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GALOIS LEVEL AND CONGRUENCE IDEAL

FOR p-ADIC FAMILIES OF FINITE SLOPE SIEGEL MODULAR FORMS

ANDREA CONTI

Abstract. We consider families of Siegel eigenforms of genus 2 and finite slope, defined as local pieces of

an eigenvariety and equipped with a suitable integral structure. Under some assumptions on the residual

image, we show that the image of the Galois representation associated with a family is big, in the sense
that a Lie algebra attached to it contains a congruence subalgebra of non-zero level. We call Galois level

of the family the largest such level. We show that it is trivial when the residual representation has full

image. When the residual representation is a symmetric cube, the zero locus defined by the Galois level
of the family admits an automorphic description: it is the locus of points that arise from overconvergent

eigenforms for GL2, via a p-adic Langlands lift attached to the symmetric cube representation. Our

proof goes via the comparison of the Galois level with a “fortuitous” congruence ideal, that describes
the zero- and one-dimensional subvarieties of symmetric cube type appearing in the family. We show

that some of the p-adic lifts are interpolated by a morphism of rigid analytic spaces from an eigencurve

for GL2 to an eigenvariety for GSp4. The remaining lifts appear as isolated points on the eigenvariety.
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1. Introduction

Drawing inspiration from earlier work of H. Hida and J. Lang, the paper [CIT15] studied the image
of the Galois representations associated with p-adic families of modular forms, more precisely eigenforms
of finite slope for the action of a Hecke algebra unramified outside of a fixed tame level. Such a family is
defined by equipping a local piece of the eigencurve of the given tame level with an integral structure. A
result of [CIT15] states that the Galois representation attached to a family has big image in the following
sense: there is a ring B and a Lie subalgebra G of gl2(B) attached to Im ρ, in a meaningful way, such
that G contains l · sl2(B) for a non-zero ideal l of B. This can be seen as an analogue, for a p-adic family,
of a classical result of Ribet and Momose on the image of the p-adic Galois representation attached
to a classical eigenform [Ri75, Mo81]. We call Galois level of the family the largest ideal l with the
above property. The arguments in [CIT15] rely strongly on the work of Hida and J. Lang for ordinary
families [Hi15, La16], in particular on the study by J. Lang of the self-twists of the Galois representations
attached to families. A new ingredient in the positive slope case is relative Sen theory, that replaces
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ordinarity in some crucial steps. Another result of [CIT15] is an automorphic description of the Galois
level of a family: the geometric points of its zero locus are the p-adic CM points of the family. This is
also a generalization of a theorem of Hida in the ordinary case. The proof goes via the comparison of the
Galois level with a fortuitous congruence ideal, that encodes the information on the CM specializations
of the family. We call this ideal “fortuitous” because, contrary to what happens in the ordinary case,
the CM specializations of a non-CM family do not correspond to congruences with CM families, that do
not exists when the slope is positive.

In this paper we find analogous results for p-adic families of Siegel modular forms of genus 2 and finite
slope. We think that our work in this setting shows that the big image properties of Galois representations
and their relations to congruences are part of a picture that can be extended to more general reductive
groups. We remark that Hida and Tilouine already have some results for ordinary p-adic families of
GSp4-eigenforms that are residually of “twisted Yoshida type” [HT15]. Their arguments rely on the
Galois ordinarity of the families and on R = T results, both of which are not available when the slope
is positive. They obtain congruences between families that are lifts from GL2/F , for a quadratic field
F , and families that are not; their congruence ideals are then traditional ones and not fortuitous ones.
In light of the results of the present paper, we think that fortuitous congruences should be regarded as
general phenomena, that appear whenever we consider families of eigenforms for a reductive group that
arise as p-adic Langlands lifts from a group of smaller rank.

The paper can be divided in two parts. In the first one (Sections 2 to 9) we define two-parameter
families of GSp4-eigenforms of finite slope and we attach Galois representations to them; we then prove
that the image of these representations is big in a Lie theoretic sense, assuming that the residual repre-
sentation is either of full image or a symmetric cube. In the second part (Sections 10 to 16) we prove that
the size of the Galois representation attached to a two-parameter family is related to the congruences of
the family with lifts of eigenforms for a smaller group, constructed via a p-adic Langlands transfer. In the
first half we need to solve many technical problems when passing from genus 1 to genus 2, whereas the
second half is substantially different from its genus 1 counterpart. We present our results and arguments
in more detail below.

Fix a prime p and an integer M not divisible by p. Let HM2 be an abstract Hecke algebra unramified
outside Mp and of Iwahoric level at p. In their paper [AIP15], Andreatta, Iovita and Pilloni constructed
a rigid analytic object D2, that we call the GSp4-eigenvariety, and a map from HM2 to the ring of
analytic functions on D2, interpolating the systems of Hecke eigenvalues associated with the p-stabilized
Siegel modular forms of genus 2 and tame level M . The eigenvariety D2 is equipped with a map to the
two-dimensional weight space W2, that is the rigid analytic space associated with the formal scheme
Spf Zp[[(Z×p )2]] by Berthelot’s construction [dJ95, Section 7]. To our purposes it is important that
families be defined integrally, so we cannot work globally on irreducible components of the eigenvariety.
We consider instead an admissible domain Dh on D2 consisting of the points of slope bounded by a
rational number h and of weight in a wide open disc in the weight space. If the radius of this disc is
sufficiently small with respect to h, the restriction of the weight map to Dh is a finite map thanks to a
result of Belläıche (Proposition 5.1). A suitably chosen integral structure on the weight disc induces an
integral structure on Dh. This means that we can define a local profinite ring I◦ and a mapHM2 → I◦ that
interpolates the systems of Hecke eigenvalues of the classical eigenforms appearing in Dh. An argument
by Chenevier gives a Galois pseudocharacter on Dh, that we lift to a representation ρ : GQ → GSp4(I◦)
(Lemma 5.9). We define the “self-twists” of ρ as automorphisms of I◦ that induce an isomorphism of ρ
with one of its twists by a Dirichlet character (Definition 6.1). We write I◦0 for the subring of elements of
I◦ fixed by all the self-twists. We define a certain completion B of I◦0[1/p] and a Lie subalgebra Lie(Im ρ)
of gsp4(B) attached to Im ρ (see Section 8.1). We assume that ρ is Zp-regular (Definition 4.2) and that
the residual representation ρ is either full or of symmetric cube type (Definition 4.3). Our first main
result is the following.

Theorem 1.1. (Theorem 9.1) There exists a non-zero ideal l of B such that l · sp4(B) ⊂ Lie(Im ρ).

We call Galois level of the family the largest ideal l satisfying the inclusion of Theorem 1.1. We give
here a summary of the proof of Theorem 1.1, that takes up Sections 6 to 9. We first show that, under
our assumptions on ρ, there exists a classical weight such that ρ specializes to a representation with
big image at all points of this weight appearing on the family (Theorem 4.4). Here we need the recent
classicality result contained in [BPS16, Theorem 5.3.1]. Another essential ingredient is a result of Pink
(Theorem 4.5), that we use to show that the representation associated with a GSp4-eigenform that is
not a lift from a smaller group has big image with respect to the ring fixed by its self-twists. This is an
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analogue of the result of Ribet and Momose for GL2-eigenforms. We rely on a result proved in the second
part of the paper (see Corollary 4.1) to show that a form which is not a lift satisfies the assumptions of
Pink’s theorem.

Once a classical weight with the desired properties is chosen, we follow a strategy of J. Lang to obtain
some information on the image of ρ. As a first step we need to show that a big image result holds for
the product of the specializations of ρ of a given weight, rather than just for a single one (Proposition
7.13). The argument here relies on Goursat’s Lemma and on the classification of subnormal subgroups
of symplectic groups by Tazhetdinov. Afterwards we use the result of the first step to construct some
non-trivial unipotent elements in the image of ρ. In order to do this we need to prove an analogue of
[La16, Theorem 3.1], that allows us to lift the self-twists of the specializations of ρ at our chosen weight
to self-twists of ρ itself. The arguments of J. Lang about the lifting of the self-twists to automorphisms
of a suitable deformation ring can be translated to the genus 2 case with little effort, but descending to a
self-twist of the family requires some specific ingredients. Precisely, we prove that we can twist a family
of GSp4-eigenforms by a Dirichlet character to obtain a new family (Lemma 6.10) and we rely on the
étaleness of the eigenvariety above our chosen weight.

In Section 8 we show how the relative Sen theory of [CIT15, Section 5] can be extended to the group
GSp4, in order to associate a Sen operator with ρ. The eigenvalues of this operator are given explicitly
by the interpolation of the Hodge-Tate weights of the classical specializations of the family (Proposition
8.13). The exponential of the Sen operator induces by conjugation a structure of Zp[[T1, T2]]-Lie algebra
on Lie(Im ρ), so that the special elements we constructed generate a non-trivial congruence subalgebra.
This proves Theorem 1.1.

When ρ has full image the Galois level of the family is trivial (Corollary 16.2), so the main focus of the
rest of the paper is the case where ρ is a symmetric cube. We can give two definitions of a symmetric cube
locus on the eigenvariety: an automorphic one, as the locus of points whose system of Hecke eigenvalues
is obtained from that of an overconvergent GL2-eigenform via a symmetric cube morphism of Hecke
algebras, and a Galois one, as the locus of points whose Galois representation is the symmetric cube of
that associated with an overconvergent GL2-eigenform. An important result is the following.

Theorem 1.2. (Theorem 14.1) The automorphic and Galois definitions of the symmetric cube locus are
equivalent.

Theorem 1.2 plays an essential role in describing the Galois level of the family by automorphic means.
Note that this result and its role in our work are completely new with respect to the genus 1 case: there
the only possible congruences are of CM type and it is trivial to see that a point of small Galois image,
contained in the normalized of a torus, is a p-adic CM point (see [CIT15, Remark 3.11]).

The proof of Theorem 1.2 goes via the theory of (ϕ,Γ)-modules. It is known by Emerton’s work that
a Galois representation is associated with an overconvergent GL2-eigenform, up to a twist, if and only
if it is trianguline. Thanks to the recent work of Kedlaya, Pottharst and Xiao on triangulations over
eigenvarieties, we know that the “only if” part also holds for overconvergent GSp4-eigenforms (Theorem
13.3). By combining these results we reduce Theorem 1.2 to the proposition below. Let V be a two-
dimensional representation of the absolute Galois group of Qp.

Proposition 1.3. (Proposition 13.12) If Sym3V is trianguline then V is a twist of a trianguline repre-
sentation by a character.

We prove Proposition 1.3 by adapting to our situation some arguments of Di Matteo [DiM13]. We also
show an analogue of Proposition 1.3 where “trianguline” is replaced by “de Rham” (Corollary 13.10);
in this case the proof goes via nonabelian cohomology. Proposition 1.3 allows us to prove that if a
p-old point of symmetric cube type of DM2 is classical, then it is obtained from a classical point of an
eigencurve for GL2, via the classical Langlands lift attached to the symmetric cube representation by
Kim and Shahidi [KS02].

We study further the symmetric cube locus and show that it is Zariski-closed with zero- and one-
dimensional irreducible components. The one-dimensional part of the locus can be constructed as the
image of a morphism from an eigencurve for GL2, of a suitable tame level, to DM2 (Section 12.3). This
morphism is obtained by interpolating p-adically the classical symmetric cube Langlands lift. This
interpolation argument goes back to Chenevier’s work on the p-adic Jacquet-Langlands correspondence
[Ch05], but we prefer to use some results of Belläıche and Chenevier [Be12, Section 7.2.3] that allow us to
move more easily from an eigenvariety to the other when changing of weight spaces, Hecke algebras and
compact operators (see Section 11.1). The zero-dimensional components of the symmetric cube locus
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are given by isolated p-adic Langlands lifts, that cannot be interpolated due to the fact that their slopes
do not vary analytically. The appearance of such points is related to the existence of more than one
crystalline period for the corresponding Galois representation (Remark 14.10).

Restricting once again our attention to a local piece of the eigencurve describing a family, we define a
symmetric cube congruence ideal that measures the locus of symmetric cube specializations of the family
(Definition 15.1). We call it a fortuitous congruence ideal: since there are no two-parameter families
of symmetric cube type, the congruences detected by this ideal are symmetric cube specializations of a
family that is not globally a symmetric cube. Thanks to Theorem 1.2, that serves as a bridge between
the automorphic and Galois sides, we can relate the congruence ideal with the Galois level of the family.

Theorem 1.4. (Theorem 16.1) The sets of prime divisors of the Galois level and of the symmetric cube
congruence ideal coincide outside of a finite and explicit bad locus.

We think that the results of this paper can be generalized by allowing for different residual represen-
tations, hence different types of congruences, or by replacing GSp4 by other reductive groups for which
an eigenvariety has been constructed. We hope to come back to this problem in a later work.
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Notations. We fix some notations and conventions. In the text p will always denote a prime number
strictly larger than 3. Most argument work for every odd p; we specify when this is not sufficient. We
choose algebraic closures Q and Qp of Q and Qp, respectively. If K is a finite extension of Q or Qp we
denote by GK its absolute Galois group. We equip GK with its profinite topology. We denote by OK
the ring of integers of K. If K is local, we denote by mK the maximal ideal of OK . For every prime p we
fix an embedding ιp : Q ↪→ Qp, identifying GQp with a decomposition group of GQ. This identification

will be implicit everywhere. We fix a valuation vp on Qp normalized so that vp(p) = 1. It defines a norm

given by | · | = p−vp(·). We denote by Cp the completion of Qp with respect to this norm.
All rigid analytic spaces will be considered in the sense of Tate (see [BGR84, Part C]). Let K/Qp

be a field extension and let X be a rigid analytic space over K. We denote by O(X) the K-algebra of
rigid analytic functions on X, and by O(X)◦ the OK-subalgebra of functions with norm bounded by 1
(we often say “functions bounded by 1” meaning that they are bounded in norm). When f : X → Y
is a map of rigid analytic spaces, we denote by f∗ : O(Y ) → O(X) the map induced by f . There is a
Grothendieck topology on X, called the Tate topology; we refer to [BGR84, Proposition 9.1.4/2] for the
definition of its admissible open sets and admissible coverings.

We say that X is a wide open rigid analytic space if there exists an admissible covering {Xi}i∈N of
X by affinoid domains Xi such that, for every i, Xi ⊂ Xi+1 and the map O(Xi+1)→ O(Xi) induced by
the previous inclusion is compact.

There is a notion of irreducible components for a rigid analytic space X; see [Con99] for the details.
We say that X is equidimensional of dimension d if all its irreducible components have dimension d.

We denote by Ad the d-dimensional rigid analytic affine space over Qp. Given a point x ∈ Ad(Cp) and
r ∈ pQ, we denote by Bd(x, r) the d-dimensional closed disc of centre x and radius r. It is an affinoid
domain defined over Cp. We denote by Bd(x, r

−) the d-dimensional wide open disc of centre x and radius
r, defined as the rigid analytic space over Cp given by the increasing union of the d-dimensional affinoid
discs of centre x and radii {ri}i∈N with ri < r and limi 7→+∞ ri = r. With an abuse of terminology we
refer to Bd(x, r) as the d-dimensional “closed disc” and to Bd(x, r

−) as the d-dimensional “open disc”,
even though both are open sets in the Tate topology.

Let X be an affinoid or a wide open rigid analytic space. We denote by O(X){{T}} the ring of power
series

∑
i≥0 aiT

i with ai ∈ O(X) and limi |ai|ri → 0 for every r ∈ R+. This is the ring of rigid analytic

functions on X × A1.
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Let S be any subset of X(Cp). We say that S is:

(1) a discrete subset of X(Cp) if S ∩A is a finite set for any open affinoid A ⊂ X(Cp);
(2) a Zariski-dense subset of X(Cp) if, for every f ∈ O(X) vanishing at every point of S, f is identically

zero;
(3) an accumulation subset of X(Cp) if for every x ∈ S there exists a basis B of affinoid neighborhoods

of x in X such that for every A ∈ B the set S ∩ A(Cp) is Zariski-dense in A (this term is borrowed
from [BC09, Section 3.3.1]).

Let g ≥ 1 be an integer and let s be the g× g antidiagonal unit matrix (δi,n−i(i, j))1≤i,j≤g. Let Jg be

the 2g × 2g matrix

(
0 s
−s 0

)
. We denote by GSp2g the algebraic group of symplectic similitudes for

Jg, defined over Z; for every ring R the R-points of this group are given by

GSp2g(R) = {A ∈ GL4(R) | ∃ ν(A) ∈ R× s.t. tAJA = ν(A)J}.

For g = 1 we have GSp2 = GL2. The map A → ν(A) defines a character ν : GSp4(R) → R×. We refer
to ν as the similitude factor and we set Sp2g(R) = {A ∈ GSp2g(R) | ν(A) = 1}.

We denote by Bg the Borel subgroup of GSp2g such that for every ring R the R-points of Bg are the
upper triangular matrices in GSp2g(R). We let Tg be the maximal torus such that for every ring R the
R-points of Tg are the diagonal matrices in GSp2g(R). We write Ug for the unipotent radical of Bg.
We have Bg = TgUg. We will always speak of weights and roots for GSp2g with respect to the previous
choice of Borel subgroup and torus. For every root α we denote by Uα the corresponding one-parameter
unipotent subgroup of GSp2g. For every prime `, we write Ig,` for the Iwahori subgroup of GSp2g(Q`)
corresponding to our choice of Borel subgroup. For every n ≥ 1 we denote by 1n the n× n unit matrix.

Let g be a positive integer. For every prime ` and every integer n ≥ 0 we define some compact open
subgroups of GSp2g(AQ) by:

(1) Γ(g)(`n) = {h ∈ GSp2g(Ẑ) |h` ∼= 12g (mod `n)};
(2) Γ

(g)
1 (`n) = {h ∈ GSp2g(Ẑ) |h` (mod `n) ∈ Ug(Z/`nZ)};

(3) Γ
(g)
0 (`n) = {h ∈ GSp2g(Ẑ) |h` (mod `n) ∈ Bg(Z/`nZ)}.

In particular for n = 1 the `-component of Γ0(`) is the Iwahori subgroup of GSp4(Q`). Let N be an
arbitrary positive integer. Write N =

∏
i `
ni
i for some distinct primes `i and some ni ∈ N. We set

Γ
(g)
? (N) =

⋂
i Γ

(g)
? (`nii ) for ? = ∅, 0, 1. For g = 1 we will omit the upper index (1).

We denote by gsp2g the Lie algebra of GSp2g and by sp2g its derived Lie algebra, which is the Lie
algebra of sp2g. We denote by Ad : GSp2g → Aut(sp2g) the adjoint action of GSp2g on sp2g. It is an
irreducible representation of GSp2g.

By “classical modular form for GSp4” we always mean a vector-valued modular form.

2. Preliminaries on eigenvarieties

In this section we define the basic objects with which we are going to work: weight spaces, Hecke
algebras and eigenvarieties. We recall some of their properties.

2.1. The weight spaces. We choose once and for all u = 1 +p as a generator of Z×p . This choice deter-

mines an isomorphism Z×p ∼= (Z/(p−1)Z)×Zp. Let g be a positive integer. Consider the Iwasawa algebra

Zp[[(Z×p )g]]. A construction by Berthelot [dJ95, Section 7] attaches to the formal scheme Spf Zp[[(Z×p )g]]
a rigid analytic space that we denote by Wg. If A is a Qp-algebra, the A-points of Wg are the contin-

uous characters (Z×p )g → A×. Denote by ̂(Z/(p− 1)Z)g the group of characters of (Z/(p − 1)Z)g. The

following map gives an isomorphism from Wg to a disjoint union of g-dimensional open discs Bg(0, 1
−)

indexed by ̂(Z/(p− 1)Z)g:

ηg : Wg → ̂(Z/(p− 1)Z)g ×Bg(0, 1−),

κ 7→ (κ|(Z/(p−1)Z)g , (κ(u, 1, . . . , 1)− 1, κ(1, u, 1, . . . , 1)− 1, . . . , κ(1, . . . , 1, u)− 1)).

We write Λg for the algebra Zp[[T1, T2, . . . , Tg]] of formal series in g variables over Zp. It is the ring
of rigid analytic functions bounded by 1 on a connected component of the weight space.

We denote by κWg : Z×p → Zp[[(Z×p )g]]× the universal character of Wg. For every affinoid domain
A = SpmR and every inclusion ιA : A ↪→Wg we set κA = ι∗A ◦ κWg

. We call κA the universal character

associated with A. By [Bu07, Proposition 8.3] there exists r ∈ pQ such that κA is r-analytic, in the sense
5



that it can be extended to a character ((Z×p )g · Bg(1, r)) → R×. The radius of analyticity of κA is the
largest such r; we denote it by rκA .

We call arithmetic primes the primes of Zp[[(Z×p )g]]⊗̂ZpCp of the form Pk,ε = (k1, k2, . . . , kg, 1 + T1 −
ε1(u)uk1 , 1 + T2 − ε2(u)uk2 , . . . , 1 + Tg − εg(u)ukg ) for a g-tuple of integers k = (k1, k2, . . . , kg) and a
finite order character ε : (Z×p )g → C×p . We will always take as ε the trivial character 1; in this case we

write Pk = Pk,1. We say that a Qp-point κ : Z×p → Q×p of W◦g is classical if it is the specialization of κWg

at Pk for some k ∈ Zg.

2.2. The abstract Hecke algebras. The abstract Hecke algebras we consider are tensor products of
a Iwahori-Hecke algebra at p and of the spherical Hecke algebras at all primes outside of a finite set
containing p.

2.2.1. The abstract spherical Hecke algebra. Let ` be a prime. Let G be a Z-subgroup scheme of GSp2g

and let K ⊂ G(Q`) be a compact open subgroup. For γ ∈ G(Q`) we denote by 1([KγK]) the character-
istic function of the double coset [KγK]. Let H(G(Q`),K) be the Q-algebra generated by the functions
1([KγK]) for γ ∈ G(Q`), equipped with the convolution product. We call spherical (or unramified)
Hecke algebra of GSp2g at ` the Q-algebra H(GSp2g(Q`),GSp2g(Z`)). It is generated by the elements

T
(g)
`,i = 1([GSp2g(Z`)diag (1i, `12g−2i, `

2
1i)GSp2g(Z`)]), for i = 0, 1, . . . g, and (T

(g)
`,0 )−1. Note that our

operator T
(g)
`,0 is often denoted by S

(g)
` in the literature.

2.2.2. The abstract dilating Iwahori-Hecke algebra. The Hecke algebra H(Tg(Q`), Tg(Z`)) carries a nat-
ural action of the Weyl group Wg = Sg n (Z/2Z)g of GSp2g, where Sg is the group of permuta-

tions of {1, 2, . . . , g}: if diag (νt1, . . . , νtg, t
−1
g , . . . , t−1

1 ) is an element of the torus, Sg acts by per-

muting the ti’s and the non-trivial element in each Z/2Z sends ti to t−1
i . We denote the action of

w ∈ Wg on t ∈ T (Q`) by t 7→ w.t. The twisted Satake transform S
Tg
GSp2g

: H(GSp2g(Q`),GSp2g(Z`)) →
H(Tg(Q`), Tg(Z`)) induces an isomorphism of H(GSp2g(Q`),GSp2g(Z`)) onto its image, which is the
subalgebra of H(Tg(Q`), Tg(Z`)) consisting of Wg-invariant elements. In particular H(Tg(Q`), Tg(Z`)) is
a Galois extension of H(GSp2g(Q`),GSp2g(Z`)) of Galois group Wg.

For i = 0, 1, . . . , g let t
(g)
`,i = 1([diag (1i, `12g−2i, `

2
1i)Tg(Z`)]). Note that t

(g)
`,0 = S

Tg
GSp2g

(T g`,0). The set

(t
(g)
`,i )i=1,...,g generates the extension H(Tg(Q`), Tg(Z`)) over H(GSp2g(Q`),GSp2g(Z`)).
We call an element γ ∈ Tg(Z`) dilating if vp(α(γ)) ≤ 0 for every positive root α. Let Tg(Z`)− be

the subset of Tg(Z`) consisting of dilating elements and let H(Tg(Q`), Tg(Z`))− be the Q-subalgebra of
H(Tg(Q`), Tg(Z`)) generated by the functions 1([γTg(Z`)]) with γ ∈ Tg(Q`)−. The functions 1([γTg(Z`)])
with γ ∈ Tg(Q`)− also form a basis of H(Tg(Q`), Tg(Z`))− as a Q-vector space.

Remark 2.1. Every γ ∈ T (Q`) can be written in the form γ = γ1γ
−1
2 with γ1, γ2 ∈ T (Z`)−. A character

χ : H(Tg(Q`), Tg(Z`))− → Qp can be extended uniquely to a character χext : H(Tg(Q`), Tg(Z`)) → Qp
by setting χext([γT (Z`)]) = χ([γ1T (Z`)])χ([γ2T (Z`)]−1) for some γ1 and γ2 as before. It can be easily
checked that χext is well-defined.

LetH(GSp2g(Q`), Ig,`)− be the subalgebra ofH(GSp2g(Q`), Ig,`) generated by the functions 1([Ig,`γIg,`])

with γ ∈ T (Z`)−. We call H(GSp2g(Q`), Ig,`)− the dilating Iwahori-Hecke algebra at `. It is generated

by the elements U
(g)
`,i = 1([Ig,`diag (1i, `12g−2i, `

2
1i)Ig,`]), for i = 0, 1, . . . , g, and (U

(g)
`,0 )−1.

We define a morphism of Q-algebras ι
Tg
Ig,`

: H(GSp2g(Q`), Ig,`)− → H(Tg(Q`), Tg(Z`))− by sending

1(Ig,`γIg,`) to 1(Tg(Z`)γTg(Z`)) for every γ ∈ T (Z`)−. The map ι
Tg
Ig,`

is an isomorphism; this can be

proved as [BC09, Proposition 6.4.1].
Let p be a prime and N be a positive integer such that (N, p) = 1. Set

HNpg =
⊗

Q,`-Np

H(GSp2g(Q`),GSp2g(Z`))

and
HNg = HNpg ⊗Q H(GSp2g(Qp), Ig,p)−.

We call HNg the abstract Hecke algebra spherical outside N and Iwahoric dilating at p.

The algebra HNg acts on the space of classical vector-valued modular forms for GSp2g(Q) of level
Γ1(N) ∩ Γ0(p). With an abuse of notation we will consider the elements of one of the local algebras as
elements of HNg via the natural inclusion (tensoring by 1 at all the other primes).
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2.2.3. The Hecke polynomials. We record here some explicit formulas for the minimal polynomials

Pmin(t
(g)
`,i ;X) of the elements t

(g)
`,i over H(GSp2g(Q`),GSp2g(Z`)) when g is 1 or 2.

For g = 1, the element t
(1)
`,1 = 1([diag (1, `)T1(Z`)]) generates the degree two extensionH(T1(Q`), T1(Z`))

of H(GL2(Q`),GL2(Z`)). Let w be the only non-trivial element of the Weyl group of GL2. The minimal

polynomial of t
(1)
`,1 is Pmin(t

(1)
`,1)(X) = (X − t(1)

`,1)(X − (t
(1)
`,1)w). An explicit calculation gives

(2.1) Pmin(t
(1)
`,1 ;X) = (X − t(1)

`,1)(X − (t
(1)
`,1)w) = X2 − T (1)

` X + `T
(1)
`,0 .

For g = 2, the degree eight extension H(T2(Q`), T2(Z`)) over H(GSp4(Q`),GSp4(Z`)) is generated

by t
(2)
`,1 = 1([diag (1, `, `, `2)T2(Z`)]) and t

(2)
`,2 = 1([diag (1, 1, `, `)T2(Z`)]). Each of them has an orbit

of order four under the action of the Weyl group. If t = diag (νt1, νt2, t
−1
1 , t−1

2 ) is an element of the
torus we denote by w0, w1, w2 the generators of the Weyl group satisfying tw0 = diag (νt2, νt1, t

−1
2 , t−1

1 ),

tw1 = diag (νt−1
1 , νt2, t1, t

−1
2 ), tw2 = diag (νt1, νt

−1
2 , t−1

1 , t2). Note that t
(2)
`,2 is invariant under w0. The

calculation in the proof of [An87, Lemma 3.3.35] gives

(2.2)
Pmin(t

(2)
`,2 ;X) = (X − t(2)

`,2)(X − (t
(2)
`,2)w1)(X − (t

(2)
`,2)w2)(X − (t

(2)
`,2)w1w2) =

= X4 − T (2)
`,2 X

3 + ((T
(2)
`,2 )2 − T (2)

`,1 − `
2T

(2)
`,0 )X2 − `3T (2)

`,2 T
(2)
`,0 X + `6(T

(2)
`,0 )2.

Since t
(2)
`,1 = (t

(2)
`,2)(t

(2)
`,2)w1 is invariant under w1, we can also write

(2.3)

Pmin(t
(2)
`,1)(X) = (X − t(2)

`,2(t
(2)
`,2)w1)(X − (t

(2)
`,2)w2(t

(2)
`,2)w1w2)(X − t(2)

`,2(t
(2)
`,2)w2)(X − (t

(2)
`,2)w1(t

(2)
`,2)w1w2).

2.2.4. Normalized systems of Hecke eigenvalues. For this reason we introduce their standard normaliza-
tion, depending on the weight, before passing to the p-adic setting. Let f be a classical GSp2g-eigenform

of level Γ1(N) ∩ Γ0(p) and weight k = (k1, k2, . . . , kg). Let χ : HNg → Qp be the system of Hecke
eigenvalues associated with f .

Definition 2.2. For g ∈ {1, 2}, let χnorm : HNg → Qp be the character defined by

– χnorm|HNpg = χ|HNpg ;

– χnorm(U
(g)
p,i ) = p−

∑g−i
j=1(kj−j) for i = 1, 2, . . . , g (where the exponent of p is 0 for i = g).

We call χnorm the normalized system of Hecke eigenvalues associated with f .

2.3. The eigenvariety machine. We recall some elements of Buzzard’s “eigenvariety machine” [Bu07].
We call eigenvariety datum a 5-tuple (W,H, (M(A,w))A,w, (φA,w)A,w, η) where:

(1) there exists an integer g ≥ 1 such that W = Wg is the g-dimensional weight space defined in the
previous section;

(2) (A,w) varies over the couples consisting of an affinoid A ⊂ W and w ∈ Q satisfying p−w ≤ rκA ;
(3) for every (A,w) with A = SpmR, M(A,w) is a projective Banach R-module;
(4) H is a commutative ring;
(5) φA,w : H → EndR,cont(M(A,w)) is an action of H on M(A,w);
(6) η ∈ H is an element such that φA,w(η) is a compact operator on M(A,w) for every (A,w);
(7) when A and w vary the modules M(A,w) with their H-actions satisfy the compatibility properties

assumed in [Bu07, Lemma 5.6].

Let K be a finite extension of Qp. A morphism λ : H → K is called a K-system of eigenvalues for the
given datum if there exists a point κ ∈ W(K), an affinoid A = SpmR containing κ, a rational w and an
element m ∈M(A,w)⊗RK (where R→ K is the evaluation at κ) such that φA,w(T )m = λ(T )m for all
T ∈ H.

Theorem 2.3. For every eigenvariety datum (W,H, (M(A,w))A,w, (φA,w)A,w, η) there exists a triple
(D, ψ, w) consisting of

(1) a rigid analytic space D over Qp,
(2) a morphism of Qp-algebras ψ : H → O(D)◦,
(3) a morphism of rigid analytic spaces w : D →W (called the weight morphism),

with the following properties:

(1) ψ(η) is invertible in O(D);
7



(2) for every finite extension K/Qp the map

(2.4)
D(K)→ Hom(H,K),

x 7→ (T 7→ ψ(T )(x)),

induces a bijection between the K-points of D and the K-systems of eigenvalues for the given datum.

We call (D, ψ, w) the eigenvariety for the given datum.

We often leave ψ and w implicit and just refer to D as the eigenvariety. Since the space Wg is
equidimensional of dimension g, [Ch04, Proposition 6.4.2] implies that D is also equidimensional of
dimension g.

Thanks to property (1) in Theorem 2.3, we can give the following definition.

Definition 2.4. Let sl : D(Cp) → R≥0 be the function defined by sl(x) = vp(ψ(η)(x)) for every x ∈
D(Cp). We call sl(x) the slope of x.

Remark 2.5. The function sl : D(Cp)→ R+ is locally constant. In particular sl is bounded over A(Cp)
for every affinoid subdomain A of D.

Definition 2.6. We call ordinary eigenvariety for the given datum the largest open subvariety Dord of
D with the property that ψ(η)|Dord ∈ (O(Dord)◦)×.

2.4. The cuspidal GSp2g-eigencurve. Let g be a positive integer. Let p be an odd prime and let N

be a positive integer such that (N, p) = 1. Let HNg be the abstract Hecke algebra for GSp2g, spherical
outside N and Iwahoric dilating at p. Let Wg be the g-dimensional weight space. For every affinoid
A = SpmR ⊂ Wg and every sufficiently large rational number w, Andreatta, Iovita and Pilloni [AIP15,
Section 8.2] defined a Banach R-module Mg(A,w) of w-overconvergent cuspidal GSp2g-modular forms

of weight κA and tame level Γ1(N). For each (A,w) there is an action φgA,w : HNg → EndR,contMg(A,w).

Set U
(g)
p =

∏g
i=1 U

(g)
p,g . It is shown in [AIP15, Section 8.1] that (Wg,HNg , (Mg(A,w))A,w, (φ

g)A,w, U
(g)
p )

is an eigenvariety datum. The eigenvariety machine constructs from this datum a rigid analytic variety
over Qp, equidimensional of dimension g. We call it the GSp2g-eigenvariety of tame level N and we

denote it by DNg . It is equipped with a weight morphism wg : DNg →Wg and a map ψg : HNg → O(DNg ),
that interpolates the normalized systems of Hecke eigenvalues of classical cuspidal GSp2g-eigenforms of

tame level Γ1(N). The images of the elements T
(g)
i,` and U

(g)
i,p , 1 ≤ i ≤ g, belong to O(DNg )◦.

When g = 1 we call DN1 the eigencurve. It was constructed by Coleman and Mazur in [CM98] for
N = 1 and p > 2, building on earlier ideas of Coleman. Their construction was extended to all N and p
by Buzzard in [Bu07].

We call a point x ∈ DNg (Cp) classical if the system of Hecke eigenvalues associated with x by the map
(2.4) is that of a classical modular form f of level Γ1(N) ∩ Γ0(p) and weight wg(x). In this case wg(x)
is clearly a classical weight.

There is a slope function sl : DNg (Cp)→ R+ given by Definition 2.4. By Coleman’s classicality result, a

point of DM1 of weight k ≥ 2 and slope h < k−1 is classical. An analogue for general genus is given by the
result below. Let x be a Qp-point of DN2 of weight k = (k1, k2, . . . , kg) ∈ Zg, so that k1 ≥ k2 ≥ . . . ≥ kg.

Proposition 2.7. ([BPS16, Theorem 5.3.1], see also Remark 1 in the Introduction of loc. cit.) If

sl(x) < kg − g(g+1)
2 then the point x is classical.

2.4.1. The non-CM eigencurve. We say that a classical point of DN1 is a CM point if it corresponds to a
classical CM modular form. We say that an irreducible component of DN1 is a CM component if all its
classical specializations are CM points.

Remark 2.8. By [Hi15, Proposition 5.1], if an ordinary irreducible component of the eigencurve contains
a classical CM eigenform of weight k ≥ 2 then the component is CM. In particular there exist CM
irreducible components of the ordinary eigencurve, and every ordinary CM classical point belongs to a
CM component. On the contrary, the CM classical points of the positive slope eigencurve form a discrete
set (recall that this means that they are finite in each affinoid domain). This is a consequence of [CIT15,
Corollary 3.6], where it is shown that the eigencurve D+,≤h contains a finite number of CM classical
points.

Let DN,G1 be the Zariski-closure in DN1 of the set of non-CM classical points. We call DN,G1 the non-CM
eigencurve. The upper index G stands for “general”, since CM components are exceptional among the
irreducible components of DN1 .
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Remark 2.9. It follows from Remark 2.8 that DN,G1 is the union of all the non-CM irreducible compo-

nents of DN1 . In particular DN,G1 is equidimensional of dimension 1 and it contains the positive slope
eigencurve. Moreover the set of non-CM classical points is an accumulation and Zariski-dense subset of

DN,G1 .

3. The Galois pseudocharacters on the eigenvarieties

In this section p is a fixed prime, M is a positive integer prime to p and g is 1 or 2. For a point
x ∈ DMg (Cp) we denote by evx : O(DMg )→ Cp both the evaluation at x and the map GSp2g(O(DMg ))→
GSp2g(Cp) induced by evx. Recall that the GSp2g-eigenvariety DMg is endowed with a morphism

ψg : HMg → O(DMg )

that interpolates the normalized systems of Hecke eigenvalues associated with the cuspidal GSp2g-

eigenforms of level Γ1(N) ∩ Γ0(p). Also recall that the images of T
(g)
i,` and U

(g)
i,p , 1 ≤ i ≤ g, are elements

of O(DMg )◦. For a classical point x ∈ DMg (Qp) let ψx = evx ◦ ψg. Let fx be the classical GSp2g-eigenform

having system of Hecke eigenvalues ψx and let ρx : GQ → GSp2g(Qp) be the p-adic Galois representation
attached to fx. When x varies, the traces of the representations ρx can be interpolated into a pseudochar-
acter with values in O(DMg )◦. This is the main result of this section. Unfortunately the pseudocharacter

obtained this way cannot be lifted to a representation with coefficients in O(DMg )◦. We will be able to

obtain a lift only by working over a sufficiently small admissible subdomain of cDM
g (see Section 5.3).

3.1. Classical results on pseudocharacters. We refer to [Ro96, Sections 2 and 3] for the definition
and basic properties of pseudocharacters. In this subsection d is a positive integer, A is a commutative
ring with unit and R is an A-algebra with unit (not necessarily commutative). If G is a group and T : G→
A is a map, we say that T is a pseudocharacter if it can be extended to a pseudocharacter A[G] → A.
Recall that if τ : R → Md(A) is a representation, the map Tr(τ) : R → A is a pseudocharacter of
dimension d. Thanks to the following result of Carayol, τ is uniquely determined by the pseudocharacter
Tr(τ).

Theorem 3.1. [Ca94] Suppose that A is a complete noetherian local ring. Let A′ be a semilocal extension
of A. Let τ ′ : R → Md(A

′) be a representation. Suppose that the traces of τ ′ belong to A. Then there
exists a representation τ : R → Md(A), unique up to isomorphism over A, such that τ is isomorphic to
τ ′ over A′.

Under some hypotheses on the ring A it is known that every pseudocharacter arises as the trace of a
representation. The first of the following two theorems is due to Taylor when char(A) = 0 and Rouquier
when char(A) > d; the second one was proved independently by Nyssen and Rouquier.

Theorem 3.2. [Ta91, Ro96] Suppose that A is an algebraically closed field of characteristic either 0 or
greater than d. Let T : R → A be a d-dimensional pseudocharacter. Then there exists a representation
τ : R→ Md(A) such that Tr(τ) = T .

Theorem 3.3. [Ny96][Corollary 5.2][Ro96] Suppose that A is a local henselian ring in which d! is
invertible and let F denote the residue field of A. Let T : R → A be a pseudocharacter of dimension d
and T : R → F be its reduction modulo the maximal ideal of A. Suppose that there exists an irreducible
representation τ : R → Md(F) such that Tr(τ) = T . Then there is an isomorphism R/ kerT ∼= Md(A)
and the projection R→ R/ kerT is a representation lifting τ .

3.2. The characteristic polynomial of a pseudocharacter. We introduce a notion of characteristic
polynomial of a pseudocharacter. Let τ : G → GLd(A) be a representation and let T = Tr(τ). For

g ∈ G let α1, α2, . . . , αd be the eigenvalues of τ(g). For every n ∈ N we have T (gn) =
∑d
i=1 α

n
i , so

the functions T (gn) generate over Q the ring of symmetric polynomials with rational coefficients in
the variables α1, α2, . . . , αn. We deduce that there exist polynomials f1, f2, . . . , fd ∈ Q[x1, x2, . . . , xd],

independent og g, such that det(1−Xτ(g)) = 1 +
∑d
i=1 f1(T (g), T (g2), . . . , T (gd))Xi.

Definition 3.4. If T : G → A is a d-dimensional pseudocharacter, we let Pchar(T ) : G → A[X]deg=d be
the polynomial defined by

Pchar(T ) = 1 +

d∑
i=1

f1(T (g), T (g2), . . . , T (gd))Xi,
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where f1, f2, . . . , fd are as in the discussion above. We call Pchar(T ) the characteristic polynomial of T .

For example for d = 2 we have

(3.1) Pchar(T )(g) = 1− T (g)X +

(
T (g)2 − T (g2)

2

)
X2.

Note that Chenevier constructed in [Ch14] objects called “determinants” that include information on
the characteristic polynomials of the elements of the group algebra. In our setting we do not need this
tool; the polynomial associated with T by Definition 3.4 is the one mentioned in [Ch14, Note 7].

For later use we introduce the notion of symmetric cube of a two-dimensional pseudocharacter.

Definition 3.5. Let T : G→ A be a two-dimensional pseudocharacter. The symmetric cube of T is the
pseudocharacter Sym3T : G→ A defined by

Sym3T (g) =
T (g)2(3T (g2)− T (g)2)

2

This definition is justified by the remark below.

Remark 3.6. Let τ : G → GL2(A) be a representation and let T = Tr(τ). Then the trace of the
representation Sym3τ : G → GSp4(A) is Sym3T . In particular Pchar(Sym3T )(g) = Sym3Pchar(T )(g).
We deduce from the definition of Pchar that the equality Pchar(Sym3T ) = Sym3Pchar(T ) must hold for
every pseudocharacter T : G→ A (not necessarily defined as the trace of a representation).

3.3. Interpolation of the classical pseudocharacters. As before let g ∈ {1, 2}. Every classical point
of DMg admits an associated Galois representation. In this section we interpolate the trace pseudochar-
acters attached to these representations to construct a pseudocharacter over the eigenvariety.

We remind the reader that for every ring R we implicitly extend a character of the Hecke algebra
HMg → R× to a morphism of polynomial algebras HMg [X] → R[X] by applying it to the coefficients.
Recall that we fixed an embedding GQ` ↪→ GQ for every prime `, hence an embedding of the inertia
subgroup I` in GQ. As usual Frob` denotes a lift of the Frobenius at ` to GQ` .

