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CHARACTERIZATION OF PROJECTIVE SPACES AND
Pr-BUNDLES AS AMPLE DIVISORS

JIE LIU

Abstract. Let X be a projective manifold of dimension n. Suppose
that TX contains an ample subsheaf. We show that X is isomorphic to
Pn. As an application, we derive the classification of projective manifolds
containing a Pr-bundle as an ample divisor by the recent work of D. Litt.
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1. Introduction

Projective spaces are the simplest algebraic varieties. They can be char-
acterized in many ways. A very famous one is given by the Hartshorne’s
conjecture, which was proved by S. Mori.

Theorem A.[Mor79] Let X be a projective manifold. Then X is a pro-
jective space if and only if TX is ample.

This result has been generalized, over the field of complex number, by
several authors [Wah83, CP98, AW01].

Theorem B.[AW01] Let X be a projective manifold of dimension n. If
TX contains an ample locally free subsheaf E of rank r, then X ∼= Pn and
E ∼= O(1)⊕r or E ∼= TPn .

This theorem was successively proved for r = 1 by J. Wahl [Wah83] and
latter for r ≥ n− 2 by F. Campana and T. Peternell [CP98]. The proof was
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finally completed by M. Andreatta and J.A. Wiśniewski [AW01]. The main
aim of the present article is to prove the following generalization.

1.1. Theorem. Let X be a projective manifold of dimension n. Suppose
that TX contains an ample subsheaf F of positive rank r, then (X,F) is
isomorphic to (Pn, TPn) or (Pn,OPn(1)⊕r).

Note that this theorem was proved in [AKP08] under the additional as-
sumption ρ(X) = 1. One interesting and important case is when F comes
from the image of an ample vector bundle E over X. To be more precise,
we have the following corollary, which was originally conjectured by D. Litt
in [Lit16].

1.2. Corollary. Let X be a projective manifold of dimension n, E an ample
vector bundle on X. If there exists a non-zero map E → TX , then X ∼= Pn.

As an application, we derive the classification of projective manifolds con-
taining a Pr-bundle as an ample divisor. This problem has already been
investigated by several authors [Som76, Băd84, FSS87, BS95, BI09]. Re-
cently, D. Litt proved that it can be reduced to Corollary 1.2 [Lit16]. More
precisely, we have the following result.

1.3. Theorem. Let X be a projective manifold of dimension n ≥ 3, let A
be an ample divisor on X. Assume that A is a Pr-bundle, p : A → B, over a
manifold B of dimension b. Then one of the following holds:

1) (X,A) = (P(E),H) for some ample vector bundle E over B such that
H ∈ |OP(E)(1)|. p is equal to the restriction to A of the induced projection
P(E) → B.

2) (X,A) = (P(E),H) for some ample vector bundle E over P1 such that
H ∈ |OP(E)(1)|. H = P1 × Pn−2 and p is the projection to the second
factor.

3) (X,A) = (Q3,H), where Q3 is a smooth quadric threefold and H is a
smooth quadric surface with H ∈ |OQ3(1)|. p is the projection to one of
the factors H ∼= P1 × P1.

4) (X,A) = (P3,H). H is a smooth quadric surface and H ∈ |OP3(2)|, and
p is again a projection to one of the factors of H ∼= P1 × P1.

Convention. We always work over the field C of complex numbers. Vari-
eties are always assumed to be integral separated schemes of finite type over
C. If D is a Weil divisor on a projective normal variety X, we denote by
OX(D) the reflexive sheaf associated to D. Given a coherent sheaf F on a
variety X of generic rank r, then we denote by F∨ the sheaf HomOX

(F ,OX)
and by det(F) the sheaf (∧rF)∨∨. We denote by F(x) = Fx ⊗OX,x

k(x) the
fiber of F at x ∈ X. If F is a coherent sheaf on a variety X, we denote by
P(F) the Grothendieck projectivization Proj (⊕m≥0Sym

mF). If f : X → Y
is a morphism between projective normal varieties, we denote by Ω1

X/Y the
relative differential sheaf. Moreover, if Y is smooth, we denote by KX/Y
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the relative canonical divisor KX − f∗KY and by ωX/Y the reflexive sheaf
ωX ⊗ f∗ω∨

Y .

