propositions 14.6(iii) and (iv) allows us to improve the result of Theorem 14.1.

Corollary 14.9. For every rigid analytic subvariety Vo of D' the conditions (1a), (1b), (2a), (2b) of
Theorem 14.1 are equivalent.

14.1. Equations for the symmetric cube locus. By using the description of AN? given in Definition
10.9 we can write “equations” for the Sym?® locus in terms of the rigid analytic functions wg(Té(i)) for
i € {0,1,2}, but they are not very illuminating. We find that the ideal Zgy,,s of O(D) is generated by
the elements of the set

{02((T3)° + (& + 40+ T[T + 3T (1) — (564 + 1260)(T0)A(T73)*+

2) (2) (2 2 2 2 2 2 2

~(20 — 40T T (T — 3T AT + BETE + TENCTSR ~ 1) s
D, S
where Déw S; .3 is defined by the property

PO
D, can be

By the result of Proposition 13.4, the intersection of the Sym?® locus with

. 4 M
decomposed as a union [ J =1 DQ’Symg,

~M,j pM.ire ~ HM

T €Dyt (Cp) <= z €D, 5 syms and the choice ¢ = j satisfies Equation (13.2)

Using the description of X;,, 1 < i < 4, given in Definition 10.12 we can write DM (Cp) =A{z €

2,Sym?
~ 0L
D2,Slyrrrn3 ((Cp) |Ej = 0} where

By = (U) U2) = (U, B2 = (U0 (U33) - (U2,

p,2
2 2 2)\ ¢ 2 2 2
By = UQUA — (U3, Ea= (UR)? - U (USD)2.

Define Déus’j s as the Zariski-closure of 753/‘, S’j 5 in DM . Note that by taking this closure we are
;Oym ,Dym

) 2,Sym?3
just adding a discrete set of points.
14.2. An inverse to the symmetric cube morphism of eigenvarieties. Consider the map =g - omDY) —
O(Dé\f[Syn@) appearing in the commutative diagram (14.12); it induces a map of rigid analytic spaces
ESym3 : Dé\{symg — D{V

Remark 14.10. By Corollary 13.6, the map Zgy,3 is quasi-finite and its degree at a point x € DN(C,)
is at most dim@p (Deris(pzlcq, ), where py: Gg — GSp,(Q,) is the Galois representation attached to .

Let p,: Gg — GL4(F,) be a representation. Let p, = Sym”p,. Consider the union ’Dé‘f%2 of the
connected components of D3! of residual Galois representation isomorphic to p,. We constructed in

Section 12.3 a map & from the eigencurve D{\fﬁ to the eigenvariety Dé\%. Let Dé\flﬁz,Synﬁ = Dé‘?symg ﬂDé‘ffm
M,j — pM,j M

and DZ,ﬁz,Symg' - DZ,Sym3 N D2:52'

Proposition 14.11. (1) The rigid analytic space Dév,%z,synﬁ is equidimensional of dimension 1 if j =1

and it is 0-dimenstonal otherwise.

: M M.

(2) The image of § in Dy s ’Dz@hsymag.
Proof. We prove the two statements together. We replace implicitly the sets Sis ymg, 1 <4 <4, defined
before Corollary 10.19, by their intersections with Dé\ffﬁz. By construction of £, the image of this map is

Sym?
Sl

the Zariski-closure in Dé\ffm of the set , that consists of points of Sym?® type by definition. Since

M1 . c g . . Sym? C g Sym? . . .
27, syme 18 Zariski-closed in Dé‘/fﬁz and contains S7¥™ | the Zariski-closure of S7*™ is contained in
290 )

M1 . . .
9,75, Sym?* This proves one inclusion of (2).

Let be a 1-dimensional irreducible component of pMi

2 20 Sym?* The set S of classical, p-old points of C'is
WHF2

Zariski-dense in C' because of Theorem 2.7. Every point in S is of Sym? type, so it is the symmetric cube
3
lift of a classical p-old point of D{Yﬁl by Theorem 14.1. This means that S is contained in U?Zl Sf‘ yme

, . 5
évj ﬁz gyms» We must have S C S]Sym . If j # 1 then Sjsym is discrete by Corollary
M

2,p5 ,Sym?