Let Scl denote the set of classical points of DMg . Let x ∈ Scl. We keep the notations evx, ψx, ρx as in

the beginning of the section. We let Tx : GQ → Qp be the pseudocharacter defined by Tx = Tr(ρx).

Proposition 3.7. There exists a pseudocharacter Tg : GQ → O(DMg ) of dimension 2g with the following
properties:

(1) for every prime ` not dividing Np and every h ∈ I` we have Tg(h) = 2, where 2 ∈ O(DMg ) denotes
the function constantly equal to 2;

(2) for every prime ` not dividing Np we have Pchar(Tg)(Frob`)(X) = ψg(Pmin(t
(g)
`,g ;X));

(3) for every x ∈ Scl we have evx ◦ Tg = Tx.

Proof. The pseudocharacter Tg is constructed via the interpolation argument of [Ch04, Proposition 7.1.1].
Its properties are a consequence of those of the classical representations. See [Co16, Theorem 3.5.10] for
a detailed proof of the proposition. �

Remark 3.8.

(1) Let x ∈ DMg (Qp). Consider the 2g-dimensional pseudocharacter Tx : GQ → Qp defined by Tx =

evx ◦ T2g. By Theorem 3.2 there exists a Galois representation ρx : GQ → GL4(Qp) satisfying Tx =
Tr(ρx). We will see in Section 5.3 that, when ρx is absolutely irreducible, ρx is isomorphic to a
representation GQ → GSp4(Qp).

(2) When x varies in a connected component of DMg , the residual representation ρx : GQ → GSp2g(Qp)
is independent of x. We call it the residual representation associated with the component.

4. Big image of Galois representations attached to GSp4-eigenforms

Let N be a positive integer and let p be a prime not dividing N . Let F be a GSp4-eigenform of level
Γ1(N). Let ρF,p : GQ → GSp4(Qp) be the p-adic Galois representation associated with F . It is defined
over a p-adic field K. Under the technical condition of “Zp-regularity” of ρF,p and an assumption on
the associated residual representation, we prove that the image of ρF,p is “big” when F is not a lift from
a GL2-eigenform. An important ingredient of the proof is a result that we will prove later, Theorem
13.18(i). More precisely we need the corollary that we state below.
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Corollary 4.1. (Corollary 13.19) Suppose that there exists a representation ρ′ : GQ → GL2(Qp) sat-

isfying ρF,p ∼= Sym3ρ′. Then F is the symmetric cube lift of a GL2-eigenform, defined by Corollary
10.4.

Another crucial ingredient is a theorem of Pink that we recall below (Theorem 4.5).
In the following definitions, let E be a finite extensions of Qp. Let R be a local ring with maximal ideal

mR and residue field F. Let τ : GE → GSp4(R) be a representation. Let PGSp4(R) = GSp4(R)/R×,
where R× is identified with the subgroup of scalar matrices. We denote by τ : GE → GSp4(F) the
reduction of τ modulo mR. Recall that T2 is the torus consisting of diagonal matrices in GSp4. We give
a notion of Zp-regularity of τ , analogous to that in [HT15, Lemma 4.5(2)].

Definition 4.2. We say that τ is Zp-regular if there exists d ∈ Im τ ∩T2(R) with the following property:
if α and α′ are two distinct roots of GSp4 then α(d) 6= α′(d) (mod mR). If d has this property we call it
a Zp-regular element.

From now on we focus on representations that are either “residually full” or “residually of symmetric
cube type”, in the sense of the definition below. Note that these two types of representations appear in
[Pil12, Section 5.8] as examples of those for which he can construct a sequence of Taylor-Wiles primes.

Definition 4.3. We say that τ is:

(1) residually full if there exists a non-trivial subfield F′ of F and an element g ∈ GSp4(F) such that

Sp4(F′) ⊂ g(Im τ)g−1 ⊂ GSp4(F′);
(2) residually of symmetric cube type if there exist a non-trivial subfield F′ of F and an element g ∈

GSp4(F) such that
Sym3SL2(F′) ⊂ g(Im τ)g−1 ⊂ Sym3GL2(F′).

We also say that τ is full in case (i) and of symmetric cube type in case (ii).

We write sp4(K) for the Lie algebra of Sp4(K) and Ad : GSp4(K) → End(sp4(K)) for the adjoint
representation. Let F and ρF,p : GQ → GSp4(OK) be as in the beginning of the section. Let E be the
subfield of K generated over Qp by the set {Tr(Ad (ρ(g)))}g∈GQ . Let OE be the ring of integers of E.
For a GL2-eigenform f , we denote by ρf,p the associated p-adic Galois representation. We will prove the
following result.

Theorem 4.4. Assume that ρF,p is Zp-regular and that one of the following two conditions is satisfied:

(i) ρF,p is residually full;
(ii) F is not a p-stabilization of the symmetric cube lift of a GL2-eigenform, defined by Corollary 10.4.

Then the image of ρF,p contains a principal congruence subgroup of Sp4(OE).

For use in the proof of of Theorem 4.4 we state a result of Pink.

Theorem 4.5. [Pink98, Theorem 0.7] Let L be a local field and let H be an absolutely simple connected
adjoint group over L. Let Γ be a compact Zariski-dense subgroup of H(L). Suppose that the adjoint
representation of Γ is irreducible. Then there exists a closed subfield E of L and a model HE of H over
E such that Γ is an open subgroup of HE(E).

We also need the following lemma.

Lemma 4.6. Let G be a profinite group and let G1 be a normal open subgroup of G. Let L be a field.
Let τ : G → GSp4(L) be a continuous representation. Suppose that:

(1) there exists a representation τ ′1 : G1 → GL2(L) such that τ |G1
∼= Sym3τ ′1;

(2) the image of τ ′1 contains a principal congruence subgroup of SL2(L);
(3) there exists a character η : G → L× such that det τ ∼= η6.

Then there exists a finite extension ι : L ↪→ L′ and a representation τ ′ : G → GL2(L′) such that ι ◦ τ ∼=
Sym3τ ′.

Proof. We show that there is a finite extension L′ of L such that ι ◦ τ(G) ⊂ Sym3GL2(L′). For g ∈
GSp4(L) let Ad (g) : GSp4(L) → GSp4(L) be conjugation by g. Since G1 is an open normal subgroup
of G, τ(G) normalizes τ(G1). Let g be an arbitrary element of τ(G). The map Ad (g) restricts to
an automorphism Ad (g)|τ(G1) of τ(G1). Since τ |G1

∼= Sym3τ ′1, the symmetric cube map induces an
isomorphism τ(G1) ∼= τ ′1(G1). Hence Ad (g) induces an automorphism Ad (g)′ of τ ′1(G1), which is a
subgroup of GL2(L) containing a congruence subgroup of SL2(L). By applying Corollary 6.16 to the
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map Ad (g)′ : τ ′1(G1) → τ ′1(G1) we deduce that there exists hg ∈ GL2(L), a field automorphism σ of L
and a character ϕ : τ ′1(G1)→ L× such that

(4.1) Ad (g)′(x) = ϕ(x)hgx
σh−1

g

for every x ∈ G1. Since every operation in Equation (4.1) is L-linear, the automorphism σ must be the
identity. Moreover Ad (g)′ is induced by Ad (g), so by taking characteristic polynomials on both sides of
the equation we obtain that ϕ is trivial. Hence Equation (4.1) gives Ad (g)|τ(G1) = Ad (Sym3hg)|τ(G1),

so the element g(Sym3hg)
−1 centralizes τ(G1) and by Schur’s lemma it is a scalar γg14 for some γg ∈ L.

Choose a set of representatives S for the finite group G/G1. Let L′ be the finite extension of L obtained
by adding the cubic roots of the elements in the set {γg | g ∈ τ(S)}. Let ι : L → L′ be the inclusion.

For g ∈ ι ◦ τ(S) we have ι(γg14) ∈ Sym3GL2(L′) by construction of L′, so ι(g) = ι(γg14 · Sym3hg) ∈
Sym3GL2(L′). For every g ∈ τ(G) we can write g = g1g2 with g1 ∈ τ(G1) and g2 ∈ τ(S). Since
τ(G1) ⊂ Sym3GL2(L) we obtain ι(g) = ι(g1)ι(g2) ∈ Sym3GL2(L′).

For every g ∈ GQ, let τ ′(g) be the unique element of GL2(L′) that satisfies:

(1) Sym3τ ′(g) = ι ◦ τ(g);
(2) det τ ′(g) = ι ◦ η(g).

Such an element exists by the result of the previous paragraph. Then the map τ ′ : GQ → GL2(L′) defined

by g 7→ τ ′(g) is a representation satisfying Sym3τ ′ ∼= ι ◦ τ . �

The rest of the section is devoted to the proof of Theorem 4.4. Let (Im ρF,p)
′ be the derived subgroup

of Im ρF,p and let G = (Im ρF,p) ∩ Sp4(K). We denote by G the Zariski-closure of G in Sp4(K). As in

[HT15, Section 3], we will show first that under the hypotheses of Theorem 4.4 we have G = Sp4(K),
and second that G is p-adically open in G. We will replace the ordinarity assumption in loc. cit. by that

of Zp-regularity. Let G
◦

denote the connected component of the identity in G.
Let H be any connected, Zariski-closed subgroup of Sp4, defined over K. As in [HT15, Section 3.4]

we have six possibilities for the isomorphism class of H over K:

(1) H ∼= Sp4;
(2) H ∼= SL2 × SL2;
(3) H ∼= SL2 embedded in a Klingen parabolic subgroup;
(4) H ∼= SL2 embedded in a Siegel parabolic subgroup;
(5) H ∼= SL2 embedded via the symmetric cube representation SL2 → Sp4 (in this case we write

H ∼= Sym3SL2);
(6) H ∼= {1}.
We show that only (1) is possible for H = G

◦
.

Lemma 4.7. If condition (i) or (ii) in Theorem 4.4 holds, then G
◦ ∼= Sp4.

Proof. Let mK be the maximal ideal of OK and let FK = OK/mK . The group (Im ρF,p)
′ is contained in

G
◦
(OK). By reducing modulo mK we obtain that the derived subgroup (Im ρF,p)

′ of Im ρF,p is contained

in G
◦
(FK). If ρF,p is residually full, then the only choice for the isomorphism class of G

◦
is G

◦ ∼= Sp4.

If ρF,p is residually of symmetric cube type, then either G
◦ ∼= Sp4 or G

◦ ∼= Sym3SL2.

Suppose thatG
◦ ∼= Sym3SL2. We show that there exists a GL2-eigenform f such that ρF,p ∼= Sym3ρf,p.

This will contradict the second part of condition (ii) of Theorem 4.4, concluding the proof of Lemma

4.7. Since G
◦
(K) is of finite index in G(K), Lemma 4.6 implies that G(K) ⊂ Sym3SL2(K), so Im ρF,p ⊂

Sym3GL2(K). Hence there exists a representation ρ′ satisfying ρF,p ∼= Sym3ρ′. Since ρF,p is associated
with a GSp4-eigenform, Corollary 4.1 implies that ρ′ is associated with a GL2-eigenform f . �

The proof of Theorem 4.4 is completed by the following proposition.

Proposition 4.8. Suppose that G ∼= Sp4(K). Then the group G contains an open subgroup (for the
p-adic topology) of Sp4(E).

Proof. Consider the image Gad of G under the projection Sp4(K) → PGSp4(K). It is a compact
subgroup of PGSp4(K). Since G ∼= Sp4(K), the group Gad is Zariski-dense in PGSp4(K). By Theorem
4.5 there is a model H of PGSp4 over E such that Gad is an open subgroup of H(E). By the assumption
of Zp-regularity of ρ, there is a diagonal element d with pairwise distinct eigenvalues. The group H(E)
must contain the centralizer of d in PGSp4(E), which is a split torus in PGSp4(E). Since H is split and
H ×E K ∼= PGSp4/K , H is a split form of PGSp4 over E. Then H must be isomorphic to PGSp4 over
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E by unicity of the quasi-split form of a reductive group. Hence Gad is an open subgroup of PGSp4(E).
Since the map Sp4(K) → PGSp4(K) has degree 2 and G ∩ Sp4(E) surjects onto Gad ∩ PGSp4(E), G
must contain an open subgroup of Sp4(E). In particular G contains a principal congruence subgroup of
Sp4(OE). �

Theorem 4.4 states that, when ρF,p is either full or of symmetric cube type, the image of ρF,p is large
if and only if F is not a lift of an eigenform from a smaller group, the only possible such lift under these
assumptions being associated with the symmetric cube representation of GL2. We think that a similar
result should hold under more general assumptions on the residual representation, and that it would
follow from Pink’s theorem together with an analogue of Corollary 4.1 for the other possible Langlands
lifts to GSp4.

5. Finite slope families of GSp2g-eigenforms

In this section we define families of finite slope GSp2g-eigenforms of level Γ1(N) ∩ Γ0(p), extending
the definitions given in [CIT15, Section 3.1] for g = 1. Our goal is to define such families integrally. In
the following sections we will only use families of genus 1 or 2, but we can give the definitions for general
genus with no extra effort.

Let p be a prime number and let N be a positive integer prime to p. For g ≥ 1 let DN,hg be the

GSp2g-eigenvariety of tame level Γ1(N). Let h ∈ Q+,×. Since the slope sl : DN,hg (Cp) → R≥0 is the

valuation of a rigid analytic function on DN,hg , the locus of Cp-points x ∈ DNg satisfying sl(x) ≤ h admits

a structure of rigid analytic subvariety of DNg . We denote it by DNg,h. Recall that we always identify the
g-dimensional weight space Wg with a disjoint union of open discs of centre 0 and radius 1. A standard
way to obtain an integral structure on an admissible domain of an eigenvariety is to use the integral
structure on the weight space via the weight map. The restriction of the weight map to DN,hg is in
general not finite if h > 0, but it becomes finite when restricted to a sufficiently small admissible domain
in DN,hg . This is assured by a result of Belläıche that we recall below. For every affinoid subdomain V

of W◦g , let DN,hg,V = DN,hg ×W◦g V and let whg,V = wg,h|DN,hg,V
: DN,hg,V → V .

Proposition 5.1. (Belläıche)

(1) For every κ ∈ W◦g (Qp) there exists an affinoid neighborhood Vh,κ of κ in W◦g such that the map

whg,Vh,κ is finite.

(2) When h varies in Q+,× and κ varies in W◦g , the set {(whg,Vh,κ)−1(Vh,κ)}h,κ is an admissible affinoid

covering of DNg .

In Belläıche’s terminology, a pair (Vh,κ, h) such that Vh,κ has the property described in (1) is called an

adapted pair. Part (1) of Proposition 5.1 follows from the fact that the characteristic power series of U
(2)
p

acting on modules of overconvergent eigenforms is strictly convergent, in particular from the calculation
in [Be12, Proposition II.1.12] and the fact that the map from the eigenvariety to the spectral variety
is finite. Part (2) follows from (1) together with the admissibility of Buzzard’s covering of the spectral
variety ([Bu07, Theorem 4.6]) and the construction of the eigenvariety (see [Be12, Theorem II.3.3]).

Remark 5.2.

(1) Every affinoid neighborhood of κ ∈ W◦g contains a wide open disc centred in κ. Proposition 5.1

implies that there exists a radius rh,κ ∈ pQ such that

wh
g,Bg(κ,r−h,κ)

: DN,h
g,Bg(κ,r−h,κ)

→ Bg(κ, r
−
h,κ)

is a finite morphism.
(2) Thanks to Hida theory for GSp4 we know that the ordinary eigenvariety DM,0

g is finite over W◦g .
Hence we can take r0,κ = 1 for every κ.

(3) We would like to have an estimate for rh,κ independent of κ and with the property that rh,κ → 0 for
h→ 0, in order to recover the ordinary case in this limit. This is not available at the moment for the
group GSp2g. An estimate of the analogue of this radius is known for the eigenvarieties associated
with unitary groups compact at infinity by the work of Chenevier [Ch04, Théorème 5.3.1].
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5.1. Families defined over Zp. For our purpose of studying the images of Galois representations, we
will need to have our finite slope families defined over Zp. For this reason we specialize to families over
weight discs for which we can construct a Zp-model. For simplicity we only work on the connected
component W◦g . Recall that we defined coordinates T1, T2, . . . , Tg on W◦g . Let κ be a point of W◦g with
coordinates (κ1, κ2, . . . , κg) in Zgp; for instance we can take as κ the arithmetic prime Pk for some k ∈ Zg.
Let rh,κ be the largest radius in pQ such that the map wκ,Bg(κ,r−h,κ) : DN,h

g,Bg(κ,r−h,κ)
→ Bg(κ, r

−
h,κ) is finite.

Such a radius is non-zero thanks to Remark 5.2(1). Let sh be a rational number satisfying rh = psh . We
define a model for Bg(κ, r

−
h ) over Qp by adapting Berthelot’s construction for the wide open unit disc

(see [dJ95, Section 7]). Write sh = b
a for some a, b ∈ N. For i ≥ 1, let si = sh + 1/2i and ri = p−si . Set

A◦ri = Zp〈t1, t2, . . . , tg, Xi〉/(t2
ia
j − pa+2ibXi)j=1,2,...,g

and Ari = A◦ri [p
−1]. Set Bi = SpmAri . Then Bi is a Qp-model of the disc of centre κ and radius ri. We

define morphisms A◦ri+1
→ A◦ri by

Xi+1 7→ paX2
i ,

tj 7→ tj for j = 1, 2, . . . , g,

They induce compact maps Ari+1
→ Ari which give open immersions Bi ↪→ Bi+1. We define Bg,h =

lim−→i
Bi where the limit is taken with respect to the above immersions. Let Λg,h = O(Bg,h)◦. Then

Λg,h = lim←−iO(SpmBi)
◦ = lim←−iA

◦
ri . We call Λg,h the genus g, h-adapted Iwasawa algebra; we leave

its dependence on κ implicit. We define t1, t2, . . . , tg ∈ Λ2,h as the projective limits of the variables
t1, t2, . . . , tg, respectively, of A◦ri .

There is a map of Zp-algebras ι∗g,hΛh → Λh,g defined by Tj 7→ tj +κj for j = 1, 2, . . . , g. The inclusion

ιg,h : Bg,h ↪→ W◦g induced by ι∗g,h makes Bg,h into a Qp-model of Bg(κ, r
−
h ), endowed with the integral

structure defined by Λg,h.

Let ηh be an element of Qp satisfying vp(ηh) = sh. Let Kh = Qp(ηh) and let Oh be the ring of
integers of Kh. The algebra Λg,h is not a ring of formal series over Zp, but there is an isomorphism
Λh ⊗Zp Oh ∼= Oh[[t1, t2, . . . , tg]].

We say that a prime of Λg,h is arithmetic if it lies over an arithmetic prime of Λg. By an abuse of
notation we will write again Pk for an arithmetic prime of Λg,h lying over the arithmetic prime Pk of Λg.

Remark 5.3. Let k = (k1, k2, . . . , kg) be a cohomological weight for GSp2g. There exists a prime P of

Λg,h lying over the prime Pk of Λh if and only if the classical weight k belongs to the disc Bg(0, r
−
h );

otherwise we have PkΛh = Λh. This happens if and only if vp(ki) > −vp(rh)− 1 for i=1,2,. . . ,g, as we
can see via a simple calculation.

Let DN,hg,Bg,h
be the rigid analytic space and wg,h be the morphism fitting in the cartesian diagram

(5.1)

DNg,h ×W◦g Bg,h DN,hg

Bg,h W◦g

wg,h wg

ιg,h

The rigid analytic space DNg,h is a model of DN,h
g,Bg(κ,r−h,κ)

over a p-adic field, but it is not necessarily

defined over Qp since the map ιg,h may not be. We say that a Cp-point of DNg,h is classical if it is a

classical point of DN,h
g,Bg(κ,r−h,κ)

.

Let Tg,h = O(DNg,h)◦. We call T2,h the genus g, h-adapted Hecke algebra; we leave its dependence on
κ implicit again. The morphism wg,h induces w∗g,h : Λh,g → Tg,h. Thanks to our choice of rh, w∗g,h gives

Tg,h a structure of finite Λg,h-algebra. The DNg,h → D
N,h

g,Bg(κ,r−h,κ)
appearing in the diagram induces a

map O(DN,h
g,Bg(κ,r−h,κ)

)◦ → Tg,h, that we compose with ψg : HNg → O(DN,h
g,Bg(κ,r−h,κ)

)◦ to obtain a morphism

ψg,h : HNg → Tg,h.

For a prime P of Tg,h we denote by evP : Tg,h → Zp the evaluation at P. We say that P is a classical

point of SpecTg,h if evP ◦ ψg,h : HNg → Zp is the system of Hecke eigenvalues attached to a classical

GSp2g-eigenform. These systems of eigenvalues also appear at classical points of DNg,h.
14



Definition 5.4. We call family of GSp2g-eigenforms of slope bounded by h an irreducible component I

of DNg,h, equipped with the integral structure defined by Tg,h.

We will usually refer to an I as in the definition simply as a finite slope family. Let I◦ = O(I). Then
I◦ is a finite Λh-algebra and I is determined by the surjective morphism θ : Tg,h � I◦. We sometimes
refer to this morphism as a finite slope family. The family I is equipped with maps wθ : I → Bg,h
and ψθ : HNg → I◦ induced by wg,h and ψg,h, respectively. The notation ◦ denotes the fact that we are
working with integral objects. When introducing relative Sen theory in Section 8 we will need to invert
p and we will drop the ◦ from all rings.

Remark 5.5. Since Λh is profinite and local and Tg,h is finite over Λh, Tg,h is profinite and semilocal.

The connected components of DM,h
g,Bg,h

are in bijection with the maximal ideals of Tg,h. Let I and θ be as

above. Then ker θ is contained in the unique maximal ideal mθ corresponding to the connected component
of DNg,h containing I. The Λh-algebra I◦ is profinite and local with maximal ideal mI◦ = θ(mθ).

Proposition 2.7 implies that every family I contains at least a classical point. By the accumulation
property of classical point and the irreducibility of I, the classical points are a Zariski dense subset of
I. Hence the set of classical points of Spec I◦ is also Zariski dense in Spec I◦. Every classical point of
Spec I◦ lies over an arithmetic prime of Spec Λg,h.

5.2. Non-critical points on families. Let θ : Tg,h → I◦ be a family of GSp4-eigenforms.

Definition 5.6. We call an arithmetic prime Pk ⊂ Λg,h non-critical for I◦ if:

(1) every point of Spec I◦ lying over Pk is classical;
(2) the map w∗g,Bg,h : Λg,h → I◦ is étale at every point of Spec I◦ lying over Pk.

We call Pk critical for I◦ if it is not non-critical. We also say that a classical weight k is critical or
non-critical for I◦ if the arithmetic prime Pk has that property.

Remark 5.7. By Proposition 2.7, if k is a classical weight belonging to Bg,h and h < kg − g(g+1)
2 then

k satisfies condition (i) of Definition 5.6. We do not know of a simple assumption on the weight that
guarantees that the second condition is also satisfied.

For later use we state a simple lemma.

Lemma 5.8. The set of non-critical arithmetic primes is Zariski-dense in Λh.

Proof. This follows from Proposition 2.7 and the fact that the locus of étaleness of the morphism Λ2,h →
I◦ is Zariski-open in I◦. The proof is detailed in [Co16, Proposition 4.1.17]. �

5.3. The Galois representation associated with a finite slope family. Let g = 2. For h ∈ Q+,×

and κ ∈ W◦2 , let rh,κ be the radius chosen in the beginning of Section 5.1. Let E be the set of all wide open
subdomains D of DN2 with the property that D is a connected component of (wh2,B2(κ,rh,κ))

−1(B2(κ, rh,κ))

for some h and κ. It follows from Proposition 5.1(ii) that E is an admissible covering of the eigenvariety
DN2 .

Let D ∈ E . The pseudocharacter T2 : GQ → O(DN2 )◦ given by Proposition 3.7 induces a pseudochar-
acter TD : GQ → O(D)◦. Since D is connected O(D)◦ is local; it is also compact by [BC09, Lemma

7.2.11] because D is wide open. Let TD be the reduction of TD modulo the maximal ideal of O(D)◦. By
Theorem 3.2 TD is the trace of a representation ρD : GQ → GL4(Fp).

Note that ρD only depends on the irreducible component ofDN2 in whichD is contained. Let E irr be the

subset of E consisting of the domains D for which ρD is absolutely irreducible. Let DM,irr
2 =

⋃
D∈E irr D;

it is a union of connected components of DM2 and it admits E irr as an admissible covering. For D ∈ Dirr,
Theorem 3.3 gives a representation ρD : GQ → GL4(O(D)◦) that has TD as its associated pseudocharacter
and is uniquely determined up to isomorphism. This is actually a symplectic representation, but we only
need this property in the specific case that we treat below, where D is a finite slope family as defined in
Section 5.1. The construction we presented in this paragraph will be useful in Section 13.1.

Let T2,h be the genus 2, h-adapted Hecke algebra. For simplicity let Th = T2,h. We implicitly replace
Th by one of its local components. Let θ : Th → I◦ be a finite slope family of GSp4-eigenforms. The
Galois representation associated with θ can be constructed in the same way as for the domains D ∈ E
of the previous paragraph, but we define it here in more detail and prove some additional properties.
Let FTh be the residue field of Th. The pseudocharacter T2 : GQ → O(DN2 )◦ induces pseudocharacters

TTh : GQ → Th and TTh : GQ → FTh . By Theorem 3.2 the pseudocharacter TTh is associated with
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a representation ρTh : GQ → GL4(Fp), unique up to isomorphism. We call ρTh the residual Galois
representation associated with Th.

We assume from now on that the representation ρTh is absolutely irreducible.
By the compactness of GQ there exists a finite extension F′ of FTh such that ρTh is defined on F′. Let

W (FTh) and W (F′) be the rings of Witt vectors of FTh and F′, respectively. Let T′h = Th⊗W (FTh )W (F′).
We consider TTh as a pseudocharacterGQ → T′h via the natural inclusion Th ↪→ T′h. Then TTh satisfies the
hypotheses of Theorem 3.3, so there exists a representation ρT′h : GQ → GL4(T′h) such that TrρT ′h = TTh .
By Proposition 3.7, for every prime ` not dividing Np we have

(5.2) Tr(DTh)(Frob`) = rDM,h2,Bh

◦ ψ2(T
(2)
`,2 ).

In particular Tr(DTh)(Frob`) is an element of Th. Since Th is complete, Chebotarev’s theorem implies
that TTh(g) is an element of Th for every g ∈ GQ. By Theorem 3.1 there exists a representation
ρTh : GQ → GL4(Th) that is isomorphic to ρTh over T′h.

The morphism θ : Th → I◦ induces a morphism GL4(Th) → GL4(I◦) that we still denote by θ.
Let ρI◦ : GQ → GL4(I◦) be the representation defined by ρI◦ = θ ◦ ρTh . Recall that we set ψθ =
θ ◦ rDM,h2,Bh

◦ ψ2 : HM2 → I◦. Let

I◦Tr = Λh[{Tr(ρθ(g))}g∈GQ ].

Since Λh ⊂ I◦Tr ⊂ I◦, the ring I◦Tr is a finite Λh-algebra. In particular I◦Tr is complete. We keep our usual
notation for the reduction modulo an ideal P of I◦Tr. We say that a point P of Spec I◦Tr is classical if it
lies under a classical point of Spec I◦.

By Proposition 3.7 we have Pchar(Tr(ρI◦)(Frob`)) = ψθ(Pmin(t
(2)
`,2 ;X)), so we deduce that I◦Tr =

Λh[{Tr(ρθ(g))}g∈GQ ]. Since the traces of ρI◦ belong to I◦Tr, Theorem 3.1 provides us with a representation

ρθ : GQ → GL4(I◦Tr)

that is isomorphic to ρI◦ over I◦. Thanks to the following lemma we can attach to θ a symplectic
representation.

Lemma 5.9. There exists a non-degenerate symplectic bilinear form on (I◦Tr)
4 that is preserved up to a

scalar by the image of ρθ.

Proof. The argument of the proof is similar to that in [GT05, Lemma 4.3.3] and [Pil12, Proposition
6.4]. We show that ρθ is essentially self-dual by interpolating the characters that appear in the essential
self-duality conditions at the classical specializations. We deduce that Im ρθ preserves a bilinear form
on (I◦Tr)

4 up to a scalar. Such a form is non-degnerate by the irreducibility of ρθ and it is symplectic
because its specialization at a classical point is symplectic. The details of the proof can be found in
[Co16, Proposition 4.1.20]. �

Thanks to the lemma, up to replacing it by a conjugate representation, we can suppose that ρθ takes
values in GSp4(I◦Tr). We call ρθ : GQ → GSp4(I◦Tr) the Galois representation associated with the family
θ : Th → I◦Tr. In the following we will work mainly with this representation, so we denote it simply by ρ.
We write F for the residue field of I◦Tr and ρ : GQ → GSp4(F) for the residual representation associated
with ρ.

Remark 5.10. Let f be a GSp4-eigenform appearing in the family θ. Let εf be the central character,

(k1, k2) the weight and ψf : HM2 → Qp the system of Hecke eigenvalues of f . Let ρf,p be the p-adic Galois

representation attached to f and let ` be a prime not dividing Mp. Then det ρf,p(Frob`) = `6ψf (T
(2)
`,0 ) =

εf (`)χ(`)2(k1+k2−3). The determinant of ρ(Frob`) interpolates the determinants of ρf,p(Frob`) when f
varies over the forms corresponding to the classical primes of the family. Note that εf is independent of
the choice of the form f in the family. Since the classical primes are Zariski-dense in I◦Tr the interpolation

is unique and coincides with det ρ(Frob`) = `6ψ2(T
(2)
`,0 ) = ε(`)(u−6(1 + T1)(1 + T2))log(χ(`))/ log(u) ∈ Λ2,h,

where ε is the central character of the family. By density of the conjugates of the Frobenius elements in
GQ, we deduce that

det ρ(g) = ε(g)(u−6(1 + T1)(1 + T2))2 log(χ(g))/ log(u) ∈ Λ2,h

for every g ∈ GQ.

Remark 5.11.

(1) Since the set of classical points of Spec I◦ is Zariski-dense and the map I◦Tr → I◦ is injective, the set
of classical points of Spec I◦Tr is also Zariski-dense.
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(2) Let P be a classical point of Spec I◦ lying over a point PTr of Spec I◦Tr. Then the reduction of
ρI◦ : GQ → GL4(I◦) modulo P is isomorphic over I◦/P to the reduction of ρ modulo PTr; in particular
it only depends on PTr up to isomorphism over a suitable coefficient ring.

6. Self-twists of Galois representations attached to finite slope families

Given a ring R, we denote by Q(R) its total ring of fractions and by Rnorm its normalization. Now
let R be an integral domain. For every homomorphism σ : R → R and every γ ∈ GSp4(R) we define
γσ ∈ GSp4(R) by applying σ to each coefficient of the matrix γ. This way σ induces an automorphism
[·]σ : G(R) → G(R) for every algebraic subgroup G ⊂ GSp4 defined over R. For such a G and any
representation ρ : GQ → G(R), we define a representation ρσ : GQ → G(R) by setting ρσ(g) = (ρ(g))σ

for every g ∈ GQ.
Let S be a subring of R. We say that a homomorphism σ : R → R is a homomorphism of R over S

if the restriction of σ to S is the identity. The following definition is inspired by [Ri85, Section 3] and
[La16, Definition 2.1].

Definition 6.1. Let ρ : GQ → GSp4(R) be a representation. We call self-twist for ρ over S an automor-
phism σ of R over S such that there is a finite order character ησ : GQ → R× and an isomorphism of
representations over R:

(6.1) ρσ ∼= ησ ⊗ ρ.

We list some basic facts about self-twists. The proofs are straghtforward.

Proposition 6.2. Let ρ : GQ → GSp4(R) be a representation.

(1) The self-twists for ρ over S form a group.
(2) If R is finite over S then the group of self-twists for ρ over S is finite.
(3) Suppose that the identity of R is not a self-twist for ρ over S. Then for every self-twist σ the

character ησ satisfying the equivalence (6.1) is uniquely determined.
(4) Under the same hypotheses as part (3), the association σ 7→ ησ defines a cocycle on the group of

self-twist with values in R×.
(5) Let S[TrAd ρ] denote the ring generated over S by the set {Tr(Ad (ρ)(g))}g∈GQ . Then every element

of S[TrAd ρ] is fixed by all self-twists for ρ over S.

Let θ : Th → I◦ be a family of GSp4-eigenforms as defined in Section 5. Let ρ : GQ → GSp4(I◦Tr) be
the Galois representation associated with θ. Recall that I◦Tr is generated over Λh by the traces of ρ. We
always work under the assumption that ρ : GQ → GSp4(F) is absolutely irreducible. Let Γ be the group
of self-twists for ρ over Λh. We omit the reference to Λh from now on and we just speak of the self-twists
for ρ. Let I◦0 be the subring (I◦Tr)

Γ of I◦Tr consisting of the elements fixed by every σ ∈ Γ. We can study
the order of Γ thanks to an argument similar to that of the proof of [La16, Proposition 7.1].

Lemma 6.3. The only possible prime factors of card(Γ) are 2 and 3.

Proof. Let ` be any prime not dividing Np. Consider the element

(6.2) a` =
(Trρ(Frob`))

4

det ρ(Frob`)

of I◦Tr. For every σ ∈ Γ and every g ∈ GQ Equation (6.1) gives Trρσ(g) = η(g)Trρ(g) and det ρσ(g) =
η(g)4 det ρ(g). In particular aσ` = a` for every σ ∈ Γ, so a` ∈ I◦0. By Remark 5.10 we have det ρ(Frob`) =

ε(`)χ(`)2(k1+k2−3) ∈ Λh, where ε is the central character of the family θ and χ : GQp → Z×p denotes the
cyclotomic character. In particular det ρ(Frob`) ∈ I◦0.

Consider the Galois extension of I◦0 defined by I′ = I◦0[a
1/4
` ,det ρ(Frob`)

1/4, ζ4], where ζ4 is a primitive
fourth root of unity. Equation (6.2) gives an inclusion I◦Tr ⊂ I′, hence an inclusion Γ ⊂ Gal(I′/I◦0). Since
I′ is obtained from I◦0 by adding some fourth roots, the order of an element of Gal(I′/I◦0) cannot have
prime divisors greater than 3. This concludes the proof. �
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6.1. Lifting self-twists from classical points to families. Keep the notations as above. Let Pk ⊂ Λh
be any non-critical arithmetic prime, as in Definition 5.6. The representation ρ reduces modulo PkI◦Tr

to a representation ρPk : GQ → GSp4(I◦Tr/PkI◦Tr). Let σ̃ ∈ Γ and let η̃ : GQ → (I◦Tr)
× be the character

associated with σ̃. The automorphism σ̃ fixes Λh by assumption, so it induces a ring automorphism σ̃Pk
of I◦Tr/PkI◦Tr. The character η̃ : GQ → I◦Tr induces a character η̃Pk : GQ → (I◦Tr/PkI◦Tr)

×. The isomorphism

ρσ̃ ∼= η̃ ⊗ ρ over I◦Tr gives an isomorphism of representations over I◦Tr/PkI◦Tr:

(6.3) ρ
σ̃Pk
Pk
∼= η̃Pk ⊗ ρPk .

Since Pk is non-critical I◦ is étale over Λh at Pk, hence I◦Tr is also étale over Λh at Pk. In particular
Pk is a product of distinct primes in I◦Tr; denote them by P1,P2, . . . ,Pd. Since σ̃Pk is an automor-

phism of I◦Tr/PkI◦Tr
∼=
∏d
i=1 I◦Tr/Pi, there is a permutation s of the set {1, 2, . . . , d} and isomorphisms

σ̃Pi : I◦Tr/Pi → I◦Tr/Ps(i) for i = 1, 2, . . . , d such that σ̃|I◦Tr/Pi
factors through σ̃Pi . The character η̃σ̃Pk

can be written as a product
∏d
i=1 η̃Pi for some characters η̃Pi : GQ → (I◦Tr/Pi)

×. From the equivalence
(6.3) we deduce that

ρ
σ̃Pi

Pi
∼= η̃Ps(i) ⊗ ρPs(i) .

The goal of this subsection is to prove that if we are given, for a single value of i, data s(i), σ̃Pi and
η̃Pi satisfying the isomorphism above for a single value of i, there exists an element of Γ giving rise to
σ̃Pi and η̃Psi via reduction modulo Pk. This result is an analogue of [La16, Theorem 3.1]. We state it
precisely in the proposition below.

Proposition 6.4. Let i, j ∈ {1, 2, . . . , d}. Let σ : I◦Tr/Pi → I◦Tr/Pj be a ring isomorphism and ησ : GQ →
(I◦Tr/Pj)

× be a character satisfying

(6.4) ρσPi
∼= ησ ⊗ ρPj .

Then there exists σ̃ ∈ Γ with associated character η̃ : GQ → (I◦Tr)
× such that, via the construction of the

previous paragraph, s(i) = j, σ̃Pi = σ and η̃Pj = ησ.

In order to prove the proposition we first lift σ to an automorphism Σ of a deformation ring for ρ and
then we show that Σ descends to a self-twist for ρ. This strategy is the same as that of the proof of [La16,
Theorem 3.1], but there are various complications that we have to take care of. In particular, in order to
descend from the deformation space to ρ, we show that twisting a family of GSp4-eigenforms by a Dirichet
character gives another family of GSp4-eigenforms and we subsequently rely on the non-criticality of the
arithmetic prime Pk.

Before proving Proposition 6.4 we give a corollary. Let P ∈ {P1,P2, . . . ,Pd}. Let ρP : GQ →
GSp4(I◦Tr/P) be the reduction of ρ modulo P and let ΓP be the group of self-twists for ρP over Zp. Let
Γ(P) = {σ ∈ Γ |σ(P) = P}; it is a subgroup of Γ. Let σ̃ ∈ Γ and let η̃ : GQ → (I◦Tr/P)× be the finite
order character associated with σ̃. Via reduction modulo P, σ̃ and η̃ induce a ring automorphism σ̃P
of I◦Tr/P and a finite order character η̃P : GQ → (I◦Tr/P)× satisfying ρ

σP

Pi
∼= ησP

⊗ ρP. Hence σ̃P is an

element of ΓP. The map Γ(P)→ ΓP defined by σ̃ 7→ σ̃P is a morphism of groups.

Corollary 6.5. The morphism Γ(P)→ ΓP is surjective.

Proof. This results from Proposition 6.4 by choosing Pi = Pj = P. �

6.1.1. Lifting self-twists to the deformation ring. We keep the notations from the beginning of the section.

Let QNp denote the maximal extension of Q unramified outside Np and set GNpQ = Gal(QNp/Q). Then ρ

factors via GNpQ by Proposition 3.7. In this subsection we consider ρ as a representation GNpQ → GL4(I◦Tr)

via the natural inclusion GSp4(I◦Tr) ↪→ GL4(I◦Tr). Coherently, we consider GNpQ as the domain of all the
representations induced by ρ and we take as their range the points of GL4 on the corresponding coefficient

ring. Note that the equivalence (6.4) implies that ησ also factors via GNpQ , so we see it as a character of
this group. For simplicity we write η = ησ.

Recall that we write mI◦Tr
for the maximal ideal of I◦Tr and F for the residue field I◦Tr/mTr◦ . Let W be

the ring of Witt vectors of F. The residual representation ρ : GNpQ → GL4(F) is absolutely irreducible by

assumption. By the results of [Ma89], the problem of deforming ρ to a representation with coefficients
in a Noetherian W -algebra is represented by a universal couple (Rρ, ρ

univ) consisting of a Noetherian

W -algebra Rρ and a representation ρuniv : GNpQ → GL4(Rρ).
By the universal property of Rρ there exists a unique morphism of W -algebras αI : Rρ → I◦Tr satisfying

ρ ∼= αI ◦ ρ
univ. Let evi : I◦Tr → I◦Tr/Pi and evj : I◦Tr → I◦Tr/Pj be the two projections. The proposition
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below follows from arguments completely analogous to those of [La16, Section 3.1]. The details of the
proof can be found in [Co16, Section 4.4].

Proposition 6.6.

(1) The automorphism σ of F is trivial.
(2) There is an isomorphism ρ ∼= η ⊗ ρ.
(3) There exists an automorphism Σ of Rρ such that:

(i) Σ is a lift of σ in the sense that σ ◦ evi ◦ αI = evj ◦ αI ◦Σ;
(ii) Σ ◦ ρuniv = η ◦ ρuniv.

Recall that ρ is the Galois representation associated with the finite slope family θ. Our next step
consists in showing that the representation ρΣ is associated with a family of GSp4-eigenforms of a suitable
tame level and of slope bounded by h. Thanks to property (ii) in Proposition 6.6(3) it is sufficient to
show that the representation η ⊗ ρ is associated with such a family.

6.1.2. Twisting classical eigenforms by finite order characters. We show that the twist of a representation
associated with a classical Siegel eigenform by a finite order Galois character is the Galois representation
associated with a classical Siegel eigenform of the same weight but possibly of a different level. By
an interpolation argument we will deduce the analogous result for the representation associated with a
family of eigenforms.

Let f be a cuspidal GSp4-eigenform of weight (k1, k2) and level Γ1(M) and let ρf,p : GQ → GSp4(Qp)
be the p-adic Galois representation attached to f . Let η : GQ → Q×p be a character of finite order m0

prime to p. We see η as a Dirichlet character when convenient.

Proposition 6.7. There exists a cuspidal Siegel eigenform f⊗η of weight (k1, k2) and level Γ1(lcm(M,m0)2)
such that the p-adic Galois representation associated with f ⊗ η is η ⊗ ρf .

Our proof relies on the calculations made by Andrianov in [An09, Section 1]. He only considers the
case k1 = k2, but as we will remark his work can be adapted to vector-valued forms. For A ∈ Mn(R)
we write A ≥ 0 if A is positive semi-definite and A > 0 if A is positive-definite. Recall that f , seen
as a function on a variable Z in the Siegel upper half-plane Hn = {X + iY |X,Y ∈ Mn(R) and Y > 0},
admits a Fourier expansion of the form f(Z) =

∑
A∈An, A≥0 aAq

A, where q = e2πiTr(AZ) and

An =

{
A = (ajk)j,k ∈ Mn

(
1

2
Z
)
| tA = A and ajj ∈ Z for 1 ≤ j ≤ n

}
.