2. Ample sheaves and rational curves

Let X be a projective manifold. In this section, we gather some results
about the behavior of an ample subsheaf F ⊂ TX with respect to a family
of minimal rational curves on X.

2.A. Ample sheaves. Recall that an invertible sheaf L on a quasi-
projective variety X is said to be ample if for every coherent sheaf G on
X, there is an integer n0 > 0 such that for every n ≥ n0, the sheaf G ⊗Ln is
generated by its global sections [Har77, II, Section 7]. In general, a coherent
sheaf F on a quasi-projective variety X is said to be ample if the invertible
sheaf OP(F)(1) is ample on P(F) [Kub70].

Well-known properties of ampleness of locally free sheaves still hold in this
general setting.

(1) A sheaf F on a quasi-projective variety X is ample if and only if, for
any coherent sheaf G on X, G ⊗SymmF is globally generated for m ≫ 1
[Kub70, Theorem 1].

(2) If i : Y → X is an immersion, and F is an ample sheaf on X, then i∗F
is an ample sheaf on Y [Kub70, Proposition 6].

(3) If π : Y → X is a finite morphism with X and Y quasi-projective vari-
eties, and F is a coherent sheaf on X, then F is ample if and only if π∗F
is ample. Note that P(π∗F) = P(F) ×X Y and OP(F)(1) pulls back, by
a finite morphism, to OP(π∗F)(1).

(4) Any quotient of an ample sheaf is ample [Kub70, Proposition 1]. In
particular, the image of an ample sheaf under a non-zero map is also
ample.

(5) If F is a locally free ample sheaf of rank r, then the sth exterior power
∧sF is ample for any 1 ≤ s ≤ r [Har66, Corollary 5.3].

(6) If L is an ample invertible sheaf on a quasi-projective variety X, then
Lm is very ample for some m > 0, i.e. there is an immersion i : X → Pn

for some n such that Lm = i∗OPn(1) [Har77, II, Theorem 7.6].

2.B. Minimal rational curves. Let X be a normal projective variety and
V an irreducible component of RatCurvesn(X). V is said to be a covering
family of rational curves on X if the corresponding universal family domi-
nates X. A covering family V of rational curves on X is called minimal if its
general members have minimal anti-canonical degree. If X is a uniruled pro-
jective manifold, then X carries a minimal covering family of rational curves.
We fix such a family V, and let [ℓ] ∈ V be a general point. Then the tangent
bundle TX can be decomposed on ℓ as OP1(2)⊕OP1(1)⊕d⊕O⊕(n−d−1)

P1 , where
d+ 2 = det(TX) · ℓ ≥ 2 is the anticanonical degree of V.

3



Let V̄ be the normalization of the closure of V in Chow(X). We define the
following equivalence relation on X. Two points x, y ∈ X are V̄-equivalent
if they can be connected by a chain of 1−cycle from V̄. By [Cam81], there
exists a proper surjective morphism φ0 : X0 → T0 from an open subset of X
onto a normal variety T0 whose fibers are V̄-equivalence classes. We call this
map the V-rationally connected quotient of X.

The first step towards Theorem 1.1 is the following result which was es-
sentially proved in [Ara06].

2.1. Theorem.[ADK08, Proposition 2.7] Let X be a projective uniruled
manifold, V a minimal covering family of rational curves on X. If TX con-
tains a subsheaf F of rank r such that F|ℓ is an ample vector bundle for a
general member [ℓ] ∈ V, then there exists a dense open subset X0 of X and a
Pd+1-bundle φ0 : X0 → T0 such that any curve on X parametrized by V and
meeting X0 is a line on a a fiber of φ0. In particular, φ0 is the V-rationally
connected quotient of X.