Since E; vanishes on D
10.19, so we conclude that j = 1. This proves that every l-dimensional component of D, is
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M,

. . M,1 . . . M,j . . .
contained in ’DQ@,Syms and is not contained in Dz,ﬁ2,sym3 for any j # 1. In particular DQ,ﬁz,Syms is

3
0-dimensional if j7 # 1. We also obtain that pM1 , is the Zariski-closure of S5Y™ .
2,p5,Sym J

Let « be a point of Dé\? ﬁ’i?symg, not necessarily classical. Proposition 13.4 implies that there exists
a point x1 of foﬁl such that x, o L%p = (Xay © LI‘,FIIP)C"t o A1,p, with the usual notations for systems of
Hecke eigenvalues. This means that xl is the image of z via &, hence the remaining inclusion of (2) holds.
Let I be an irreducible component of D{\,fﬁl containing x;. Since £ is a closed immersion and its image
is contained in Dé\j[ ﬁ’i,symg, &(I) is an irreducible component of Dé\f%’i’syms
M,1

2,p2,Sym

containing x1. We deduce that

3 is equidimensional of dimension 1. O

Corollary 14.12. The morphisms of rigid analytic spaces  and Z|pm.1 are inverses to one another. In
o

M

. — . . . L. M1
articular = is an isomorphism on the Zariski-open subspace D, of D- 3.
p p p D 2,p5,Sym? f 2,p,,Sym3

15. THE FORTUITOUS Sym®-CONGRUENCE IDEAL OF A FINITE SLOPE FAMILY

Let 0: Ty, — I° be a finite slope family and let p: Gg — GSp,(I3,) be the representation associated
with 6 in the previous section. Recall that p is absolutely irreducible by assumption. We also assume
that p is Z,-regular and of residual Sym?® type, as in Definitions 4.2 and 4.3. In this section we define a
“fortuitous congruence ideal” for the family 6. It is the ideal describing the intersection of the Sym?>-locus
of D with the family 6. Recall that the Sym®-locus is the zero locus of the ideal Tsyme of O(D3)°
defined in Section 14 and that oy O(Di)° — T}, denotes the restriction of analytic functions.

Definition 15.1. The fortuitous Sym?>-congruence ideal for the family 6: T, — I° is the ideal of I°
defined by
Co = (9 °© TD;I]’;;L )(ISyms) -I°.

In most cases we will simply refer to ¢y as the “congruence ideal”. The next proposition describes
its main properties. Let J be an ideal of I° and let Jpp, = TN I%. Let p5: Gg — GSpy(I3,/I 1) be
the reduction of p modulo 3. If 6;: Tp,; — J is a finite slope family of GLy-eigenforms we denote
by pe, : Gg — GLa(J) the associated Galois representation. For an ideal J of J we let pg, 7: Gg —
GL2(J/J) be the reduction of pp, modulo 7.

Proposition 15.2. The following are equivalent:
(i) T D co;
(i) there exists a finite extension I' of I3, /I and a representation pz1: Gg — GLo(I') such that
py = Sym®py 1 over I';
(iii) there exists a finite slope family of GLa-eigenforms 61: Ty 71 — J°, an ideal J of J° and a map
¢: J°/3 — 1S, such that py = ¢ o Sym®pp, 5 over I3,.

Note that we did not specify the image in the weight space of the admissible subdomain of DI
associated with the family 6,. It is the preimage in W7 of the disc By, via the immersion ¢: Wy — W3
defined in Section 12.2.

Proof. Since all the coefficient rings are local and all the residual representations are absolutely irre-
ducible, we can apply the results of Section 14 by replacing the pseudocharacters everywhere with the
associated representations, that exist by Theorem 3.3 and are defined over the ring of coefficients of the
pseudocharacter by Theorem 3.1 (see the argument in the beginning of Section 5.3).

Now the equivalence (i) <= (ii) follows from Proposition 14.6(iv) applied to the rigid analytic
variety Vo = I. The equivalence (ii) <= (iii) follows from Proposition 14.6(iii) by checking that the
slopes satisfy the required inequality: this is a consequence of Corollary 10.18 and Remark 10.20. [l

Corollary 15.3. If there is no representation p,: Gg — GLa(F,) satisfying p = Sym®s,, then ¢y =1°.