The weight (k1, k2) action of

(
A B
C D

)
∈ GSp4(C) on f is defined by

(6.5)

(
A B
C D

)
.f = (Symk1−k2(Std)⊗ det k2(Std))(CZ +D)f

(
AZ +B

CZ +D

)
,

where Std denotes the standard representation of GL2. As in [An09], we define the twist of f by η as

f ⊗ η =
∑

A∈An, A≥0

η(Tr(A))aAq
A.

Note that Andrianov considers a family of twists by η depending on an additional 2 × 2 matrix L, but
we only need the case L = 12.

Recall that µ(A) denotes the similitude factor of A.

Lemma 6.8. Let η be a Dirichlet character of conductor m and f be a cuspidal form of weight (k1, k2)
and level Γ1(M). Let M ′ = lcm(m0, N)2.

(1) The expansion f ⊗ η defines a cuspidal form of level Γ1(M ′) (cf. [An09, Proposition 1.4]).
(2) If A ∈ GSp4(C), [Γ1(m2)AΓ1(m2)].(f ⊗ η) = η(µ(A))([Γ1(m)AΓ1(m)].f) ⊗ η (cf. [An09, Theorem

2.3]).

Proof. The proof relies on the same calculations as the proofs of [An09, Proposition 1.4 and Theorem
2.3], that are stated for scalar Siegel modular forms. Note first that all the steps in these proofs only
involve the action of upper unipotent matrices on f via formula (6.5). The action of such matrices is
clearly independent of the weight of f , hence all calculations are still true upon replacing the weight (k, k)
action with the weight (k1, k2) action for some k, k1, k2 ∈ N. We deduce that the conclusions of [An09,
Proposition 1.4 and Theorem 2.3] hold for vector-valued Siegel modular forms. With the notations of

[An09], the calculations of loc. cit. produce a form f ⊗ η of level Γ̃(M ′) from a form f of level Γ̃(M).
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We can modify these levels to match those in Lemma 6.8 by observing that Γ1(n2) ⊂ Γ̃(n) ⊂ Γ1(n) for
every n ≥ 1. �

We are now ready to prove Proposition 6.7.

Proof. We see the form f of level Γ1(M) as a form of level Γ1(lcm(M,m0)) and the character η of
conductor m as a character of conductor lcm(M,m0). By applying Lemma 6.8(1) with m = lcm(M,m0)
we can construct a form f ⊗ η of level Γ1(lcm(M,m0)2). Let ρf⊗η,p : GQ → GSp4(Qp) be the p-adic
Galois representation associated with f ⊗ η. We show that ρf⊗η,p ∼= η ⊗ ρf,p.

For every congruence subgroup Γ ⊂ GSp4(C) and every prime `, we denote by T`,0, T`,1 and
T`,2 the Hecke operators associated with the double classes [Γdiag (`, `, `, `)Γ], [Γdiag (1, `, `, `2)Γ] and
[Γdiag (1, 1, `, `)Γ], respectively. We do not specify the congruence subgroup with respect to which we
work, since this does not create confusion in the following. Lemma 6.8(2) gives, for every prime ` -Mm0,
the relations T`,0(f⊗η) = η(`2)T`,0(f)⊗η, T`,1(f⊗η) = η(`2)T`,1(f)⊗η and T`,2(f⊗η) = η(`)T`,2(f)⊗η.

Recall that for every ` -Mm0p we have

det(1− ρf,p(Frob`)X) = χf (X4 − T`,2X3 + ((T`,2)2 − T`,1 − `2T`,0)X2 − `3T`,2T`,0X + `6(T`,0)2)

where χf is the character of the Hecke algebra defining the system of eigenvalues of f . The equality still
holds if we replace f by f ⊗ η. Via the relations obtained at the end of the previous paragraph we can
check that det(1− (η⊗ρf,p)(Frob`)X) = det(1−ρf⊗η,p(Frob`)X) for every ` -Mm0p. This implies that
the representations η ⊗ ρf,p and ρf⊗η,p are equivalent. �

Under the hypotheses of the previous proposition we prove the following.

Corollary 6.9. Let M ′ = lcm(m0,M)2. Let x be a classical p-old point of DM2 having weight (k1, k2),

slope h and associated Galois representation ρx. Then there exists a classical p-old point xη of DM ′2

having weight (k1, k2), slope h and associated Galois representation ρxη = η ⊗ ρx.

Proof. Since x is p-old, it corresponds to the p-stabilization of a GSp4-eigenform f of level M and weight
(k1, k2). Let f ⊗ η be the eigenform of weight (k1, k2) and level M ′ given by Proposition 6.7. We show
that it admits a p-stabilization of slope h.

We are working under the assumption that the conductor of η is prime to p, so we can compute

(6.6)
χf⊗η(Pmin(t

(2)
p,2)) = χf (X4 − η(p)Tp,2X

3 + ((η(p)Tp,2)2 − η(p)2Tp,1 − p2η(p)2Tp,0)X2+

−p3(η(p)Tp,2)(η(p)2Tp,0)X + p6(η(p)2Tp,0)2).

Let {αi}i=1,...,4 be the four roots of χf (Pmin(t
(2)
p,2)). Then Equation (6.6) shows that the roots of

χf⊗η(Pmin(t
(2)
p,2)) are {η(p)αi}i=1,...,4.

Suppose that f is p-old. Recall that we identify U
(2)
p,2 with t

(2)
p,2 via the isomorphism ι

Tg
Ig,`

of Section

2.2.2. By the discussion in the proof of Prop. 10.13 there are eight p-stabilizations of f ⊗ η, one

for each compatible choice of U
(2)
p,2 and (U

(2)
p,2 )w1 among the roots of χf (Pmin(t

(2)
p,2)). Let f st be a p-

stabilization of f with slope h. Since U
(2)
p = (U

(2)
p,2 )2(U

(2)
p,2 )w1 , there are i, j ∈ {1, 2, 3, 4} such that

χfst(U
(2)
p ) = α2

iαj . Then by the remark of the previous paragraph there exists a p-stabilization (f ⊗ η)st

of f ⊗ η such that χ(f⊗η)st(U
(2)
p ) = (η(p)αi)

2(η(p)αj) = η(p)3α2
iαj . In particular the slope of (f ⊗ η)st

is vp(χ(f⊗η)st(U
(2)
p )) = 3vp(η(p)) + h. Since p is prime to the conductor of η we have that η(p) is a unit,

hence the slope of (f ⊗η)st is h. The level of (f ⊗η)st is Γ1(M ′)∩Γ0(p), so it defines a point of DM ′2 . �

Consider the family θ : Th → I◦ fixed in the beginning of the section. For every p-old classical point x
of θ, let xη be the point of the eigenvariety DM ′2 provided by Corollary 6.9. Let r′h be a radius adapted

to h for the eigenvariety DM ′2 . Let Λ′h be the genus 2, h-adapted Iwasawa algebra for DM ′2 and let T′h
be the genus 2, h-adapted Hecke algebra of level M ′. Note that r′h ≤ rh, so there is a natural map
ιh : Λh → Λ′h.

Lemma 6.10. There exists a finite Λ′h-algebra J◦, a family θ′ : T′h → J◦ and an isomorphism α : I◦Tr⊗̂ΛhΛ′h →
J◦Tr such that the representation ρθ′ : GQ → GSp4(J◦Tr) associated with θ′ satisfies ρθ′ ∼= η ⊗ α ◦ ρθ.

Proof. Let S be the set of p-old classical points of θ. Let S′ be the subset of S consisting of the points
with weight in the disc B(0, r′h). We see S′ as a subset of the set of classical points of DM ′2 via the

natural inclusion DM2 ↪→ DM ′2 . Thanks to the conditions on the weight and the slope we can identify S′

with a set of classical points of T′h. Note that S′ is infinite.
20



Let S′η = {xη |x ∈ S′}, that is also contained in the set of classical points of DM ′2 . For every x ∈ S′
the weight and slope of xη coincide with the weight and slope of x. In particular S′η can be identified
with an infinite set of classical points of T′h. Since T′h is a finite Λ′h-algebra, the Zariski-closure of S′η in
T′h contains an irreducible component of T′h. Such a component is a family defined by a finite Λ′h-algebra
J◦ and a morphism θ′ : T′h → J◦.

Let ρθ′ : GQ → GSp4(J◦Tr) be the Galois representation associated with θ′. Let Sθ
′

η be the subset of

S′η consisting of the points that belong to θ′; it is Zariski-dense in J◦ by definition of θ′. Let Sθ
′

=

{x ∈ S′ |xη ∈ Sθ
′

η }. For every x ∈ Sθ
′

let ρθ,x be the specialization of ρθ at x and let ρθ′,xη be the
specialization of ρθ′ at xη. By the definition of the correspondence x 7→ xη we have ρθ′,xη

∼= η⊗ρθ,x over

Qp for every x ∈ Sθ′ . Hence the representation η ⊗ ρθ,x coincides with ιh ◦ ρθ′ on the set Sθ
′

η . Since this

set is Zariski-dense in J, there exists an isomorphism α : I◦Tr⊗̂ΛhΛ′h → J◦Tr such that ρθ′ ∼= η ⊗ α ◦ ρθ, as
desired. �

Remark 6.11. With the notation of the proof of Lemma 6.10, all points of the set S′η belong to the

family θ′, because of the unicity of a point of DM ′2 given its associated Galois representation and slope.

By combining Lemma 6.10 and Proposition 6.6(3) we obtain the following.

Corollary 6.12. There exists a finite Λ′h-algebra J◦, a family θ′ : T′h → J◦ and an isomorphism

α : I◦Tr⊗̂ΛhΛ′h → J◦Tr such that the representation ρθ′ : GQ → GSp4(J◦Tr) associated with θ′ satisfies
ρθ′ ∼= α ◦ ρΣ.

6.1.3. Descending to a self-twist of the family. We show that the automorphism Σ of Rρ defined in the
previous subsection induces a self-twist for ρ. This will prove Proposition 6.4. Our argument is an
analogue for GSp4 of that in the end of the proof of [La16, Theorem 3.1]; it also appears in similar forms
in [Fi02, Proposition 3.12] and [DG12, Proposition A.3]. Here the non-criticality of the prime Pk plays
an important role.

Proof. (of Proposition 6.4) Let ρ : GQ → GSp4(F) be the residual representation associated with ρ. Let
Rρ be the universal deformation ring associated with ρ and let ρuniv be the corresponding universal
deformation. As before let αI : Rρ → I◦Tr be the unique morphism of W -algebras αI : Rρ → I◦Tr satisfying
ρ ∼= αI ◦ ρ

univ.
Consider the morphism of W -algebras αΣ

I = αI ◦Σ: Rρ → I◦Tr. We show that there exists an auto-
morphism σ̃ : I◦Tr → I◦Tr fitting in the following commutative diagram:

(6.7)

Rρ I◦Tr

Rρ I◦Tr

αI

Σ σ̃

αΣ
I

We use the notations of the discussion preceding Lemma 6.10. Consider the morphism θ⊗1: Th⊗̂ΛhΛ′h →
I◦⊗̂ΛhΛ′h, where the completed tensor products are taken via the map ιh : Λh → Λ′h. For every Λh-algebra

A we denote again by ιh the natural map A → A⊗̂ΛhΛ′h. The natural inclusion DM2 ↪→ DM ′2 induces a

surjection sh : T′h → Th⊗̂ΛhΛ′h. We define a family of tame level Γ1(M ′) and slope bounded by h by

θM
′

= (θ ⊗ 1) ◦ sh : T′h → I◦⊗̂ΛhΛ′h.

The Galois representation associated with θM
′

is ρθM′ = ιh ◦ ρ : GQ → GSp4(I◦Tr⊗̂ΛhΛ′h). Let θ′ : T′h → J◦
be the family given by Corollary 6.12. We identify I◦Tr⊗̂ΛhΛ′h with J◦Tr via the isomorphism α given
by the same corollary; in particular the Galois representation associated with θ′ is ρθ′ = ρΣ : GQ →
GSp4(I◦Tr⊗̂ΛhΛ′h).

Recall that we are working under the assumptions of Proposition 6.4. In particular we are given two
primes Pi and Pj of I◦Tr, an isomorphism σ : I◦Tr/Pi → I◦Tr/Pj and a character ησ : GQ → (I◦Tr/Pj)

×

such that ρσPi
∼= ησ ⊗ ρPj . Let P′i be the image of Pi via the map ιh : I◦Tr⊗̂ΛhΛ′h. The specialization of

ρθM′ at P′i is ρPi . Let f ′ be the eigenform corresponding to P′i. By Remark 6.11 there is a point of the

family θ′ corresponding to the twist of f by η; let P′i,η be the prime of I◦Tr⊗̂ΛhΛ′h defining this point.
The specialization of ρθ′ at P′i,η is η ⊗ ρPi , which is isomorphic to ρσPi by assumption. Let f ′η be the

eigenform corresponding to the prime P′i,η. The forms f ′ and f ′η have the same slope by Corollary 6.9
and their associated representations are obtained from one another via Galois conjugation (given by the

isomorphism σ). Hence f ′ and f ′η define the same point of the eigenvariety DM ′2 . Such a point belongs
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to both the families θM
′

and θ′. Since Pk is non-critical, T′h is étale at every point lying over Pk, so the

families θM
′

and θ′ must coincide. This means that there is an isomorphism

σ̃′ : I◦Tr⊗̂ΛhΛ′h → I◦Tr⊗̂ΛhΛ′h

such that ρθ′ = σ̃′ ◦ ρM
′
. The isomorphism σ̃′ induces by restriction an isomorphism Λ′h[Tr(ρM

′
)] →

Λ′h[Tr(ρθ′)]. Note that Λ′h[Tr(ρM
′
)] = ιh(I◦Tr) and

Λ′h[Tr(ρθ′)] = Λ′h[Tr(σ̃′ ◦ ρM
′
)] = σ̃′(Λ′h[Tr(ρM

′
)]) = σ̃′(Λ′h[Tr(ιh ◦ ρ)]) = σ̃′(ιh(Λh[Trρ])) = σ̃′(ιh(I◦Tr)).

In particular σ̃′ induces by restriction an isomorphism ιh(I◦Tr) → ιh(I◦Tr). Since ιh is injective we can
identify σ̃′ with an isomorphism σ̃ : I◦Tr → I◦Tr. By construction σ̃ fits in diagram (6.7). �

6.2. Rings of self-twists for representations attached to classical eigenforms. Let f be a clas-
sical GSp4-eigenform and ρf,p : GQ → GSp4(Qp) the p-adic Galois representation associated with f . Up
to replacing ρf,p with a conjugate we can suppose that it has coefficients in the ring of integers OK of a

p-adic field K. Suppose that f satisfies the hypotheses of Theorem 4.4, i.e. ρf,p is of Sym3 type but f
is not the symmetric cube lift of a GL2-eigenform. Let Γf be the group of self-twists for ρ over Zp and

let OΓf
K be the subring of elements of OK fixed by Γf . As in in Section 4 we define another subring of

OK by OE = Zp[Tr(Ad ρ)]. We prove that the two subrings of OK we defined are actually the same.

Proposition 6.13. There is an equality OΓf
K = OE.

Before proving the proposition we recall a theorem of O’Meara about isomorphisms of congruence
subgroups. Here g is a positive integer, F , F1 are two p-adic fields and a, a1 are two non-trivial ideals
in the rings of integers of F and F1, respectively. Let V = F 2g and V1 = F 2g

1 , both equipped with
the bilinear alternating form defined by the matrix Jg defined in the introduction. Let σ : F → F1

be an isomorphism. We say that a map S of V into V1 is σ-semilinear if it is additive and satisfies
S(λv) = σ(λ)S(v) for every v ∈ V and λ ∈ F . Let PSp2g and PGSp2g be the projective symplectic
groups of genus g.

Remark 6.14. Let σ : F → F1 be an isomorphism. Denote by x 7→ xσ the isomorphism GSp2g(F ) →
GSp2g(F1) obtained by applying σ to the matrix coefficients. For every bijective, symplectic, σ-semilinear

map S : V → V1 there exists γ ∈ GSp2g(F1) such that SxS−1 = γxσγ−1 for every x ∈ GSp4(F ).

By combining Remark 6.14 and [OM78, Theorem 5.6.4], with the choices we made in the discussion
above, we obtain the following.

Theorem 6.15. Let ∆ and ∆1 be subgroups of PGSp2g(F ) and PGSp2g(F1), respectively, satisfying
ΓPSp2g(F )(a) ⊂ ∆ and ΓPSp2g(F1)(a) ⊂ ∆1. Let Θ: ∆ → ∆1 be an isomorphism of groups. Then there

exists an automorphism σ of F and an element γ ∈ PGSp2g(F ) satisfying

Θx = γxσγ−1

for every x ∈ ∆.

From Theorem 6.15 we deduce a result on isomorphisms of congruence subgroups of GSp2g(F ).

Corollary 6.16. [OM78, Theorem 5.6.5] Let ∆ and ∆1 be two subgroups of GSp2g(F ) satisfying ΓF (a) ⊂
∆ and ΓF1

(a) ⊂ ∆1. Let Θ: ∆→ ∆1 be an isomorphism of groups. Then there exists an automorphism
σ of F , a character χ : ∆→ F× and an element γ ∈ GSp2g(F ) satisfying

Θx = χ(x)γxσγ−1

for every x ∈ ∆.

Before proving Proposition 6.13 we fix some notations. Let End(sp4(K)) be the K-vector space of K-
linear maps sp4(K)→ sp4(K) and let GL(sp4(K)) be the subgroup consisting of the bijective ones. Let
Aut(gsp4(K)) be the subgroup of GL(sp4(K)) consisting of the Lie algebra automorphisms of sp4(K). Let
πAd be the natural projection GSp4(OK)→ PGSp4(OK) and let Ad : PGSp4(K) ↪→ GL(sp4(K)) be the
injective group morphism given by the adjoint representation. Since sp4 admits no outer automorphisms,
Ad induces an isomorphism of PGSp4(K) onto Aut(sp4(K)). For simplicity we write ρ = ρf,p in the
following proof (but recall that in the other sections ρ is the Galois representation attached to a family).
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Proof. (of Proposition 6.13) The inclusion OE ⊂ O
Γf
K follows from Proposition 6.2(5). We prove that

OΓf
K ⊂ OE . Since OΓf

K and OE are normal, it is sufficient to show that an automorphism of OK over OE
leaves OΓf

K fixed. Consider such an automorphism σ. Since OE is fixed by σ we have (Tr(Ad ρ)(g))σ =
Tr(Ad ρ(g)) for every g ∈ GQ, hence Tr(Ad ρσ(g)) = Tr(Ad ρ(g)). The equality of traces induces an
isomorphism Ad ρσ ∼= Ad ρ of representations of GQ with values in GL(sp4). This means that there
exists φ ∈ GL(sp4(K)) satisfying

(6.8) Ad ρσ = φ ◦Ad ρ ◦ φ−1.

We show that φ is actually an inner automorphism of sp4(K).
Clearly Ad induces an isomorphism πAd (Im ρ) ∼= Im Ad ρ. For every x ∈ GL(sp4(K)) we denote by

Θx the automorphism of GL(sp4(K)) given by conjugation by x. In particular we write Equation (6.8) as
Ad ρσ = Θφ(Ad ρ). By combining Theorems 4.4 and 6.15 we show that we can replace φ by an element
φ′ ∈ Aut(sp4(K)) still satisfying Ad ρσ = Θφ′(Ad ρ(φ′)).

We identify PGSp4(OE) with a subgroup of PGSp4(OΓf
K ) via the inclusion OE ⊂ O

Γf
K given in the

beginning of the proof. Consider the group ∆ = (πAd Im ρ) ∩ PGSp4(OE) ⊂ PGSp4(OK) and its
isomorphic image Ad (∆) ⊂ GL(sp4). Since f satisfies the hypotheses of Theorem 4.4, Im ρ contains a
congruence subgroup ΓOE (a) of GSp4(OE) of some level a ⊂ OE . It follows that πAd Im ρ contains the
projective congruence subgroup PΓOE (a) of PGSp4(OE), so ∆ also contains PΓOE (a). In particular ∆
satisfies the hypotheses of Theorem 6.15. Since Ad ρσ = Θφ(Ad ρ) we have an equality (Ad (∆))σ =
Θφ(Ad (∆)), where we identify both sides with subgroups of PGSp4(OE). Now σ acts as the identity on
PGSp4(OE), so the previous equality reduces to Ad (∆) = Θφ(Ad (∆)). Let Θ = Ad−1 ◦Θφ ◦Ad: ∆→
∆. Since Ad is an isomorphism, the composition Θ is an automorphism. Moreover it satisfies

(6.9) Θφ(Ad (δ)) = Ad (Θ(δ))

for every δ ∈ ∆. By Theorem 6.15 applied to F = F1 = K, ∆1 = ∆ and Θ: ∆ → ∆, there exists
an automorphism τ of K and an element γ ∈ GSp4(K) such that Θ(δ) = γδτγ−1 for every δ ∈ ∆.
We see from Equation (6.9) that τ is trivial. It follows that Θφ(y) = Ad (γ) ◦ y ◦Ad (γ)−1 for all
y ∈ Ad (∆). By K-linearity we can extend Θφ and ΘAd (γ) to identical automorphisms of the K-span
of Ad (∆) in End(sp4(K)). Since ∆ contains the projective congruence subgroup PΓOE (a), its K-span
contains Ad (GSp4(K)); in particular it contains the image of Ad ρ. Hence Θφ and ΘAd (γ) agree on
Ad ρ, which means that Equation (6.8) implies Ad ρσ = ΘAd (γ)(Ad ρ). Then by definition of ΘAd (γ)

we have Ad ρσ = Ad (γ) ◦Ad ρ ◦ (Ad (γ))−1 = Ad (γργ−1). We deduce that there exists a character
ησ : GQ → O×K satisfying ρσ(g) = ησ(g)γρ(g)γ−1 for every g ∈ GQ, hence that ρσ ∼= ησ ⊗ ρ. We conclude

that σ is a self-twist for ρ. In particular σ acts as the identity on OΓf
K , as desired. �

Remark 6.17. Let ρ : GQ → GSp4(I◦Tr) be the big Galois representation associated with a family
θ : Th → I◦. We can define a ring Λh[Tr(Ad ρ)] analogous to the ring OE defined above. We have an

inclusion Λh[Tr(Ad ρ)] ⊂ I◦0 given by Proposition 6.2(5). However the proof of the inclusion OΓf
K ⊂ OE

in Proposition 6.13 relied on the fact that Im ρf,p contains a congruence subgroup of GSp4(OE). Since we
do not know if an analogue for ρ is true, we do not know whether an equality between the normalizations
of Λh[Tr(Ad ρ)] and I◦0 holds.

Suppose that the GSp4-eigenform f appears in a finite slope family θ : Th → I◦. Let P be the prime
of I◦Tr associated with f and suppose that P∩Λh is a non-critical arithmetic prime Pk. Let P0 = P∩ I◦0.

We use Proposition 6.4 to compare OΓf
K and the residue ring of I◦0 at P0, as in [La16, Proposition 6.2].

Proposition 6.18. There is an inclusion I◦0/P0 ⊂ O
Γf
K .

Proof. Let σ ∈ Γf and let ησ : GQ → (I◦Tr/P)× be the character associated with σ. We use the notations
of Section 6.1. By Corollary 6.5 there exists a self-twist σ̃ : I◦Tr/P → I◦Tr/P with associated character
ησ̃ : GQ → (I◦Tr/P)× such that P is fixed under σ̃, σ̃P = σ and ησ̃,P = ησ. Since σ̃ ∈ Γ and I◦0 = (I◦Tr)

Γ

we have I◦0 ⊂ (I◦Tr)
〈σ̃〉, where 〈σ̃〉 is the cyclic group generated by σ̃. Since σ̃ leaves P fixed, we can

reduce modulo P the previous inclusion to obtain I◦0/P0 ⊂ (I◦Tr)
〈σ̃〉/P. Again since σ̃ leaves P fixed

and σ̃ induces σ modulo P, we have (I◦Tr)
〈σ̃〉/P = (I◦Tr/P)〈σ〉, hence I◦0/P0 ⊂ (I◦Tr/P)〈σ〉. This holds for

every σ, so I◦0/P0 ⊂ (I◦Tr/P)Γf . �

The following corollary summarizes the work of this section.
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Corollary 6.19. Let ρ ∼= GQ → GSp4(I◦Tr) be the representation associated with the family θ. Let
P be a prime of I◦Tr corresponding to a classical eigenform f which is not a symmetric cube lift of a
GL2-eigenform. Let P0 = P ∩ I◦0. Then the image of ρP : GQ → GSp4(I◦Tr/P) contains a non-trivial
congruence subgroup of GSp4(I◦0/P0).

Proof. As before letOE = Zp[TrAd ρP]. By Theorem 4.4 the image of ρP contains a congruence subgroup
of GSp4(OE). By combining Propositions 6.13 and 6.18 we obtain I◦0/P0 ⊂ OE , hence the corollary. �

Remark 6.20. In [La16] and in [CIT15], where Galois images for families of GL2-eigenforms are
studied, the intermediate step given by Proposition 6.13 is not necessary. Indeed the fullness result for
the representation attached to a GL2-eigenform, due to Ribet and Momose [Mo81][Theorem 3.1][Ri85] is
stated in terms of the ring fixed by the self-twists of the representation, hence an analogue of Proposition
6.18 is sufficient.

7. Constructing bases of lattices in unipotent subgroups

In this section we show that the image of the Galois representation associated with a family of GSp4-
eigenforms contains a “sufficiently large” set of unipotent elements.

7.1. An approximation argument. We prove a simple generalization of the approximation argument
presented in the proof of [HT15, Lemma 4.5]. We give the details of the proof since there is an imprecision
in the one presented in loc. cit.. In particular [HT15, Lemma 4.6] does not give the inclusion (4.3) in
loc. cit.; it is replaced by Lemma 7.2 below. Let G be a reductive group defined over Z. Let T and B
be a torus and a Borel subgroup of G, respectively. Let ∆ be the set of roots associated with (G, T ).

Proposition 7.1. Let A be a profinite local ring of residual characteristic p endowed with its profinite
topology. Let G be a compact subgroup of the level p principal congruence subgroup ΓG(A)(p) of G(A).
Suppose that:

(1) the ring A is complete with respect to the p-adic topology;
(2) the group G is normalized by a diagonal Zp-regular element of G(A).

Let α be a root of G. For every ideal Q of A, let πQ : G(A) → G(A/Q) be the natural projection,
inducing a map πQ,α : Uα(A)→ Uα(A/Q). Then πQ(G) ∩ Uα(A/Q) = πQ(G ∩ Uα(A)).

Proof. Let α be a root of G. Since the inclusion πQ(G ∩ Uα(A)) ⊂ πQ(G) ∩ Uα(A/Q) is trivial, it is
sufficient to show that πQ : G ∩ Uα(A)→ πQ(G) ∩ Uα(A/Q) is surjective. The unipotent subgroups Uα

and U−α generate a subgroup of G(A) isomorphic to SL2(A). We denote it by SLα2 (A). We identify
U±α with subgroups of SLα2 (A). Let Tα = T ∩ SLα2 and Bα = TαUα. We also write slα2 , u

±α, tα, b±α for
the Lie algebras of the SLα2 , U

±α, Tα, B±α, respectively. For every positive integer j, we denote by πQj

the natural projection G(A) → G(A/Qj), as well as its restriction SLα2 (A) → SLα2 (A/Qj). We define
some congruence subgroups of SLα2 (A) of level pQj by setting

ΓA(Qj) = {x ∈ SLα2 ∩ ΓA(p) |πQj (x) = 12g},
Γ?α(Qj) = {x ∈ SLα2 ∩ ΓA(p) |πQj (x) ∈?α(A/Qj)} for ? ∈ {U,B}.

Note that we leave the level at p implicit. We set G?α(Qj) = G ∩ Γ?α(Qj) for ? ∈ {U,B}. Given
two elements X,Y ∈ G(A), we denote by [X,Y ] their commutator XYX−1Y −1. For every subgroup
H ⊂ G(A) we denote by DH its commutator subgroup {[X,Y ] |X,Y ∈ H}. We write [·, ·]Lie for the Lie
bracket on gsp2g(A).

Lemma 7.2. For every j ≥ 1 we have DΓUα(Q) ⊂ ΓBα(Q2j) ∩ ΓUα(Qj).

Proof. A matrix X ∈ ΓUα(Qj) can be written in the form X = UM where U ∈ Uα and M ∈ ΓA(Qj).
In particular its logarithm is defined, it satisfies exp(logX) = X and it is of the form logX = u + m
with u ∈ uα(A) ⊂ slα2 (A) and m ∈ Qjslα2 (A). Now let X,X1 ∈ ΓUα(Qj) and let logX = u + m and
logX1 = u1 +m1 be decompositions of the type described above. Modulo Q2j we can calculate

log[X,X1] ≡ [logX, logX1]Lie ≡ [u, u1]Lie + [m,u1]Lie + [u,m1]Lie + [m,m1]Lie.

Since u, u1 ∈ uα and m,m1 ∈ Qjslα2 (A) we have [u, u1]Lie = 0 and [m,m1]Lie ∈ Q2jslα2 (A), so

log[X,X1] ≡ [m,u1]Lie + [u,m1]Lie (mod Q2j).
24



Now write m = u−α + bα and m1 = u−α1 + bα1 with u−α, u−α1 ∈ Qju−α(A) and b−α, b−α1 ∈ Qjbα(A).
Then [m,u1]Lie = [u−α, u1]Lie + [bα, u1]Lie, which belongs to Qjbα(A) since [u−α, u1]Lie ∈ Qjtα(A) and
[bα, u1]Lie ∈ Qjbα(A). In the same way we see that [u,m1]Lie ∈ bα(A). We conclude that log[X,X1] ∈
Qjbα (mod Q2j), so [X,X1] ∈ ΓBα(Q2j). Trivially [X,X1] ∈ ΓUα(Qj), so this proves the lemma. �

Let d ∈ G be a diagonal Zp-regular element. Since A is p-adically complete the limit limn→∞ dp
n

defines a diagonal element δ ∈ G(A). Clearly the order of δ in G(A) is a divisor a of p−1. By hypothesis
G is a compact subgroup of ΓG(A)(p), so G is a pro-p group and δ normalizes G. We denote by ad (δ)
the adjoint action of δ on G(A).

Let ΓA(p) be the principal congruence subgroup of SLα2 (A) of level p. Every element of ΓA(p) has a
unique a-th root in ΓA(p). Since δ is diagonal, it normalizes ΓA(p). We define a map ∆: ΓA(p)→ ΓA(p)
by setting

∆(x) =
(
x · (ad (δ)(x))α(δ)−1

· (ad (δ2)(x))α(δ)−2

· · · (ad (δa−1)(x))α(δ)1−a
)1/a

for every x ∈ ΓA(p). Note that ∆ is not a homomorphism, but it induces a homomorphism of abelian
groups ∆ab : ΓA(p)/DΓA(p)→ ΓA(p)/DΓA(p).

Lemma 7.3. (cf. [HT15, Lemma 4.7]) If u ∈ ΓUα(Qj) for some positive integer j, then πQj (∆(u)) =

πQj (u) and ∆2(u) ∈ ΓUα(Q2j).

Proof. Let u ∈ ΓUα(Qj). We see that ∆ mapsQjΓA(p) to itself, so it induces a map ∆Qj : ΓA(p)/QjΓA(p)→
ΓA(p)/QjΓA(p). For x ∈ Uα(A/Qj) we have πQj (ad (δ)(x)) = ad (πQj (δ))(x) = πQj (α(δ))(x). From

this we deduce that ∆Qj (x) = x for x ∈ Uα(A/Qj). Since πQj (u) ∈ Uα(A/Qj) we obtain πQj (∆(u)) =
∆Qj (πQj (u)) = πQj (u).

Consider the homomorphism ∆ab : ΓA(p)/DΓA(p) → ΓA(p)/DΓA(p). By a direct computation we
see that ad (δ)(∆ab(x)) = α(δ)(∆ab(x)) for every x ∈ ΓA(p)/DΓA(p), so the image of ∆ab lies in the
α(δ)-eigenspace for the action of ad (δ) on ΓA(p)/DΓA(p). This space is Uα(A)DΓA(p)/DΓA(p), as we
can see by looking at the Iwahori decomposition of ΓA(p).

From the first part of the proposition it follows that ∆ab induces a homomorphism

∆ab
ΓUα

: ΓUα(Qj)/DΓUα(Qj)→ ΓUα(Qj)/DΓUα(Qj).

By the remark of the previous paragraph

∆ab
ΓUα

(ΓUα(Qj)/DΓUα(Qj)) ⊂ ΓUα(Qj)DΓUα(Qj)/DΓUα(Qj).

By Lemma 7.2 DΓUα(Qj) ⊂ ΓBα(Q2j) ∩ ΓUα(Qj), so

∆ab
ΓUα

(ΓUα(Qj)/DΓUα(Qj)) ⊂ ΓBα(Q2j) ∩ ΓUα(Qj)/DΓUα(Qj).

We deduce that ∆(u) ∈ ΓBα(Q2j) ∩ ΓUα(Qj).
By the same reasoning as above, ∆ induces a homomorphism

∆ab
ΓBα

: ΓBα(Q2j)/DΓBα(Q2j)→ ΓBα(Q2j)/DΓBα(Q2j).

The image of ∆ab
ΓBα

is in the α(δ)-eigenspace for the action of ad (δ), that is Uα(Q2j)DΓBα(Q2j)/DΓBα(Q2j).

Note that DΓBα(Q2j) ⊂ Uα(Q2j), so

∆ab
ΓBα

(ΓBα(Q2j)/DΓBα(Q2j)) ⊂ ΓUα(Q2j)/DΓBα(Q2j).

Since ∆(u) ∈ ΓBα(Q2j) we conclude that ∆2(u) ∈ ΓUα(Q2j). �

We look at G ∩ Uα(A) and πQ(G) ∩ SL2(A/Q) as subgroups of SLα2 (A) and SLα2 (A/Q), respectively.
Let u ∈ πQ(G) ∩ Uα(A/U). Choose u1 ∈ G and u2 ∈ Uα(A) such that πQ(u1) = πQ(u2) = u. Then

u1u
−1
2 ∈ ΓA(Q), so u1 ∈ G ∩ ΓUα(Q). Note that G ∩ ΓUα(Q) is compact since G and ΓUα(Q) are pro-p

groups. By Lemma 7.3 we have πQ(∆2m(u1)) = u and ∆2m(u1) ∈ ΓUα(Q2m) for every positive integer

m. Hence the limit limm→∞∆2m(u1) defines an element u ∈ SL2(A) satisfying πQ(u) = u. We have
u ∈ G ∩ ΓUα(Q) because G ∩ ΓUα(Q) is compact. This completes the proof of the proposition. �

We give a simple corollary.

Corollary 7.4. Let ρ : GQ → GSp4(I◦Tr) be the Galois representation associated with a finite slope family
θ : Th → I◦. For every root α of GSp4 the group Im ρ ∩ Uα(I◦Tr) is non-trivial.
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Proof. Let P be a prime of I◦ corresponding to a classical eigenform f which is not the symmetric
cube lift of a GL2-eigenform. Let OE = Zp[Tr(Ad ρP)]. By Theorem 4.4 Im ρP contains a non-trivial
congruence subgroup of Sp4(OE). In particular Im ρP ∩ Uα(I◦Tr/P) is non-trivial for every root α. Now
we apply Proposition 7.1 to G = GSp4, T = T2, B = B2 A = I◦Tr, G = Im ρ and Q = P. We obtain that
the projection Im ρ∩Uα(I◦Tr)→ Im ρP∩Uα(I◦Tr/P) is surjective for every α. In particular Im ρ∩Uα(I◦Tr)
must be non-trivial for every α. �

7.2. A representation with image fixed by the self-twists. Let θ : Th → I◦ be a finite slope family
with associated representation ρ : GQ → GSp4(I◦Tr). As before we assume ρ to be residually irreducible
and Zp-regular. Let Γ be the group of self-twist of ρ and let I◦0 be the subring of I◦Tr consisting of
the elements fixed by Γ. By restricting the domain of ρ and replacing it with a suitable conjugate
representation, we obtain a Zp-regular representation with coefficients in I◦0. This is the main result of
this section.

We write ησ for the finite order Galois character associated with σ ∈ Γ. Let H0 =
⋂
σ∈Γ ker ησ. Since

Γ is finite H0 is open and normal in GQ. Note that Tr(ρ(H0)) ⊂ GSp4(I◦0). If ρ|H0
is irreducible, then

by Theorem 3.1 there exists g ∈ GL4(I◦Tr) such that the representation ρg = gρg−1 satisfies Im ρg|H0
⊂

GL4(I◦0). The hypothesis of irreducibility of ρ|H0
can probably be checked in the cases we will focus on

(residually full or of symmetric cube type), but it would be too restrictive if we wanted to generalize our
work to other interesting cases (for instance to lifts from GL2/F with F/Q real quadratic or from GL1/F
with F/Q CM of degree 4). For this reason we do not make the above assumption and we follow instead
the approach of [CIT15, Proposition 4.14], that comes in part from the proof of [La16, Theorem 7.5].

Proposition 7.5. There exists an element g ∈ GSp4(I◦Tr) such that:

(1) gρg−1(H0) ⊂ GSp4(I0);
(2) gρg−1(H0) contains a diagonal Zp-regular element.

Proof. Let V be a free, rank four I◦Tr-module. The choice of a basis of V determines an isomorphism
GL4(I◦Tr)

∼= Aut(V ), hence an action of ρ on V . Let d be a Zp-regular element contained in Im ρ. We
denote by {ei}i=1,...,4 a symplectic basis of V such that d is diagonal. Until further notice we work in
this basis.

By definition of self-twist, for each σ ∈ Γ there is an equivalence ρσ ∼= ησ ⊗ ρ. This means that there
exists a matrix Cσ ∈ GSp4(I◦Tr) such that

(7.1) ρσ(g) = ησCσρ(g)C−1
σ .

Recall that we write mI◦Tr
for the maximal ideal of I◦Tr and F for the residue field of I◦Tr. Let Cσ be the

image of Cσ under the natural projection GSp4(I◦Tr)→ GSp4(F). We prove the following lemma.

Lemma 7.6. For every σ ∈ Γ the matrix Cσ is diagonal and the matrix Cσ is scalar.

Proof. Let α be any root of GSp4 and uα be a non-trivial element of Im ρ ∩ Uα(I◦Tr). Such a uα exists
thanks to Corollary 7.4. Let gα be an element of GQ such that ρ(gα) = uα. By evaluating Equation
(7.1) at gα we obtain Cσu

αC−1
σ = (uα)σ, which is again an element of Uα(I◦Tr). We deduce that Cσ

normalizes Uα(Q(I◦Tr)). This holds for every root α, so Cσ normalizes the Borel subgroups of upper and
lower triangular matrices in GSp4(Q(I◦Tr)). Since a Borel subgroup is its own normalizer, we conclude
that Cσ is diagonal.

By Proposition 6.6(1) the action of Γ on I◦Tr induces the trivial action of Γ on F. By evaluating Equation

(7.1) at gα and modulo mI◦Tr
we obtain, with the obvious notations, Cσu

α(Cσ)−1 = (uα)σ = uα. Since

Cσ is diagonal and uα ∈ Uα(F), the left hand side is equal to α(Cσ)uα. We deduce that α(Cσ) = 1.
Since this holds for every root α, we conclude that Cσ is scalar. �

We write C for the map Γ → GSp4(I◦Tr) defined by C(σ) = Cσ. We show that C can be modified
into a 1-cocycle C ′ such that C ′(σ) still satisfies Equation (7.1). Define a map c : Γ2 → GSp4(I◦Tr) by
c(σ, τ) = C−1

στ C
τ
σCτ for every σ, τ ∈ Γ. By using multiple times Equation (7.1) we find that, for every

g ∈ GQ, ρ(g) = η−1
στ η

τ
σητ c(σ, τ)ρ(g)c(σ, τ)−1. Recall that ητσητ = ηστ by Proposition 6.2(4), so the matrix

c(σ, τ) commutes with the image of ρ. Since ρ is irreducible, c(σ, τ) must be a scalar.
For every σ ∈ Γ and every i ∈ {1, 2, 3, 4} let (Cσ)i denote the i-th diagonal entry of Cσ. Define a map

C ′i : Γ → GSp4(I◦Tr) by C ′i(σ) = (Cσ)−1
i Cσ. Let c′i(σ, τ) = C ′i(στ)−1C ′i(σ)τC ′i(τ) for every σ, τ ∈ Γ and

i ∈ {1, 2, 3, 4}. Then

(7.2) c′i(σ, τ) = ((Cστ )−1
i (Cσ)i(Cτ )i)

−1c(σ, τ).
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Since (Cστ )−1
i (Cσ)τi (Cτ )i is the i-th diagonal entry of c(σ, τ) and c(σ, τ) is scalar, (Cστ )−1

i (Cσ)i(Cτ )i is

independent of i and ((Cστ )−1
i (Cσ)i(Cτ )i)

−1c(σ, τ) = 14 for every i. From Equation (7.2) we deduce
that C ′i is a 1-cocycle.

Set C ′σ = C ′i(σ). We have

(7.3) ρσ(g) = ησCσρ(g)C−1
σ = ησC

′
σρ(g)(C ′σ)−1.

By Lemma 7.6 Cσ is scalar, so we C ′σ = (Cσ)−1
i Cσ = 14 with the obvious notations.

Recall that {ei}i=1,...,4 is our chosen basis of the free I◦Tr-module V , on which GQ acts via ρ. For every

v ∈ V we write as v =
∑4
i=1 λi(v)ei its unique decomposition in the basis (ei)i=1,...,4, with λi(v) ∈ I◦Tr

for 1 ≤ i ≤ 4. For every v ∈ V and every σ ∈ Γ we set v[σ] = (C ′σ)−1
∑4
i=1 λi(v)σei. This defines an

action of Γ on V since C ′σ is a 1-cocycle. Let V [Γ] denote the set of elements of V fixed by Γ. The action
of Γ is clearly I◦0-linear, so V [Γ] has a structure of I◦0-submodule of V .

Let v ∈ V [Γ] and h ∈ H0. Then ρ(h)v is also in V [Γ], as we see by a direct calculation using Equation
(7.3). We deduce that the action of GQ on V via ρ induces an action of H0 on V [Γ]. We will conclude

the proof of the proposition after having studied the structure of V [Γ].