Recall that the singular locus Sing(S) of a coherent sheaf S over X is the
set of all points of X where S is not locally free.

2.2. Remark. The hypothesis that F is locally free over a general member
of V is automatically satisfied. Since F is torsion free and X is smooth, F
is locally free in codimension one. By [Kol96, II, Proposition 3.7], a general
member of V is disjoint from Sing(F), hence F is locally free over a general
member of V.

As an immediate application of Theorem 2.1, we derive a weak version of
[AKP08, Theorem 4.2].

2.3. Corollary. Let X be a projective uniruled manifold with ρ(X) = 1,
V a minimal covering family of rational curves on X. If TX contains a
subsheaf F of rank r such that F|ℓ is ample for a general member [ℓ] ∈ V,
then X ∼= Pn.

2.4. Remark. In [AKP08, Theorem 4.2], they proved that the torsion-free
sheaf F is actually locally free. Hence F is isomorphic to TPn or OP1(1)⊕r

by Theorem B. In particular, to prove Theorem 1.1, it is sufficient to show
that X is a projective space if TX contains an ample subsheaf.

If X is a projective manifold and TX contains an ample subsheaf, then X
is uniruled and carries a minimal covering family of rational curves [Miy87,
Corollary 8.6]. In particular, we obtain the following result.

2.5. Corollary.[AKP08, Corollary 4.3] Let X be a projective manifold with
ρ(X) = 1. Assume that TX contains an ample subsheaf, then X ∼= Pn.
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3. Foliations and Pfaff fields

Let S be a subsheaf of TX on a quasi-projective manifold X. We denote
by Sreg the largest open subset of X such that S is a subbundle of TX over
Sreg. Note that in general Sing(S) is a proper subset of X \ Sreg.

3.1. Definition. Let X be a quasi-projective manifold and let S ( TX be
a coherent subsheaf of positive rank. S is called a foliation if it satisfies the
following conditions:

1) S is saturated in TX , i.e. TX/S is torsion free.
2) The sheaf S is closed under the Lie bracket.

In addition, S is called an algebraically integrable foliation if the following
holds.

3) For a general point x ∈ X, there exists a projective subvariety Fx passing
through x such that

S|Fx∩Sreg = TFx |Fx∩Sreg ⊂ TX |Fx∩Sreg .

We call Fx the S-leaf through x.

3.2. Remark. Let X be a projective manifold and S a saturated subsheaf
of TX . To show that S is an algebraically integrable foliation, it is sufficient
to show that it is an algebraically integrable foliation over a Zariski open
subset of X.

3.3. Example. Let X → Y be a fibration with X and Y projective man-
ifolds. Then TX/Y ⊂ TX defines an algebraically integrable foliation on X
such that the general leaves are the fibers.

3.4. Example.[AD13, 4.1] Let F be a subsheaf OPn(1)⊕r of TPn on Pn.
Then F is an algebraically integrable foliation and it is defined by a linear
projection Pn 99K Pn−r. The set of points of indeterminacy S of this rational
map is a r− 1-dimensional linear subspace. Let x ̸∈ S be a point. Then the
leaf passing through x is the r-dimensional linear subspace L of Pn containing
both x and S.

3.5. Definition. Let X be a projective variety, and r a positive integer. A
Pfaff field of rank r on X is a nonzero map ∂ : Ωr

X → L, where L is an
invertible sheaf on X.

3.6. Lemma.[ADK08, Proposition 4.5] Let X be a projective variety and
n : X̃ → X its normalization. Let L be an invertible sheaf on X, r positive
integer, and ∂ : Ωr

X → L a Pfaff field. Then ∂ can be extended uniquely to a
Pfaff field ∂̃ : Ωr

X̃
→ n∗L.