Proposition 15.4. The ideal ¢y is non-zero.

Proof. Suppose by contradiction that ¢y = 0. Since ¢y = (0 o rpnm.n )(Zgyms)-1° we must have (6 o rpnvn )(Zgyms) =
2,B), 2,Bp

0. This means that the 2-dimensional family I is contained in the zero locus Déwsymg, of Zgyms. This is
impossible by Lemma 14.5. O
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The fortuitous Sym?>-congruence ideal is an analogue of the congruence ideal of [CIT15, Definition
3.10]. There is an important difference between the situation studied here and in [CIT15] and those
treated in [Hil5, HT15]. In [Hil5, HT15] the congruence ideal describes the locus of intersection between
a fixed “general” family (i.e. such that its specializations are not lifts of forms from a smaller group)
and the “non-general” families. Such non-general families are obtained as the p-adic lift of families of
overconvergent eigenforms for smaller groups (e.g. GLj x for an imaginary quadratic field K in the
case of CM families of GLs-eigenforms, as in [Hil5], and GLy,p for a real quadratic field F' in the
case of “twisted Yoshida type” families of GSp,-eigenforms, as in [HT15]). In our setting there are no
non-general families: the overconvergent GSp,-eigenforms that are lifts of overconvergent eigenforms for
smaller groups must be of Sym? type by Lemma 4.7 and Theorem 13.18, and we know that the Sym?3-locus
on the GSp,-eigenvariety does not contain any two-dimensional irreducible component by Proposition
15.4. Hence the ideal ¢y measures the locus of points that are of Sym?® type, without belonging to a
two-dimensional family of Sym?® type. For this reason we call it the “fortuitous” Sym®-congruence ideal.
This is a higher-dimensional analogue of the situation of [CIT15], where it is shown that the positive
slope CM points do not form one-dimensional families but appear as isolated points on the irreducible
components of the eigencurve (see [CIT15, Corollary 3.6]).

Note that conditions (ii) and (iii) in Proposition 15.2 only depend on the ideal J N I3, so we expect
¢y to be generated by elements of I5,. We prove this in the following.

Proposition 15.5. Let ¢g v = ¢ NIT,. Then ¢g = ¢ v - I°.

Proof. By definition ¢y = 007 (Zsyms) - I°. By definition Zgy,,e = tha(ker(v1 o AMP)), where the
notations are as in diagram (14). Since ker(¢; o AMP) € H3'® we have

0o TI(ISymS) =foryo wg(ker(z/)l o )\Mp)) Cloryo wg(’HéMp).

By the remarks of Section 5.3 the ring I3, contains §oryo wg(’;’-lév[p) in I°, so 6 o r7(Zsyms) is a subset of
[, and the ideal cg 1 = 0 o 71 (Zsyms) - I3, satisfies cg = co 1v - I°. O

Proposition 15.2 can be translated into a characterization of the ideal ¢ 1. For an ideal J of 5, let
p3: Gg = GSp,(I5,/7) be the reduction of p modulo J.

Corollary 15.6. Let J be an ideal of I5,.. The following are equivalent:
(Z) JD €9, Try
(i1) there exists a finite extension I' of I°/J3 and a representation p31: Gg — GLa(I') such that py =
Sym3p3’1 over I’;
(iii) there exists a finite slope family of GLa-eigenforms 61: Ty 71 — J°, an ideal J of J° and a map
¢: J°/3 — 13, such that py = ¢ o Sym®pg, 5.

We use the results of Section 12.3 to obtain some information on the height of the prime divisors of
¢g. Here v: WP — W3 is the inclusion defined in Section 12.2. For a classical weight k in WV} we have
v(k) = (k+ 1,2k — 1), with the obvious abuse of notation.

Proposition 15.7. Suppose that there exists a non-CM classical point x € D{V of weight k such that
sl(z) < h/7 and (k) € Baj, and k > h —4. Then the ideal ¢cg has a prime divisor of height 1.