Lemma 7.7. The I◦0-submodule V [Γ] of V is free of rank four and its I◦Tr-span is V .

Proof. Choose i ∈ {1, . . . , 4}. We construct a non-zero, Γ-invariant element wi ∈ I◦Trei. The submodule
I◦Trei is stable under Γ because C ′σ is diagonal. The action of Γ on I◦Trei induces an action of Γ on
the one-dimensional F-vector space I◦Trei ⊗I◦Tr

F. Recall that the self-twists induce the identity on F by

Proposition 6.6(1) and that the matrix C ′σ is trivial for every σ ∈ Γ, so Γ acts trivially on I◦Trei ⊗I◦Tr
F.

Now choose any vi ∈ I◦Trei. Let wi =
∑
σ∈Γ v

[σ]
i . Clearly wi is invariant under the action of Γ. We

show that wi 6= 0. Let vi, wi denote the images of vi and wi, respectively, via the natural projection

I◦Trei → I◦Trei ⊗I◦Tr
F. Then wi =

∑
σ∈Γ v

[σ]
i =

∑
σ∈Γ vi = card(Γ) · vi because Γ acts trivially on

I◦Trei ⊗I◦Tr
F. By Lemma 6.3 the only possible prime factors of card(Γ) are 2 and 3. Since we supposed

that p ≥ 5 we have card(Γ) 6= 0 in F. We deduce that wi = card(Γ)vi 6= 0 in F, so wi 6= 0.
Note that {wi}i=1,...,4 is an I◦Tr-basis of V since wi 6= 0 for every i. In particular the I◦0-span of the set

{wi}i=1,...,4 is a free, rank four I◦0-submodule of V . Since V [Γ] has a structure of I◦0-module and wi ∈ V [Γ]

for every i, there is an inclusion
∑4
i=1 I◦0wi ⊂ V [Γ]. We show that this is an equality. Let v ∈ V [Γ]. Write

v =
∑4
i=1 λiwi for some λi ∈ I◦Tr. Then for every σ ∈ Γ we have v = v[σ] =

∑4
i=1 λ

σ
i w

[σ]
i =

∑4
i=1 λ

σ
i wi.

Since {wi}i=1,...,4 is an I◦Tr-basis of V , we must have λi = λσi for every i. This holds for every σ, so we

obtain λi ∈ I◦0 for every i. Hence v =
∑4
i=1 λiwi ∈

∑4
i=1 I◦0wi.

The second assertion of the lemma follows immediately from the fact that the set {wi}i=1,...,4 is

contained in V [Γ] and is an I◦Tr-basis of V . �

Now let h ∈ H0. Let {wi}i=1,...,4 be an I◦0-basis of V [Γ] satisfying wi ∈ I◦Trei, such as that provided

by the lemma. Since I◦Tr · V [Γ] = V , {wi}i=1,...,4 is also an I◦Tr-basis of V . Moreover {wi}i=1,...,4 is a
symplectic basis of V , since wi ∈ I◦Trei for every i and {ei} is a symplectic basis. We show that the basis
{wi}i=1,...,4 has the two properties we want.

(1) By previous remarks V [Γ] is stable under ρ, so ρ(h)wi =
∑4
i=1 aijwj for some aij ∈ I◦0. This implies

that the matrix coefficients of ρ(h) in the basis {wi}i=1,...,4 belong to I◦0. Since {wi}i=1,...,4 is a
symplectic basis, we have ρ(h) ∈ GSp4(I◦0).

(2) By our choice of {ei}i=1,...,4, the Zp-regular element d is diagonal in this basis. Since wi ∈ I◦Trei, d
is still diagonal in the basis {wi}i=1,...,4.

�

From now on we always work with a Zp-regular conjugate of ρ satisfying ρ(H0) ⊂ GSp4(I◦0).

7.3. Lifting unipotent elements. We give a definition and a lemma that will be important in the
following. Let B ↪→ A an integral extension of Noetherian integral domains. We call A-lattice in B an
A-submodule of B generated by the elements of a basis of Q(B) over Q(A). The following lemma is
essentially [La16, Lemma 4.10].

Lemma 7.8. Every A-lattice in B contains a non-zero ideal of B. Conversely, every non-zero ideal of
B contains an A-lattice in B.
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Let θ : Th → I◦ be a finite slope family of GSp4-eigenforms and let ρ : GQ → GSp4(I◦Tr) be the
representation associated with θ. For every root α, we identify the unipotent group Uα(I◦0) with I◦0 and
Im ρ∩Uα(I◦0) with a Zp-submodule of I◦0. The goal of this section is to show that, for every α, Im ρ∩Uα
contains a basis of a Λh-lattice in I◦0. Our strategy is similar to that of [CIT15, Section 4.4], which in
turn is inspired by [HT15] and [La16]. We proceed in two main steps, by showing that:

(1) there exists a non-critical arithmetic prime Pk ⊂ Λh such that Im ρPkI◦0 ∩ U
α(I◦0/PkI◦0) contains a

basis of a Λh/Pk-lattice in I◦0/PkI◦0;
(2) the natural morphism Im ρ∩Uα(I◦0)→ Im ρPkI◦0 ∩U

α(I◦0/PkI◦0) is surjective, so we can lift a basis as
in point (1) to a basis of a Λh-lattice in I◦0.

Part (1) is proved via Theorem 4.4 and a result about the lifting of self-twists from ρPkI◦0 to ρ (Proposition
6.4). Part (2) will result from an application of Proposition 7.1.

We start by showing that we can choose an arithmetic prime with special properties.

Lemma 7.9. Suppose that ρ is either full or of symmetric cube type. Then there exists an arithmetic
prime Pk of Λh such that:

(1) Pk is non-critical for I◦ in the sense of Definition 5.6;
(2) for every prime P ⊂ I◦ lying above Pk, the classical eigenform corresponding to P is not the sym-

metric cube lift of a GL2-eigenform.

Proof. Let Σncr be the set of non-critical arithmetic primes of Λh. By Lemma 5.8 Σncr is Zariski-dense
in Λh. Let P be a prime of I◦ lying over a prime in Σncr and corresponding to the symmetric cube
lift of a GL2-eigenform f . Note that this is impossible if ρ is full, so every prime of Σncr satisfies
conditions (1) and (2) in this case. Let ρP and ρf,p be the Galois representations associated with P and

f , respectively, satisfying ρP ∼= Sym3ρf,p. If the weight of f is k then the representation ρf,p is Hodge-

Tate with Hodge-Tate weights 0 and k−1. A simple calculation shows that Sym3ρf,p is Hodge-Tate with
Hodge-Tate weights (0, k− 1, 2k− 2, 3k− 3), hence P lies over the arithmetic prime P(2k−1,k+1). The set
{P(2k−1,k+1)}k≥2 is not Zariski-dense in Λh. In particular the set Σncr − {P(2k−1,k+1)}k≥2 is non-empty.
A prime in this set satisfies conditions (1) and (2). �

We fix for the rest of the section an arithmetic prime Pk of Λh satisfying the conditions (1) and (2)
in Lemma 7.9.

Let m0 denote the maximal ideal of I◦0. Let H = {g ∈ H0 | ρ(g) ≡ 1 (mod m0)}, that is a normal
open subgroup of H0. Thanks to Proposition 7.5 we can suppose that ρ(H0) ⊂ GSp4(I◦0). We define a
representation ρ0 : H → Sp4(I◦0) by setting

ρ0 = ρ|H ⊗ det(ρ|H)−1/2.

Here the square root is defined via the usual power series, that converges on ρ(H). Even though our
results are all stated for the representation ρ, in an intermediate step we will need to work with ρ0 and
its reduction modulo a prime ideal of I◦0. In order to transfer our results to ρ0 we need to relate the
images of the two representations to each other.

7.4. Subnormal and congruence subgroups of symplectic groups. Let R be a local ring in which
2 is a unit. In the proof of [La16, Proposition 5.3], the author compares the images of ρ and ρ0 via
the classification of the subnormal subgroups of GL2(R) by Tazhetdinov. Our technique relies on the
analogous classification of the subnormal subgroups of Sp4(R), which is also due to Tazhetdinov [Taz85].
If N and K are two groups, we say that N is a subnormal subgroup of K if there exists m ∈ N and
subgroups Ki of K, for i = 0, 1, 2, . . . ,m, such that

N = K0 ⊂ K1 ⊂ K2 ⊂ . . . ⊂ Km = K

and Ki is normal in Ki+1 for every i ∈ {0, 1, . . . ,m− 1}. We will only need the following result, that is
a corollary of [Taz85, Theorem].

Theorem 7.10. If N is a subnormal subgroup of Sp4(R) and it is not contained in {±1}, then it contains
a non-trivial congruence subgroup of Sp4(R).

Let Pk be the arithmetic prime we chose in the beginning of the section. By the étaleness condition
in Definition 5.6, PkI◦ is an intersection of distinct primes of I◦, so PkI◦0 is an intersection of distinct
primes of I◦0. Let Q1,Q2, . . . ,Qd be the prime divisors of PkI◦0.

Let I be either PkI◦0 or Qi for some i ∈ {1, 2, . . . , d}. Let ρI : H0 → GSp4(I◦0/I) and ρ0,I : H →
Sp4(I◦0/I) be the reductions modulo I of ρ and ρ0, respectively. Let G = ρI(H) and G0 = ρ0,I(H).
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Let f : GSp4(I◦0) → Sp4(I◦0) be the homomorphism sending g to det(g)−1/2g. We have G = f(G0) by
definition of ρ0. We show an analogue of [CIT15, Proposition 4.22].

Lemma 7.11. The group G contains a non-trivial congruence subgroup of Sp4(I◦0/I) if and only if the
group G0 contains a non-trivial congruence subgroup of Sp4(I◦0/I).

Proof. Clearly the group G ∩Sp4(I◦0/I) is a normal subgroup of G. Then the group f(G ∩Sp4(I◦0/I)) is a
normal subgroup of f(G). Now f(G) = G0 and f(G ∩ Sp4(I◦0/I)) = G ∩ Sp4(I◦0/I) since the restriction of
f to Sp4(I◦0/I) is the identity. Hence G ∩ Sp4(I◦0/I) is a subnormal subgroup of Sp4(I◦0/I) if and only if
G0 is a subnormal subgroup of Sp4(I◦0/I). Neither G ∩ Sp4(I◦0/I) nor G0 is contained in {±1}, since the
image of ρPi contains a non-trivial congruence subgroup of Sp4(I◦0/Pi) by Theorem 4.4. Hence Theorem
7.10 gives the desired equivalence. �

The following is a consequence of Proposition 6.19 and Lemma 7.11, together with our choice of Pk.

Lemma 7.12. Let Q be a prime of I◦0 lying over Pk. Then the image of ρ0,Q contains a non-trivial
congruence subgroup of Sp4(I◦0/Q).

Proof. By Proposition 6.19 the image of ρQ contains a non-trivial congruence subgroup of Sp4(I◦0/Q).
Since H is a finite index subgroup of GQ, the same is true if we replace ρQ by ρQ|H . Now the conclusion
follows from Lemma 7.11 applied to I = Q. �

7.5. Big image in a product. Lifting the congruence subgroup of Proposition 7.12 to I◦ does not
provide the information we need on the image of ρ0. We need the following fullness result for ρPk .

Proposition 7.13. The image of the representation ρPk contains a non-trivial congruence subgroup of
Sp4(I◦0/PkI◦0).

The strategy of the proof is similar to that of [La16, Proposition 5.1]. There is an injective morphism

I◦0/PkI◦0 ↪→
∏d
i=1 I◦0/Qi. Let G be the image of Im ρ0,Pk in

∏d
i=1 I◦0/Qi via the previous injection.

Proposition 7.13 will follow from Lemma 7.11, once we prove that G is an open subgroup of
∏d
i=1 I◦0/Qi.

This is a consequence of a lemma of Ribet (Lemma 7.20) and the following.

Lemma 7.14. Let 1 ≤ i < j ≤ d. Then the image of G in I◦0/Qi × I◦0/Qj is open.

We will show that if the conclusion of the lemma is not true, then there is a self-twist σ of ρ such that
σ(Qi) = Qj , which is a contradiction since I◦0 is fixed by all self-twists. The first part of our proof follows
the strategy of [La16, Proposition 5.3], that is inspired by [Ri75, Theorem 3.5]. One of its ingredients
is Goursat’s Lemma, that we recall here. Let K1 and K2 be two groups and let G be a subgroup of
K1 × K2 such that the two projections π1 : G → K1 and π2 : G → K2 are surjective. Let N1 = kerπ2

and N2 = kerπ1. We identify N1 and N2 with π1(N1) with π2(N2), hence with subgroups of G1 and G2,
respectively. Clearly N1 ×N2 ⊃ G. The natural projections induce a map G → K1/N1 ×K2/N2.

Lemma 7.15. (Goursat’s Lemma, [Go1889, Sections 11 and 12][Bo, Exercise 4.8, Chapter 1])The image
of G in K1/N1 ×K2/N2 is the graph of an isomorphism K1/N1

∼= K2/N2.

Another element of the proof of Lemma 7.14 is the isomorphism O’Meara’s theory of isomorphisms
of open subgroups of GSp4 over local rings, that we recalled in Section 6.2.

Proof. (of Lemma 7.14) By Lemma 7.12 there exist two non-zero ideals l1 and l2 of I◦0/Qi and I◦0/Qj ,
respectively, such that ΓI◦0/Qi(l1) ⊂ Im ρ0,Qi and ΓI◦0/Qj (l2) ⊂ Im ρ0,Qj . Recall that the domain of the
representation ρ0 is the open normal subgroup H of GQ defined in the beginning of this subsection.
Consider the group

H1 = {h ∈ H |h (mod Qi) ∈ ΓI◦0/Qi(l1) and h (mod Qj) ∈ ΓI◦0/Qj (l2)}.
Since the subgroups ΓI◦0/Qi(l1) and ΓI◦0/Qj (l2) are normal and of finite index in Sp4(I◦0/Qi) and Sp4(I◦0/Qj),
respectively, the subgroup H1 is normal and of finite index in H. It is clearly closed, hence it is also
open.

Let 1 ≤ i < j ≤ d. The couple (i, j) will be fixed throughout the proof. Let K1 = ρ0,Qi(H1),
K2 = ρ0,Qj (H1) and let G0 be the image of ρ0(H1) in K1 × K2. Note that K1, K2 and G0 are profinite
and closed since they are continuous images of a Galois group. By definition of l1, l2 and H1 we have
K1 = ΓI◦0/Qi(l1) and K2 = ΓI◦0/Qj (l2). In particular K1 and K2 are normal and finite index subgroups
of Sp4(I◦0/Qi) and Sp4(I◦0/Qj), respectively. Define N1 and N2 as in the discussion preceding Lemma
7.15. They are normal closed subgroups of K1 and K2, respectively, since they are defined as kernels
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of continuous maps. In particular N1 and N2 are subnormal subgroups of Sp4(I◦0/Qi) and Sp4(I◦0/Qj),
respectively.

Suppose that N1 is open in K1 and N2 is open in K2. Then the product N1 ×N2 is open in K1 ×K2.
Since G0 contains N1 ×N2, it is also open in K1 ×K2. The subgroup K1 ×K2 = ΓI◦0/Qi(l1)× ΓI◦0/Qj (l2)
is an open subgroup of I◦0/Qi × I◦0/Qj , so G0 is open in I◦0/Qi × I◦0/Qj . Then the conclusion of Lemma
7.14 is true in this case.

Now suppose that one among N1 and N2 is not open. Without loss of generality, let it be N1. Since N1

is closed in the profinite group K1, it is not of finite index in K1. By Lemma 7.15 there is an isomorphism
K1/N1

∼= K2/N2, hence N2 is not of finite index in K2. In particular N1 and N2 are not of finite index in
Sp4(I◦0/Qi) and Sp4(I◦0/Qj), respectively. Since N1 is subnormal and not of finite index in Sp4(I◦0/Qi),
it is contained in {±1} by Theorem 7.10. The same reasoning gives that N2 is contained in {±1}. By
definition of H the image of ρ0 lies in ΓI◦0 (mI◦0 ); this implies that the centres of K1 and K2 are trivial
since p > 2. We conclude that N1

∼= N2
∼= {1}.

By the result of the previous paragraph we have K1/N1
∼= K1 and K2/N2

∼= K2. Hence Lemma
7.15 gives an isomorphism α : K1

∼= K2 such that, for every (x, y) ∈ K1 × K2, (x, y) ∈ G0 if and only
if y = α(x). By Corollary 6.16, applied to F = Q(I◦0/Qi), F1 = Q(I◦0/Qj), ∆ = K1, ∆1 = K2, there
exists an isomorphism α : Q(I◦0/Qi) → Q(I◦0/Qj), a character χ : K1 → Q(I◦0/Qj)

× and an element
γ ∈ GSp4(Q(I◦0/Qi)) such that for every z ∈ K1 we have

(7.4) α(z) = χ(z)γα(z)γ−1,

where as usual we define α : Sp4(Q(I◦0/Qi)) → Sp4(Q(I◦0/Qj)) by applying α to the matrix coefficients.
Since the centre of K2 is trivial, the character χ is also trivial. By recalling the definitions of K1, K2 and
G0 we can rewrite Equation (7.4) as ρ0,Qj (h) = γ−1

0 α(ρ0,Qi(h))γ−1
0 for every h ∈ H1. The last equation

gives an isomorphism

(7.5) ρ0,Qi |αH1
∼= ρ0,Qj |H1

of representations of H1 over Q(I◦0/Qj). Denote by πj the projection I◦0 → I◦0/Qj . By definition of

ρ0 we have ρ0|H1 = ρ|H1 ⊗ (det ρ|H1)−1/2. Define a character ϕ : H1 → Q(I◦0/Qj)
× by setting ϕ(h) =

πj

(
det ρ(h)

α(det ρ(h))

)
for every h ∈ H1. Then Equation 7.5 implies that

(7.6) ρQi |αH1
∼= ϕ⊗ ρQj |H1

We will use the isomorphism (7.6), together with Proposition 6.4, to construct a self-twist for ρ. Let
Pi and Pj be primes of I◦Tr that lie above Qi and Qj , respectively.

Lemma 7.16. The isomorphism α : Q(I◦0/Qi) → Q(I◦0/Qj) and the character ϕ : H1 → Q(I◦0/Qj) can
be extended to an isomorphism α̃ : Q(I◦Tr/Pi) → Q(I◦Tr/Pj)

× and a character ϕ̃ : GQ → Q(I◦Tr/Pj)
×,

respectively, such that

(7.7) ρα̃Pi
∼= ϕ̃⊗ ρPj .

We prove Lemma 7.16 by the strategy presented in [La16, Section 5]. Let τ : Q(I◦Tr/Pi)→ Qp be an
arbitrary extension of α to Q(I◦Tr/Pi). Let L2 = Q(I◦Tr/Pj) · τ(Q(I◦Tr/Pi)). The following lemma can be
proved via obstruction theory, exactly as [La16, Lemma 5.6].

Lemma 7.17. There exists an extension ϕ̃ : GQ → L×2 of ϕ : H1 → L×2 such that

(7.8) ρα̃1
∼= ϕ̃⊗ ρ2.

In order to prove Lemma 7.16 it is sufficient to show that α̃ restricts to an isomorphism I◦Tr/Pi →
I◦Tr/Pj and that ϕ̃ takes values in I◦Tr/Pj . We write (I◦Tr/Pj)[ϕ̃] for the subring of L2 generated over
I◦Tr/Pj by the values of ϕ̃.

Remark 7.18. Since ϕ̃ ⊗ ρ2 takes values in GL4((I◦Tr/Pj)[ϕ̃]), the representation ρα̃1 also takes values
in GL4((I◦Tr/Pj)[ϕ̃]). In particular α̃(Tr(ρ1(h))) ∈ (I◦Tr/Pj)[ϕ̃] for every h ∈ H1. Since the traces of
the representation ρ1 generate the ring ITr/Pi over Zp, we conclude that α̃ restricts to an isomorphism
(I◦Tr/Pi)[ϕ̃]→ (I◦Tr/Pj)[ϕ̃].

Lemma 7.19. (cf. [La16, Lemma 5.7]) We have (I◦Tr/Pi)[ϕ̃] = I◦Tr/Pi and (I◦Tr/Pj)[ϕ̃] = (I◦Tr/Pj).
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Proof. As before let χ be the p-adic cyclotomic character. Recall that Pi and Pj lie over the prime Pk
of Λ, with k = (k1, k2). By taking determinants in Equation (7.8) and using Remark 5.10 we obtain

(7.9) ϕ̃4 =
det(ρα̃1 )

det(ρ2)
=
α̃(χ2(k1+k2−3))

χ2(k1+k2−3)
.

Since the quantity on the right defines an element of I◦Tr/Pj , the degree [(I◦Tr/Pj)[ϕ̃] : I◦Tr/Pj ] is at most
4. In particular the extension (I◦Tr/Pj)[ϕ̃] is obtained from I◦Tr/Pj by adding a 2-power root of unit,
hence it is an unramified extension. The same is true for the extension (I◦Tr/Pi)[ϕ̃] over I◦Tr/Pi thanks
to the isomorphism α̃.

Note that the residue fields of (I◦Tr/Pi)[ϕ̃] and (I◦Tr/Pj)[ϕ̃] are identified by α̃ and those of I◦Tr/Pi and
I◦Tr/Pj coincide by the non-criticality of Pk (see the étaleness condition in Definition 5.6). Let E and F
be the residue fields of (I◦Tr/Pi)[ϕ̃] and I◦Tr/Pi respectively. To conclude the proof it is sufficient to show
that E = F. The isomorphism α̃ induces an automorphism α of the residue field E and the character ϕ̃
induces a character ϕ : GQ → E×. Then E is the field F[ϕ] generated over F by the values of ϕ. Let s
be an integer such that α is the s-th power of the Frobenius automorphisms. By reducing Equation 7.9
modulo the maximal ideal of (I◦Tr/Pj)[ϕ̃] we obtain

ϕ4 =
α(χ2(k1+k2−3))

χ2(k1+k2−3)
= χ2(ps−1)(k1+k2−3).

Since p is odd, 2(ps − 1) is a multiple of 4. In particular F[ϕ4] ⊂ F[χ4], that implies F[ϕ] ⊂ F. We
conclude that E = F, as desired. �

Thanks to Remark 7.18 and Lemma 7.19, α̃ : L1 → L2 restricts to an isomorphism α̃ : I◦Tr/Pi → I◦Tr/Pj

and ϕ̃ takes values in I◦Tr/Pj . Hence α̃ and ϕ̃ satisfy the hypotheses of Lemma 7.16.
We conclude the proof of Lemma 7.14. Set σ = α̃ : I◦Tr/Pi → I◦Tr/Pj and η = ϕ̃ : GQ → I◦Tr/Pj .

Thanks to Lemma 7.16, σ and η satisfy the hypotheses of Proposition 6.4. Hence there exists a self-twist
σ̃ : I◦Tr → I◦Tr for ρ over Λh that induces σ. In particular σ̃(Pi) = Pj . Since Pi and Pj lie over different
primes of I◦0, the self-twist σ̃ does not fix I◦0, a contradiction. Recall that the assumption of this argument
is that N1 is not open in K1 or N2 is not open in K2. When this is not the case we already observed
that the conclusion of Lemma 7.14 holds, so the proof of the lemma is complete. �

We recall a lemma of Ribet. Let k be an integer greater than 2 and let G1,G2, . . . ,Gk be profinite
groups. Suppose that for every i ∈ {1, 2, . . . , k} the following condition holds:

(comm) if K is an open subgroup of Gi the closure of the commutator subgroup of K is open in Gi.

Let G0 be a closed subgroup of G1 × G2 × · · · × Gk.

Lemma 7.20. [Ri75, Lemma 3.4] Suppose that for every i, j with 1 ≤ i < j ≤ k the image of G0 in
Gi × Gj is an open subgroup of Gi × Gj. Then G0 is an open subgroup of G1 × G2 × · · · × Gk.

We are ready to complete the proof of Proposition 7.12.

Proof. For 1 ≤ i ≤ k let Gi be the image of ρ0,Pi : H → Sp4(I◦0/Qi). As before let G0 be the image
of Im ρ0,Pk via the inclusion Sp4(I◦0/PkI◦0) ↪→

∏
i Sp4(I◦0/QiI◦0). The groups Gi are profinite and they

satisfy condition (comm). The group G0 is closed since it is the continuous image of H. By Lemma 7.14
it is open in Gi × Gj for every i, j with 1 ≤ i < j ≤ d. Hence Lemma 7.20 implies that G0 is open in∏
i Gi =

∏
i Gi.

By Proposition 7.12 the group Gi is open in Sp4(I◦0/PkI◦0) for every i, hence
∏
i Gi is open in

∏
i Sp4(I◦0/QiI◦0).

We deduce that G0 is open in
∏
i Sp4(I◦0/PkI◦0), so Im ρ0,Pk is open in Sp4(I◦0/PkI◦0). In particular Im ρ0,Pk

contains a non-trivial congruence subgroup of Sp4(I◦0/PkI◦0). This remains true if we replace Im ρ0,Pk by
Im ρPk , thanks to Lemma 7.11 applied to I = Pk. �

7.6. Unipotent subgroups and fullness. Recall that for a root α of GSp4 we denote by Uα the corre-
sponding one-parameter unipotent subgroup of GSp4 and by uα the corresponding nilpotent subalgebra
of gsp4(R). We call “congruence subalgebra” of sp4(R) a Lie algebra of the form a ·sp4(R) for some ideal
a of R. The lemma below follows from a simple computation with the Lie bracket.

Lemma 7.21. Let R be an integral domain and let G be a Lie subalgebra of sp4(R). The following are
equivalent:

(1) the Lie algebra G contains a congruence Lie subalgebra a · sp4(R) of level a non-zero ideal a of R;
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(2) for every root α of Sp4, the nilpotent Lie algebra G ∩ uα(R) contains a non-zero ideal aα of R via
the identification uα(R) ∼= R.

Moreover:

(i) if condition (1) is satisfied for an ideal a then condition (2) is satisfied if we choose aα = a for
every α;

(ii) if condition (2) is satisfied for a set of ideals {aα}α then condition (1) is satisfied for the ideal
a =

∏
α a

α, where the product is over all roots α of Sp4.

A computation with commutators gives an analogue of Lemma 7.21 dealing with unipotent and
congruence subgroups rather than Lie algebras.

Lemma 7.22. Let R be an integral domain and let G be a subgroup of GSp4(R). The following are
equivalent:

(1) the group G contains a principal congruence subgroup ΓR(a) of level a non-zero ideal a of R;
(2) for every root α of Sp4, the unipotent group G ∩ Uα(R) contains a non-zero ideal aα of R via the

identification Uα(R) ∼= R.

Moreover:

(i) if condition (1) is satisfied for an ideal a then condition (2) is satisfied if we choose aα = a for
every α;

(ii) if condition (2) is satisfied for a set of ideals {aα}α then condition (1) is satisfied for the ideal
a =

∏
α aα, where the product is taken over all roots of Sp4.

Remark 7.23. In both Lemma 7.21 and Lemma 7.22, if there is an ideal a′ of R such that the choice
aα = a′ for every α satisfies condition (2), then the choice a = (a′)2 satisfies condition (1).

By applying Proposition 7.13 and Lemma 7.22 to R = I◦0/PkI◦0 and G = Im ρ0,Pk we obtain the
following corollary.

Corollary 7.24. For every root α of GSp4 the group Im ρPk ∩ Uα(I◦0/PkI◦0) contains the image of an
ideal of I◦0/PkI◦0.

7.7. Lifting the congruence subgroup. If α is a root of GSp4, G is a group, R is a ring and τ : G→
GSp4(R) is a representation, let Uα(τ) = τ(G)∩Uα(R). We always identify Uα(R) with R, hence Uα(τ)
with an additive subgroup of R.

Recall that ρ : H0 → GSp4(I◦0) is the representation associated with a finite slope family θ : Th → I◦
and that ρPk is the reduction of ρ modulo PkI◦0. We use Corollary 7.24 together with Proposition 7.1 to
obtain a result on the unipotent subgroups of the image of ρ.

Proposition 7.25. For every root α of GSp4, the group Uα(ρ) contains a basis of a Λh-lattice in I◦0.

Proof. Let πk : I◦0 → I◦0/PkI◦0 be the natural projection. We denote also by πk the induced map
GSp4(I◦0) → GSp4(I◦0/PkI◦0). For a root α of GSp4, let παk : Uα(I◦0) → Uα(I◦0/PkI◦0) be the projection
induced by πk.

Let G = Im ρ∩ΓGSp4(I◦0)(p) and GPk = πk(G). We check that the choices A = I◦0, G = GSp4, T = T2,
B = B2, G = Im ρ ∩ ΓGSp4(I◦0)(p) and Q = Pk satisfy the hypotheses of Proposition 7.1:

– the group G is compact since Im ρ is the continuous image of a Galois group and ΓGSp4(I◦0)(p) is a
pro-p group;

– by assumption Im ρ contains a diagonal Zp-regular element d, and since ΓGSp4(I◦0)(p) is a normal
subgroup of GSp4(A) the element d normalizes Im ρ ∩ ΓGSp4(I◦0)(p).

Hence by Proposition 7.1 παk induces a surjection G ∩ Uα(I◦0) → Gk ∩ Uα(I◦0/PkI◦0). Let Gα = G ∩
Uα(I◦0) and Gαk = Gk ∩ Uα(I◦0/PkI◦0). As usual we identify them with Zp-submodules of I◦0 and I◦0/PkI◦0,
respectively.

By Corollary 7.24 there exists a non-zero ideal ak of I◦0/PkI◦0 such that ak ⊂ Im ρPk ∩ Uα(I◦0/PkI◦0).
Set bk = pak. Then bk ⊂ Gαk . By the result of the previous paragraph the map Gα → Gαk induced by
παk is surjective, so we can choose a subset A of Gα that surjects onto bk. Let M be the Λh-span of A

in I◦0. Let b be the pre-image of bk via παk : I◦0 → I◦0/PkI◦0. Clearly A ⊂ b, so M is a Λh-submodule of

b. Moreover M/PkM = bk by the definition of A. Since Λ is local Nakayama’s lemma implies that the
inclusion M ↪→ b is an equality. In particular the Λh-span of Gα contains an ideal of I◦0. By Lemma 7.8
this implies that Gα contains a basis of a Λh-lattice in I◦0. �

32



8. Relative Sen theory

Let θ : Th → I◦ be a finite slope family. We keep the notations of the previous sections. Recall that
the image of the family in the connected component of unity of the weight space is a disc B2(κ, rh,κ)
adapted to the slope h. We make from now on the following assumption:

(exp) B2(κ, rh,κ) ⊂ B2(0, p−1/p−1).

The only purpose of this assumption is to assure the convergence of an exponential series (see Section
8.4).

In Section 5 we defined a family of radii {ri}i≥1 and we let Ari be the ring of rigid analytic functions

bounded by 1 on B(0, ri). For every i ≥ 1 there is a natural injection ιri : Λh → Ari . Set I◦ri,0 = I◦0⊗̂ΛhA
◦
ri .

We endow I◦ri,0 with its p-adic topology.

Remark 8.1.

(1) The ring I◦0 admits two inequivalent topologies: the profinite one and the p-adic one. The represen-
tation ρ is continuous with respect to the profinite topology on I◦0 but it is not necessarily continuous
with respect to the p-adic one.

(2) Since I◦0 is a finite Λh-algebra, I◦ri,0 is a finite A◦ri-algebra. There is an injective ring morphism
ι′ri : I◦0 ↪→ I◦ri,0 sending f to f ⊗ 1. This map is continuous with respect to the profinite topology on
I◦0 and the p-adic topology on I◦ri,0.

We will still write ι′ri for the map GSp4(I◦0) ↪→ GSp4(I◦ri,0) induced by ι′ri .
We associated with θ a representation ρ|H0

: H0 → GSp4(I◦0) that is continuous with respect to the
profinite topologies on both its domain and target. By Remark 8.1(1) ρ|H0

needs not be continuous with
respect to the p-adic topology on GSp4(I◦0). This poses a problem when trying to apply Sen theory. For
this reason we introduce for every i the representation ρri : H0 → GSp4(I◦ri,0) defined by ρri = ι′ri ◦ ρ|H0 .
We deduce from the continuity of ι′ri that ρri is continuous with respect to the profinite topology on H0

and the p-adic one on I◦ri,0. It is clear from the definition that the image of ρri is independent of i as a
topological group.

There is a good notion of Lie algebra for a pro-p group that is topologically of finite type. For this
reason we further restrict H0 so that the image of ρri is a pro-p group. Let Hr1 = {g ∈ H0 | ρr1(g) ∼= 14

(mod p)} and set Hri = Hr1 for every i ≥ 1. The subgroup {M ∈ GSp4(I◦r1,0) |M ∼= 14 (mod p)} is of
finite index in GSp4(I◦r1,0). Note that this depends on the fact that we extended the coefficients to Ir1,0,
since {M ∈ GSp4(I◦0) |M ∼= 14 (mod p)} is not of finite index in GSp4(I0). We deduce that Hr1 is a
normal open subgroup of GQ. Let KHri

be the subfield of Q fixed by Hri . It is a finite Galois extension
of Q.

Recall that we fixed an embedding GQp ↪→ GQ, identifying GQp with a decomposition subgroup of GQ
at p. Let Hri,p = Hri ∩GQp . Let KHri ,p

be the subfield of Qp fixed by Hri,p. The field KHri ,p
will play

a role when we apply Sen theory. For every i, let Gri = ρri(Hri) and Gloc
ri = ρri(Hri,p).

Remark 8.2. The topological Lie groups Gr and Gloc
r are independent of r, in the following sense. For

positive integers i, j with i ≤ j let ιrirj : Irj ,0 → Iri,0 be the natural morphism induced by the restriction
of analytic functions Arj → Ari . Since Hri = Hrj = Hr1 by definition, ιrirj induces isomorphisms

ιrirj : Grj
∼−→ Gri and ιrirj : Gloc

rj

∼−→ Gloc
ri .

8.1. Big Lie algebras. As before let r be a radius among the ri, i ∈ N>0. We will associate with
ρr(Hri) a Lie algebra that will give the context in which to apply Sen’s results. Our methods require
that we work with Qp-Lie algebras, so we define the rings Ar = A◦r [p

−1] and Ir,0 = I◦r,0[p−1].
Let a be a height two ideal of Ir,0. The quotient Ir,0/a is a finite-dimensional Qp-algebra. Let πa : Ir,0 →

Ir,0/a be the natural projection. We still denote by πa the induced map GSp4(Ir,0) → GSp4(Ir,0/a).
Consider the subgroups Gr,a = πa(Gr) and Gloc

r,a = πa(Gloc
r ) of GSp4(Ir,0/a). They are both pro-p groups

and they are topologically of finite type since GSp4(Ir,0/a) is. Note that it makes sense to consider the
logarithm of an element of Gr,a since this group is contained in {M ∈ GSp4(Ir,0/fa) |M ∼= 14 (mod p)}.

We attach to Gr,a and Gloc
r,a the Qp-vector subspaces Gr,a and Gloc

r,a of gsp4(Ir,0/a) defined by

Gr,a = Qp · logGr,a and Gloc
r,a = Qp · logGloc

r,a.

The Qp-Lie algebra structure of gsp4(Ir,0/a) restricts to a Qp-Lie algebra structure on Gr,a and Gloc
r,a.

These two Lie algebras are finite-dimensional over Qp since gsp4(Ir,0/a) is.
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Remark 8.3. The Lie algebras Gr,a and Gloc
r,a are independent of r, in the following sense. For positive

integers i, j with i ≤ j let ιrirj : Irj ,0 → Iri,0 be the natural morphism. By Remark 8.2 ιrirj induces

isomorphisms ιrirj : Grj ,a
∼−→ Gri,a and ιrirj : Gloc

rj ,a
∼−→ Gloc

ri,a.

Remark 8.4. The definitions of Gr,a and Gloc
r,a do not make sense if a is not a height two ideal. In this

case Ir,0/a is not a finite extension of Qp and Gr and Gloc
r need not be topologically of finite type. We

can define subsets Gr,a and Gloc
r,a of gsp4(Ir,0/a) as above but they do not have in general a Lie algebra

structure. In particular the choice a = 0 does not give Lie algebras for Gr and Gloc
r .

Recall that there is a natural injection Λ2 ↪→ Λh, hence an injection Λ2[p−1] ↪→ Λh[p−1]. For every
k = (k1, k2) the ideal PkΛh[p−1] is either prime in Λh[p−1] or equal to Λh[p−1]. We define the set of

“bad” ideals Sbad
Λ of Λ2[p−1] as

Sbad
Λ = {(1 + T1 − u), (1 + T2 − u2), (1 + T2 − u(1 + T1)), ((1 + T1)(1 + T2)− u3)}.

Then we define the set of bad prime ideals of Λh[p−1] as

Sbad = {P prime of Λh[p−1] |P ∩ Λ2[p−1] ∈ Sbad
Λ }.

We will take care to define rings where the images of the ideals in Sbad consist of invertible elements.
The reason for this will be clear in Section 8.4. Let S2 be the set of ideals a of Ir,0 of height two such
that a is prime to P for every P ∈ Sbad. Let S′2 be the subset of prime ideals in S2. We define the ring

Br = lim←−
a∈S2

Ir,0/a,

where the limit of finite-dimensional Qp-Banach spaces is taken with respect to the natural transition
maps Ir,0/a1 → Ir,0/a2 defined for every inclusion of ideals a1 ⊂ a2. We equip Ir,0/a with the p-adic
topology for every a and Br with the projective limit topology. There is a natural injection ιBr : Ir,0 ↪→ Br
with dense image. There is an isomorphism of rings

(8.1) Br ∼=
∏
P∈S′2

(̂Ir,0)P ,

where (̂Ir,0)P = lim←−i Ir,0/P
i with respect to the natural transition maps, but (8.1) is not an isomorphism

of topological rings if we equip (̂Ir,0)P with the P -adic topology for every P . In this case the resulting
product topology is not the topology on Br, which is the p-adic one.

Now consider the sets

Sbad
A = {P ∩Ar |P ∈ Sbad}, S2,A = {a ∩Ar | a ∈ S2}, S′2,A = {a ∩Ar, | a ∈ S′2}.

For later use we define a ring

Br = lim←−
a∈S2,A

Ar/a,

where the limit of finite-dimensional Qp-Banach spaces is taken with respect to the natural transition
maps Ar/a1 → Ar/a2 defined for every inclusion of ideals a1 ⊂ a2. We equip Ar/a with the p-adic
topology for every a and Br with the projective limit topology. There is a natural injection ιBr : Ar ↪→ Br
with dense image. There is an isomorphism of rings

(8.2) Br ∼=
∏

P∈S′2,A

(̂Ar)P

where (̂Ar)P = lim←−iAr/P
i with respect to the natural transition maps, but (8.2) is not an isomorphism

of topological rings if we equip (̂Ar)P with the P -adic topology for every P . In this case the resulting
product topology is not the topology on Br, which is the p-adic one.

Remark 8.5. For every P ∈ Sbad we have P · Br = Br, since the limit defining Br is over ideals prime
to P . In the same way we have P ·Br = Br for every P ∈ Sbad

A .

Recall that Ir,0 is a finite Ar-algebra. Then Ir,0/a is a finite Ar/(a ∩ Ar)-algebra for every a ∈ S2,
so the ring Br has a natural structure of topological Br-algebra. For every a ∈ S2 the degree of the
extension Ir,0/a over Ar/(a ∩ Ar) is bounded by that of Ir,0 over Ar. We deduce that Br is a finite
Br-algebra.
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We proceed to define the Lie algebras of Gr and Gloc
r as subalgebras of gsp4(Br). Let

Gr = lim←−
a∈S2

Gr,a and Gloc
r = lim←−

a∈S2

Gloc
r,a,

where Gr,a and Gloc
r,a are the Lie algebras we attached to Gr,a and Gloc

r,a. The Qp-Lie algebra structures

on Gr,a and Gloc
r,a induce Qp-Lie algebra structures on Gr and Gloc

r . We endow Gr and Gloc
r with the

p-adic topology induced by that on gsp4(Br).
When we introduce the Sen operators we will have to extend the scalars of the various rings and Lie

algebras to Cp. We denote this operation by adding a lower index Cp to the objects previously defined.
We still endow all the rings with their p-adic topology. Clearly Ir,0,Cp has a structure of finite Ar,Cp -
algebra and Br,Cp has a structure of finite Br,Cp -algebra. The injections ιBr and ιBr induce injections

with dense image ιBr,Cp : Ir,0,Cp ↪→ Br,Cp and ιBr,Cp : Ar,Cp ↪→ Br,Cp . The Lie algebras Gr,Cp and Gloc
r,Cp

are Cp-Lie subalgebras of gsp4(Br,Cp).

Remark 8.6. The Qp-Lie algebras Gr and Gloc
r do not have a priori any Br or Br-module structure. As

a crucial step in our arguments we will use Sen theory to induce a Br,Cp-vector space (hence a Br,Cp-Lie
algebra) structure on suitable subalgebras of Gr,Cp .

8.2. The Sen operator associated with a p-adic Galois representation. Let L be a p-adic field and
let R be a Banach L-algebra. Let K be another p-adic field, m be a positive integer and τ : Gal(K/K)→
GLm(R) be a continuous representation. We recall the construction of the Sen operator associated with
τ , following [Sen93].

We fix embeddings of K and L in Qp. The constructions that follow will depend on these choices. We

suppose that the Galois closure LGal of L over Qp is contained in K. If this is not the case we simply

restrict τ to the open subgroup Gal(K/KLGal) ⊂ Gal(K/K). We denote by χ : Gal(L/L) → Z×p the
p-adic cyclotomic character. Let L∞ be a totally ramified Zp-extension of L. Let γ be a topological

generator of Γ = Gal(L∞/L). For a positive integer n, let Γn ⊂ Γ be the subgroup generated by γp
n

and Ln = L
〈γp

n
〉

∞ be the subfield of L∞ fixed by Γn. We have L∞ = ∪nLn. Let L′n = LnK and
G′n = Gal(L/L′n).

Write Rm for the R-module over which Gal(K/K) acts via τ . We define an action of Gal(K/K) on
Rm⊗̂LCp by letting σ ∈ Gal(K/K) send x⊗ y to τ(σ)(x)⊗ σ(y). Then by [Sen93] there exists a matrix

M ∈ GLm
(
R⊗̂LCp

)
, an integer n ≥ 0 and a representation δ : Γn → GLm(R ⊗L L′n) such that for all

σ ∈ G′n we have

(8.3) M−1τ(σ)σ(M) = δ(σ).