Let X be a projective manifold and S ⊂ TX a subsheaf with positive rank
r. We denote by KS the canonical class −c1(det(S)) of S. Then there is a
natural associated Pfaff field of rank r:

Ωr
X = ∧r(Ω1

X) = ∧r(T∨
X) = (∧rTX)∨ → OX(KS).
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3.7. Lemma.[AD13, lemma 3.2] Let X be a projective manifold, and S an
algebraically integrable foliation on X. Then there is a unique irreducible pro-
jective subvariety W of Chow(X) whose general point parametrizes a general
leaf of S.

3.8. Remark. Let X be a projective manifold, and S an algebraically
integrable foliation of rank r on X. Let W be the subvariety of Chow(X)
provided in Lemma 3.7. Let Z ⊂ W be a general closed subvariety of W

and let U ⊂ Z ×X be the universal cycle over Z. Assume that Z̃ and Ũ are
the normalizations of Z and U respectively. We claim that the Pfaff field
Ωr
X → OX(KS) can be extended to a Pfaff field Ωr

Ũ/Z̃
→ n∗p∗OX(KS).

Ũ
n //

q̃
��

U

q

��

⊂ Z ×X

q

��

p // X

Z̃ // Z
= // Z

Let V be the universal cycle over W with v : V → X. By the proof of
[AD13, Lemma 3.2], the Pfaff field Ωr

X → OX(KS) extends to be a Pfaff
field Ωr

V → v∗OX(KS). It induces a Pfaff field Ωr
U → p∗OX(KS). Note that

U is irreducible since Z is a general subvariety. By Lemma 3.6, it can be
uniquely extended to a Pfaff field Ωr

Ũ
→ n∗p∗OX(KS).

Let K be the kernel of the morphism Ωr
Ũ

� Ωr
Ũ/Z̃

. Let F be a general
fiber of q̃ such that its image under p ◦ n is a S-leaf and the morphism p ◦ n
restricted on F is finite and birational. Let x ∈ F be a point such that F is
smooth at x and p ◦ n is an isomorphism at a neighborhood of x. Then the
composite map Ωr

Ũ
|F � Ωr

Ũ/Z̃
|F � Ωr

F implies that the composite map

K → Ωr
Ũ
→ n∗p∗OX(KS)

vanishes in a neighborhood of x, hence it vanishes generically over Ũ . Since
the sheaf n∗p∗OX(KS) is torsion-free, it vanishes identically and finally yields
a Pfaff field Ωr

Ũ/Z̃
→ n∗p∗OX(KS).

Let X be a projective manifold, and S ⊂ TX a subsheaf. We define its sat-
uration S as the kernel of the natural surjection TX � (TX/S)

/
(torsion) .

Then S is obviously saturated.

3.9. Theorem. Let X be a projective manifold. Assume that TX contains
an ample subsheaf F of rank r < dim(X). Then its saturation F defines
an algebraically integrable foliation on X, and the F-leaf passing through a
general point is isomorphic to Pr.

Proof. Let φ0 : X0 → T0 be as the morphism provided in Theorem 2.1. Since
F is locally free in codimension one, we may assume that no fiber of φ0 is
completely contained in Sing(F).
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The first step is to show that F|X0 ⊂ TX0/T0
. Since φ0 : X0 → T0 is

smooth, we get a short exact sequence of vector bundles,

0 → TX0/T0
→ TX |X0 → φ∗

0TT0 → 0.

The composite map F|X0 → TX |X0 → φ∗
0TT0 vanishes on a Zariski open

subset of every fiber. Since φ∗
0TT0 is torsion-free, it vanishes identically, and

it follows F|X0 ⊂ TX0/T0
.

Next we show that, after shrinking X0 and T0 if necessary, F is actually
locally free over X0. By generic flatness theorem [Gro65, Théorème 6.9.1],
after shrinking T0, we can suppose that

(
TX /F

)
|X0 is flat over T0. Let

F ∼= Pd+1 be an arbitrary fiber of φ0. The following short exact sequence of
sheaves

0 → F|X0 → TX |X0 →
(
TX /F

)
|X0 → 0

induces a long exact sequence of sheaves

T or(
(
TX /F

)
|X0 ,OF ) → F|F → TX |F →

(
TX /F

)
|F → 0.