Proof. Let x be a point satisfying the assumptions of the proposition and let f be the corresponding
classical GLg-eigenform. Let Sym®z be the point of D) that corresponds to the form (Sym?® £)5¢ defined
in Corollary 10.16. Let &: D{V’g — DM be the map of rigid analytic spaces given by Definition 12.11.
The image of an irreducible component J of D{V’g containing z is an irreducible component &(.J) of D)
that contains Sym®z. By Corollary 10.18 we have sl(Sym3x) < h. Since k + 1 > h — 3 the weight map
is étale at the point Sym®z, so there exists only one finite slope family of GSp,-eigenforms containing
Sym®z. This means that £(.J) intersects the admissible domain I in a one-dimensional subspace. The
ideal of I° = O(I)° consisting of elements that vanish on £(J) is a height one ideal of I that divides the
congruence ideal ¢y. In particular ¢y admits a height one prime divisor. O

15.1. The I§-congruence ideal. Starting with Corollary 15.6 we can descend further and prove that
¢y is generated by elements invariant under the action of the group of self-twists.

Proposition 15.8. Let ¢g o = co e N1I5. Then cg v = cg0 - [T,
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Proof. Let o be a self-twist and let 7,: Gg — (I3,)* be the associated finite order character. Let
5 = o(c4,). Since o is an automorphism of I3, it induces an isomorphism I3, /co e = 13, /c5 -
In particular we can consider the two representations Peome1t Go — GSpy(Ig,/¢§ 1) and pg‘eyTnly =
00 pey a1t Go — GSpy(I3,/cf 1,). By Corollary 15.6 applied to the ideal J = ¢p 1 there exists a
representation pe, .1 Go — GL2(I°/cg,1v) such that pe, 1 = Sym?’p%m,l. We apply o to both sides of
this equivalence and we obtain p7) == Sym?® Py .1~ By definition of self-twist p” = 7, ® p. By reducing
modulo ¢ 1, we obtain, with the obvious notations, (p7)cz ;. = Nlocg 1. @ peg 1 Now (p7)ez = (Peg )7
so by combining the two previous equations we deduce that (p")cgm_ = Noyeg 1, © Symg’pfg’Tr’l. Since
Nocg r, 15 a finite order character, there exists an extension Iy of If,/cf 1, of degree at most 3 and a

character 7,,cz .. 1 satisfying (77(,755‘“71)‘3 = No,cg .- Then

(pg)cg,Tr = Symg(na*cg,Tr’l ® pfﬁ,Tr71)7

so the implication (ii) == (i) of Corollary 15.6 gives ¢ 1, D ¢p,1v. This holds for every o € T', hence
MNoer ¢g v O ¢o,mv- This is an equality because the inclusion in the other direction is trivial. We conclude
that cp 1 is I-stable, so the ideal ¢p  NI§ of I§ satisfies (co e NIG) - [T, = o 1v- O

Definition 15.9. We call ¢g ¢ the fortuitous (Sym3,H8)—congruence ideal for the family 6: T, — I1°.

For an ideal J of I§ we denote by p5: Hy — GSp,(I5/J) the reduction of p|g, modulo J. The ideal
9,0 admits a characterization similar to that of ¢y and cg .

Proposition 15.10. Let Py be a prime ideal of I§. The following are equivalent.
(i) Po D coo;
(ii) there exists a finite extension I' of 13, /Pol%, and a representation ppyis 1: Gg — GLa(I') such
that ppyrs, = Sym?pr over I';
(i11) for one prime P of I3, lying above Py there exists a finite extension I' of I3, /P and a representation
pp1: Go = GLo(I') such that pp = SymSppJ over I';
(v) there exists a representation pp, 1: Ho — GLo(I3/3) such that pp, = Sym®pp, 1 over I3/3.

Proof. We prove the chain of implications (i) = (i) == (iii) == (@{v). If Py D ¢y then
Py - 15, D cp0- 1%, = co,mr. Now (ii) follows from Corollary 15.6.

If (ii) holds for some I' and ppyre 1 and if P is a prime of I3, lying above Py then P O PRyl so
it makes sense to reduce pp,is 1 modulo PT'. The resulting representation pp1: Gg — GL2(I3,/P)
satisfies (iii).

If (iii) is satisfied by some pp, 1 then pp, 1 = pp1|n, satisfies (iv).