Definition 8.7. The Sen operator associated with τ is the element

φ = lim
σ→1

log(δ(σ))

log(χ(σ))

of Mm(R⊗̂LCp).

The limit in the definitions always exists and is independent of the choice of δ and M .
Now suppose that R = L and that τ is a Hodge-Tate representation with Hodge-Tate weights

h1, h2, . . . , hm. Let φ be the Sen operator associated with τ ; it is an element of Mm(Cp). The fol-
lowing theorem is a consequence of the results of [Sen80].

Theorem 8.8. The characteristic polynomial of φ is
∏m
i=1(X − hi).

We restrict now to the case L = R = Qp, so that τ is a continuous representation Gal(K/K) →
GLm(Qp). Define a Qp-Lie algebra g ⊂ Mm(Qp) by g = Qp · log(τ(Gal(K/K))). We say that g is the

Lie algebra of τ(Gal(K/K)). Let φ be the Sen operator associated with τ .

Theorem 8.9. [Sen73, Theorem 1] The Sen operator φ is an element of g⊗̂QpCp.

Remark 8.10. The proof of Theorem 8.9 relies on the fact that τ(Gal(K/K)) is a finite dimensional
Lie group. It is doubtful that this proof can be generalized to the relative case.
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8.3. The relative Sen operator associated with ρr. Fix a radius r in the set {ri}i∈N>0 . Consider as
usual the representation ρr : H0 → GSp4(Ir,0). We defined earlier a p-adic field KHr,p. Write GKHr,p for
its absolute Galois group. We look at the restriction ρr|GKHr,p : GKHr,p → GSp4(Ir,0) as a representation

with values in GL4(Ir,0). Recall that Gloc
r is the Lie algebra associated with the image of ρr|GKHr,p . The

goal of this section is to prove an analogue of Theorem 8.9 for this representation, i.e. to attach to
ρr|GKHr,p a “Br-Sen operator” belonging to Gloc

r,Cp . We start by constructing various Sen operators via

Definition 8.7.

(1) The Qp-algebra Ir,0 is complete for the p-adic topology. We associate with ρr|GKHr,p a Sen operator

φr ∈ M4(Ir,0,Cp).
(2) Let a ∈ S2. Then Ir,0/a is a finite-dimensional Qp-algebra. As usual write πa : Ir,0 → Ir,0/a for the

natural projection. Denote by ρr,a the representation πa ◦ ρr|GKHr,p : GKHr,p → GL4(Ir,0/a). We

associate with ρr,a a Sen operator φr,a ∈ M4((Ir,0/a)⊗̂QpCp).
(3) Let a ∈ S2. Let d be the Qp-dimension of Ir,0/a. Let k be a positive integer. An Ir,0/a-linear

endomorphism of (Ir,0/a)k defines a Qp-linear endomorphism of the underlying Qp-vector space Qkdp .

This gives natural maps αQp : Mk(Ir,0/a) → Mkd(Qp) and α×Qp : GLk(Ir,0/a) → GLkd(Qp) (we leave

the dependence of these morphisms on k implicit).Choose k = 4 and consider the representation

ρ
Qp
r,a = α×Qp ◦ ρr,a : GQ → GL4d(Qp). We associate with ρ

Qp
r,a a Sen operator φ

Qp
r,a ∈ M4d(Cp).

Note that Theorem 8.9 can be applied only to representations with coefficients in Qp, hence to con-
struction (3) above. We will prove that the operators constructed in (1), (2) and (3) are related, so
that it is possible to transfer information from one to the others. We write πa,Cp = πa ⊗ 1: Ir,0,Cp →
Ir,0,Cp/aIr,0,Cp . We still write πa,Cp for the maps M4(Ir,0,Cp) → M4(Ir,0,Cp/aIr,0,Cp) and GL4(Ir,0,Cp) →
GL4(Ir,0,Cp/aIr,0,Cp) obtained by applying πa,Cp to the matrix coefficients. As before we let d be the Qp-
dimension of Ir,0/a. For every positive integer k, we set αCp = αQp ⊗ 1: Mk(Ir,0,Cp/aIr,0,Cp)→ Mkd(Cp)
and α×Cp = α×Qp ⊗ 1: GLk(Ir,0,Cp/aIr,0,Cp)→ GLkd(Cp).

Proposition 8.11. For every a ∈ S2 the following relations hold:

(i) φr,a = πa,Cp(φr);

(ii) φ
Qp
r,a = αCp(φr,a).

Proof. We deduce this result from the construction of the Sen operator presented in Section 8.2. We
first specialize it to the representation ρr|GKHr,p : GKHr,p → GL4(Ir,0); in particular we choose m = 4,

K = KHr,p and L = Qp. By the discussion preceding Definition 8.7, there exists a matrix M0 ∈
GL4(Ir,0,Cp), an integer n0 ≥ 0 and a representation δ0 : Γn0

→ GL4(Ir,0⊗̂Qp(Qp)′n0
) such that for all

σ ∈ Gal(Qp/(Qp)′n0
) we have

(8.4) M−1
0 ρr(σ)σ(M0) = δ0(σ).

Let M0,a = πa,Cp(M0) ∈ M4(Ir,0,Cp/aIr,0,Cp) and δ0,a = πa,Cp ◦ δ0 : Γn0
→ GL4((Ir,0/a)⊗̂Qp(Qp)′n0

). By
applying πa,Cp to both sides of Equation (8.4) we obtain

(8.5) M−1
0,aρr,a(σ)σ(M0,a) = δ0,a(σ)

for every σ ∈ Gal(Qp/(Qp)′n0
). Hence the choices M = M0,a, n = n0 and δ = δ0,a satisfy Equation (8.3)

specialized to the representation ρr,a. Then, by definition, the Sen operator associated with ρr,a is

φr,a = lim
σ→1

log(δ0,a(σ))

log(χ(σ))
,

that coincides with πa,Cp(φr).

For (ii), keep notations as in the previous paragraph. Let M
Qp
0,a = α×Cp(M0,a) and δ

Qp
0,a = α×Cp ◦ δ0,a. By

applying α×Cp to both sides of Equation (8.5) we obtain

(8.6) (M
Qp
0,a)−1ρ

Qp
r,0,a(σ)σ(M

Qp
0,a) = δ

Qp
0,a(σ)

for every σ ∈ Gal(Qp/(Qp)′n0
). Then the choices M = M

Qp
0,a, n = n0 and δ = δ

Qp
0,a satisfy Equation (8.3)

specialized to the representation ρ
Qp
r,0,a, so by definition the Sen operator associated with ρ

Qp
r,0,a is

φ
Qp
r,0,a = lim

σ→1

log(δ
Qp
0,a(σ))

log(χ(σ))
.
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A simple check shows that the right hand side is equal to αCp(φr,a). �

Recall that there is a natural inclusion ι′Br,Cp : Ir,0,Cp ↪→ Br,Cp . It induces an injection M4(Ir,0,Cp) ↪→
M4(Br,Cp) that we still denote by ιBr,Cp . We define the Br-Sen operator attached to ρr|GKHr,p as

φBr = ι′Br,Cp(φr).

By definition φBr is an element of M4(Br,Cp). Since Br,Cp = lim←−a∈S2
Ir,0/a, it is clear that φBr =

lim←−a∈S2
πa,Cp(φr). Then Proposition 8.11(i) implies that

(8.7) φBr = lim←−
a∈S2

φr,a.

We use Proposition 8.11(ii) to show the following.

Proposition 8.12. The operator φBr belongs to the Lie algebra Gloc
r,Cp . In particular it belongs to Gr,Cp .

Proof. For every a ∈ S2, let da be the degree of the extension Ir,0/a over Qp. Let G
loc,Qp
r,a be the

Lie subalgebra of M4da associated with the image of ρ
Qp
r,a, defined by G

loc,Qp
r,a = Qp · log(Im ρ

Qp
r,a). Let

G
loc,Qp
r,a,Cp = G

loc,Qp
r,a ⊗̂QpCp. Since Im ρ

Qp
r,a = α×Qp(Im ρr,a) we can write

(8.8) G
loc,Qp
r,a,Cp = αCp(Gloc

r,a,Cp).

The representation ρ
Qp
r,a satisfies the assumptions of Theorem 8.9, so the Sen operator φ

Qp
r,0,a belongs

to G
loc,Qp
r,a,Cp . By Proposition 8.11(ii) φ

Qp
r,a = αCp(φr,a). Then Equation (8.8) and the injectivity of αCp give

(8.9) φr,a ∈ Gloc
r,a,Cp .

Since Gloc
r,Cp = lim←−a∈S2

Gloc
r,a,Cp , Equations (8.7) and (8.9) imply that φBr ∈ Gloc

r,Cp . �

8.4. The exponential of the Sen operator. We use the work of the previous section to construct an
element of GL4(Br) that has some specific eigenvalues and normalizes the Lie algebra Gloc

r,Cp . Such an

element will be used in Section 9 to induce a Br,Cp -module structure on some subalgebra of Gr,Cp , thus
replacing the matrix “ρ(σ)” of [HT15] that is not available in the non-ordinary setting.

Let φr ∈ M4(Ir,0,Cp) be the Sen operator defined in the previous section. We rescale it to define an
element φ′r = log(u)φr, where u = 1 + p. Let (T1, T2) be the images in Ar of the coordinate functions on
the weight space. The logarithms and the exponentials in the following proposition are defined via the
usual power series, that converge because of the assumption (exp) we made in the beginning of Section
8.

Proposition 8.13.

(1) The eigenvalues of φ′r are 0, log(u−2(1 + T2)), log(u−1(1 + T1)) and log(u−3(1 + T1)(1 + T2)).

(2) The operator φ′r belongs to M4(Ir,0,Cp)≥
1
p−1 . In particular the exponential series defines an element

exp(φ′r) ∈ GL4(Ir,0,Cp).

(3) The eigenvalues of exp(φ′r,0) are 1, u−2(1 + T2), u−1(1 + T1) and u−3(1 + T1)(1 + T2).

Proof. (of Proposition 8.13) We prove part (1). The p-adic Galois representation ρf associated with a
classical eigenform f of weight (k1, k2) is Hodge-Tate with Hodge-Tate weights (0, k2−2, k1−1, k1+k2−3).
By Theorem 8.8 these weights are the eigenvalues of the Sen operator φf associated with ρf . By
Proposition 8.11(i) the eigenvalues of φr interpolate those of the operators φf when f varies in the set
of classical points of Ar. Since such points form a Zariski-dense subset of SpecAr, the interpolation
is unique. A simple check shows that it is given by the function F : Ar → C4

p defined by F (T1, T2) =

(0, log(u−2(1 + T2))/ log(u), log(u−1(1 + T1))/ log(u), log(u−3(1 + T1)(1 + T2))/ log(u)). By normalizing
we obtain the eigenvalues given in the proposition.

Statements (2) and (3) follow immediately from (1). �

Let ΦBr = ιBr,Cp (exp(φ′r,0)). By definition ΦBr is an element of GL4(Br,Cp). We show that it has the

two properties we need. We define a matrix CT1,T2
∈ GSp4(Br,Cp) by

CT1,T2
= diag

(
u−3(1 + T1)(1 + T2), u−1(1 + T1), u−2(1 + T2), 1

)
.

Proposition 8.14.

(1) There exists γ ∈ GSp4(Br,Cp) satisfying ΦBr = γCT1,T2γ
−1.
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(2) The element ΦBr normalizes the Lie algebra Gr,Cp .

Proof. The matrices ΦBr and CT1,T2 have the same eigenvalues by Proposition 8.13(3). Hence there
exists γ ∈ GL4(Br,Cp) satisfying the equality of part (1) if and only if the difference between any two
of the eigenvalues of ΦBr is invertible in Br. We check by a direct calculation that each one of these
differences belongs to an ideal of the form P · Br with P ∈ Sbad, hence it is invertible in Br by Remark
8.5. Since both ΦBr and CT1,T2

are elements of GSp4(Br,Cp), we can take γ ∈ GSp4(Br,Cp).
Part (2) follows from Proposition 8.12. �

9. Existence of a Galois level in the residual symmetric cube and full cases

We have all the ingredients we need to state and prove our first main theorem. Let h ∈ Q+,×. Let Th
be a local component of the h-adapted Hecke algebra of genus 2 and level Γ1(M) ∩ Γ0(p). Suppose that
condition (exp) of Section 8 is satisfied and that the residual Galois representation ρTh associated with
Th is either full or of symmetric cube type in the sense of Definition 4.3. Let θ : Th → I◦ be a family, i.e.
the morphism of finite Λh algebras describing an irreducible component of Th. Let ρ : GQ → GSp4(I◦Tr)
be the Galois representation associated with θ. Suppose that ρ is Zp-regular in the sense of Definition
4.2. For every radius r in the set {ri}i∈N>0 defined in Section 5, let Gr be the Lie algebra that we
attached to Im ρ in Section 8.1.

Theorem 9.1. There exists a non-zero ideal l of I0 such that

(9.1) l · sp4(Br) ⊂ Gr

for every r ∈ {ri}i∈N>0 .

Let ∆ be the set of roots of GSp4 with respect to our choice of maximal torus. Recall that for α ∈ ∆
we denote by uα the nilpotent subalgebra of gsp4 corresponding to α. Let r be a radius in the set
{ri}i≥1. We set Uαr = Gr ∩ uα(Br) and Uαr,Cp = Gr,Cp ∩ uα(Br,Cp), which coincides with Uαr ⊗̂QpCp. Via

the isomorphisms uα(Br) ∼= Br and uα(Br,Cp) ∼= Br,Cp we see Uαr as a Qp-vector subspace of Br and Uαr,Cp
as a Cp-vector subspace of Br,Cp .

Recall that Uα denotes the one-parameter unipotent subgroup of GSp4 associated with the root α.
Let Hr be the normal open subgroup of GQ defined in the beginning of Section 8. Note that Proposition
7.25 holds with ρ|H0

replaced by ρ|Hr since Hr is open in GQ. Let Uα(ρ|Hr ) = Uα(I◦0) ∩ ρ(Hr) and
Uα(ρr) = Uα ∩ ρr(Hr). Via the isomorphisms Uα(I0) ∼= I0 and Uα(Ir,0) ∼= Ir,0 we identify Uα(ρ|H0

) and
Uα(ρr) with Zp-submodules of I0 and Ir,0, respectively. Note that the injection I◦0 ↪→ I◦r,0 induces an
isomorphism of Zp-modules Uα(ρ|H0

) ∼= Uα(ρr).
We define a nilpotent subalgebra of gsp4(Ir,0) by UαIr,0 = Qp · log(Uα(ρr)). We identify UαIr,0 with a

Qp-vector subspace of Ir,0. Note that the natural injection ιBr : Ir,0 ↪→ Br induces an injection UαIr,0 ↪→ Uαr
for every α.

Lemma 9.2. For every α ∈ ∆ and every r there exists a non-zero ideal lα of I0, independent of r, such
that the Br-span of Uαr contains lαBr.

Proof. Let d be the dimension of Q(I◦0) over Q(Λh). Let α ∈ ∆. By Proposition 7.25 the unipotent
subgroup Uα(ρ|Hr ) contains a basis E = {ei}i=1,...,d of a Λh-lattice in I◦0. Lemma 7.8 implies that the
Λh[p−1]-span of E contains a non-zero ideal lα of I0. Consider the map ια : Uα(I0) → uα(Br) given by
the composition

Uα(I0) ↪→ Uα(Ir,0)
log−−→ uα(Ir,0) ↪→ uα(Br),

where all the maps have been introduced above. Note that ια(Uα(ρ|H0)) ⊂ Uαr . Let EBr = ια(E). Since
ια is a morphism of I0-modules we have

Br · Uαr ⊃ Br · EBr = Br · (Λh[p−1] · EBr ) = Br · ια(Λh[p−1] · E) ⊃ Br · ια(lα) = lαBr.

By construction and by Remark 8.2 the ideal lα can be chosen independently of r. �

Let γ be an element of GSp4(Br,Cp) such that ΦBr = γCT1,T2
γ−1; it exists by Proposition 8.14(1). Let

Gγr,Cp = γ−1Gr,Cpγ. For each α ∈ ∆ let Uγ,αr,Cp = uα(Br,Cp) ∩Gγr,Cp . We prove the following lemma by an

argument similar to that of [HT15, Theorem 4.8].

Lemma 9.3. For every α ∈ ∆ the Lie algebra Uγ,αr,Cp is a Br,Cp-submodule of Br,Cp .
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Proof. By Proposition 8.14(2) the operator ΦBr normalizes Gr,Cp , hence CT1,T2
normalizes Gγr,Cp . Since

CT1,T2 is diagonal it also normalizes Uγ,αr,Cp . Moreover Ad (CT1,T2)uα = α(CT1,T2)uα for every uα ∈ Uγ,αr,Cp .

Let α1 and α2 be the roots sending diag (t1, t2, νt
−1
2 , νt−1

1 ) ∈ T2 to t1/t2 and ν−1t22, respectively. With
respect to our choice of Borel subgroup, the set of positive roots of GSp4 is {α1, α2, α1 + α2, 2α1 + α2}.
The Lie bracket gives an identification [Uγ,α1

r,Cp ,U
γ,α2

r,Cp ] = Uγ,α1+α2

r,Cp . Conjugation by CT1,T2
on the Cp-vector

space uα1(Br,Cp) induces multiplication by α1(CT1,T2) = u−2(1+T2). Since u−2 ∈ Z×p and Uγ,α1

r,Cp is stable

under Ad (CT1,T2), multiplication by 1 + T2 on uα1(Br,Cp) leaves Uγ,α1

r,Cp stable. Now we compute

(1 + T2) · Uγ,α1+α2

r,Cp = (1 + T2) · [Uγ,α1

r,Cp ,U
γ,α2

r,Cp ] = [(1 + T2) · Uγ,α1

r,Cp ,U
γ,α2

r,Cp ] ⊂ [Uγ,α1

r,Cp ,U
γ,α2

r,Cp ] = Uγ,α1+α2

r,Cp ,

where the inclusion (1 + T2) · Uγ,α1

r,Cp ⊂ Uγ,α1

r,Cp is the result of the previous sentence. We deduce that

multiplication by 1 + T2 on uα1+α2(Br,Cp) leaves Uγ,α1+α2

r,Cp stable.

Similarly, conjugation by CT1,T2
on the Cp-vector space uα2(Br,Cp) induces multiplication by α2(CT1,T2

) =

u · 1+T1

1+T2
. Since u ∈ Z×p and Uγ,α2

r,Cp is stable under Ad (CT1,T2
), multiplication by 1 + T2 on uα2(Br,Cp)

leaves Uγ,α2

r,Cp stable. The same calculation as above shows that multiplication by 1+T1

1+T2
on uα1+α2(Br,Cp)

leaves Uγ,α1+α2

r,Cp stable.

Having proved that multiplication by both 1 + T2 and 1+T1

1+T2
leaves Uγ,α1+α2

r,Cp stable, we deduce that

multiplication by (1+T2) · 1+T1

1+T2
= 1+T1 also leaves Uγ,α1+α2

r,Cp stable. Since Uγ,α1+α2

r,Cp is a Cp-vector space,

we obtain that the Cp[T1, T2]-module structure on uα1+α2(Br,Cp) induces a Cp[T1, T2]-module structure

on Uγ,α1+α2

r,Cp . With respect to the p-adic topology Uγ,α1+α2

r,Cp is complete and Cp[T1, T2] is dense in Br,Cp ,

so the Br,Cp -module structure on uα1+α2(Br,Cp) induces a Br,Cp -module structure on Uγ,α1+α2

r,Cp .

If β is another root, we can write

Br,Cp · U
γ,β
r,Cp = Br,Cp · [U

γ,α1+α2

r,Cp ,Uγ,β−α1−α2

r,Cp ] ⊂

⊂ [Br,Cp · U
γ,α1+α2

r,Cp ,Uγ,β−α1−α2

r,Cp ] ⊂ [Uγ,α1+α2

r,Cp ,Uγ,β−α1−α2

r,Cp ] = Uγ,βr,Cp ,

where the inclusion Br,Cp · U
γ,α1+α2

r,Cp ⊂ Uγ,α1+α2

r,Cp is the result of the previous paragraph. �

Proof. (of Theorem 9.1) Let EBr ⊂ Uαr be the set defined in the proof of Lemma 9.2. Let EBr,Cp =
{e⊗ 1 | e ∈ EBr} ⊂ Uαr,Cp . Consider the Lie subalgebra Br,Cp ·Gr,Cp of gsp4(Br,Cp). For every α ∈ ∆ we

have Br,Cp ·Gr,Cp ∩ uα(Br,Cp) = Br,Cp · Uαr . By Lemma 9.2 there exists an ideal lα of I0, independent of
r, such that lα · Br,Cp ⊂ Br,Cp · Uαr . Let l0 =

∏
α∈∆ lα. Then Lemma 7.21 gives an inclusion

(9.2) l0 · sp4(Br,Cp) ⊂ Br,Cp ·Gr,Cp .

As before let γ be an element of GSp4(Br,Cp) satisfying ΦBr = γCT1,T2
γ−1. The Lie algebra l0 ·

sp4(Br,Cp) is stable under Ad (γ−1), so Equation 9.2 implies that l0 · sp4(Br,Cp) = γ−1(l0 · sp4(Br,Cp))γ ⊂
γ−1(Br,Cp ·Gr)γ = Br,Cp · γ−1Grγ = Br,Cp ·Gγr . We deduce that, for every α ∈ ∆,

(9.3)
l0 · uα(Br,Cp) = uα(Br,Cp) ∩ l0 · sp4(Br,Cp) ⊂ uα(Br,Cp) ∩Br,Cp ·G

γ
r,Cp =

= Br,Cp · (uα(Br,Cp) ∩Gγr,Cp) = Br,Cp · U
γ,α
r,Cp .

By Lemma 9.3 Uα,γr,Cp is a Br,Cp -submodule of ur(Br,Cp), so Br,Cp · U
γ,α
r,Cp = Uγ,αr,Cp . Hence Equation (9.3)

gives

(9.4) l0 · uα(Br,Cp) ⊂ Uγ,αr,Cp

for every α. Set l1 = l20. By Lemma 7.21 and Remark 7.23, applied to the Lie algebra Gr,Cp and the set
of ideals {l1Br}α∈∆, Equation (9.4) implies that l1 · sp4(Br,Cp) ⊂ Gγr,Cp . Observe that the left hand side

of the last equation is stable under Ad (γ), so we can write

(9.5) l1 · sp4(Br,Cp) = γ(l1 · sp4(Br,Cp))γ−1 ⊂ γGγr,Cpγ
−1 = Gr,Cp .

To complete the proof we show that the extension of scalars to Cp in Equation 9.5 is unnecessary, up
to restricting the ideal l1. By Equation 9.5 we have, for every α,

(9.6) l1 · Br,Cp ⊂ Uαr,Cp .

We prove that the above inclusion of Cp-vector spaces descends to an inclusion l1 ·Br ⊂ Uαr of Qp-vector
spaces. Let I be some index set and let {fi}i∈I be an orthonormal basis of Cp as a Qp-Banach space,
satisfying 1 ∈ {fi}i∈I . Let a be any ideal of Ir,0 belonging to the set S2. Recall that the Qp-vector
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space Br/aBr ∼= Ir,0/a is finite-dimensional. We write πa for the projection Br → Ir,0/a and also for its
restriction Ir,0 → Ir,0/a. Let n and d be the Qp-dimensions of Ir,0/a and πa(Uαr ), respectively. Choose a
Qp-basis {vj}j=1,...,n of Ir,0/a such that {vj}j=1,...,d is a Qp-basis of Uαr .

Let v be any element of πa(l1). Then v ⊗ 1 ∈ πa(l1)⊗̂QpCp and by Equation (9.6) we have v ⊗ 1 ∈
πa(Uαr )⊗̂QpCp. Now {vj ⊗ fi}1≤j≤n; i∈I and {vj ⊗ fi}1≤j≤d; i∈I are orthonormal Qp-basis of Br/a⊗̂QpCp
and πa(Uαr )⊗̂QpCp, respectively. Hence there exists a set {λj,i}1≤j≤d; i∈I ⊂ Qp converging to 0 in the
filter of complements of finite subsets of {1, 2, . . . , d}× I such that v⊗ 1 =

∑
j=1,...,d; i∈I λj,i(vj ⊗ fi). By

setting λj,i = 0 for d < j ≤ n we obtain a representation v ⊗ 1 =
∑
j=1,...,n; i∈I λj,i(vj ⊗ fi) with respect

to the basis {vj ⊗ fi}1≤j≤n; i∈I of (Br/a)⊗̂QpCp. On the other hand there exist aj ∈ Qp, j = 1, 2, . . . , n,

such that v =
∑n
j=1 ajvj , so v ⊗ 1 =

∑n
j=1 aj(vj ⊗ 1) is another representation of v ⊗ 1 with respect

to the basis {vj ⊗ fi}1≤j≤n; i∈I . By the uniqueness of the representation of an element in a Qp-Banach
space in terms of a given orthonormal basis we must have aj = λj,i if fi = 1. In particular aj = 0 for

d < j ≤ n, so v =
∑d
j=1 ajvj is an element of πa(Uαr ).

The discussion above proves that πa(l1) ⊂ πa(Uαr ) for every a ∈ S2. By taking a projective limit over
a with respect to the natural maps we obtain l1 · Br ⊂ Uαr . Let l = l21. From Lemma 7.21 and Corollary
7.23, applied to the Lie algebra Gr,Cp and the set of ideals {l1Br}α∈∆, we deduce that

l · sp4(Br) ⊂ Gr.

By definition we have l = l21 = l40 =
(∏

α∈∆ lα
)4

. For every α the ideal lα provided by Lemma 9.2 is
independent of r, so l is also independent of r. This concludes the proof of Theorem 9.1. �

Definition 9.4. We call Galois level of θ and denote by lθ the largest ideal of I0 satisfying the inclusion
(9.1).

9.1. The Galois level of ordinary families. We explain how our arguments can be applied to an
ordinary family of GSp4-eigenforms in order to show a stronger result than Theorem 9.1. Let M be
a positive integer. Let Tord be a local component of the big ordinary cuspidal Hecke algebra of level
Γ1(M)∩Γ0(p) for GSp4; it is a finite and flat Λ2-algebra. With the terminology of Section 5 we consider
Tord as the genus 2, 0-adapted Hecke algebra of the given level. Suppose that the residual representation
ρTord associated with Tord is absolutely irreducible and of Sym3 type in the sense of Definition 4.3. Let
θ : Tord → I◦ be a family, i.e. the morphism of finite Λ2 algebras describing an irreducible component of
Tord. Note that the algebra Tord may different from the one given by the construction in Section 5 for
the choices h = 0 and rh = 1; however all of our arguments and contructions are equally valid for the
algebra Tord. None of them relied on the fact that the slope of the family was positive.

We keep all the notations we introduced for the family θ. Let ρ : GQ → GSp4(I◦Tr) be the Galois
representation associated with θ. Suppose that ρ is Zp-regular in the sense of Definition 4.2. Then we
have the following.

Theorem 9.5. There exists a non-zero ideal l of I◦0 and an element g of GSp4(I◦0) such that

(9.7) gΓI◦0 (l)g−1 ⊂ Im ρ.

The main difference with respect to the proof of Theorem 9.1 is that relative Sen theory is not
necessary anymore, since the exponential of the Sen operator defined in Section 8.4 is replaced by an
element provided by the ordinarity of ρ. This is the reason why we do not need the Lie-theoretic
constructions and we obtain a group-theoretic result. Note that this also makes the inversion of p
unnecessary. Theorem 9.5 is an analogue of [La16, Theorem 2.4], which deals with ordinary families of
GL2-eigenforms, and a generalization to the case where I◦ 6= Λ2 of [HT15, Theorem 4.8] for n = 2 and
families of residual symmetric cube type.

We only sketch the proof of the theorem, pointing out the differences with respect to that of Theorem
9.1.

Proof. Let u = 1 + p, let χ be the p-adic cyclotomic character and, for σ ∈ I◦,×0 , let ur(σ) : GQp → I◦,×0

be the unramified character sending a lift of the Frobenius automorphism to σ. By Hida theory the
ordinarity of θ implies the ordinarity of the Galois representation ρ, in the sense that the restriction of ρ
to a decomposition group at p is a conjugate of an upper triangular representation with diagonal entries
given by(

χ−3 · ((1 + T1)(1 + T2))
log(χ)
log(u) ur(α), χ−1 · (1 + T1)

log(χ)
log(u) ur(β), χ−2 · (1 + T2)

log(χ)
log(u) ur(γ),ur(δ)

)
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for some α, β, γ, δ ∈ I◦,×0 . Consider a conjugate of ρ that has the form displayed above. Up to conjugation
by an upper triangular matrix we can suppose that Im ρ contains a diagonal Zp-regular element. By
Proposition 7.5 we can further replace the representation with a conjugate by a diagonal matrix such
that ρ(H0) ⊂ GSp4(I◦0). This is true because the basis we start with in the proof of Proposition 7.5 is
replaced by a collinear one.

We work from now on with the last one of the conjugates of the original ρ mentioned in the previous
paragraph; this choice gives the element g appearing in Theorem 9.5. It is clear from the form of ρ
that there exists an element σ in the inertia subgroup at p such that ρ(σ) = CT1,T2

, where CT1,T2
is the

matrix defined in Section 8.4. Hence Im ρ is stable under AdCT1,T2
. The same argument as in Lemma

9.3, with the nilpotent algebra Uγ,αr,Cp replaced by the unipotent subgroup Uα(Im ρ) and the extension of

rings Br ⊂ Br replaced by Λ2 ⊂ I◦0, gives Uα(Im ρ) a structure of Λ2-module for every root α of Sp4.
By Proposition 7.25 Uα(Im ρ) contains a basis of a Λ2-lattice in I◦0 for every α. Hence, by Lemma 7.8,
Uα(Im ρ) contains a non-zero ideal of I◦0 for every α. By Proposition 7.22 the group Im ρ contains a
non-trivial congruence subgroup of Sp4(I◦0). �

10. The symmetric cube morphisms of Hecke algebras

Let Sym3 : GL2 → GSp4 be the morphism of group schemes over Z defined by the symmetric cube
representation of GL2. It fits in an exact sequence 0 → µ3 → GL2 → GSp4 of group schemes over Z.
If R is a ring we still denote by Sym3 the morphism GL2(R) → GSp4(R) induced by the morphism of
group schemes. For every representation ρ of a group with values in GL2(R) we set Sym3ρ = Sym3 ◦ ρ.

Kim and Shahidi proved the existence of a Langlands functoriality transfer from GL2 to GL4 associ-
ated with Sym3 : GL2(C) → GL4(C) [KS02, Theorem B]. Thanks to an unpublished result by Jacquet,
Piatetski-Shapiro and Shalika [KS02, Theorem 9.1], this transfer descends to GSp4. We briefly recall
these results.

Let π =
⊗

v πv be a cuspidal automorphic representation of GL2(AQ), where v varies over the places
of Q. Let ρv be the two-dimensional representation of the Weil-Deligne group of Qv attached to πv.
Consider the four-dimensional representation Sym3ρv = Sym3 ◦ ρv of the same group. By the local
Langlands correspondence for GL4, Sym3ρv is attached to an automorphic representation Sym3πv of
GL4(Qv). Define a representation of GL4(AQ) as Sym3π =

⊗
v Sym3πv. Then we have the following

theorems.

Theorem 10.1. [KS02, Theorem B] The representation Sym3π is an automorphic representation of
GL4(AQ). If π is attached to a non-CM eigenform of weight k ≥ 2, then Sym3π is cuspidal.

Theorem 10.2. [KS02, after Theorem 9.1] If π is attached to a non-CM eigenform of weight k ≥ 2,
then there exists a globally generic cuspidal automorphic representation Π of GSp4(AQ) such that Sym3π
is the functorial lift of Π under the embedding GSp4(C) ↪→ GL4(C).

10.1. Compatible levels for the classical symmetric cube transfer. If K is a compact open

subgroup of GSp4(Ẑ), we call level of K the smallest integer M such that K contains the principal

congruence subgroup of GSp4(Ẑ) of level M . Given an automorphic representation Π of GSp4(AQ), we
call level of Π the smallest integer M such that the finite component of Π admits an invariant vector by

a compact open subgroup of GSp4(Ẑ) of level M .
Recall that we fixed for every prime ` an embedding GQ` ↪→ GQ. If σ : GQ → GLn(Qp) is a represen-

tation and ` 6= p is a prime, set σ` = σ|GQ`
. We denote by N(σ, `) the conductor of σ`, defined in [Ser70].

The prime-to-p conductor of σ is defined as N(σ) =
∏
` 6=pN(σ, `). We recall a standard formula giving

N(σ, `) for every ` prime to p (see [Liv89, Proposition 1.1]). Let I ⊂ GQ` be an inertia subgroup and

for k ≥ 1 let Ik be its higher inertia subgroups. Let V be the two-dimensional Qp-vector space on which
GQ acts via σ. For every subgroup H ⊂ GQ let dH,σ be the codimension of the subspace of V fixed by
σ(H). Then N(σ, `) = `nσ,` , where

(10.1) nσ,` = dI,σ` +
∑
k≥1

dIk,σ`
[I : Ik]

.

Write Πf for the component of Π at the finite places and Π∞ for the component of Π at ∞. Since the
representation Π given by the above theorem is globally generic, it does not correspond to a holomorphic
modular form for GSp4. However Ramakrishnan and Shahidi showed that the generic representation
Π∞ can be replaced by a holomorphic representation Πhol

∞ such that Πf ⊗ Πhol
∞ belongs to the L-packet
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of Π. This is the content of [RS07, Theorem A′], that we recall below. Note that in loc. cit. the theorem
is stated only for π associated with a form f of level Γ0(N) and even weight k ≥ 2, but Ramakrishnan
pointed out that the proof also works when f has level Γ1(N) and arbitrary weight k ≥ 2. The theorem
also gives an information on the level of the representation produced by the lift.

Let π be the automorphic representation of GL2(AQ) associated with a cuspidal, non-CM eigenform
f of weight k ≥ 2 and level Γ1(N) for some N ≥ 1. Let p be a prime not dividing N and let ρf,p be the
p-adic Galois representation attached to f .

Theorem 10.3. (see [RS07, Theorem A′]) There exists a cuspidal automorphic representation Πhol =⊗
v Πhol

v of GSp4(AQ), satisfying:

(1) Πhol
∞ is in the holomorphic discrete series;

(2) L(s,Πhol) = L(s, π,Sym3);
(3) Πhol is unramified at primes not dividing N ;
(4) Πhol admits an invariant vector by a compact open subgroup K of GSp4(AQ) of level N(Sym3ρf,p).

We deduce the following corollary.

Corollary 10.4. Let f be a cuspidal, non-CM GL2-eigenform of weight k ≥ 2. For every prime ` let
ρf,` be the `-adic Galois representation associated with f . There exists a cuspidal GSp4-eigenform F of

weight (2k− 1, k+ 1) with associated `-adic Galois representation Sym3ρf,` for every prime `. For every

prime p not dividing N , the level of F is a divisor of the prime-to-p conductor of Sym3ρf,p.

Note that the weight (2k − 1, k + 1) is cohomological since k ≥ 2.

Proof. Everything follows immediately from Theorem 10.3 except for the weight of F , that can be found
by writing the Hodge-Tate weights of Sym3ρf,p in terms of those of ρf,p. �

We denote by Sym3f the cuspidal Siegel eigenform given by the corollary. Let N(f) and N(Sym3f)
be the levels of f and Sym3f , respectively. Thanks to the property (4) in Theorem 10.3 we can give an
upper bound for N(Sym3f) in terms of N(f) by comparing N(Sym3ρf,p) and N(ρf,p) for a prime p not
dividing N(f).

As before let σ : GQ → GLn(Qp) be a representation and let σ` = σ|GQ`
for every prime `.

Lemma 10.5. For every prime ` 6= p we have N(Sym3σ`) | N(σ`)
3. In particular N(Sym3σ) | N(σ)3.

Proof. We use the notations of formula (10.1). We check that dH,Sym3σ ≤ 3dH,σ for every subgroup H

of GQ, so formula (10.1) gives N(Sym3σ, `) | N(σ, `)3. Since the prime-to-p conductor is defined as the

product of the conductors at the primes ` 6= p, we obtain that N(Sym3σ) | N(σ)3. �

Definition 10.6. Let N be a positive integer and let N =
∏d
i=1 `

ai
i be its decomposition in prime factors,

with `i 6= `j if i 6= j. For every i ∈ {1, 2, . . . , d} set a′i = 1 if ai = 1 and a′i = 3ai if ai > 1. We define

an integer M , depending on N , by M =
∏d
i=1 `

a′i
i .

Corollary 10.7. Let N = N(f) and let M = M(N) be the integer given by Definition 10.6. Then
N(Sym3f) |M .

Proof. Let πf =
⊗

` πf,` be the automorphic representation of GL2(AQ) associated with f . Let πSym3f =⊗
` πSym3f,` be the automorphic representation of GSp4(AQ) associated with Sym3f . For every prime `

the Galois representations associated with the local components πf,` and πSym3f,` are ρf,` and Sym3ρf,`,

respectively. As before let N =
∏d
i=1 `

ai
i be the decomposition of N in prime factors. If ` - N the

representation πf,` is unramified, so πSym3f,` is also unramified.
Let i ∈ {1, 2, . . . , d}. If ai = 1 the local component πf,`i is Iwahori-spherical, hence Steinberg.

Then the image of the inertia subgroup at `i via ρf,`i contains a regular unipotent element u. The

image of the inertia subgroup at `i via Sym3ρf,`i contains the regular unipotent element Sym3u, so the
automorphic representation πSym3f,`i is Iwahori-spherical. Hence the factor `i appears with exponent

one in N(Sym3f).
Now suppose that ai > 1. Let p be a prime not dividing N . By Corollary 10.4 the power of `i

appearing in N(Sym3f) is a divisor of N(Sym3ρf,p, `i), that is a divisor of N(ρf,p, `i)
3 by Lemma 10.5.

By a classical result of Carayol N(ρf,`i) is a divisor of `aii , hence the conclusion. �

Borrowing the terminology of [Lu14, Section 4.3], we say that Γ
(1)
1 (N) and Γ

(2)
1 (M) are compatible

levels for the symmetric cube transfer.
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10.2. Constructing the morphisms of Hecke algebras. As usual we fix an integer N ≥ 1 and a
prime p not dividing N . We work with the abstract Hecke algebras HN1 , HN2 spherical outside N and
Iwahoric dilating at p. Let M be the integer given by Definition 10.6, depending on N . If f is a non-CM
GL2-eigenform of level Γ1(N), we denote by Sym3f the classical, cuspidal GSp4-eigenform of level Γ1(M)
given by Corollary 10.4. Our goal for this section is to determine the systems of Hecke eigenvalues of the
p-stabilizations of Sym3f in terms of that of a p-stabilization of f .

If χ is a system of Hecke eigenvalues, we write χ` for its local component at the prime `.

Remark 10.8. We will need multiple times the following simple computation. Let R be a ring and
let g ∈ GL2(R). Let g act on R2 via the standard representation and let P (g;X) = det(1 − X · g) =
X2 − TX + D be the characteristic polynomial of g. Then the characteristic polynomial of Sym3g is
P (Sym3g;X) = X4 − (T 3 − 2TD)X3 + (T 4 − 3DT 2 + 2D2)X2 −D3(T 3 + 2TD)X +D6.

If T,D ∈ R are arbitrary and P (X) = X2 − TX +D, we define the symmetric cube of P (X) as

Sym3P (X) = X4 − (T 3 − 2TD)X3 + (T 4 − 3DT 2 + 2D2)X2 −D3(T 3 + 2TD)X +D6.

10.2.1. The morphism of unramified Hecke algebras. We define a morphism of unramified abstract Hecke
algebras and show that it has the desired property with respect to the system of eigenvalues of f and
Sym3f outside Np.

Definition 10.9. For every prime ` - Np, let

λ` : H(GSp4(Q`),GSp4(Z`))→ H(GL2(Q`),GL2(Z`))

be the morphism defined by

T
(2)
`,0 7→ (T

(1)
`,0 )3,

T
(2)
`,1 7→ −(T

(1)
`,1 )6 + (4`− 2)T

(1)
`,0 (T

(1)
`,1 )4 + (6`− 4`2)(T

(1)
`,0 )2(T

(1)
`,1 )2 − 3`2(T

(1)
`,0 )3,

T
(2)
`,2 7→ (T

(1)
`,1 )3 − 2`T

(1)
`,1 T

(1)
`,0 .

Let λNp : HNp2 → HNp1 be the morphism defined by λNp =
⊗

`-Np λ`.

Proposition 10.10. Let R be a ring. Let χNp1 : HNp1 → R, χNp2 : HNp2 → R be two morphisms and let
ρ1 : GQ → GL2(R), ρ2 : GQ → GSp4(R) be two representations satisfying:

(1) for g = 1, 2 ρg is unramified outside Np;
(2) for g = 1, 2, every prime ` - Np and a lift Frob` ∈ GQ of the Frobenius at `,

det(1−Xρi(Frob`)) = χNpi (Pmin(t
(g)
`,g ;X));

(3) there is an isomorphism ρ2
∼= Sym3ρ1.

Then λNp is the only morphism HNp2 → HNp1 such that χNp2 = χNp1
◦ λNp.

Proof. Let ` be a prime not dividing Np. By Equation (2.1) we have Pmin(t
(1)
`,1 ;X) = X2 − T (1)

`,1 (f)X +

`T
(1)
`,0 . Hence hypothesis (2) with g = 1 gives

(10.2) det(1−Xρi(Frob`)) = χNp1 (X2 − T (1)
`,1 (f)X + `T

(1)
`,0 ).

By the calculation in Remark (10.8) we can write

(10.3)
det(1−XSym3ρ(Frob`)) = X4 − (T

(1)
`,1 − 2`T

(1)
`,1 T

(1)
`,0 )X3+

+((T
(1)
`,1 )4 − 3`T

(1)
`,0 (T

(1)
`,1 )2 + 2`2(T

(1)
`,0 )2)X2 − `3(T

(1)
`,0 )3((T

(1)
`,1 )3 + 2`T

(1)
`,1 T

(1)
`,0 )X + `6(T

(1)
`,0 )6.