Since
(
TX /F

)
|X0 is flat over T0, it follows that F|F is a subsheaf of TX |F ,

in particular, F|F is torsion-free. Without loss of generality, we may assume
that the restrictions of F on all fibers of φ0 are torsion-free. By Remark 2.4,
the restrictions of F on all fibers of φ0 are locally free, it yields particularly
that the dimension of the fibers of F is constant on every fiber of φ0 due
to F(x) = (F|F )(x). Note that no fiber of φ0 is contained in Sing(F), we
conclude that the dimension of the fibers F(x) of F is constant over X0.
Hence F is locally free over X0.

Now we claim that F actually defines an algebraically integrable foliation
on X0. Let F ∼= Pd+1 be an arbitrary fiber of φ0. We know that (F,F|F ) is
isomorphic to (Pd+1, TPd+1) or (Pd+1,OPd+1(1)⊕r) (c.f. Theorem B), therefore
F defines an algebraically integrable foliation over X0 (c.f. Example 3.4).
Note that we have F|X0 = F|X0 since F|X0 is saturated in TX0 . Hence F
also defines an algebraically integrable foliation over X (c.f. Remark 3.2). �
3.10. Remarks.

(1) If F is of rank n = dim(X) and F ( TX , then (X,F) = (Pn,O(1)⊕n)
and F also defines an algebraically integrable foliation on X.

(2) Since F is locally free on X0, it follows that OX(−KF )|X0 is isomorphic
to ∧r(F|X0) and the invertible sheaf OX(−KF ) is ample over X0. More-
over, as F is locally free in codimension one, there exists an open subset
X ′ ⊂ X containing X0 such that codim(X \X ′) ≥ 2 and OX(−KF ) is
ample on X ′.

4. Proof of main theorem

The aim of this section is to prove Theorem 1.1. Let X be a normal
projective variety, and X → C a surjective morphism with connected fibers
onto a smooth curve. Let ∆ be an effective Weil divisor on X such that
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(X,∆) is log-canonical over the generic point of C. In [AD13, Theorem
5.1], they proved that −(KX/C +∆) cannot be ample. In the next theorem,
we give a variant of this result which is the key ingredient in our proof of
Theorem 1.1.

4.1. Theorem. Let X be a normal projective variety, and f : X → C a
surjective morphism with connected fibers onto a smooth curve. Let ∆ be
a Weil divisor on X such that KX + ∆ is Cartier and ∆hor is reduced.
Assume that there exists an open subset C0 such that the pair (X,∆hor) is
snc over X0 = f−1(C0). If X ′ ⊂ X is an open subset such that no fiber of
f is completely contained in X \X ′ and X0 ⊂ X ′, then the invertible sheaf
OX(−KX/C −∆) is not ample over X ′.

Proof. To prove the theorem, we assume to the contrary that the invertible
sheaf OX(−KX/C−∆) is ample over X ′. Let A be an ample divisor supported
on C0. Then for some m ≫ 1, the sheaf OX(−m(KX/C +∆)− f∗A) is very
ample over X ′ [Har77, II, Exercise 7.5]. It follows that there exists a prime
divisor D′ on X ′ such that the pair (X ′,∆hor|X′ +D′) is snc over X0 and

D′ ∼ (−m(KX/C +∆)− f∗A)|X′ .

It implies that there exists a rational function h ∈ K(X ′) = K(X) such
that the restriction of the Cartier divisor D = div(h)−m(KX/C +∆)− f∗A

on X ′ is D′ and Dhor is the closure of D′ in X. Note that we can write
D = D+ − D− for some effective divisors D+ and D− with no common
components. Then we have Supp(D−) ⊂ X \X ′, in particular, no fiber of f
is supported on D−. By [Kol13, Theorem 4.15], there exists a log-resolution
µ : X̃ → X such that:

(1) Then induced morphism f̃ = f ◦ µ : X̃ → C is prepared (c.f. [Cam04,
Section 4.3]).