We complete the proof by showing that (iv) = (ii) and (ili) = (i). If (iv) holds then the image of
pp, is contained in Sym®*GLsy(I5/J). Since pp, = ppo1s, | o, Lemma 4.6 implies that, after extending the
coefficients to a finite extension Ij of 1%, /FPyly, the image of pp,re is contained in Sym®GLy(T)). This
proves (ii).

Suppose that (iii) holds. By Corollary 15.6 P D ¢ 1y, so Py = PNI§ D ¢g,9, which is (i). O

The following is a corollary of Proposition 15.4.

Corollary 15.11. The ideal cg,9 is non-zero.

16. AN AUTOMORPHIC DESCRIPTION OF THE GALOIS LEVEL

In Section 9 we attached a Galois level to a family of finite slope GSp,-eigenforms. The goal of this
section is to compare this Galois theoretic objects with the congruence ideal introduced in Section 15,
that is an object defined in terms of congruences of overconvergent automorphic forms.

We work in the setting of Theorem 9.1. In particular h is a positive rational number, 6: T, — I° is a
family of GSp,-eigenforms of slope bounded by h and p: Gg — GSp,(I3,) is the Galois representation
associated with 6. We make the same assumptions on 6 and p as in Theorem 9.1; in particular p is
Zyp-regular and the residual representation p is either full or of symmetric cube type. With the family 6
we associate two ideals of Ij:

— the ideal ¢g ¢ - Iy, where cg ¢ is the fortuitous (Sym3,]I8)—congruence ideal (see Definition 15.9);
— the Galois level [y (see Definition 9.4).
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To simplify notations we write ¢g ¢ for ¢y - Iy. For every ring R and every ideal J of R we denote by
Vr(J) the set of primes of R containing J. The theorem below is an analogue of [CIT15, Theorem 6.2].
The set SP2 of “bad” primes of I was defined in Section 8.1. Note that Vi, (Is) N SP2d is empty because
the property defining the Galois level only involves lg - B,., and the primes in S¢ are invertible in B,..

Theorem 16.1. There is an equality of sets Vi, (co.0) — SP2d = Vi, (Ip).
Recall that there is a natural inclusion ¢, : I — L, .

Proof. First we prove that Vi, (cg,0) —SP*d C Vi, (Ig) — S, Choose a radius 7 in the set {r; };en>o defined
in Section 5. Let P € Vi, (cg0) — S”*d and let pp be the reduction of p|g,: Hyo — GSps(Ip) modulo P.
By Proposition 15.10 there exists a representation pp1: Hy — GL2(Io/P) such that pp = Symep’l. Let
pr,p = tropp and p, p1 =t © pp,1. The isomorphism above gives p, p = Sym?’pr,pﬁl.

Suppose by contradiction that [y ¢ P. By definition of Iy we have &, D [y - sp,(B,). Recall that
B, /P =1,,/P by the construction of B,. By looking at the previous inclusion modulo P we obtain

(16.1) &,.p D (lg/(PNly))-sps(Ly0/P).

Since lp ¢ P we have ly/(P Nly) # 0. By definition &, p = Q, - logIm p, p. By our previous argument
Imp, p C SymBGLQ(]Ir,o/PHnO), so logIm p, p cannot contain a subalgebra of the form J-sp, (I, 0/PL. o)
for a non-zero ideal J of I, o/ PL, . This contradicts Equation (16.1).

We prove the inclusion Vi, (Ip) — SP2d € Vi, (¢cp0) — SP2d. Let P be a prime of Iy. We have to show
that if P ¢ SP® and [y C P then ¢9,0 C P. Every prime of [ is the intersection of the maximal ideals
that contain it, so it is sufficient to show the previous implication when P is a maximal ideal.

Let P be a maximal ideal of Iy such that P ¢ S*® and Iy C P. Let kp be the residue field Iy/P.
We define two ideals of I, ¢ by lg, = ¢,-(Ip)L, 0 and P, = ¢,(P)L,o. Note that ¢, induces an isomorphism
Io/P = 1,0/P,. In particular P, is maximal in I, o and I, o/P, = kp, which is a local field.