By Equation (2.2) we have Pmin(t
(2)
`,2 ;X) = X4 − T (2)

`,2 X
3 + ((T

(2)
`,2 )2 − T (2)

`,1 − `2T
(2)
`,0 )X2 − `3T (2)

`,2 T
(2)
`,0 X +

`6(T
(2)
`,0 )2, so hypothesis (2) with g = 2 gives

(10.4)
det(1−XSym3ρ(Frob`)) = χNp2 (X4 − T (2)

`,2 X
3+

+((T
(2)
`,2 )2 − T (2)

`,1 − `
2T

(2)
`,0 )X2 − `3T (2)

`,2 T
(2)
`,0 X + `6(T

(2)
`,0 )2).
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By comparing the coefficients of the right hand sides of Equations (10.3) and (10.4) we obtain the
relations

χNp2 (T
(2)
`,1 ) = χNp1 (−(T

(1)
`,1 )6 + (4`− 2)T

(1)
`,0 (T

(1)
`,1 )4 + (6`− 4`2)(T

(1)
`,1 )2(T

(1)
` )2 − 3`2(T

(1)
`,0 )3),

χNp2 (T
(2)
`,2 ) = χNp1 ((T

(1)
` )3 − 2`T

(1)
`,1 T

(1)
`,0 ), χNp2 (T

(2)
`,0 ) = χNp1 ((T

(1)
`,0 )3).

We deduce that λ` is the only morphism H(GSp4(Q`),GSp4(Z`)) → H(GL2(Q`),GL2(Z`)) satisfying

χNp2 (Sym3f) = χNp1
◦ λ`. Since this is true for every ` - Np, we conclude that λNp is the only morphism

HNp2 → HNp1 satisfying χNp2 = χNp1
◦ λNp. �

As a special case of Proposition 10.10 we obtain the following corollary.

Corollary 10.11. Let f be a classical, non-CM GL2-eigenform f of level Γ1(N) and system of eigen-

values χNp1 : HNp1 → Qp outside Np. Let Sym3f be the symmetric cube lift of f given by Corollary 10.4.

Then the system of eigenvalues χNp2 of Sym3f outside Np is χNp1
◦ λNp : HNp2 → Qp.

Proof. The corollary follows from Proposition 10.10 applied to R = Qp, χ
Np
1 and χNp2 as in the statement,

ρ1 = ρf,p and ρ2 = ρSym3f,p. �

10.2.2. The morphisms of Iwahori-Hecke algebras. We study the systems of Hecke eigenvalues of the
p-stabilizations of Sym3f .

Definition 10.12. For i ∈ {1, 2, . . . , 8} we define morphisms

λi,p : H(T2(Qp), T2(Zp))− → H(T1(Qp), T1(Zp)).

For i ∈ {1, 2, 3, 4} the morphism λi,p is defined on a set of generators of H(T2(Qp), T2(Zp))− as follows:

(1) λ1,p maps t
(2)
p,0 7→ (t

(1)
p,0)3, t

(2)
p,1 7→ t

(1)
p,0(t

(1)
p,1)4, t

(2)
p,2 7→ (t

(1)
p,1)3;

(2) λ2,p maps t
(2)
p,0 7→ (t

(1)
p,0)3, t

(2)
p,1 7→ (t

(1)
p,0)2(t

(1)
p,1)2, t

(2)
p,2 7→ (t

(1)
p,1)3;

(3) λ3,p maps t
(2)
p,0 7→ (t

(1)
p,0)3, t

(2)
p,1 7→ t

(1)
p,0(t

(1)
p,1)4, t

(2)
p,2 7→ t

(1)
p,0t

(1)
p,1;

(4) λ4,p maps t
(2)
p,0 7→ (t

(1)
p,0)3, t

(2)
p,1 7→ (t

(1)
p,0)4(t

(1)
p,1)−2, t

(2)
p,2 7→ t

(1)
p,0t

(1)
p,1.

For i ∈ {5, 6, 7, 8} the morphism λi,p : H(T2(Qp), T2(Zp))→ H(T1(Qp), T1(Zp)) is given by

λi,p = δ ◦ λi−4,p

where δ is the automorphism of H(T1(Qp), T1(Zp)) defined on a set of generators of the subalgebra
H(T1(Qp), T1(Zp))− by

(10.5) δ(t
(1)
p,0) = t

(1)
p,0, δ(t

(1)
p,1) = t

(1)
p,0(t

(1)
p,1)−1

and extended in the unique way.

Let f st be a p-stabilization of a classical, cuspidal, non-CM GL2-eigenform f of level Γ1(N). Let
χ1,p : H(GL2(Qp),GL2(Zp))→ Qp and χst

1,p : H(GL2(Qp), I1,p)− → Qp be the systems of Hecke eigenval-

ues at p of f and f st, respectively. Note that χ1,p is the restriction of χst
1,p to the abstract spherical Hecke

algebra at p. Let (Sym3f)st be a p-stabilization of Sym3f . Let χ2,p : H(GSp4(Qp),GSp4(Zp)) → Qp
and χst

2,p : H(GSp4(Qp), I2,p)− → Qp be the systems of Hecke eigenvalues at p of Sym3f and (Sym3f)st,

respectively. Again χ2,p is the restriction of χst
2,p to the abstract spherical Hecke algebra at p.

Recall from Section 2.2.2 that for g = 1, 2 there is an isomorphism of Q-algebras ιT2

I2,p
: H(GSp2g(Qp), Ig,p)− →

H(Tg(Qp), Tg(Zp))−. Let ι
I2,p
T2

: H(Tg(Qp), Tg(Zp))− → H(GSp2g(Qp), Ig,p)− be its inverse. In particular

χst
g ◦ ι

Ig,p
Tg

is a character H(Tg(Qp), Tg(Zp))− → Qp. By Remark 2.1 the character χst
g,p ◦ ι

Ig,p
Tg

can be

extended uniquely to a character (χst
g,p ◦ ι

Ig,p
Tg

)ext : H(Tg(Qp), Tg(Zp))→ Qp.

Proposition 10.13. There exists i ∈ {1, 2, . . . , 8} such that

χst
2 ◦ ι

T2

I2,p
= (χst

1 ◦ ι
T1

I1,p
)ext ◦ λi,p.

Moreover, if λp : H(T2(Qp), T2(Zp)) → H(T1(Qp), T1(Zp)) is another morphism satisfying χst
2 ◦ ι

T2

I2,p
=

(χst
1 ◦ ι

T1

I1,p
)ext ◦ λp, then there exists i ∈ {1, 2, . . . , 8} such that λp = λi,p.
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Proof. In this proof we leave the composition with the isomorphism ιT1

I1,p
and ιT2

I2,p
implicit and we consider

χst
1,p and χst

2,p as characters respectively of H(T1(Qp), T1(Zp))− and H(T2(Qp), T2(Zp))− for notational

ease. Let ρf,p : GQ → GL2(Qp) be the p-adic Galois representation associated with f , so that the p-

adic Galois representation associated with Sym3f is Sym3ρf,p. Via p-adic Hodge theory we attach to

ρf,p a two-dimensional Qp-vector space Dcris(ρf,p) endowed with a Qp-linear Frobenius endomorphism

ϕcris(ρf,p) satisfying det(1−Xϕcris(ρf,p)) = χ1,p(Pmin(t
(2)
p,2;X)).

We will use the notations of Section 2.2.3 for the elements of the Weyl groups of GL2 and GSp4. Let

αp and βp be the two roots of χ1,p(Pmin(t
(2)
p,2;X)), ordered so that χst

1,p(t
(1)
p,1) = αp and βp = χst

1,p((t
(1)
p,1)w).

Let Dcris(ρSym3f,p) be the 4-dimensional Qp-vector space attached to ρSym3f,p by p-adic Hodge theory.
Denote by ϕcris(ρSym3f,p) the Frobenius endomorphism acting on Dcris(ρSym3f,p). It satisfies det(1 −
Xϕcris(ρSym3f,p)) = χ2,p(Pmin(t

(2)
p,2;X)) by [Ur05, Théorème 1]. The coefficients of Pmin(t

(2)
p,2;X) belong

to the spherical Hecke algebra at p, so we have χst
2,p(Pmin(t

(2)
p,2;X)) = χ2,p(Pmin(t

(2)
p,2;X)). From ρSym3f,p =

Sym3ρf,p we deduce that

(10.6) χst
2,p(Pmin(t

(2)
p,2;X)) = det(1−Xϕcris(ρSym3f,p)) = (X − α3

p)(X − α2
pβp)(X − αpβ2

p)(X − β3
p).

By developing the left hand side via the first equality of Equation (2.2) and the right hand side via
Equation (10.6) we obtain

(X − χst
2,p(t

(2)
`,2))(X − χst

2,p((t
(2)
`,2)w1)) · (X − χst

2,p((t
(2)
`,2)w2))(X − χst

2,p((t
(2)
`,2)w1w2)) =

= (X − α3
p)(X − α2

pβp)(X − αpβ2
p)(X − β3

p).

In particular the sets of roots of the two sides must coincide. Since t
(2)
`,2(t

(2)
`,2)w1w2 = (t

(2)
`,2)w1(t

(2)
`,2)w2 we have

eight possible choices. Four choices for the 4-tuple χst
2,p(t

(2)
`,2), χst

2,p((t
(2)
`,2)w1), χst

2,p((t
(2)
`,2)w2), χst

2,p((t
(2)
`,2)w1w2)

are

(α3
p, α

2
pβp, αpβ

2
p , β

3
p), (α3

p, αpβ
2
p , α

2
pβp, β

3
p), (α2

pβp, α
3
p, β

3
p , αpβ

2
p), (α2

pβp, β
3
p , α

3
p, αpβ

2
p).

The other four choices are obtained by exchanging αp with βp in the ones above.

Since t
(2)
p,1 = t

(2)
`,2(t

(2)
`,2)w1 and t

(2)
p,0 = t

(2)
`,2(t

(2)
`,2)w1w2 , the displayed 4-tuples give for (χst

2,p(t
(2)
`,0), χst

2,p(t
(2)
`,1), χst

2,p(t
(2)
`,2))

the choices

(α3
pβ

3
p , α

5
pβp, α

3
p), (α

3
pβ

3
p , α

4
pβ

2
p , α

3
p), (α

3
pβ

3
p , α

5
pβp, α

2
pβp), (α

3
pβ

3
p , α

2
pβ

4
p , α

2
pβp).

By writing αp = χst
1,p(t

(1)
p,1), βp = χst

1,p((t
(1)
p,1)w) and recalling that t

(1)
p,0 = t

(1)
p,1(t

(1)
p,1)w, the previous triples

take the form

(10.7)
(χst

1,p(t
(1)
p,0)3, χst

1,p(t
(1)
p,0(t

(1)
p,1)4), χst

1,p((t
(1)
p,1)3)), (χst

1,p(t
(1)
p,0)3, χst

1,p((t
(1)
p,0)2(t

(1)
p,1)2), χst

1,p((t
(1)
p,1)3)),

(χst
1,p(t

(1)
p,0)3, χst

1,p(t
(1)
p,0(t

(1)
p,1)4), χst

1,p(t
(1)
p,0t

(1)
p,1)), (χst

1,p(t
(1)
p,0)3, χst

1,p((t
(1)
p,0)4(t

(1)
p,1)−2), χst

1,p(t
(1)
p,0t

(1)
p,1)).

The triples corresponding to the other four possibilities are obtained by replacing t
(1)
p,0 and t

(1)
p,1 in the

triples above by their images via the automorphism δ of H(T1(Qp), T1(Zp)) defined by Equation (10.5).
Let λp : H(T2(Qp), T2(Zp))− → H(T1(Qp), T1(Zp)) be a morphism satisfying χst

2 = (χst
1 )ext ◦ λp ◦ ι

−
2,p

(recall that we leave the maps ι
Tg
Ig,p

implicit). By the arguments of the previous paragraph this happens

if and only if the triple (λi,p(t
(2)
p,0), λi,p(t

(2)
p,1), λi,p(t

(2)
p,2)) coincides with one of the four listed in (10.7) or

the four derived from those by applying δ. A simple check shows that these triples correspond to the
choices λp = λi,p for i ∈ {1, 2, . . . , 8}. �

Remark 10.14. Since all the Hecke actions we consider are for the algebras HNg , g = 1, 2, that are
dilating Iwahoric at p, we want to know whether the morphisms λi,p, i ∈ {1, 2, . . . , 8}, can be replaced
by morphisms λ−i,p of dilating Hecke algebras that satisfy χst

2,p = χst
1,p ◦ λ

−
i,p. Equivalently, we look for the

values of i such that there exists a morphism λ−i,p : H(GSp4(Qp), I2,p)− → H(GL2(Qp), I1,p)− making the
following diagram commute:

H(GSp4(Qp), I2,p)− H(T2(Qp), T2(Zp))−

H(GL2(Qp), I1,p)− H(T1(Qp), T1(Zp))− H(T1(Qp), T1(Zp)).

λ−i,p

ι
I2,p
T2

λi,p

ι
I1,p
T1

ι−1,p
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Clearly λ−i,p exists if and only if the image of λ−i,p lies in H(T1(Qp), T1(Zp))−. A simple check shows that

this is true only for i ∈ {1, 2, 3}.

10.2.3. The product morphisms. Now we can combine the results for the unramified and Iwahori-Hecke
algebras.

Definition 10.15. Let i ∈ {1, 2, 3}. Let λ−i,p : H(GSp4(Qp), I2,p)− → H(GL2(Qp), I1,p)− be the mor-

phisms making diagram (10.14) commute. Let λi : HN2 → HN1 be the morphism defined by λi = λNp⊗λ−i,p.

Keep the notations as before. Let χst,i
2 : HN2 → Qp be the character defined by

(1) χst,i
2,` = χst

1,`
◦ λi for every prime ` - Np;

(2) χst,i
2,p = (χst

1,p ◦ ι
T1

I1,p
)ext ◦ λi,p ◦ ι

I2,p
T2

.

From Propositions 10.10 and 10.13 we deduce the following.

Corollary 10.16. For every i ∈ {1, 2, . . . , 8}, the form Sym3f has a p-stabilization (Sym3f)st
i with

associated system of Hecke eigenvalues χst,i
2 . Conversely, if (Sym3f)st is a p-stabilization of Sym3f with

associated system of Hecke eigenvalues χst
2 , then there exists i ∈ {1, 2, . . . , 8} such that χst

2 = χst,i
2 .

Remark 10.17. If χst,1
1 and χst,2

1 are the systems of Hecke eigenvalues of the two p-stabilizations of

f , then χst
1 ◦ ι

T1

I1,p
= (χst

1 ◦ ι
T1

I1,p
)ext ◦ δ, where the superscript ext denotes extension of characters from

H(Tg(Qp), Tg(Zp))− to H(Tg(Qp), Tg(Zp)) and δ is defined by Equation 10.5. For this reason the eight
forms Fi, 1 ≤ i ≤ 8, can be constructed via the four maps λi, 1 ≤ i ≤ 4, starting with the two p-
stabilizations of f . It will be useful to think of every GL2-eigenform of Iwahoric level at p as having four
symmetric cube lifts on the GSp4-eigencurve, rather than of a form of trivial level at p having eight lifts.

Let f st
α be a p-stabilization of a classical, cuspidal, non-CM GL2-eigenform f . Let h be the slope of

f . For i ∈ {1, 2, 3, 4}, denote by Sym3(f st
α )i the GSp4-eigenform (Sym3f)st

i given by Corollary 10.16.
Thanks to Remark 10.17 the forms (Sym3f)st

i with 5 ≤ i ≤ 8 coincide with (Sym3f st
β )i, 1 ≤ i ≤ 4, where

f st
β is the p-stabilization of f different from f st

α .

Recall that U
(1)
p = U

(1)
p,1 and U

(2)
p = U

(2)
p,1U

(2)
p,2 . We defined the slope of a GSp2g-eigenform of Iwahoric

level at p as the p-adic valuations of the normalized eigenvalue of U
(g)
p acting on the form. Let k and

h be the weight and slope, respectively, of f st
α . The following derives from Proposition 10.13 via some

simple calculations.

Corollary 10.18. The slopes of the forms Sym3(f st
α )i, with 1 ≤ i ≤ 4, are:

sl(Sym3(f st
α )1) = 7h, sl(Sym3(f st

α )2) = sl(Sym3(f st
α )3) = k − 1 + 5h, sl(Sym3(f st

α )4) = 4(k − 1)− h.

If f st is a p-old GL2-eigenform of level Γ1(N)∩Γ0(p), we write χi2,fst for the system of Hecke eigenvalues

of Sym3(f st)i, 1 ≤ i ≤ 4. For a Qp-point x of DM2 let χx : HN2 → Qp be the system of Hecke eigenvalues

associated with x. For 1 ≤ i ≤ 4, let SSym3

i be the set of Qp-points x of DM2 defined by the condition

x ∈ SSym3

i ⇐⇒ ∃ a p-old GL2-eigenform f st of level Γ1(N) ∩ Γ0(p) such that χx = χi2,fst .

Then we have the following.

Corollary 10.19. If i 6= 1 then the set SSym3

i is discrete in DM2 .

Proof. Let i ∈ {1, 2, 3, 4}. Let D2 be an affinoid domain on DM2 . For x ∈ D2(Cp)∩ SSym3

i , there exists a

GL2-eigenform f of level Γ1(N) such that χx = χst,i
2,f . Let f st be a p-stabilization of f and let xst

f be the

corresponding point on DN1 . Since the systems of Hecke eigenvalues vary analytically on DM2 and DN1 ,

the set {xst
f |x ∈ D2(Cp) ∩ SSym3

i } must be contained in D1(Cp) for an affinoid domain D1 on DN1 . For

j = 1, 2, Remark 2.5 gives that the slope vp(ψj(U
(j)
p )) is bounded on Dj by a constant cj . By imposing

that h ≤ c1 and sl(f st
α )i) ≤ c2 in Corollary 10.18, we obtain an upper bound for k if i 6= 1. Since there

is only a finite number of classical GL2-eigenforms of given weight and level, the set SSym3,i ∩D2(Cp) is
finite if i 6= 1. �

Remark 10.20. As a consequence of Corollary 10.19 the only symmetric cube lifts that we can hope to

interpolate p-adically are those in the set SSym3

1 . We will prove in Section 14 that the Zariski closure of
this set is a 1-dimensional subvariety of DM2 .
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10.2.4. An assumption on the residual Galois representation. Let ρ : GQ → GL2(Fp) be a representation.
Let DN1,ρ be the union of the connected components of DN1 having ρ as associated residual representation.

From now on we replace DN1 by a subspace of the form DN1,ρ for some ρ; we do it implicitly, so we still

write DN1 for DN1,ρ. The only purpose of this choice is to assure that the symmetric cube morphism of
eigenvarieties we construct in Section 12.3 is a closed immersion; this will be a consequence of Lemma
10.21 below.

There is a map Sym3
1 from the set of classical, non-CM, p-old points of DN1,ρ to the set SSym3

1 of

Corollary 10.19; it maps a point x corresponding to an eigenform f to the point of SSym3

1 corresponding

to (Sym3fx)st
1 .

Lemma 10.21. The map Sym3
1 is injective.

Proof. If x1 and x2 are two points of DN1,ρ satisfying Sym3
1(x1) = Sym3

1(x2), then Sym3ρx1
∼= Sym3ρx2 .

This implies that ρx1
∼= ρx2

⊗χ for a character χ : GQ → Q×p of order 3. Since ρ1 = ρ2 = ρ and p > 3, the
character χ is trivial and ρx1

∼= ρx2 . We deduce that x1 and x2 are two p-stabilizations of the same form
of trivial level at p. If they are distinct then Sym3

1(x1) 6= Sym3
1(x2) by construction, a contradiction. We

conclude that x1 = x2. �

11. Morphisms of BC-eigenvarieties

We recall Belläıche and Chenevier’s definition of eigenvarieties and some of their results, following
[BC09, Section 7.2.3]. We refer to their eigenvarieties as BC-eigenvarieties, in order to distinguish this
notion from the definition of eigenvariety we gave in Section 2.3 (a product of Buzzard’s eigenvariety
machine). We will use these results to interpolate the classical symmetric cube lifts given by Corollary
10.4 into a morphism of eigenvarieties. We remark that Ludwig [Lu14, Lu14] also relies on the results of
[BC09, Section 7.2.3]. We think that our approach may be more systematic.

As usual fix a prime p ≥ 5. We call “BC-datum” a 4-tuple (g,H, η,S cl) where:

– g is a positive integer;
– H is a commutative ring;
– η is a distinguished element of H;
– S cl is a subset of Hom(H,Qp)× Zg.

The superscript “cl” stands for “classical”. In our applications H will be a Hecke algebra and S cl will
be a set of couples (ψ, k) each consisting of the system of eigenvalues ψ and the weight k of a classical
eigenform. In the proposition below W◦g is the connected component of unity in the g-dimensional
weight space. Recall that we identify Zg with the set of classical weights in WG. Also recall that for
an extension L of Qp and an L-point x of a rigid analytic space X we denote by evx : O(X) → L the
evaluation morphism at x.

Definition 11.1. [BC09, Definition 7.2.5] A BC-eigenvariety for the datum (g,H, η,S cl) is a 4-tuple
(D, ψ, w, Scl) consisting of

– a reduced rigid analytic space D over Qp,
– a ring morphism ψ : H → O(D) such that ψ(η) is invertible,
– a morphism w : D →W◦g of rigid analytic spaces over Qp,

– an accumulation and Zariski-dense subset Scl ⊂ D(Qp) such that w(Scl) ⊂ Zg,

satisfying the following conditions:

(1) the map

(11.1) ν̃ = (w,ψ(η)−1) : D →W◦g ×Gm

induces a finite morphism D → ν̃(D);
(2) there exists an admissible affinoid covering C of ν̃(D) such that, for every V ∈ C, the map

ψ ⊗ ν̃∗ : H⊗Z O(V )→ O(ν̃−1(V ))

is surjective;
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(3) the evaluation map

(11.2)
ẽv : Scl → Hom(H,Qp)× Zg,

x 7→ (ψx, w(x)),

where ψx = evx ◦ ψ, induces a bijection Scl → S cl.

We often refer to D as the BC-eigenvariety for the given BC-datum and leave the other elements of
the BC-eigenvariety implicit.

If a BC-eigenvariety for the given BC-datum exists then it is unique in the sense of the proposition
below.

Proposition 11.2. [BC09, Proposition 7.2.8] Let (D1, ψ1, w1, S
cl
1 ) and (D2, ψ2, w2, S

cl
2 ) be two BC-

eigenvarieties for the same BC-datum (g,H, η,S cl). Then there is a unique isomorphism ζ : D1 → D2

of rigid analytic spaces over Qp such that ψ1 = ζ∗ ◦ ψ2, w1 = w2 ◦ ζ and ζ(Scl
1 ) = Scl

2 .

In the previous sections we defined various rigid analytic spaces via Buzzard’s eigenvariety machine.
We check that these spaces are BC-eigenvarieties for a suitable choice of BC-datum. As a first step we
prove the lemma below. Consider an eigenvariety datum (W◦,H, (M(A,w))A,w, (φA,w)A,w, η) and let
(D, ψ, w) be the eigenvariety produced from this datum by Theorem 2.3.

Lemma 11.3. The triple (D, ψ, w) satisfies conditions (1) and (2) of Definition 11.1.

Proof. We refer to Buzzard’s construction (see [Bu07, Sections 4-5]). Let Z be the spectral variety for
the given datum. Let ν̃ be the map defined by Equation (11.1). By construction of D we have ν̃(D) = Z
and the map ν̃ : D → Z is finite, so condition (1) of Definition 11.1 holds.

Let C be the admissible affinoid covering of Z defined in [Bu07, Section 4]. For V ∈ C let A = SpmR =
wZ(V ) be its image in W◦. Let w ∈ Q be sufficiently large, so that the module M(A,w) is defined. Let
M(A,w) = N ⊕F be the decomposition associated with V by Riesz theory, following the discussion and
the notations in [Bu07, Section 5]. Then O(ν̃−1(V )) is the R-span of the image of H in EndR,contN .
Since O(V ) is an R-module, the map ψ : H⊗O(V )→ O(ν̃−1V ) is surjective, hence condition (2) is also
satisfied. �

Suppose that there exists an accumulation and Zariski-dense subset Scl of D such that the set

S cl = {(ψx, w(x)) |x ∈ Scl}

is contained in Hom(H,Qp) × Zg. Then (D, ψ, w, Scl) clearly satisfies condition (3) of Definition 11.1

with respect to the set S cl, hence the following.

Corollary 11.4. The 4-tuple (D, ψ, w, Scl) is a BC-eigenvariety for the datum (g,H, η,S cl).

11.1. Changing the BC-datum. Let (D, ψ, w, Scl) be a BC-eigenvariety for the datum (g,H, η,S cl).
Let Scl

0 be an accumulation subset of Scl and let D0 be the Zariski closure of Scl
0 in D. Let S cl

0 be the
image of Scl

0 via the bijection Scl → S cl. Let ψ0 : H → O(D0) be the composition of ψ : H → O(D) with
the restriction O(D)→ O(D0). Let w0 = w|D0

.

Lemma 11.5. The 4-tuple (D0, ψ0, w0, S
cl
0 ) is a BC-eigenvariety for the datum (g,H, η,S cl

0 ).

Proof. We check that the conditions of Definition 11.1 are satisfied by (D0, ψ0, w0, S
cl
0 ), knowing that they

are satisfied by (D, ψ, w, Scl). Let ν̃ = (w,ψ(η)−1) : D → W◦ ×Gm and let Z = ν̃(D). Let Z0 = ν̃(D0).
Since ν̃ : D → Z is finite and D0 is Zariski-closed in D, the map ν̃|D0

: D0 → Z0 is also finite, hence (1)
holds.

Consider an admissible covering C of Z satisfying condition (2). Then {V ∩ Z0}V ∈C is an admissible
covering of Z0. Let V ∈ C and V0 = V ∩ Z0. Consider the diagram

H⊗O(V ) O(ν̃−1(V ))

H⊗O(V0) O(ν̃−1
0 (V0))

ψ⊗ν̃∗

ψ0⊗ν̃∗0

The horizontal arrows are given by the restriction of analytic functions. Since the left vertical arrow is
surjective, the right one is also surjective, giving (2).

By definition of Scl
0 the map ẽv induces a bijection Scl

0 → S cl
0 , so (3) is also true. �
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We prove some relations between BC-eigenvarieties associated with different BC-data.

Lemma 11.6. Let g1 and g2 be two positive integers with g1 ≤ g2. Let Θ: W◦g1
→W◦g2

be an immersion

of rigid analytic spaces that maps classical points of W◦g1
to classical points of W◦g2

. Let (g1,H, η,S cl
1 )

and (g2,H, η,S cl
2 ) be two BC-data satisfying

{(ψ,Θ(k)) ∈ Hom(H,Qp)× Zg2 | (ψ, k) ∈ S cl
1 } ⊂ S cl

2

Let (D1, ψ1, w1, S
cl
1 ) and (D2, ψ2, w2, S

cl
2 ) be the BC-eigenvarieties for the two data. Then there exists

a closed immersion of rigid analytic spaces ξΘ : D1 → D2 such that ψ1 = ξ∗Θ ◦ ψ2, w1 = w2 ◦ ξΘ and
ξΘ(Scl

1 ) ⊂ Scl
2 .

Proof. Let DΘ
1 = D2×W◦g2W

◦
g1

, where the mapW◦g1
→W◦g1

is Θ. Let ζΘ : DΘ
1 → D2 and wΘ

1 : DΘ
1 →W◦g1

be the natural maps fitting into the cartesian diagram

DΘ
1 D2

W◦g1
W◦g2

ζΘ

wΘ
1

w2

Θ

Then ζΘ induces a ring morphism ζΘ,∗ : O(D2)→ O(DΘ
1 ). Let ψΘ

1 = ζΘ,∗ ◦ ψ2. Note that ζΘ is a closed
immersion.

Let S Θ
1 = {(ψ, k) ∈ Hom(H,Qp)×Zg1 | (ψ,Θ(k)) ∈ S cl

2 }. Then the 4-tuple (DΘ
1 , ζ

∗
Θ
◦ ψ2, w

Θ
1 , ζ

−1
Θ (Scl

2 ))

is a BC-eigenvariety for the datum (g1,H, η,S Θ
1 ). By assumption S cl

1 ⊂ S Θ
1 . Consider the Zariski-

closure D′1 of ẽv−1(S cl
1 ) in DΘ

1 . Let ι′ : D′1 → DΘ
1 be the natural closed immersion and let w′1 = wΘ

1 |D′1 ,

ψ′1 = (ι′)∗ ◦ ψΘ
1 . By Lemma 11.5 the 4-tuple (D′1, ψ′1, w′1, ẽv−1(S cl

1 )) is a BC-eigenvariety for the BC-
datum (g1,H, η,S cl

1 ). Since (D1, ψ1, w1,S cl
1 ) is a BC-eigenvariety for the same datum, Proposition 11.2

gives an isomorphism of rigid analytic spaces ζ : D1 → D′1 compatible with all the extra structures. The
composition ξΘ = ζΘ ◦ ι

′ ◦ ζ : D1 → D2 is a closed immersion with the desired properties. �

Let (g,H, η1,S cl) and (g,H, η2,S cl) be two BC-data that differ only by the choice of the distinguished
elements of H. Let (D1, ψ1, w1, S

cl
1 ) and (D2, ψ2, w2, S

cl
2 ) be BC-eigenvarieties for the two data. We say

that condition (Fin) is satisfied if the following holds:

(Fin) the map

ν̃1,2 : D1 →W◦g ×Gm,
x 7→ (w1(x), evx ◦ ψ1(η2)−1)

induces a finite morphism D1 → ν̃1,2(D1).

Lemma 11.7. Under assumption (Fin), there exists an isomorphism of rigid analytic spaces ξη : D1 →
D2 such that ψ1 = ξ∗η ◦ ψ2, w1 = w2 ◦ ξη and ξ2(Scl

1 ) = Scl
2 .

Proof. We check that the 4-tuple (D1, ψ1, w1, S
cl
1 ) is a BC-eigenvariety for the datum (g,H, η2,S cl). All

properties of Definition 11.1 except (1) are satisfied because (D1, ψ1, w1, S
cl
1 ) is a BC-eigenvariety for the

datum (g,H, η1,S cl). Property (1) is satisfied thanks to hypothesis (Fin). Then (D1, ψ1, w1, S
cl
1 ) and

(D2, ψ2, w2, S
cl
2 ) are BC-eigenvarieties for the same datum, and Proposition 11.2 gives an isomorphism

of rigid analytic spaces D1 → D2 with the desired properties. �

Lemma 11.8. Let H1 and H2 be two commutative rings and let λ : H2 → H1 be a ring morphism. Let
(g,H1, η1,S cl

1 ) and (g,H2, η2,S cl
2 ) be two BC-data that satisfy η1 = λ(η2) and

(11.3) S cl
1 = {(ψ ◦ λ, k) | (ψ, k) ∈ S cl

2 }.
Let (D1, ψ1, w1, S

cl
1 ) and (D2, ψ2, w2, S

cl
2 ) be BC-eigenvarieties for the two data. Suppose that the map

S cl
2 → S cl

1 defined by (ψ, k) 7→ (ψ ◦ λ, k) is a bijection. Then there exists an isomorphism of rigid
analytic spaces ξλ : D1 → D2 such that ψ1 ◦ λ = ξ∗λ ◦ ψ2, w1 = w2 ◦ ξλ and ξλ(Scl

1 ) = Scl
2 .

Proof. Consider the 4-tuple (D1, ψ1 ◦ λ,w1, S
cl
1 ). We show that it defines a BC-eigenvariety for the

datum (g,H2, η2,S cl
2 ). Property (1) of Definition 11.1 is satisfied since ψ1 ◦ λ(η2) = ψ1(η1) and the

map (w,ψ1(η1)−1) is finite by property (1) relative to the datum (g,H1, η1,S cl
1 ). Property (2) is a

consequence of equality (11.3) together with the fact that Scl
1 is Zariski-dense in D1. Property (3) follows

immediately from equality (11.3).
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Now the 4-tuples (D1, ψ1 ◦ λ,w1, S
cl
1 ) and (D2, ψ2, w2, S

cl
2 ) define two BC-eigenvarieties for the datum

(g,H2, η2,S cl
2 ), so Proposition 11.2 gives a morphism ξλ : D1 → D2 of rigid analytic spaces such that

ψ1 ◦ λ = ξ∗λ ◦ ψ2, w1 = w2 ◦ ξλ and ξλ(Scl
1 ) = Scl

2 , as desired. �

12. The symmetric cube morphism of eigenvarieties

Fix a prime p and an integer N ≥ 1 prime to p. Let M be the integer given as a function of N by
Definition 10.6. Set λ = λ1, where λ1 : HN2 → HN1 is the morphism given by Definition 10.15.

We work from now on with the curves DN1 ×W1
W◦1 and DM2 ×W2

W◦2 . We still denote them by DN1
and DM2 in order not to complicate notations. Our aim is to construct a closed immersion DN1 → DM2
interpolating the map defined by the symmetric cube transfer on the classical points. As in [Lu14] we
define two auxiliary eigenvarieties.

12.1. The first auxiliary eigenvariety. Recall that for every affinoid subdomain A = SpmR ofW1 and
for every sufficiently large rational number w there is a Banach R-module M1(A,w) of w-overconvergent
modular forms of weight κA and level N , carrying an action φ1

A,w : HN1 → EndR,contM1(A,w). We let

HN2 act on M1(A,w) through the map

φ1,aux
A,w = φ1

A,w ◦ λ : HN2 → EndR,contM1(A,w).

We have φ1,aux
A,w (U

(2)
p ) = φ1,aux

A,w (U
(2)
p,1U

(2)
p,2 ) = φ1

A,w(λ(U
(2)
p,1U

(2)
p,2 )) = φ1

A,w(U
(1)
p,0 (U

(1)
p,1 )7). This operator is

compact on M1(A,w) since it is the composition of the compact operator φ1,aux
A,w (U

(1)
p,1 ) with a continuous

operator.

Definition 12.1. Let (DN1,λ, ψ1,λ, w1,λ) be the eigenvariety associated with the datum

(W◦1 ,HN2 , (M1(A,w))A,w, (φ
1,aux
A,w )A,w, U

(2)
p )

by the eigenvariety machine.

SinceW◦1 is equidimensional of dimension 1, the eigenvariety DN1,λ is also equidimensional of dimension
1.

We denote by Scl
1 the set of classical points of DN1 and by Scl,G

1 the set of classical non-CM points of

DN1 . Recall that we defined a non-CM eigencurve DN,G1 as the Zariski-closure of Scl,G
1 . By Remark 2.9

the set Scl,G
1 is an accumulation subset of DN,G1 and the weight map wG1 : DN,G1 →W◦1 is surjective.

We define two subsets of DN1,λ by

Scl
1,λ = {x ∈ DN1,λ |ψx = χf ◦ λ for a classical, p-old GL2 eigenform f},

Scl
1,aux = {x ∈ DN1,λ |ψx = χf ◦ λ for a classical, p-old, non-CM GL2 eigenform f}.

Definition 12.2. Let DN1,aux be the Zariski-closure of the set Scl
1,aux in DN1,λ.

We denote by ψ1,aux : HN2 → O(DN1,aux) and w1,aux : DN1,aux → W◦1 the morphisms obtained from the

corresponding morphisms for DN1,λ.

12.2. The second auxiliary eigenvariety. We identify W◦1 with B1(0, 1−) and W◦2 with B2(0, 1−)
via the isomorphisms η1 and η2 of Section 2.1. This way we obtain coordinates T on W◦1 and (T1, T2)
on W◦2 .

Let k ≥ 2 be an integer. Let f be a cuspidal GL2-eigenform of weight k and level Γ1(N) and let f st

be a p-stabilization of f . Let F = (Sym3f)st
i be one of the p-stabilizations of Sym3f defined in Corollary

10.16. By Corollary 10.3 (Sym3f)st
i has weight (2k−1, k+1). In particular f st defines a point of the fibre

of DN1 at T = uk−1, and (Sym3f)st
i defines a point of the fibre of DM2 at (T1, T2) = (u2k−1−1, uk+1−1).

The map uk − 1 7→ (u2k−1 − 1, uk+1 − 1) is interpolated by the morphism of rigid analytic spaces

ι : W◦1 ↪→W◦2 ,
T 7→ (u−1(1 + T )2 − 1, u(1 + T )− 1).

The map ι induces an isomorphism of W◦1 onto its image, that is the rigid analytic curve in W◦2 defined
by the equation u−3(1 + T2)2 − (1 + T1) = 0. By construction ι induces a bijection between the classical
weights of W◦1 and the classical weights of W◦2 belonging to ι(W◦1 ). Since the classical weights form an
accumulation and Zariski-dense subset of W◦1 , they also form an accumulation and Zariski-dense subset
of ι(W◦1 ).
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After Corollary 10.18 we defined for i ∈ {1, 2, 3, 4} a set SSym3

i ⊂ DM2 (Qp). By construction of ι, for

every i the weight of every point in SSym3

i is a classical weight belonging to ι(W◦1 ). Since ι(W◦1 ) is a

one-dimensional Zariski-closed subvariety of W◦2 , the image of the Zariski-closure in DM2 of SSym3

i under

the weight map is contained in ι(W◦1 ). By Remark 10.20 the set SSym3

i is discrete in DM2 (Qp) if i ≥ 2,

so the only interesting Zariski-closure is that of SSym3

1 .

Definition 12.3. Let DM2,aux be the Zariski closure of SSym3

1 in DM2 and let ι2,aux : DM2,aux → DM2 be

the natural closed immersion. Define w2,aux : DM2,aux → W◦1 and ψ2,aux : HN2 → O(DM2,aux) as w2,aux =

ι−1 ◦ w2|DM2,aux
and ψ2,aux = ι∗2,aux ◦ ψ2.

12.3. Constructing the symmetric cube morphism. We construct morphisms of rigid analytic
spaces

ξ1 : DN,G1 → DN1,aux, ξ2 : DN1,aux → DM2,aux, ξ3 : DM2,aux → DM2
making the following diagrams commute:

(12.1)

DN,G1 DN1,aux DM2,aux DM2

W◦1 W◦1 W◦1 W◦2

ξ1 ξ2 ξ3

= = ι

HN2 HN2 HN2 HN1

O(DM2 ) O(DM2,aux) O(DN1,aux) O(DN,G1 )

= = λ

ξ∗3 ξ∗2 ξ∗1

In order to construct ξ1, ξ2 and ξ3 we interpret the eigenvarieties appearing in the diagrams as BC-
eigenvarieties for suitably chosen BC-data and we rely on the results of Section 11.

We define two subsets S cl
1 and S cl,G

1 of Hom(HN1 ,Qp)× Z by

S cl
1 = {(ψ, k) ∈ Hom(HN1 ,Qp)× Z |ψ = χf

for a cuspidal, classical, p-old GL2-eigenform f of weight k},

S cl,G
1 = {(ψ, k) ∈ Hom(HN1 ,Qp)× Z |ψ = χf

for a cuspidal, classical, p-old, non-CM GL2-eigenform f of weight k}.

We define two subsets S1,λ and S1,aux of Hom(HN2 ,Qp)× Z by

S cl
1,λ = {(ψ, k) ∈ Hom(HN2 ,Qp)× Z |ψ = χf ◦ λ

for a cuspidal, classical, p-old GL2-eigenform f of weight k},

S cl
1,aux = {(ψ, k) ∈ Hom(HN2 ,Qp)× Z |ψ = χf ◦ λ

for a cuspidal, classical, p-old, non-CM GL2-eigenform f of weight k}.

Lemma 12.4.

(1) The 4-tuple (DN1 , ψ1, w1, S
cl
1 ) is a BC-eigenvariety for the datum (1,HN1 , U

(1)
p ,S cl

1 ).

(2) The 4-tuple (DN1 , ψ1, w1, S
cl
1 ) is a BC-eigenvariety for the datum (1,HN1 , λ(U

(2)
p ),S cl

1 ).

(3) The 4-tuple (DN,G1 , ψ1, w1, S
cl,G
1 ) is a BC-eigenvariety for the datum (1,HN1 , λ(U

(2)
p ),S cl,G

1 ).

(4) The 4-tuple (DN1,λ, ψ1,λ, w1,λ, S
cl
1,λ) is a BC-eigenvariety for the datum (1,HN2 , U

(2)
p ,S cl

1,λ).

(5) The 4-tuple (DN1,aux, ψ1,aux, w1,aux, S
cl
1,aux) is a BC-eigenvariety for the datum (1,HN2 , U

(2)
p ,S cl

1,aux).

Proof. Part (1) follows from Lemma 11.4.

For part (2), observe that the couple (w1, ψ1(U
(1)
p )) satisfies condition (Fin) since λ(U

(2)
p ) = U

(1)
p,0 (U

(1)
p,1 )7.

Hence Lemma 11.7 gives an isomorphism between the eigenvarieties for the data (1,HN1 , λ(U
(2)
p ),S cl

1 )

and (1,HN1 , U
(1)
p ,S cl

1 ), as desired.
We prove part (3). Let ẽv : Scl

1 → S cl
1 be the evaluation map given in property (3) of Definition 11.1.

By definition the eigenvariety DN,G1 is the Zariski-closure in DN1 of the set Scl,G
1 . The image of Scl,G

1 in

S cl
1 via ẽv is S cl,G

1 , so our statement follows from Lemma 11.5 applied to Scl = Scl
1 and Scl

0 = Scl,G
1 .
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Part (4) follows from Definition 12.1 and Corollary 11.4.
The proof of part (5) is analogous to that of part (3). Let ẽv : Scl

1,λ → S cl
1,λ be the evaluation map.

By definition the eigenvariety DN1,aux is the Zariski-closure in DN1 of the set Scl
1,aux. The image of Scl

1,aux

in S cl
1,λ via ẽv is S cl

1,aux, so the desired conclusion follows from Lemma 11.5 applied to Scl = Scl
1,λ and

Scl
0 = Scl

1,aux. �

Now consider the second auxiliary eigenvariety DM2,aux. It is equipped with maps ψ2,aux : HN2 →
O(DM2,aux) and w2,aux : DM2,aux → W◦2 . Recall that DM2,aux is defined as the Zariski-closure in DM2 of the

set SSym3

1 . Define a subset S cl
2,aux of Hom(HN2 ,Qp)× Z by

S cl
2,aux = {(ψ, k) ∈ Hom(HN2 ,Qp)× Z |ψ = χF

where F = (Sym3f)st
1 for a cuspidal classical non-CM GL2-eigenform f of weight k}.