(2) The birational morphism µ is an isomorphism over X0.
(3) µ−1

∗ ∆hor + µ−1
∗ Dhor is a snc divisor.

Let E be the exceptional divisor of µ. Note that we have f̃∗(E) ̸= C.
Moreover, we also have

K
X̃
+ µ−1

∗ ∆+
1

m
µ−1
∗ D+ = µ∗(KX +∆+

1

m
D) +

1

m
µ−1
∗ D− + E+ − E−.

where E+ and E− are effective µ-exceptional divisors with no common com-
ponents.

Set D̃ = mµ−1
∗ ∆+ µ−1

∗ D+ +mE−. Then D̃hor = mµ−1
∗ ∆hor + µ−1

∗ Dhor

is a snc effective divisor with coefficients ≤ m. Since D is linearly equivalent
to −m(KX/C +∆)− f∗A, we can write

K
X̃/C

+
1

m
D̃ ∼Q − 1

m
f̃∗A+

1

m
µ−1
∗ D− + E+.
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After multiplying by some l divisible enough, we may assume that lmE+ and
lmE− are of integer coefficients. By replacing D̃ by lD̃, the weak positivity
theorem [Cam04, Theorem 4.13] implies that the following direct image sheaf

f̃∗(ω
lm
X̃/C

⊗O
X̃
(D̃)) ≃ f̃∗(OX̃

(−lf̃∗A+ lmE+ + lµ−1
∗ D−))

≃ OC(−lA)⊗ f̃∗OX̃
(lmE+ + lµ−1

∗ D−)

is weakly positive.
Observe that f̃∗(OX̃

(lmE+ + lµ−1
∗ D−)) = OC . Indeed, E+ is a µ-

exceptional divisor, it follows µ∗(OX̃
(lmE+ + lµ−1

∗ D−)) = OX(lD−). Note
that we have f∗(OX(lD−)) = OC(P ) for some effective divisor P on C
such that Supp(P ) ⊂ f(Supp(D−)). Let V be an open subset of C and
let λ ∈ H0(V,OC(P )), that is, λ is a rational function on C such that
div(λ) + P ≥ 0 over V . It follows that div(λ ◦ f) + lD− ≥ 0 over f−1(V ).
Since there is no fiber of f completely supported on D−, the rational func-
tion λ ◦ f is regular over f−1(V ). Consequently, the rational function λ is
regular over V . It implies that the natural inclusion OC → OC(P ) is sur-
jective, which yields f̃∗(OX̃

(lmE+ + lµ−1
∗ D−)) = OC . However, this shows

that OC(−lA) is weakly positive, a contradiction. Hence OX(−KX/C −∆)
is not ample over X ′. �
4.2. Lemma. Let X be a normal projective variety, and f : X → C a
surjective morphism with reduced and connected fibers onto a smooth curve
C. Let D be a Cartier divisor on X. If there exists a nonzero morphism
Ωr
X/C → OX(D), where r is the relative dimension of f , then there exists an

effective Weil divisor ∆ on X such that KX/C +∆ = D.

Proof. Since all the fibers of f are reduced, the sheaf Ωr
X/C is locally free in

codimension one. Hence the reflexive hull of Ωr
X/C is ωX/C ≃ OX(KX/C).

Note that OX(D) is reflexive, the nonzero morphism Ωr
X/C → OX(D) in-

duces a nonzero morphism ωX/C → OX(D). This shows that there exists an
effective divisor ∆ on X such that KX/C +∆ = D. �

As an application of Theorem 4.1, we derive a special property about
foliations defined by an ample subsheaf of TX . A similar result was estab-
lished for Fano foliations with mild singularities in the work of C. Araujo
and S. Druel [AD13, Proposition 5.3] and we follow the same strategy.