As before let p. p = 1 o pp. The residual representation p,. p: Ho — GSpy(I7 o/mye ) associated with
pr.p coincides with p|g,. In particular p, p is of residual Sym?® type in the sense of Definition 4.3. Let

G, p =Imp, p and G,E”P be the connected component of the identity in G, p. Let G%Pzar be the Zariski
closure of G7 p in GSpy(l;0/P:). Since p, p is residually either full or of symmetric cube type, by the
classification preceding Lemma 4.7 one of the following must hold:

(i) the algebraic group G, PZM is isomorphic to Sym*SLy over I,/ Py;
(ii) the algebraic group G¢ PZM is isomorphic to Sp, over I, o/ P;.

In the two cases let H? denote the normal open subgroup of Hy satisfying Im p,. p|zo = Gy p- Since
Hy is open and normal in Gg, H? is also open and normal in Gg. In case (i) there exists a representation
py.p: H = GLy(I, 0/ P,) such that p, p|go = Sym?’pg’P. Since the image of p, p|go is Zariski-dense in
the copy of SLy(I,o/P,) embedded via the symmetric cube map, the image of pg_ p is Zariski-dense in
SLy(I0/P:). From Lemma 4.6 we deduce that Im p? , contains a congruence subgroup of SLa(Ir0/Fr).
Now the hypotheses of Lemma 4.6 are satisfied by the representation pg p and the group H, so we
conclude that there exists a representation pyy . p: Ho — GLa(l 0/ P:) such that pp, . p = SymSp}{mnp.
By Proposition 15.10 the prime P must contain cg g, as desired.

We show that case (ii) never occurs. Suppose by contradiction that G, . PZar &~ Sp, over I,.o/P,.. By
Propositions 6.13 and 6.18 we know that the field Iy /P is generated over Q, by the traces of Ad (pp|m,)-
Hence the field L, /P, is generated over Q,, by the traces of Ad p, p. By Theorem 4.5 applied to Im p, p
there exists a non-zero ideal [, p of I, /P, such that G, p contains the principal congruence subgroup
Iy, o/p, (Ir,p) of Spy(I0/Pr). By definition &, p = Q, - log(Im p,, p|g,) where H, is an open Gg, so up
to replacing [, p by a smaller non-zero ideal we have

(162) [T’p -5)34(]1»,,’0/]:#) C log(l—‘ﬂno/pr([r’p)) C IOg(LT’O(GP)) C @T’p.

The algebras &, p are independent of r in the sense of Remark 8.3, so there exists an ideal [p of Iy/P
such that, for every r in the set {r;};>1, the ideal [, p = ¢,.(Ip) satisfies Equation (16.2). We choose the
ideals I, p of this form.

As before A is the set of roots of GSp, with respect to the chosen maximal torus. Let o € A. Let 4%
and 47 p - be the nilpotent Lie subalgebras respectively of &, and &, p, corresponding to o. We denote by
7p, the projection gspy(B,) — gspy(B,/P.B,). Clearly &, p, = 7p (&;), so U p = mp, (U}). Equation
(16.2) gives L. pu(L.0/P-) C 47 p . Choose a subset A% of u®(Ip) such that, for every r, ¢,(A%) C UY
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and wp, (1,(A%)) = L. pu*(I,0/P,;). Such a set exists because the algebras 4% are independent of r by

Remark 8.3 and the ideals [, p have been chosen of the form ¢.([p). Set Ap = (HaeA Ql(};)4. By the
same argument as in the proof of Theorem 9.1, the ideal A% satisfies

L (AS) - 5p,(B,) C B,

Since lp - sp4(B,.) C &, for every r, we also have (lg + 2% p)sps(B,) C &, for every r.

By assumption ly C P, so 7p(lp) = 0. By definition of 23 , we have mp(A%) O mp(Ap) = Ip, s0
wp(lg+2Ap) = [p. We deduce that [y + A% is strictly larger than lp. This contradicts the fact that [y is
the largest among the ideals [ of I satisfying [ - sp,(B,) C &... O

Corollary 16.2. When the residual representation p is full, the Galois level ly is trivial.

Proof. This follows immediately from Theorem 16.1 and Corollary 15.3. ]
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