Lemma 12.5. The 4-tuple (DM2,aux, ψ2, w2, S
Sym3

1 ) defines a BC-eigenvariety for the datum (1,HN2 , U
(2)
p ,S cl

2,aux).

Proof. It is clear from the definitions of Scl
2 and S cl

2 that the evaluation of (ψ2,aux, w2,aux) at a point

x ∈ SSym3

1 induces a bijection SSym3

1 → S cl
2 . Then the lemma follows from Corollary 11.5 applied to the

choices D = DM2 , Scl
0 = SSym3

1 , g0 = 1 and ι0 = ι. �

Remark 12.6. The sets S cl
1,λ and S cl

2,aux coincide. Indeed (Sym3f)st
1 is well-defined for every cuspidal

non-CM GL2-eigenform f , and a GSp4-eigenform F satisfies χF = χf ◦ λ if and only if F = (Sym3f)st
1 .

Let Scl
2 be the set of classical points of DM2 . Define a subset S cl

2 of Hom(HN2 ,Qp)× Z2 by

S cl
2 = {(ψ, k) ∈ Hom(HN2 ,Qp)× Z2 |ψ = χF for a cuspidal classical GSp4-eigenform F of weight k}.

Lemma 12.7. The 4-tuple (DM2 , ψ2, w2, S
cl
2 ) is a BC-eigenvariety for the datum (2,HN2 , U

(2)
p ,S cl

2 ).

Proof. This is an immediate consequence of Corollary 11.4. �

We are ready to prove the existence of the morphisms fitting into diagram (12.1).

Proposition 12.8. There exists an isomorphism ξ1 : DN,G1 → DN1,aux of rigid analytic spaces over Qp
making the leftmost squares in the diagrams (12.1) commute.

Proof. Note that the map S cl,G
1 → S cl

1,aux defined by (ψ, k) 7→ (ψ ◦ λ, k) is a bijection by Remark 10.21.

Thanks to Lemma 12.4(3) and (5) we know that the 4-tuples (DN,G1 , ψ1, w1, S
cl,G
1 ) and (DN1,aux, ψ1,aux, w1,aux, S

cl
1,aux)

are BC-eigenvarieties for the data (1,HN1 , λ(U
(2)
p ),S cl,G

1 ) and (1,HN2 , U
(2)
p ,S cl

1,aux), respectively. Hence

Lemma 11.8 applied to the morphism λ : HN2 → HN1 and the two data above gives the desired isomor-

phism ξ1 : DN,G1 → DN1,aux. �

Proposition 12.9. There exists an isomorphism ξ2 : DN1,aux → DM2,aux of rigid analytic spaces over Qp
making the central squares in the diagrams (12.1) commute.

Proof. Lemmas 12.4(5) and 12.5 together with Remark 12.6 imply that the 4-tuples (DN1,aux, ψ1, w1, S
cl
1,aux)

and (DM2,aux, ψ2, w2, S
cl
2,aux) are both BC-eigenvarieties for the datum g = 1, H = HN2 , η = U

(2)
p and

S cl = S cl
1,aux = S cl

2,aux. Now the proposition follows from Proposition 11.2. �

Proposition 12.10. There exists a closed immersion ξ3 : DN2,aux → DM2 of rigid analytic spaces over Qp
making the rightmost squares in the diagrams (12.1) commute.

Proof. This is a consequence of Lemma 11.6 applied to the BC-data (2,HN2 , U
(2)
p ,S2) and (1,HN2 , U

(2)
p ,S cl

2 ),
with the morphism W1 →W2 being ι. �

Finally, we can define the desired p-adic interpolation of the symmetric cube transfer.

Definition 12.11. We define a morphism ξ : DN,G1 → DM2 of rigid analytic spaces over Qp by ξ =
ξ3 ◦ ξ2 ◦ ξ1.

Proposition 12.12. (1) The morphism ξ is a closed immersion of eigenvarieties.
(2) The image of ξ is equidimensional of dimension 1.

(3) The Zariski-closure of the set SSym3

1 in DM2 is equidimensional of dimension 1.
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Proof. Since the diagrams 12.1 are commmutative, ξ is a morphism of eigenvarieties. It is a closed
immersion because ξ1 and ξ2 are isomorphisms and ξ3 is a closed immersion, hence (1). Statement (2)

follows from (1) and the fact that the non-CM eigencurve DN,G1 is equidimensional of dimension 1 (see

Remark 2.9). By construction the image of ξ is the Zariski-closure of the set SSym3

1 , so we have (3). �

Remark 12.13. Let f be a classical, cuspidal, CM GL2-eigenform of level Γ1(N). Since f is CM, the
GSp4-eigenform Sym3f provided by Corollary 10.4 may not be cuspidal. Suppose that it is not. Let x be
a point of DN1 corresponding to a positive slope p-stabilization of f . By [CIT15, Corollary 3.6], x is a CM
point of a non-CM component I of DN1 . Let ξ(x) be the image of x via the morphism of Definition 12.11.
Then ξ(x) belongs to the cuspidal eigenvariety DM2 , but it is not cuspidal since Sym3f is not. This means
that ξ(x) is a non-cuspidal specialization of a cuspidal family of GSp4-eigenforms. Brasca and Rosso
[BR16] constructed an eigenvariety for GSp4 parametrizing the systems of Hecke eigenvalues associated
with the non-cuspidal overconvergent eigenforms and they glued it with DM2 . It should be possible to show
that a cuspidal and a non-cuspidal component of this glued eigenvariety cross at ξ(x).

Remark 12.14. We defined the morphism ξ on the union of connected components of a fixed residual
Galois representation, in order to obtain a closed immersion (see Lemma 10.21). When the residual
representation varies, the morphisms obtained this way glue into a morphism of eigenvarieties DN1 → DM2
that is 3 : 1 on its image. Working with this morphism is not of any interest to our purposes, since it is
never a problem to fix a residual Galois representation on DM2 .

13. If Sym3ρ is modular then ρ is modular

The goal of this section is to show that if the symmetric cube of a continuous representation ρ : GQ →
GL2(Qp) is associated with a classical or overconvergent GSp4-eigenform, then ρ is associated with a
classical or overconvergent, respectively, GL2-eigenform.

We refer to [Be02, Col08] for the definitions and results that we need from the theory of (ϕ,Γ)-modules.
As before E is a finite extension of Qp, fixed throughout the section. Let Γ be the Galois group over E of
a Zp-extension of E and let HE = GE/Γ. Let R be the Robba ring over E. A (ϕ,Γ)-module over E † or
R is a free module D of finite type carrying commuting actions of Γ and ϕ and such that ϕ(D) generates
D as a R-module. There is a functor Drig that from the category of finite-dimensional E-representations
of GQp and that of (ϕ,Γ)-modules of slope 0 on R. This functor induces an equivalence between the two
categories.

We say that a (ϕ,Γ)-module D over R is triangulable if it is obtained via successive extensions of
(ϕ,Γ)-modules of rank one. We say that the representation V is trianguline if Drig(V ) is triangulable.

13.1. Trianguline parameters of overconvergent GSp4-eigenforms. Let g = 1 or 2. Let F be
an overconvergent, finite slope GSp2g-eigenform and let ρF,p : GQ → GSp2g(Qp) be the p-adic Galois
representation associated with F . As Berger observed in [Be11, Section 4.3], the following result is a
combination of [Ki03, Theorem 6.3] and [Col08, Proposition 4.3].

Theorem 13.1. If g = 1, the representation ρf,p|GQp
is trianguline.

If g = 2, an analogue of Theorem 13.1 for ρF,p can be deduced from the work of Kedlaya, Pottharst
and Xiao [KPX]. Moreover the results of loc. cit. allow us to write the parameters of the triangulation
of ρF,p in terms of a Hecke polynomial, as for classical points.

With the notations of Section 5, consider the locus DM,irr
2 where the residual Galois representation is

irreducible on DM2 and its admissible covering E irr. Let D ∈ E irr and let ρD : GQ → GL4(O(D)) be the
representation constructed in Section 5. Keep the notations of [KPX] for Robba rings. Let MD be the

(ϕ,Γ)-module over RD(π) attached to ρD. Then {MD}D∈E irr is a family of (ϕ,Γ)-modules over DM,irr
2

in the sense of [KPX, Section 2.1]. For x ∈ DM,irr
2 (Cp), let ρx : GQ → GL4(Qp) and ψx : HN2 → Qp be the

Galois representation and the system of Hecke eigenvalues, respectively, attached to x. Let Mx be the

(ϕ,Γ)-module over R attached to ρx. Denote by evx the evaluation of rigid analytic functions on DM,irr
2

at x. We identify the weight of x with a character (κ1(x), κ2(x)) : (Z×p )2 → C×p . Let id : Z×p → Z×p be

the identity. We still write ψ2 for the morphism of Q-algebras HM2 → O(DM,irr
2 ) induced by ψ2 : HM2 →
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O(DM2 ). Let δi, 1 ≤ i ≤ 4, be the characters Q×p → O(DM,irr
2 )× defined by

δ1|Z×p = 1, δ1(p) = ψ2(U
(2)
p,2 );

δ2|Z×p = κ1/id, δ2(p) = ψ2((U
(2)
p,2 )w1);

δ3|Z×p = κ2/id
2, δ3(p) = ψ2((U

(2)
p,2 )w2);

δ4|Z×p = κ1κ2(p)/id3, δ4(p) = ψ2((U
(2)
p,2 )w1w2).

For x ∈ DM,irr
2 (Cp), let δi,x = evx ◦ δi : Q×p → Qp.

Remark 13.2. There is an equality

(13.1)

4∏
i=1

(X − δi(p)) = ψ2(Pmin(t
(2)
2,p;X))

in O(DM,irr
2 )[X]. This is true when we specialize at a classical point x, since in this case the poly-

nomial
∏4
i=1(X − δi,x(p)) coincides with the characteristic polynomial of the crystalline Frobenius act-

ing on Dcris(ρx) by a result of Berger (see [Col08, Proposition 1.8]). This polynomial coincides with

ψx(Pmin(t
(2)
2,p;X)) by [Ur05, Théorème 1]. Since the polynomials in Equation (13.1) have analytic coeffi-

cients and coincide on the Zariski-dense subset of classical points of DM,irr
2 , they must be equal.

By specializing Equation (13.1) at any x ∈ DM,irr
2 (Cp), we obtain an equality

∏4
i=1(X − δi,x(p)) =

ψx(Pmin(t
(2)
2,p;X)) in Qp[X].

The following is a consequence of [KPX, Theorem 6.3.13].

Theorem 13.3.

(1) For every x ∈ DM,irr
2 (Cp), the (ϕ,Γ)-module Mx is trianguline.

(2) There exist a Zariski open rigid analytic subspace D̃M,irr
2 of DM,irr

2 such that for every x ∈ DM,irr
2 (Cp)

the (ϕ,Γ)-module Mx is triangulable with parameters δi,x : Q×p → Qp.

Proof. Let x ∈ DM,irr
2 (Cp). Let X be a union of irreducible components of DM,irr

2 (Cp) containing x and
a classical point. By Coleman’s classicality criterion it will contain a Zariski-dense subset of classical

points. Consider the sheaf MX of (ϕ,Γ)-modules on X obtained by restriction from that on DM,irr
2 . If z

is a classical point of X, then the eigenvalues of the crystalline Frobenius acting on Dcris(ρz) are δi(p),
1 ≤ i ≤ 4, by the discussion in Remark 13.2. Then, with the terminology of [KPX, Definition 6.3.2], MX

is a densely pointwise strictly trianguline (ϕ,Γ)-module over RX(π) with respect to the parameters δi,
1 ≤ i ≤ 4, and the Zariski-dense set given by the classical points of X. Now [KPX, Corollary 6.3.13] gives
that Mx is trianguline, hence part (1) of the theorem. Next [KPX, Corollary 6.3.10] gives a Zariski-open

subspace X̃ of X such that, for y ∈ X̃(Cp), the parameters of the triangulation of My are exactly δi,y,
1 ≤ i ≤ 4. Repeating this argument for every choice of x and X gives part (2) of the theorem. �

Now let N be a positive integer prime to p and let M = M(N) be as in Definition 10.6. Let F be

an overconvergent GSp4-eigenform corresponding to a point of D̃M,irr
2 . Suppose that there is a GL2-

eigenform f of level N such that ρF,p ∼= Sym3ρf,p, with the usual notations. Let χF : HN2 → Qp and

χf : HN1 → Qp be the systems of Hecke eigenvalues of the two forms. Write χF = χNpF ⊗ χF,p and

χf,p = χNpf ⊗ χf,p. Proposition 10.10 describes χNpF in terms of those of χNpf . Thanks to Theorem

13.3(2) and Remark 13.2 we can describe χF,p in terms of χf,p. Here the notations are the same as for
Proposition 10.13.

Proposition 13.4. There exists i ∈ {1, 2, 3, 4} such that

(13.2) χF,p ◦ ι
T2

I2,p
= (χf,p ◦ ι

T1

I1,p
)ext ◦ λi,p.

Moreover, if λp : H(T2(Qp), T2(Zp)) → H(T1(Qp), T1(Zp)) is another morphism satisfying χF,p ◦ ι
T2

I2,p
=

(χf,p ◦ ι
T1

I1,p
)ext ◦ λp, then there exists i ∈ {1, 2, 3, 4} such that λp = λi,p.

Proof. The proof is completely analogous to that of Proposition 10.13, once we replace Dcris(ρf,p) and
Dcris(ρf,p) by the (ϕ,Γ)-modules Drig(ρf,p) and Drig(ρF,p), respectively. We use Theorem 13.3(2) and
Remark 13.2 to describe the parameters of the triangulations of the two (ϕ,Γ)-modules in terms of Hecke
polynomials. �
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Let F be a finite slope overconvergent GSp4-eigenform of tame level M .

Proposition 13.5. There are at most 2·dimQpDcris(ρF,p) overconvergent GSp4-eigenforms F ′ satisfying

ρF ′,p ∼= ρF,p.

Proof. The accumulation and Zariski-dense set Z of classical points of DM,irr
2 satisfies the assumptions

(CRYS) and (HT) of [BC09, Section 3.3.2]. For every x ∈ Z, ψx(U
(2)
p,2 ) is an eigenvalue of the crystalline

Frobenius acting on Dcris(ρx). Then [BC09, Theorem 3.3.3] implies that, for every Cp-point x of DM,irr
2 ,

ψx(U
(2)
p,2 ) is an eigenvalue of the crystalline Frobenius acting on Dcris(ρx). Hence ψx(U

(2)
p,2 ) can take at

most dimQpDcris(ρF,p) disctinct values. There are exactly two characters of the Iwahori-Hecke algebra

giving the same value for ψx(U
(2)
p,2 ), hence 2 ·dimQpDcris(ρF,p) choices for the system of Hecke eigenvalues

of F ′ at p. Since the system of Hecke eigenvalues of F ′ outside Np is determined by the associated Galois
representation, we obtain the desired result. �

Now let f be a finite slope overconvergent GL2-eigenform of tame level N . Proposition 13.5 implies
the following.

Corollary 13.6. There are at most 2 · dimQp Dcris(ρ) finite slope overconvergent GSp4-eigenforms F ′

of level M satisfying ρf,p ∼= Sym3ρf,p.

13.2. Non-abelian cohomology and semilinear group actions. We recall a few results from the
theory of non-abelian cohomology. Let S and T be two pointed sets with distinguished elements s and
t, respectively. Let f : S → T be a map of pointed sets. We define the kernel of f by ker f = {s ∈
S | f(s) = t}. Thanks to this notion we can speak of exact sequences of pointed sets.

Let G be a topological group. Let A be a topological group endowed with a continuous action of G,
compatible with the group structure. For i ∈ {0, 1} let Hi(G,A) be the continuous cohomology of G
with values in A. Then Hi

cont(G,A) has the structure of a pointed set with distinguished element given
by the class of the trivial cocycle. For i = 0 we have H0(G,A) = AG, the pointed set of G-invariant
elements in A; its distinguished point is the identity. Since A is not necessarily abelian, we have no
notion of continuous cohomology in degree greater than 1. Let B, C be two other topological groups
with the same additional structures as A, and let

(13.3) 1→ A
α−→ B

β−→ C → 1

be a G-equivariant short exact sequence of topological groups. Then there is an exact sequence of pointed
sets

(13.4) 1→ AG → BG → CG
δ−→ H1(G,A)→ H1(G,B)→ H1(G,C).

The connecting map δ is defined as follows. Let c ∈ CG and let b ∈ B such that β(b) = c. Then δ(c)
is the map given by g 7→ α−1(b−1 · g.b) for every g ∈ G. We call (13.4) the long exact sequence in
cohomology associated with (13.3).

Now suppose that A and B are topological groups with the same structures as before, but C is just
a topological pointed set with a continuous action of G that fixes the distinguished element of C. Since
C is not a group we cannot define H1(G,C). However the pointed set H0(G,C) = CG of G-invariant
elements of C is well-defined; its distinguished element is the distinguished element of C.

Proposition 13.7. Let A, B, C be as in the discussion above. Suppose that

1→ A→ B → C → 1

is an exact sequence of topological pointed sets. Then there is an exact sequence of pointed sets

1→ AG → BG → CG
δ−→ H1(G,A)→ H1(G,B).

The connecting map δ is defined as in the case of an exact sequence of groups. This definition does
not rely on the group structure of C.

Proof. We check exactness at every term as in the case of an exact sequence of groups. None of these
checks relies on the group structure of C. �

Let G be a topological group. Let B be a topological ring equipped with a continuous action of G,
compatible with the ring structure. Let n be a positive integer and let M be a free B-module of rank
n, endowed with the topology induced by that on B. We say that two semilinear actions of G on M are
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equivalent if they can be obtained by one another via a change of basis. We choose a basis (e1, e2, . . . , en)
of M , hence an isomorphism GL(M) ∼= GLn(B). We let G act on GLn(B) via its action on B. Two
semilinear actions g(·)1 and g(·)2 of G on M are equivalent if and only if there exists A ∈ GL(M) such
that g(x)1 = M · g(x)2 · (g(A))−1 for every g ∈ G and x ∈M . There is a bijection

(13.5) {Equivalence classes of semilinear and continuous actions of G on M} ↔ H1(G,GLn(B)).

Given a semilinear action of G on M , we define a ∈ H1(G,GLn(B)) as the class of the cocycle that maps
g ∈ GQp to the matrix (agij)i,j ∈ GL2(B) satisfying g(ei) =

∑
j a

g
ijej for every i ∈ {1, 2, . . . , n}.

We say that G acts trivially on M if there exists a basis (e′1, e
′
2, . . . , e

′
n) such that g.e′i = e′i for every

g ∈ G and every i ∈ {1, 2, . . . , n}. The action of G is trivial if and only if the corresponding class in
H1(G,GLn(B)) is trivial. We say that the action of G is triangular if there exists a basis with respect
to which the matrix (agij)i,j is upper triangular for every g ∈ G.

13.3. Representations with a de Rham symmetric cube. Now suppose that B is a Cp-algebra
equipped with a continuous action of GQp , compatible with the ring structure and with the natural
action of GQp on Cp. Suppose that the subring of GQp -invariant elements in B is Qp.

Recall that there is an exact sequence of algebraic groups over Z:

(13.6) 1→ µ3 → GL2
Sym3

−−−→ GL4,

where µ3 → GL2 sends ζ to ζ · 12. Consider the exact sequence induced by (13.6) on the B-points:

(13.7) 1→ µ3(B)→ GL2(B)→ GL4(B).

Let GQp act on each term via its action on B; this action is clearly continuous and compatible with the
group structure on each term. The above sequence is GQp -equivariant. We split it into the short exact
sequence

(13.8) 1→ µ3(B)
ι−→ GL2(B)

π−→ (GL2/µ3)(B)→ 1

and the injection

(13.9) 1→ (GL2/µ3)(B)
Sym3

−−−→ GL4(B).

Both this sequences are GQp -equivariant. Since Sym3GL2(B) is not normal in GL4(B) we cannot com-
plete (13.9) to a short exact sequence of groups. However we can complete it to an exact sequence
of pointed sets. Let H be the algebraic group Sym3GL2. Let [GL4, H](B) be the set of right classes
{M ·H(B) |M ∈ GL4(B)}. We equip [GL4, H] with a structure of topological pointed set by giving it
the quotient topology and letting the class H(B) be the distinguished point. Let GQp act on [GL4, H](B)
by g.(M ·H(B)) = (g.M) ·H(B); this action is continuous and it leaves the distinguished point fixed.
Then there is a GQp -equivariant exact sequence of topological pointed sets

(13.10) 1→ (GL2/µ3)(B)→ GL4(B)→ [GL4, H](B)→ 1,

where the first two non-trivial terms also have a group structure compatible with the action of GQp .
Thanks to Proposition 13.7 there is an exact sequence of pointed sets

(13.11)
1→ ((GL2/µ3)(B))GQp → (GL4(B))GQp → ([GL4, H](B))GQp →

→ H1(GQp ,GL2/µ3(B))
H1(Sym3)−−−−−−→ H1(GQp ,GL4(B)).

Remark 13.8. Let [GL4, H](Qp) be the subset of [GL4, H](B) consisting of right classes {M ·H(B) |M ∈
GL4(Qp)}. Since GQp acts on each term of (13.10) via its action on B, we have

((GL2/µ3)(B))GQp = (GL2/µ3)(Qp),

(GL4(B))GQp = GL4(Qp),

([GL4, H](B))GQp = [GL4, H](Qp).

In particular the map (GL4(B))GQp → ([GL4, H](B))GQp that appears in the exact sequence (13.11) is
surjective. Hence the kernel of the map H1(Sym3) is trivial, i.e. it contains only the distinguished point
of H1(GQp ,GL2/µ3(B)).
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Now consider the short exact sequence of topological groups (13.8):

1→ µ3(B)
ι−→ GL2(B)→ (GL2/µ3)(B)→ 1.

The associated long exact sequence of pointed sets is

(13.12)
1→ (µ3(B))GQp → (GL2(B))GQp → ((GL2/µ3)(B))GQp →

→ H1(GQp , µ3(B))
H1(ι)−−−→ H1(GQp ,GL2(B)

H1(π)−−−−→ H1(GQp ,GL2/µ3)(B)).

Let M be a free B-module of rank 2, endowed with the topology induced by B. Suppose that GQp
acts continuously on M . Then Sym3M is a free B-module of rank 4 endowed with the natural semilinear
action of GQp induced by that on M . We use the exact sequences we constructed, together with the
bijection (13.5), to prove the second part of the following proposition.

Proposition 13.9.

(1) If the action of GQp on M is trivial then the action of GQp on Sym3M is trivial.

(2) If the action of GQp on Sym3M is trivial then there exists a subgroup H of GQp of index 3 that acts
trivially on M .

Proof. The first statement is trivial. We prove the second one. The bijection (13.5) associates with
the action of GQp on M a class σ ∈ H1(GQp ,GL2(B)). Recall the maps H1(π) and H1(Sym3) that

appear in the sequences (13.12) and (13.11). The class in H1(GQp ,GL4(B)) associated with the action

of GQp on Sym3M is (H1(Sym3) ◦H1(π))(σ); by assumption it is trivial. By Remark 13.8 the kernel

of H1(Sym3) is trivial, hence (H1(π))(σ) is trivial. By the exactness of (13.12) the class σ belongs
to the image of H1(ι) : H1(GQp , µ3(B)) → H1(GQp ,GL2(B)). Let τ be an element of H1(GQp , µ3(B))

satisfying (H1(ι))(τ) = σ. Since Cp ⊂ B, µ3(B) is the group of cubic roots of 1, that we simply denote by
µ3. Let y be the image of τ via an isomorphism H1(GQp , µ3) ∼= Qp/Q3

p. Let x ∈ Qp be a representative

of y. The cocycle τ is trivial on the subgroup H = Gal(Qp/Qp[x1/3]) of GQp . Since σ = (H1(ι))(τ),
σ is also trivial on H. By definition of the bijection (13.5), the above implies that the action of H on
Sym3M is trivial. The group H has index 1 or 3 in GQp , as desired. �

Until the end of the section E is a p-adic field and V is a finite-dimensional E-vector space, endowed
with the p-adic topology and with a continuous action of GQp .

By definition V is de Rham if and only if the semilinear action of GQp on BdR ⊗ V is trivial, and

the analogous statement is true for Sym3V . Since a representation of GQp is potentially de Rham if and
only if it is de Rham, Proposition 13.9 implies the following.

Corollary 13.10. The representation V of GQp is de Rham if and only if Sym3V is de Rham.

13.4. Representations with a trianguline symmetric cube. Let D be a (ϕ,Γ)-module over R. We
define a (ϕ,Γ)-module Sym3D over R as follows by taking the underlying R-module to be the symmetric
cube of D as a R-module and letting Γ and ϕ act in the natural way. We can check that ϕSym3D(Sym3D)
generates D as an R-module.

As before E is a p-adic field and V is an E-vector space carrying an E-linear action of GQp . We use
the standard notations for twists of representations of GQp by characters.

Remark 13.11. There is an isomorphism Sym3(Drig(V )) ∼= Drig(Sym3V ) of (ϕ,Γ)-modules over R.

We study the case where Sym3V is trianguline. The goal of this subsection is to prove the following.

Proposition 13.12. Suppose that V is irreducible.

(i) If the representation V is trianguline then Sym3V is trianguline.
(ii) If the representation Sym3V is trianguline then either V is trianguline or V is a twist of a de

Rham representation. In particular V is a twist of a trianguline representation.

The first statement is immediate. The proof of the second one relies on a technique used by Di Matteo
in [DiM13], together with the classification of two-dimensional potentially trianguline representations
carried on by Berger and Chenevier in [BC10]. Di Matteo considers two representations V and W such
that the tensor product representation V ⊗W is trianguline, and proves that in this case V and W are
potentially trianguline. We will adapt his arguments to our situation.

Let K be a p-adic field. Let B be a topological field equipped with a continuous action of GK . Let
CKB be the category of semilinear B-representations of GK . The B-linear dual of an object of CKB and

57



the tensor product over B of two objects of CKB define new objects in the usual way. In this section all
duals and tensor products are in CKB except when stated otherwise.

Let η : GK → B× be a cocycle. Let B(η) be a one-dimensional B-vector space with a generator e,
equipped with the semilinear action of GK defined by g.e = η(g)e for every g ∈ GK . We simply write B
when η is the trivial cocycle. Clearly every one-dimensional object in CKB is isomorphic to B(η) for some
cocycle η. Note that if η takes values in BGK then η is a character. For every object M of CKB we set
M(η) = M ⊗B(η).

For every object M of CKB and every finite extension K ′ of K, we consider M as an object of CK′B with
the action induced by the inclusion GK′ ⊂ GK .

We say that an n-dimensional object M of CKB is triangulable if there exists a filtration

M = M0 ⊃M1 ⊃M2 ⊃ . . . ⊃Mn−1 ⊃Mn = 0

where, for every i ∈ {1, 2, . . . , n}, Mi is a GK-stable subspace of M and Mi−1/Mi is one-dimensional. If
there exists such a filtration that satisfies Mi−1/Mi

∼= B(ηi) for some characters η1, η2, . . . , ηn : GK →
BGK , then we say that M is triangulable by characters. These definitions are analoguous to those in the
beginning of [DiM13, Section 3], but we omit the specification “split” since we use Colmez’s terminology
for trianguline representations rather than Berger’s.

From now on M is a two-dimensional irreducible object in CKB .

Lemma 13.13. Let X and X ′ be two irreducible objects in CKB . If X⊗X ′ has a one-dimensional quotient
in CKB , then dimBX = dimBX

′.

Proof. The one-dimensional quotient of X⊗X ′ is isomorphic to B(η) for a cocycle η : GK → B. Consider
the following tautological exact sequence in CKB :

0→ kerφ→ X ⊗X ′ φ−→ B(η)→ 0.

There is a GK-equivariant map φ′ : X → (X ′)∗(η) sending x ∈ X to the function φ′(x) ∈ (X ′)∗(η) defined
by x′ 7→ φ(x⊗ x′) for every x′ ∈ X ′. Since φ is non-zero, φ′ is also non-zero. The representations X and
(X ′)∗(η) are irreducible, hence the non-zero GK-equivariant map φ′ is an isomorphism. We conclude
that dimBX = dimB(X ′)∗(η) = dimBX

′. �

Lemma 13.14. Suppose that Sym3M is triangulable by characters. Let η1, η2, η3, η4 : GK → BGK be
the characters appearing in the triangulation of Sym3M . Then:

(i) there exists an irreducible object M1 of CKB such that Sym3M ∼= M1 ⊗M ;

(ii) there is a decomposition Sym3M ∼=
⊕4

i=1 B(ηi) in CKB .

The central ingredients in the proof are [DiM13, Lemma 3.1.3] and the proof of [DiM13, Corollary
3.1.4].

Proof. Let Sym3M = Y ⊃ Y1 ⊃ Y2 ⊃ Y3 ⊃ Y4 = 0 be a filtration of Sym3M satisfying Yi−1/Yi ∼= B(ηi)
for 1 ≤ i ≤ 4. In particular B(η1) is a quotient of Sym3M and B(η4) is a subobject of Sym3M . Let
πη1

: Sym3M → B(η1) and π : Sym2M ⊗M → Sym3M be the natural projections.
Consider the following exact sequence in CKB :

0→ kerπ → Sym2M ⊗M π−→ Sym3M → 0

The surjection πη1
◦ π : Sym2M ⊗M → B(η1) defines a one-dimensional quotient of Sym2M ⊗M . If

Sym2M is irreducible then Lemma 13.13 implies that dimB Sym2M = dimBM , which is a contradiction
since Sym2M is three-dimensional. Then Sym2M is reducible; this means that it admits a non-trivial
filtration in CKB (i.e. a filtration in GK-stable subspaces). For simplicity, set X = Sym2M . All the maps
and the filtrations we write are in CKB . There are three possibilities:

(1) there is a filtration X = X0 ⊃ X1 ⊃ X2 ⊃ X3 = 0 with dimB(Xi−1/Xi) = 1 for i = 1, 2, 3;
(2) there is a filtration X = X0 ⊃ X1 ⊃ X2 = 0 with dimB(X/X1) = 1, dimBX1 = 2 and X1 irreducible;
(3) there is a filtration X = X0 ⊃ X1 ⊃ X2 = 0 with dimB(X/X1) = 2, dimBX1 = 1 and X/X1

irreducible;

Suppose that (1) holds. Since X is obtained from X/X1, X1/X2 and X2 by successive extensions, X⊗M
is obtained by successive extensions of (X/X1) ⊗M , (X1/X2) ⊗M and X2 ⊗M . Hence there exists
i ∈ {1, 2, 3} such that the surjection X ⊗M → B(η1) induces a surjection Xi−1/Xi ⊗M → B(η1).
Since Xi−1/Xi and M are irreducible, Lemma 13.13 implies that dimB(Xi−1/Xi) = dimBM = 2, a
contradiction since dimB(Xi−1/Xi) = 1 for every i.
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Suppose that we are in case (2). As before, there exists i ∈ {1, 2} such that X ⊗M → B(η1) induces
a surjection π′η1

(Xi−1/Xi) ⊗M → B(η1). If i = 1 Lemma 13.13 implies that dimB(X/X1) = dimBM ,
a contradiction. Hence there is an exact sequence

0→ kerπ′η1
→ X1 ⊗M

π′η1−−→ B(η1).

Since X1 and M are irreducible, this sequence splits by [DiM13, Lemma 3.1.3]. In particular there is a
section B(η1) ↪→ X1 ⊗M . By composing this section with the inclusion X1 ⊗M ↪→ X ⊗M and the
projection X⊗M → Sym3M we obtain a section of the map πη1 , hence a splitting of the exact sequence

0→ kerπη1
→ Sym3M

πη1−−→ B(η1)→ 0.

By definition of πη1
we have Y1 = kerπη1

, so Sym3M ∼= Y1 ⊕B(η1). Now Y2 is a subobject of Y1, hence

Y2 ⊕B(η1) is a subobject of Sym3M . There is an isomorphism Sym3M/(Y2 ⊕B(η1)) ∼= Y1/Y2
∼= B(η2),

giving a projection πη2
: Sym3M → B(η2). By replacing πη1

with πη2
in the above argument, we obtain

that the sequence

0→ kerπη2
→ Sym3M

πη2−−→ B(η2)→ 0

splits. Then Sym3M ∼= kerπη2
⊕B(η2). Since kerπη2

∼= Y2 ⊕B(η1) we obtain Sym3M ∼= Y2 ⊕B(η1)⊕
B(η2). We repeat the argument for the projection to B(η3) and we obtain a decomposition Sym3M ∼=⊕4

i=1 B(ηi), together with maps πηi : X1 ⊗M → B(ηi).

Now consider the map ψ : X1⊗M → Sym3M obtained by composing the inclusion X1⊗M ↪→ X⊗M
with π : X ⊗M → Sym3M . By the results of the previous paragraph, Sym3M ∼=

⊕4
i=1 B(ηi) and for

every i ∈ {1, 2, 3, 4} there is a map πηi : X1 ⊗M → B(ηi). Hence ψ is surjective. Since X1 ⊗M and

Sym3M are both 4-dimensional, ψ is an isomorphism. Moreover X1 is irreducible, so part (1) of the
lemma is true with M1 = X1.

Suppose that we are in case (3). Consider the map ψ : X1 ⊗M → Sym3M obtained by composing
the inclusion X1 ⊗ M → Sym2M ⊗ M with the projection π : Sym2M ⊗ M → Sym3M . Since X1

is one-dimensional and M is irreducible, X1 ⊗M is irreducible. Hence the kernel of ψ is either 0 or
X1 ⊗M . In the first case the image of ψ defines a two-dimensional irreducible subobject of Sym3M ,
contradicting the fact that Sym3M is triangulable. In the second case π factors via a surjective map
π1 : (X/X1) ⊗M → Sym3M . Since dimB((X/X1) ⊗M) = dimB Sym3M , π1 is an isomorphism. Now
X/X1 is irreducible, so part (1) of the lemma is true with M1 = X/X1.

The decomposition of Sym3M given in part (2) of the lemma follows from part (1) and [DiM13,
Corollary 3.1.4]. �

We recall another result of [DiM13].

Lemma 13.15. [DiM13, Lemma 3.2.1] Let N and N ′ be two objects of CKB such that N⊗N ′ is triangulable
by characters. Let {ηi}di=1 be the set of characters GK → BGK appearing in the triangulation of N ⊗N ′.
Then η−1

1 ηi is a finite order character for every i ∈ {1, 2, . . . , d}.

The following lemma is proved in the same way as [DiM13, Theorem 3.2.2], with the difference that
we work in the language of (ϕ,Γ)-modules rather than in that of B-pairs. Recall that E is a p-adic field
and V is a two-dimensional E-representation of GQp .

Lemma 13.16. Suppose that V is irreducible. If Sym3V is trianguline, then V is potentially trianguline.

Proof. Consider the (ϕ,Γ)-modules Drig(V ) and Drig(Sym3V ). They are free R-modules carrying a

semilinear action of GQp . By Remark 13.11 there is an isomorphism of (ϕ,Γ)-modules Drig(Sym3V ) ∼=
Sym3Drig(V ). In particular this is an isomorphism of semilinear representations of GQp , where we let
GQp act via GQp � Γ.

Since Sym3V is trianguline, Drig(Sym3V ) is obtained by successive extensions of rank one (ϕ,Γ)-
modules Di, 1 ≤ i ≤ 4. By [Col08, Théorème 0.2(i)], for every i ∈ {1, 2, 3, 4} there exists a character
ηi : Q×p → E× such that Di

∼= R(ηi). Note that E× = RGE , so ηi|GE takes values in RGE .
Since V is irreducible, [DiM13, Corollary 2.2.2] implies that Drig(V ) is irreducible as a semilinear

R-representation of GQp . In particular the choice M = Drig(V ) satisfies the assumptions of Lemma

13.14, hence part (2) of that lemma gives a GQp -equivariant decomposition Drig(Sym3V ) ∼=
⊕4

i=1 R(ηi).

Now by Lemma 13.15 there exists a finite extension L of E such that η−1
1 ηi|GL is trivial for every i.

Hence there is an isomorphism Drig(Sym3V )(η−1
1 ) ∼=

⊕4
i=1 R of R-representations of GL. This means

that Drig(Sym3V )(η−1
1 ) is a trivial R-representation of GL. Let η′ : GQ → Q×p be a character satisfying
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Drig(µ) = R(η1). Then Drig((Sym3V )(µ−1)) = (Drig(Sym3V ))(η−1
1 ). By [Be02, Theorem 0.2] (see the

formulation in [Col08, Proposition 1.8]) there is an isomorphism

Dst(Sym3V (µ−1)) = (R[1/t, T ]⊗R Drig(Sym3V ))ΓL

of filtered (ϕ,N)-modules. We know that GL acts trivially on Drig((Sym3V )(η−1
1 )), so the module

Dst((Sym3V )(η−1
1 )) is four-dimensional. This means that (Sym3V )(µ−1) is a semi-stable representation

of GL. In particular it is a de Rham representation of GL.
Let µ′(x) = µ(x)/|µ(x)| : Q×p → O×E . Let E1 be a finite extension of E that contains p1/6 and let L1

be a finite extension of L such that µ′|GL1
is trivial modulo the maximal ideal of OE . Then there exists

a character µ−1/6 : Q×p → E×1 such that (µ−1/6)6 = µ−1. Since Sym3(V (µ−1/6)) ∼= (Sym3V )(µ−1) and

(Sym3V )(µ−1) is de Rham, V (µ−1/6) is also de Rham by Proposition 13.10. In particular V (µ−1/6) is
potentially trianguline, so its twist V is still potentially trianguline by [Col08, Proposition 4.3]. �

In order to deduce Proposition 13.12 from Lemma 13.16 we need the following result by Berger and
Chenevier, who classified the two-dimensional potentially trianguline representations of GQp . Here we
do not suppose that V is irreducible.

Theorem 13.17. [BC10, Théorème A] If V is potentially trianguline, then it satisfies at least one of
the following conditions:

(1) V is trianguline;
(2) V is the direct sum of two characters or an induced representation;
(3) V is a twist of a de Rham representation by a character.

With this final ingredient we can prove Proposition 13.12.

Proof. The proof of (i) is straightforward. We show (ii). Since Sym3V is trianguline, V is potentially
trianguline by Lemma 13.16. Then V satisfies one of the three conditions listed in Theorem 13.17. By
assumption V is irreducible, so it cannot satisfy (2). Hence (1) or (3) must hold, as desired. �

13.5. Representations with symmetric cube of automorphic origin. Let ρ1 : GQ → GL2(Qp)
and ρ2 : GQ → GSp4(Qp) be two continuous representations.

Theorem 13.18. Suppose that:

(1) ρ2 is odd and it is unramified outside a finite set of primes;
(2) the residual representation ρ2 associated with ρ2 is absolutely irreducible;
(3) ρ2

∼= Sym3ρ1.

Then the following conclusions hold.

(i) If ρ2 is associated with an overconvergent cuspidal GSp4-eigenform, then ρ1 is associated with an
overconvergent cuspidal GL2-eigenform.

(ii) If ρ2 is associated with a classical cuspidal GSp4-eigenform, then ρ1 is associated with a classical
cuspidal GL2-eigenform.

Proof. Note that assumption (1) implies that the residual representation ρ1 is absolutely irreducible.
We prove part (i). The representation ρ2 is associated with an overconvergent cuspidal GSp4-eigenform

F , so it is trianguline by Theorem 13.1. By Proposition 13.12 the representation ρ1 is a twist of a
trianguline representation. Then Theorem [Em14, Theorem 1.2.4(2)] implies that ρ1 is the twist by a
character of a representations associated with an overconvergent cuspidal GL2-eigenform. We show that
the character occurring here can be taken to be trivial.

Let V be a two-dimensional E-vector space carrying an action of GQp via ρ1 and let V be the associated

residual representation. Let α : GQ → Q×p be a character and N be a positive integer such that V (α) is
associated with an overconvergent cuspidal GL2-eigenform f of level Γ1(N) ∩ Γ0(p). Let x be the point
of the eigencurve DN1 corresponding to f . Let M be the positive integer associated with N by Definition

10.6. Let ξ : DN,G1 → DM2 be the morphism of Definition 12.11. Let Sym3f be the overconvergent

GSp4-eigenform corresponding to the point ξ(x). The Galois representation associated with Sym3f is
Sym3(V (α)).

For a continuous representation W of GQp , we denote by φW the generalized Sen operator associated
with W (see [Ki03, Section 2.2] for the construction). Let (κ1, κ2) be the eigenvalues of φV . A calcula-
tion shows that φSym3V has eigenvalues (3κ1, κ1 + 2κ2, 2κ1 + κ2, 3κ2). Since Sym3V is attached to an
overconvergent GSp4-eigenform we must have 3κ1 = 0, hence κ1 = 0. Set κ = κ2, so that the eigenvalues
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of φV are (0, κ). Recall that the weight of the character α is defined by w(α) = log(α(u))/ log(u), where
u is a generator of Z×p . The eigenvalues of φV (α) are (w(α), κ+ w(α)). Since V comes from an overcon-
vergent GL2-eigenform we must have w(α) = 0. In particular the eigenvalues of φSym3V and φSym3(V (α))

are the same. This means that Sym3V and Sym3(V (α)) are associated with two overconvergent GSp4-
eigenforms F and Sym3f of the same weight, given in our usual coordinates by (κ + 1, 2κ − 1). Let
χκ1,κ2

be the specialization at (κ+ 1, 2κ− 1) of the p-adic deformation of the cyclotomic character. The

determinants of Sym3V and Sym3(V (α)) are given by the product of χκ1,κ2
with the central characters

of F and Sym3f , respectively. In particular the two determinants differ by a finite order character. We
deduce that α6, hence α, is a finite order character. By twisting the overconvergent GL2-eigenform f
by the finite order character α−1 we obtain an overconvergent GL2-eigenform with associated Galois
representation V .

We prove part (ii). Since ρ2 is associated with a classical cuspidal GSp4-eigenform, it is a de Rham
representation. Then Proposition 13.10 implies that ρ1 is also a de Rham representation. The represen-
tation ρ2 is trianguline because it is de Rham, so part (i) of the theorem implies that ρ1 is attached to
an overconvergent GL2-eigenform f . Since ρ1 is de Rham, the form f is classical. �

Corollary 13.19. If ρ1, ρ2 satisfy the assumptions of Theorem 13.18 and ρ2 is associated with a classical
cuspidal GSp4-eigenform F , then there exists a GL2-eigenform f such that F is the symmetric cube lift
Sym3f given by Corollary 10.4.

Proof. The representation ρ1 is attached to a classical cuspidal GL2-eigenform f by Theorem 13.18(ii).
Then ρ2 is the p-adic Galois representation attached to the form Sym3f . We conclude that F = Sym3f .

�

14. The symmetric cube locus on the GSp4-eigenvariety

In this section p is a prime number, N is a positive integer prime to p and M is the integer, depending
on N , given by Definition 10.6. Let T1 : GQ → O(DN1 ) and T2 : GQ → O(DM2 ) be the pseudocharacters
provided by Proposition 3.7. By an abuse of notation, if V1 and V2 are subvarieties of DN1 and DM2 ,
respectively, we still write ψ1 : HN1 → O(V1) and ψ2 : HN2 → O(V2) for the compositions of ψ1 and ψ2

with the restrictions of analytic functions to V1 and V2, respectively. We also write TV1
: GQ → O(V1)

and TV2
: GQ → O(V2) for the compositions of T1 and T2 with the restrictions of analytic functions to

V1 and V2, respectively.

Theorem 14.1. Let V2 be a rigid analytic subvariety of DM2 . Consider the following four conditions.

(1a) There exists a morphism of rings ψ
(1)
2 : HNp1 → O(V2) such that the following diagram commutes:

(14.1)

HNp2 HNp1

O(V2)

λNp

ψ2

ψ
(1)
2

(1b) There exists a pseudocharacter TV2,1 : GQ → O(V2) of dimension 2 such that

(14.2) TV2 = Sym3TV2,1.

(2a) There exists a rigid analytic subvariety V1 of DN1 and a morphism of rings φ : O(V1)→ O(V2) such
that the following diagram commutes:

(14.3) HNp2 HNp1 O(V1) O(V2)λNp

ψ2

ψ1 φ

(2b) There exists a rigid analytic subvariety V1 of DN1 and a morphism of rings φ : O(V1)→ O(V2) such
that

(14.4) TV2
= Sym3(φ ◦ TV1

).

Then:

(i) (1a) and (1b) are equivalent;
(ii) (2a) and (2b) are equivalent;
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(iii) (2b) implies (1b);
(iv) when V2 is a point, the four conditions are equivalent.

Proof. We prove (i), (ii), (iii) for an arbitrary rigid analytic subvariety V2 of DM2 .

(1a) =⇒ (1b). Let ψ
(1)
2 : HNp1 → O(V2) be a morphism of rings making diagram (14.1) commute.

By the argument in the proof of Proposition 10.10, the commutativity of diagram (14.1) gives an equality

(14.5) ψ2(Pmin(t
(2)
`,2 ;X)) = Sym3(ψ

(1)
2 (Pmin(t

(1)
`,1 ;X))).

Choose a character ε1 satisfying ε6
1 = ε. For every ` not dividing Np, let P` be a polynomial in

HNp2 [X]deg=2 satisfying:

(14.6) Sym3P`(X) = ψ2(Pmin(t
(2)
`,2 ;X));

and

(14.7) P`(0) = ε1 · (1 + T )log(χ(g))/ log(u).

Such a polynomial exists thanks to Equation (14.5) and to Remark 5.10, and it is clearly unique. The

roots of P` differ from those of ψ2(Pmin(t
(2)
`,2 ;X)) by a factor equal to a cubic root of 1.

By Chebotarev’s theorem the set {γFrob`γ
−1}`-Np; γ∈GQ is dense in GQ. The map

P : {γFrob`γ
−1}`-Np; γ∈GQ → O(V2)[X]deg=2,

γFrob`γ
−1 7→ P`,

is continuous with respect to the restriction of the profinite topology on GQ. This follows from the fact
that the maps

{γFrob`γ
−1}`-Np; γ∈GQ → O(V2)[X]deg=4

γFrob`γ
−1 7→ ψ2(Pmin(t

(2)
`,2 ;X)) = Sym3P (γFrob`γ

−1)(X)

and

{γFrob`γ
−1}`-Np; γ∈GQ → O(V2)×

γFrob`γ
−1 7→ P (γFrob`γ

−1)(0) = ε1 · (1 + T )log(χ(g))/ log(u)

are continuous on {γFrob`γ
−1}`-Np; γ∈GQ . Hence P can be extended to a continuous map P : GQ →

O(V2)[X]deg=2. Now define a map TV2,1 : GQ → O(V2) by TV2,1(g) = (P (g)(1) + P (g)(−1))/2. We can
check that TV2,1 is a pseudocharacter of dimension 2. Its characteristic polynomial is P , so the fact that

TV2
= Sym3TV2,1 follows from Equation (14.6).

(1b) =⇒ (1a). Suppose that there exists a pseudocharacter TV2,1 : GQ → OV2
such that TV2

=

Sym3TV2,1. Then Pchar(TV2) = Sym3Pchar(TV2,1). By evaluating the two polynomials at Frob` we obtain

(14.8)

ψ2(Pmin(t
(2)
`,2 ;X)) = Pchar(TV2)(Frob`) = Sym3Pchar(TV2,1)(Frob`) =

= Sym3

(
X2 − TV2,1(Frob`)X +

TV2,1(Frob`)
2 − TV2,1(Frob2

`)

2

)
,

where the first equality is given by Proposition 3.7 and the last one comes from Equation (3.1). Let

ψ
(1)
2 : HNp1 : O(V2) be a morphism of rings satisfying

(14.9) X2 − TV2,1(Frob`)X +
TV2,1(Frob`)

2 − TV2,1(Frob2
`)

2
= X2 − ψ(1)

2 (T
(1)
`,1 )X + `ψ

(1)
2 (T

(1)
`,0 )

for every ` - Np. It is clear that such a morphism exists and is unique. Note that the right hand side of

Equation (14.9) is ψ
(1)
2 (Pmin(t

(1)
`,1 ;X)). Then Equation (14.8) gives

ψ2(Pmin(t
(2)
`,2 ;X)) = Sym3(ψ

(1)
2 (Pmin(t

(1)
`,1 ;X))).

Exactly as in the proof of Proposition 10.10, by developing the two polynomials and comparing their

coefficients we obtain that ψ2 = ψ
(1)
2
◦ λNp. Hence ψ

(1)
2 fits into diagram (14.1).
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(2a) ⇐⇒ (2b). Let V1 be a subvariety of DN1 and let φ : O(V1) → O(V2) be a morphism of rings.
We show that the couple (V1, φ) satisfies (2a) if and only if it satisfies (2b). For g = 1, 2 and every prime
` - Np Proposition 3.7 gives

(14.10) Pchar(TVg )(Frob`) = ψg(Pmin(t
(g)
`,g ;X)).

The argument in the proof of Proposition 10.10 gives an equality

(14.11) λNp(Pmin(t
(2)
`,2 ;X)) = Sym3(Pmin(t

(1)
`,1 ;X)).

Since the set {γFrob`γ
−1}`-Np; γ∈GQ is dense in GQ, the pseudocharacters Sym3(φ ◦ TV1) and TV2 coincide

if and only if their characteristic polynomials coincide on Frob` for every ` - Np. By Equation (14.10)
the condition above is equivalent to

Sym3(φ ◦ ψ1(Pmin(t
(1)
`,1 ;X))) = ψ2(Pmin(t

(2)
`,2 ;X))

for every ` - Np. Thanks to Equation (14.11) the left hand side can be rewritten as

Sym3(φ ◦ ψ1(Pmin(t
(1)
`,1 ;X))) = φ ◦ ψ1(Sym3(Pmin(t

(1)
`,1 ;X))) = φ ◦ ψ1 ◦ λ

Np(Pmin(t
(2)
`,2 ;X)).

When ` varies over the primes not dividing Np the coefficients of the polynomials Pmin(t
(2)
`,2 ;X) generate

the Hecke algebra HNp2 . Hence the equality of the right hand sides of the last two equations holds if and
only if φ ◦ ψ1 ◦ λ

Np = ψ2.

(2b) =⇒ (1b). Suppose that condition (2b) is satisfied by some closed subvariety V1 of DN1 and
some morphism of rings φ : O(V1)→ O(V2). Consider the pseudocharacter TV2,1 = φ ◦ TV1 : GQ → O(V2).
Clearly TV2,1 satisfies condition (1b).

It remains to prove that (1b) =⇒ (2b) when V2 is a Qp-point of DM2 . For this step we will need the
results we recalled in Section 13. Write x2 for the point V2; the system of eigenvalues ψx2

is that of a
classical GSp4-eigenform. By Remark 3.8(1) Tx2

is the pseudocharacter associated with a representation
ρx2

: GQ → GL4(Qp). Let E be a finite extension of Qp over which ρx2
is defined. Suppose that x2

satisfies condition (1b). Let Tx2,1 : GQ → Qp be a pseudocharacter such that Tx2
∼= Sym3Tx2,1. By

Theorem 3.2 there exists a representation ρx2,1 : GQ → GL2(Qp) such that Tx2,1 = Tr(ρx2,1). Then

Remark 3.6 implies that ρx2
∼= Sym3ρx2,1. Since ρx2 is attached to an overconvergent GSp4-eigenform,

Theorem 13.18(ii) implies that ρx2,1 is the p-adic Galois representation attached to an overconvergent
GL2-eigenform f . Such a form defines a point x1 of the eigencurve DN1 .Thus the subvariety V1 = x1

satisfies condition (2b). �

Remark 14.2. The four properties stated in Theorem 14.1 are stable when passing to a subvariety, in
the following sense. Let V2 and V ′2 be two rigid analytic subvarieties of DM2 satisfying V ′2 ⊂ V2. Let (∗)
denote one of the conditions of Theorem 14.1. If (∗) holds for V2 then it holds for V ′2. Thanks to the
theorem it is sufficient to prove this statement for ∗ = 1b and ∗ = 2b, in which cases it is trivial.

In light of Theorem 14.1 we give the following definitions.

Definition 14.3. (1) We say that a subvariety V2 of DM2 is of Sym3 type if it satisfies the equivalent
conditions (2a) and (2b) of Theorem 14.1.

(2) The Sym3-locus of DM2 is the set of points of DM2 of Sym3 type.

Remark 14.4. A variety V2 of Sym3 type also satisfies conditions (1a) and (1b) of Theorem 14.1 thanks
to the implication (2b) =⇒ (1b).

Let ι : W◦1 →W◦2 is the closed immersion constructed in Section 12.2. Let DM2,ι be the one-dimensional

subvariety of DM2 fitting in the cartesian diagram

DM2,aux DM2

ι(W◦1 ) W◦2

w2

ι

The following lemma follows from a simple computation involving the generalized Hodge-Tate weights
of a point of Sym3 type.

Lemma 14.5. The Sym3-locus of DM2 is contained in the one-dimensional subvariety DM2,ι.
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The Sym3-locus of DM2 admits a Hecke-theoretic definition thanks to condition (2b) of Theorem 14.1.
We elaborate on this. Consider the following maps:

HNp2 O(DM2 )

HNp1 O(DN1 )

λNp

ψ2

ψ1

We define an ideal ISym3 of O(DM2 ) by

ISym3 = ψ1(ker(ψ2 ◦ λ
Np)) · O(DM2 ).

We denote by DM
2,Sym3 the analytic Zariski subvariety of DM2 defined as the zero locus of the ideal ISym3 .

Proposition 14.6.

(i) The Sym3-locus of DM2 is the set of points underlying DM
2,Sym3 .

(ii) The variety DM
2,Sym3 is of Sym3 type.

(iii) A rigid analytic subvariety V2 of DM2 is of Sym3 type if and only if it is a subvariety of DM
2,Sym3 .

(iv) A rigid analytic subvariety V2 of DM2 satisfies conditions (1a) and (1b) of Theorem 14.1 if and
only if it is a subvariety of DM

2,Sym3 .

Proof. We prove (i). Let x2 be any Qp-point of DM2 and let evx2
: O(DM2 ) → Qp be the evaluation at

x2. The system of eigenvalues corresponding to x2 is ψx2
= evx2

◦ ψ2 : HNp2 → Qp. By definition x2 is

of Sym3 type if and only if there exists a morphism of rings evx1
: O(DN1 )→ Qp such that the following

diagram commutes:

HNp2 O(DM2 ) Qp

HNp1 O(DN1 )

λNp

ψ2 evx2

ψ1

evx1

By elementary algebra the map evx1 exists if and only if evx2(ker(ψ2 ◦ λ
Np)) = 0. This is equivalent to

the fact that the point x2 is in the zero locus of the ideal ISym3 .

For (ii) it is sufficient to observe that there exists a morphism of rings Ξ∗
Sym3 : O(DN1 )→ O(DM

2,Sym3)

fitting into the commutative diagram

(14.12) HNp2 HNp1 O(DN1 ) O(DM
2,Sym3)λNp

rSym3 ◦ ψ2

ψ1
Ξ∗

Sym3

Such a Ξ∗
Sym3 exists since by definition of DM

2,Sym3 we have rDM
2,Sym3

◦ ψ2(ker(λNp ◦ φSym3)) = 0.

Note that the “if” implications of (iii) and (iv) follow from Lemma 14.2, together with Remark 14.4
for (iv).

To prove the other direction of (iii) we look again at diagram (14.3) for a subvariety V2 of DM2 . In
order for V2 to satisfy condition (2a) of Theorem 14.1 we must have rV2

(ker(λNp ◦ Ξ∗
Sym3)) = 0, so V2 is

contained in DM
2,Sym3 .

Finally, let V2 be a rigid analytic subvariety of DM2 satisfying conditions (1a) and (1b) of Theorem
14.1. Let x2 by a point of V2. By Lemma 14.2 x2 satisfies conditions (1a) and (1b). By Theorem 14.1,
x2 also satisfies conditions (2a, 2b), so it is a point of DM

2,Sym3 . We conclude that V2 is a subvariety of

DM
2,Sym3 . �

Remark 14.7. By Proposition 14.6 the Sym3-locus in DM2 can be given the structure of a Zariski-closed
rigid analytic subspace. From now on we will always consider the Sym3-locus as equipped with this
structure and we will identify it with the subvariety DM

2,Sym3 of DM2 .

Proposition 14.6(i) and Lemma 14.5 give the following.
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Corollary 14.8. The Sym3-locus intersects each irreducible component of DM2 in a proper analytic
Zariski subvariety of dimension at most 1.

Propositions 14.6(iii) and (iv) allows us to improve the result of Theorem 14.1.

Corollary 14.9. For every rigid analytic subvariety V2 of DM2 the conditions (1a), (1b), (2a), (2b) of
Theorem 14.1 are equivalent.

14.1. Equations for the symmetric cube locus. By using the description of λNp given in Definition

10.9 we can write “equations” for the Sym3 locus in terms of the rigid analytic functions ψ2(T
(2)
`,i ) for

i ∈ {0, 1, 2}, but they are not very illuminating. We find that the ideal ISym3 of O(DM2 ) is generated by
the elements of the set

{ψ2((T
(2)
`,2 )6 + (`2 + 4`+ 8)T

(2)
`,0 (T

(2)
`,2 )4 + 3T

(2)
`,1 (T

(2)
`,2 )4 − (5`4 + 12`3)(T

(2)
`,0 )2(T

(2)
`,2 )2+

−(2`2 − 4`)T
(2)
`,0 T

(2)
`,1 (T

(2)
`,2 )4 − 3(T

(2)
`,1 )2(T

(2)
`,2 )2 + (3`2T

(2)
`,0 + T

(2)
`,1 )(`2T

(2)
`,0 − T

(2)
`,1 )2}`-Np.

By the result of Proposition 13.4, the intersection D̃M,irr
2,Sym3 of the Sym3 locus with D̃M,irr

2 can be

decomposed as a union
⋃4
j=1 D̃

M,j
2,Sym3 , where D̃M,j

2,Sym3 is defined by the property

x ∈ D̃M,j
2,Sym3(Cp) ⇐⇒ x ∈ D̃M,irr

2 ∩ D̃M2,Sym3 and the choice i = j satisfies Equation (13.2)

Using the description of λi,p, 1 ≤ i ≤ 4, given in Definition 10.12 we can write D̃M,j
2,Sym3(Cp) = {x ∈

D̃M,irr
2,Sym3(Cp) |Ej = 0} where

E1 = (U
(2)
p,0 )3(U

(2)
p,1 )3 − (U

(2)
p,2 )4, E2 = (U

(2)
p,0 )2(U

(2)
p,2 )2 − (U

(2)
p,1 )3,

E3 = U
(2)
p,0U

(2)
p,1 − (U

(2)
p,2 )3, E4 = (U

(2)
p,0 )2 − U (2)

p,1 (U
(2)
p,2 )2.

Define DM,j
2,Sym3 as the Zariski-closure of D̃M,j

2,Sym3 in DM
2,Sym3 . Note that by taking this closure we are

just adding a discrete set of points.

14.2. An inverse to the symmetric cube morphism of eigenvarieties. Consider the map Ξ∗
Sym3 : O(DN1 )→

O(DM
2,Sym3) appearing in the commutative diagram (14.12); it induces a map of rigid analytic spaces

ΞSym3 : DM
2,Sym3 → DN1 .

Remark 14.10. By Corollary 13.6, the map ΞSym3 is quasi-finite and its degree at a point x ∈ DN1 (Cp)
is at most dimQp(Dcris(ρx|GQp

)), where ρx : GQ → GSp4(Qp) is the Galois representation attached to x.

Let ρ1 : GQ → GL4(Fp) be a representation. Let ρ2 = Sym3ρ1. Consider the union DM2,ρ2
of the

connected components of DM2 of residual Galois representation isomorphic to ρ2. We constructed in
Section 12.3 a map ξ from the eigencurve DN1,ρ to the eigenvariety DM2,ρ2

. Let DM
2,ρ2,Sym3 = DM

2,Sym3∩DM2,ρ2

and DM,j
2,ρ2,Sym3 = DM,j

2,Sym3 ∩ DM2,ρ2
.

Proposition 14.11. (1) The rigid analytic space DM,j
2,ρ2,Sym3 is equidimensional of dimension 1 if j = 1

and it is 0-dimensional otherwise.
(2) The image of ξ in DM2,ρ2

is DM,j
2,ρ2,Sym3 .

Proof. We prove the two statements together. We replace implicitly the sets SSym3

i , 1 ≤ i ≤ 4, defined
before Corollary 10.19, by their intersections with DM2,ρ2

. By construction of ξ, the image of this map is

the Zariski-closure in DM2,ρ2
of the set SSym3

1 , that consists of points of Sym3 type by definition. Since

DM,1
2,ρ2,Sym3 is Zariski-closed in DM2,ρ2

and contains SSym3

1 , the Zariski-closure of SSym3

1 is contained in

DM,1
2,ρ2,Sym3 . This proves one inclusion of (2).

Let be a 1-dimensional irreducible component of DM,j
2,ρ2,Sym3 . The set S of classical, p-old points of C is

Zariski-dense in C because of Theorem 2.7. Every point in S is of Sym3 type, so it is the symmetric cube

lift of a classical p-old point of DN1,ρ1
by Theorem 14.1. This means that S is contained in

⋃4
i=1 S

Sym3

i .

Since Ej vanishes on DM,j
2,ρ2,Sym3 , we must have S ⊂ SSym3

j . If j 6= 1 then SSym3

j is discrete by Corollary

10.19, so we conclude that j = 1. This proves that every 1-dimensional component of DM
2,ρ2,Sym3 is
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contained in DM,1
2,ρ2,Sym3 and is not contained in DM,j

2,ρ2,Sym3 for any j 6= 1. In particular DM,j
2,ρ2,Sym3 is

0-dimensional if j 6= 1. We also obtain that DM,1
2,ρ2,Sym3 is the Zariski-closure of SSym3

j .

Let x be a point of DM,1
2,ρ2,Sym3 , not necessarily classical. Proposition 13.4 implies that there exists

a point x1 of DN1,ρ1
such that χx ◦ ι

T2

I2,p
= (χx1

◦ ιT1

I1,p
)ext ◦ λ1,p, with the usual notations for systems of

Hecke eigenvalues. This means that x1 is the image of x via ξ, hence the remaining inclusion of (2) holds.
Let I be an irreducible component of DN1,ρ1

containing x1. Since ξ is a closed immersion and its image

is contained in DM,1
2,ρ2,Sym3 , ξ(I) is an irreducible component of DM,1,Sym3

2,ρ2
containing x1. We deduce that

DM,1
2,ρ2,Sym3 is equidimensional of dimension 1. �

Corollary 14.12. The morphisms of rigid analytic spaces ξ and Ξ|DM,12,ρ2

are inverses to one another. In

particular Ξ is an isomorphism on the Zariski-open subspace DM,1
2,ρ2,Sym3 of DM

2,ρ2,Sym3 .

15. The fortuitous Sym3-congruence ideal of a finite slope family

Let θ : Th � I◦ be a finite slope family and let ρ : GQ → GSp4(I◦Tr) be the representation associated
with θ in the previous section. Recall that ρ is absolutely irreducible by assumption. We also assume
that ρ is Zp-regular and of residual Sym3 type, as in Definitions 4.2 and 4.3. In this section we define a

“fortuitous congruence ideal” for the family θ. It is the ideal describing the intersection of the Sym3-locus
of DM2 with the family θ. Recall that the Sym3-locus is the zero locus of the ideal ISym3 of O(DM2 )◦

defined in Section 14 and that rDM,h2,Bh

: O(DM2 )◦ → Th denotes the restriction of analytic functions.

Definition 15.1. The fortuitous Sym3-congruence ideal for the family θ : Th → I◦ is the ideal of I◦
defined by

cθ = (θ ◦ rDM,h2,Bh

)(ISym3) · I◦.

In most cases we will simply refer to cθ as the “congruence ideal”. The next proposition describes
its main properties. Let I be an ideal of I◦ and let ITr = I ∩ I◦Tr. Let ρI : GQ → GSp4(I◦Tr/ITr) be
the reduction of ρ modulo I. If θ1 : Th,1 → J is a finite slope family of GL2-eigenforms we denote
by ρθ1 : GQ → GL2(J) the associated Galois representation. For an ideal J of J we let ρθ1,J : GQ →
GL2(J/J ) be the reduction of ρθ1 modulo J .

Proposition 15.2. The following are equivalent:

(i) I ⊃ cθ;
(ii) there exists a finite extension I′ of I◦Tr/ITr and a representation ρI,1 : GQ → GL2(I′) such that

ρI ∼= Sym3ρI,1 over I′;
(iii) there exists a finite slope family of GL2-eigenforms θ1 : Th/7,1 → J◦, an ideal J of J◦ and a map

φ : J◦/J→ I◦Tr such that ρI ∼= φ ◦ Sym3ρθ1,J over I◦Tr.

Note that we did not specify the image in the weight space of the admissible subdomain of DN1
associated with the family θ1. It is the preimage in W◦1 of the disc B2,h via the immersion ι : W◦1 →W◦2
defined in Section 12.2.

Proof. Since all the coefficient rings are local and all the residual representations are absolutely irre-
ducible, we can apply the results of Section 14 by replacing the pseudocharacters everywhere with the
associated representations, that exist by Theorem 3.3 and are defined over the ring of coefficients of the
pseudocharacter by Theorem 3.1 (see the argument in the beginning of Section 5.3).

Now the equivalence (i) ⇐⇒ (ii) follows from Proposition 14.6(iv) applied to the rigid analytic
variety V2 = I. The equivalence (ii) ⇐⇒ (iii) follows from Proposition 14.6(iii) by checking that the
slopes satisfy the required inequality: this is a consequence of Corollary 10.18 and Remark 10.20. �

Corollary 15.3. If there is no representation ρ1 : GQ → GL2(Fp) satisfying ρ ∼= Sym3ρ1, then cθ = I◦.

Proposition 15.4. The ideal cθ is non-zero.

Proof. Suppose by contradiction that cθ = 0. Since cθ = (θ ◦ rDM,h2,Bh

)(ISym3)·I◦ we must have (θ ◦ rDM,h2,Bh

)(ISym3) =

0. This means that the 2-dimensional family I is contained in the zero locus DM
2,Sym3 of ISym3 . This is

impossible by Lemma 14.5. �
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The fortuitous Sym3-congruence ideal is an analogue of the congruence ideal of [CIT15, Definition
3.10]. There is an important difference between the situation studied here and in [CIT15] and those
treated in [Hi15, HT15]. In [Hi15, HT15] the congruence ideal describes the locus of intersection between
a fixed “general” family (i.e. such that its specializations are not lifts of forms from a smaller group)
and the “non-general” families. Such non-general families are obtained as the p-adic lift of families of
overconvergent eigenforms for smaller groups (e.g. GL1/K for an imaginary quadratic field K in the
case of CM families of GL2-eigenforms, as in [Hi15], and GL2/F for a real quadratic field F in the
case of “twisted Yoshida type” families of GSp4-eigenforms, as in [HT15]). In our setting there are no
non-general families: the overconvergent GSp4-eigenforms that are lifts of overconvergent eigenforms for
smaller groups must be of Sym3 type by Lemma 4.7 and Theorem 13.18, and we know that the Sym3-locus
on the GSp4-eigenvariety does not contain any two-dimensional irreducible component by Proposition
15.4. Hence the ideal cθ measures the locus of points that are of Sym3 type, without belonging to a
two-dimensional family of Sym3 type. For this reason we call it the “fortuitous” Sym3-congruence ideal.
This is a higher-dimensional analogue of the situation of [CIT15], where it is shown that the positive
slope CM points do not form one-dimensional families but appear as isolated points on the irreducible
components of the eigencurve (see [CIT15, Corollary 3.6]).

Note that conditions (ii) and (iii) in Proposition 15.2 only depend on the ideal I ∩ I◦Tr, so we expect
cθ to be generated by elements of I◦Tr. We prove this in the following.

Proposition 15.5. Let cθ,Tr = cθ ∩ I◦Tr. Then cθ = cθ,Tr · I◦.

Proof. By definition cθ,Tr = θ ◦ rI(ISym3) · I◦. By definition ISym3 = ψ2(ker(ψ1 ◦ λ
Mp)), where the

notations are as in diagram (14). Since ker(ψ1 ◦ λ
Mp) ⊂ HMp

2 we have

θ ◦ rI(ISym3) = θ ◦ rI ◦ ψ2(ker(ψ1 ◦ λ
Mp)) ⊂ θ ◦ rI ◦ ψ2(HMp

2 ).

By the remarks of Section 5.3 the ring I◦Tr contains θ ◦ rI ◦ ψ2(HMp
2 ) in I◦, so θ ◦ rI(ISym3) is a subset of

I◦Tr and the ideal cθ,Tr = θ ◦ rI(ISym3) · I◦Tr satisfies cθ = cθ,Tr · I◦. �

Proposition 15.2 can be translated into a characterization of the ideal cθ,Tr. For an ideal I of I◦Tr let
ρI : GQ → GSp4(I◦Tr/I) be the reduction of ρ modulo I.

Corollary 15.6. Let I be an ideal of I◦Tr. The following are equivalent:

(i) I ⊃ cθ,Tr;
(ii) there exists a finite extension I′ of I◦/I and a representation ρI,1 : GQ → GL2(I′) such that ρI ∼=

Sym3ρI,1 over I′;
(iii) there exists a finite slope family of GL2-eigenforms θ1 : Th/7,1 → J◦, an ideal J of J◦ and a map

φ : J◦/J→ I◦Tr such that ρI ∼= φ ◦ Sym3ρθ1,J.

We use the results of Section 12.3 to obtain some information on the height of the prime divisors of
cθ. Here ι : W◦1 → W◦2 is the inclusion defined in Section 12.2. For a classical weight k in W◦1 we have
ι(k) = (k + 1, 2k − 1), with the obvious abuse of notation.

Proposition 15.7. Suppose that there exists a non-CM classical point x ∈ DN1 of weight k such that
sl(x) ≤ h/7 and ι(k) ∈ B2,h and k > h− 4. Then the ideal cθ has a prime divisor of height 1.

Proof. Let x be a point satisfying the assumptions of the proposition and let f be the corresponding
classical GL2-eigenform. Let Sym3x be the point of DM2 that corresponds to the form (Sym3f)st

1 defined

in Corollary 10.16. Let ξ : DN,G1 → DM2 be the map of rigid analytic spaces given by Definition 12.11.

The image of an irreducible component J of DN,G1 containing x is an irreducible component ξ(J) of DM2
that contains Sym3x. By Corollary 10.18 we have sl(Sym3x) ≤ h. Since k + 1 > h − 3 the weight map
is étale at the point Sym3x, so there exists only one finite slope family of GSp4-eigenforms containing
Sym3x. This means that ξ(J) intersects the admissible domain I in a one-dimensional subspace. The
ideal of I◦ = O(I)◦ consisting of elements that vanish on ξ(J) is a height one ideal of I that divides the
congruence ideal cθ. In particular cθ admits a height one prime divisor. �

15.1. The I◦0-congruence ideal. Starting with Corollary 15.6 we can descend further and prove that
cθ is generated by elements invariant under the action of the group of self-twists.

Proposition 15.8. Let cθ,0 = cθ,Tr ∩ I◦0. Then cθ,Tr = cθ,0 · I◦Tr.
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Proof. Let σ be a self-twist and let ησ : GQ → (I◦Tr)
× be the associated finite order character. Let

cσθ,Tr = σ(cθTr). Since σ is an automorphism of I◦Tr, it induces an isomorphism I◦Tr/cθ,Tr
∼= I◦Tr/c

σ
θ,Tr.

In particular we can consider the two representations ρcθ,Tr,1 : GQ → GSp4(I◦Tr/c
σ
θ,Tr) and ρσcθ,Tr,1

=

σ ◦ ρcθ,Tr,1 : GQ → GSp4(I◦Tr/c
σ
θ,Tr). By Corollary 15.6 applied to the ideal I = cθ,Tr there exists a

representation ρcθ,Tr,1 : GQ → GL2(I◦/cθ,Tr) such that ρcθ,Tr
∼= Sym3ρcθ,Tr,1. We apply σ to both sides of

this equivalence and we obtain ρσcθ,Tr
∼= Sym3ρσcθ,Tr,1

. By definition of self-twist ρσ ∼= ησ⊗ρ. By reducing

modulo cσθ,Tr we obtain, with the obvious notations, (ρσ)cσθ,Tr

∼= ησ,cσθ,Tr
⊗ρcσθ,Tr

. Now (ρσ)cσθ,Tr
= (ρcθ,Tr

)σ,

so by combining the two previous equations we deduce that (ρσ)cσθ,Tr

∼= ησ,cσθ,Tr
⊗ Sym3ρσcθ,Tr,1

. Since

ησ,cσθ,Tr
is a finite order character, there exists an extension I1 of I◦Tr/c

σ
θ,Tr of degree at most 3 and a

character ησ,cσθ,Tr,1
satisfying (ησ,cσθ,Tr,1

)3 = ησ,cσθ,Tr
. Then

(ρσ)cσθ,Tr

∼= Sym3(ησ,cσθ,Tr,1
⊗ ρσcθ,Tr,1

),

so the implication (ii) =⇒ (i) of Corollary 15.6 gives cσθ,Tr ⊃ cθ,Tr. This holds for every σ ∈ Γ, hence⋂
σ∈Γ cσθ,Tr ⊃ cθ,Tr. This is an equality because the inclusion in the other direction is trivial. We conclude

that cθ,Tr is Γ-stable, so the ideal cθ,Tr ∩ I◦0 of I◦0 satisfies (cθ,Tr ∩ I◦0) · I◦Tr = cθ,Tr. �

Definition 15.9. We call cθ,0 the fortuitous (Sym3, I◦0)-congruence ideal for the family θ : Th → I◦.

For an ideal I of I◦0 we denote by ρI : H0 → GSp4(I◦0/I) the reduction of ρ|H0
modulo I. The ideal

cθ,0 admits a characterization similar to that of cθ and cθ,Tr.

Proposition 15.10. Let P0 be a prime ideal of I◦0. The following are equivalent.

(i) P0 ⊃ cθ,0;
(ii) there exists a finite extension I′ of I◦Tr/P0I◦Tr and a representation ρP0I◦Tr,1

: GQ → GL2(I′) such

that ρP0I◦Tr

∼= Sym3ρI′ over I′;
(iii) for one prime P of I◦Tr lying above P0 there exists a finite extension I ′ of I◦Tr/P and a representation

ρP,1 : GQ → GL2(I′) such that ρP ∼= Sym3ρP,1 over I′;
(iv) there exists a representation ρP0,1 : H0 → GL2(I◦0/I) such that ρP0

∼= Sym3ρP0,1 over I◦0/I.

Proof. We prove the chain of implications (i) =⇒ (ii) =⇒ (iii) =⇒ (iv). If P0 ⊃ cθ,0 then
P0 · I◦Tr ⊃ cθ,0 · I◦Tr = cθ,Tr. Now (ii) follows from Corollary 15.6.

If (ii) holds for some I′ and ρP0I◦Tr,1
and if P is a prime of I◦Tr lying above P0 then P ⊃ P0I◦Tr, so

it makes sense to reduce ρP0I◦Tr,1
modulo P I′. The resulting representation ρP,1 : GQ → GL2(I◦Tr/P )

satisfies (iii).
If (iii) is satisfied by some ρP0,1 then ρP0,1 = ρP,1|H0 satisfies (iv).
We complete the proof by showing that (iv) =⇒ (ii) and (iii) =⇒ (i). If (iv) holds then the image of

ρP0 is contained in Sym3GL2(I◦0/I). Since ρP0 = ρP0I◦Tr
|H0 Lemma 4.6 implies that, after extending the

coefficients to a finite extension I′0 of I◦Tr/P0I◦Tr the image of ρP0I◦Tr
is contained in Sym3GL2(I′0). This

proves (ii).
Suppose that (iii) holds. By Corollary 15.6 P ⊃ cθ,Tr, so P0 = P ∩ I◦0 ⊃ cθ,0, which is (i). �

The following is a corollary of Proposition 15.4.

Corollary 15.11. The ideal cθ,0 is non-zero.

16. An automorphic description of the Galois level

In Section 9 we attached a Galois level to a family of finite slope GSp4-eigenforms. The goal of this
section is to compare this Galois theoretic objects with the congruence ideal introduced in Section 15,
that is an object defined in terms of congruences of overconvergent automorphic forms.

We work in the setting of Theorem 9.1. In particular h is a positive rational number, θ : Th → I◦ is a
family of GSp4-eigenforms of slope bounded by h and ρ : GQ → GSp4(I◦Tr) is the Galois representation
associated with θ. We make the same assumptions on θ and ρ as in Theorem 9.1; in particular ρ is
Zp-regular and the residual representation ρ is either full or of symmetric cube type. With the family θ
we associate two ideals of I0:

– the ideal cθ,0 · I0, where cθ,0 is the fortuitous (Sym3, I◦0)-congruence ideal (see Definition 15.9);
– the Galois level lθ (see Definition 9.4).

68



To simplify notations we write cθ,0 for cθ,0 · I0. For every ring R and every ideal I of R we denote by
VR(I) the set of primes of R containing I. The theorem below is an analogue of [CIT15, Theorem 6.2].
The set Sbad of “bad” primes of I◦0 was defined in Section 8.1. Note that VI0(lθ)∩Sbad is empty because
the property defining the Galois level only involves lθ · Br, and the primes in Sbad are invertible in Br.

Theorem 16.1. There is an equality of sets VI0(cθ,0)− Sbad = VI0(lθ).

Recall that there is a natural inclusion ιr : I0 ↪→ Ir,0.

Proof. First we prove that VI0(cθ,0)−Sbad ⊂ VI0(lθ)−Sbad. Choose a radius r in the set {ri}i∈N>0 defined
in Section 5. Let P ∈ VI0(cθ,0) − Sbad and let ρP be the reduction of ρ|H0

: H0 → GSp4(I0) modulo P .

By Proposition 15.10 there exists a representation ρP,1 : H0 → GL2(I0/P ) such that ρP ∼= Sym3ρP,1. Let

ρr,P = ιr ◦ ρP and ρr,P,1 = ιr ◦ ρP,1. The isomorphism above gives ρr,P ∼= Sym3ρr,P,1.
Suppose by contradiction that lθ 6⊂ P . By definition of lθ we have Gr ⊃ lθ · sp4(Br). Recall that

Br/P = Ir,0/P by the construction of Br. By looking at the previous inclusion modulo P we obtain

(16.1) Gr,P ⊃ (lθ/(P ∩ lθ)) · sp4(Ir,0/P ).

Since lθ 6⊂ P we have lθ/(P ∩ lθ) 6= 0. By definition Gr,P = Qp · log Im ρr,P . By our previous argument

Im ρr,P ⊂ Sym3GL2(Ir,0/P Ir,0), so log Im ρr,P cannot contain a subalgebra of the form I · sp4(Ir,0/P Ir,0)
for a non-zero ideal I of Ir,0/P Ir,0. This contradicts Equation (16.1).

We prove the inclusion VI0(lθ) − Sbad ⊂ VI0(cθ,0) − Sbad. Let P be a prime of I0. We have to show
that if P /∈ Sbad and lθ ⊂ P then cθ,0 ⊂ P . Every prime of I0 is the intersection of the maximal ideals
that contain it, so it is sufficient to show the previous implication when P is a maximal ideal.

Let P be a maximal ideal of I0 such that P /∈ Sbad and lθ ⊂ P . Let κP be the residue field I0/P .
We define two ideals of Ir,0 by lθ,r = ιr(lθ)Ir,0 and Pr = ιr(P )Ir,0. Note that ιr induces an isomorphism
I0/P ∼= Ir,0/Pr. In particular Pr is maximal in Ir,0 and Ir,0/Pr ∼= κP , which is a local field.

As before let ρr,P = ιr ◦ ρP . The residual representation ρr,P : H0 → GSp4(I◦r,0/mI◦r,0) associated with

ρr,P coincides with ρ|H0 . In particular ρr,P is of residual Sym3 type in the sense of Definition 4.3. Let

Gr,P = Im ρr,P and G◦r,P be the connected component of the identity in Gr,P . Let G◦r,P
Zar

be the Zariski

closure of G◦r,P in GSp4(Ir,0/Pr). Since ρr,P is residually either full or of symmetric cube type, by the
classification preceding Lemma 4.7 one of the following must hold:

(i) the algebraic group G◦r,P
Zar

is isomorphic to Sym3SL2 over Ir,0/Pr;
(ii) the algebraic group G◦r,P

Zar
is isomorphic to Sp4 over Ir,0/Pr.

In the two cases let H0 denote the normal open subgroup of H0 satisfying Im ρr,P |H0 = G◦r,P . Since

H0 is open and normal in GQ, H0 is also open and normal in GQ. In case (i) there exists a representation

ρ0
r,P : H0 → GL2(Ir,0/Pr) such that ρr,P |H0 ∼= Sym3ρ0

r,P . Since the image of ρr,P |H0 is Zariski-dense in

the copy of SL2(Ir,0/Pr) embedded via the symmetric cube map, the image of ρ0
r,P is Zariski-dense in

SL2(Ir,0/Pr). From Lemma 4.6 we deduce that Im ρ0
r,P contains a congruence subgroup of SL2(Ir,0/Pr).

Now the hypotheses of Lemma 4.6 are satisfied by the representation ρ0
r,P and the group H0, so we

conclude that there exists a representation ρ′H0,r,P
: H0 → GL2(Ir,0/Pr) such that ρH0,r,P

∼= Sym3ρ′H0,r,P
.

By Proposition 15.10 the prime P must contain cθ,0, as desired.

We show that case (ii) never occurs. Suppose by contradiction that G◦H0,r,P

Zar ∼= Sp4 over Ir,0/Pr. By

Propositions 6.13 and 6.18 we know that the field I0/P is generated over Qp by the traces of Ad (ρP |H0
).

Hence the field Ir,0/Pr is generated over Qp by the traces of Ad ρr,P . By Theorem 4.5 applied to Im ρr,P
there exists a non-zero ideal lr,P of Ir,0/Pr such that Gr,P contains the principal congruence subgroup
ΓIr,0/Pr (lr,P ) of Sp4(Ir,0/Pr). By definition Gr,P = Qp · log(Im ρr,P |Hr ) where Hr is an open GQ, so up
to replacing lr,P by a smaller non-zero ideal we have

(16.2) lr,P · sp4(Ir,0/Pr) ⊂ log(ΓIr,0/Pr (lr,P )) ⊂ log(ιr,0(GP )) ⊂ Gr,P .

The algebras Gr,P are independent of r in the sense of Remark 8.3, so there exists an ideal lP of I0/P
such that, for every r in the set {ri}i≥1, the ideal lr,P = ιr(lP ) satisfies Equation (16.2). We choose the
ideals lr,P of this form.

As before ∆ is the set of roots of GSp4 with respect to the chosen maximal torus. Let α ∈ ∆. Let Uαr
and Uαr,Pr be the nilpotent Lie subalgebras respectively of Gr and Gr,Pr corresponding to α. We denote by

πPr the projection gsp4(Br)→ gsp4(Br/PrBr). Clearly Gr,Pr = πPr (Gr), so Uαr,Pr = πPr (U
α
r ). Equation

(16.2) gives lr,P u
α(Ir,0/Pr) ⊂ Uαr,Pr . Choose a subset AαP of uα(I0) such that, for every r, ιr(A

α
P ) ⊂ Uαr
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and πPr (ιr(A
α
P )) = lr,P u

α(Ir,0/Pr). Such a set exists because the algebras Uαr are independent of r by

Remark 8.3 and the ideals lr,P have been chosen of the form ιr(lP ). Set AP =
(∏

α∈∆ AαP
)4

. By the
same argument as in the proof of Theorem 9.1, the ideal AαP satisfies

ιr(A
α
P ) · sp4(Br) ⊂ Gr.

Since lθ · sp4(Br) ⊂ Gr for every r, we also have (lθ + AαH0,P
)sp4(Br) ⊂ Gr for every r.

By assumption lθ ⊂ P , so πP (lθ) = 0. By definition of AαH0,P
we have πP (AαP ) ⊃ πP (AP ) = lP , so

πP (lθ + AP ) = lP . We deduce that lθ + AαP is strictly larger than lθ. This contradicts the fact that lθ is
the largest among the ideals l of I0 satisfying l · sp4(Br) ⊂ Gr. �

Corollary 16.2. When the residual representation ρ is full, the Galois level lθ is trivial.

Proof. This follows immediately from Theorem 16.1 and Corollary 15.3. �
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