4.3. Proposition. Let X be a projective manifold. If F ⊂ TX is an ample
subsheaf of rank r < n = dim(X), then there is a common point in the
general leaves of F .

Proof. Since F is torsion-free and X is smooth, F is locally free over an
open subset X ′ ⊂ X such that codim(X \X ′) ≥ 2, in particular, OX(−KF )
is ample over X ′. By Theorem 2.1, there exists an open subset X0 ⊂ X
and a Pd+1-bundle φ0 : X0 → T0. Moreover, from the proof of Theorem 3.9,

9



the saturation F defines an algebraically integrable foliation on X and we
may assume that F is locally free over X0. In particular, we have X0 ⊂ X ′.
In view of Lemma 3.7, we will denote by W the subvariety of Chow(X)
parametrizing the general leaves of F and V the normalization of the univer-
sal cycle over W . Let p : V → X and π : V → W be the natural projections.
Note that there exists an open subset W0 of W such that p(π−1(W0)) ⊂ X0.

To prove our proposition, we assume to the contrary that there is no
common point in the general leaves of F .

First we show that there exists a smooth curve C with a finite morphism
n : C → n(C) ⊂ W such that:

(1) Let U be the normalization of the fiber product V ×W C with projection
π : U → C. Then the induced morphism p̃ : U → X is finite onto its
image.

(2) There exists an open subset C0 of C such that the image of U0 under p
is contained in X0. In particular, U0 = π−1(C0) is a Pr-bundle over C0.

(3) For any point c ∈ C, the image of the fiber π−1(c) under p̃ is not con-
tained in X \X ′.

(4) All the fibers of π are reduced.

We denote X \X ′ by Y , then codim(Y ) ≥ 2. We consider the subset

Z = {w ∈ W | π−1(w) ⊂ p−1(Y )}.
Since π is equidimensional, it is a surjective universally open morphism
[Gro66, Théorème 14.4.4]. Therefore the subset Z is closed. Note that the
general fiber of π is disjoint from p−1(Y ), so codim(Z) ≥ 1. Moreover, by
the definition of Z, we have p(π−1(Z)) ⊂ Y and codimY ≥ 2, hence we can
choose some very ample divisors Hi (1 ≤ i ≤ n) on X such that the curve
B defined by complete intersection p̃∗H1 ∩ · · · ∩ p̃∗Hn satisfies the following
conditions:

(a) There is no common point in the general fibers of π over π(B).
(b) π(B) ∩W0 ̸= ∅.
(c) π(B) ⊂ W \ Z.

Let B′ → B be the normalization, and VB′ the normalization of the fiber
product V ×BB′. The induced morphism VB′ → V is denoted by µ. Then it
is easy to check that B′ satisfies (1), (2) and (3). By [BLR95, Theorem 2.1],
there exists a finite morphism C → B′ such that all the fibers of U → C are
reduced, where U is the normalization of U ×B′ C. Then we see at once that
C is the desired curve.

The next step is to get a contradiction by applying Theorem 4.1. From
Remark 3.8, we see that the Pfaff field Ωr

X → OX(KF ) extends to a Pfaff field
Ωr
VB′/B′ → µ∗p∗OX(KF ), and it induces a Pfaff field Ωr

U/C → p̃∗OX(KF ).
The natural inclusion F ↩→ F induces a morphism OX(KF ) → OX(KF ). It
implies that we have a Pfaff field Ωr

U/C → p̃∗OX(KF ). By Lemma 4.2, there
exists an effective Weil divisor ∆ on U such that KU/C +∆ = p̃∗KF .
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Let ∆hor be the π-horizontal part of ∆. After shrinking C0, we may assume
that ∆|U0 = ∆hor|U0 . According to the proof of Theorem 3.9, for any fiber
F ∼= Pr over C0, we have (p̃∗KF )|F − KF = 0 or H where H ∈ |OPr(1)|.
This shows that either ∆hor is zero or ∆hor is a prime divisor such that
∆|U0 = ∆hor|U0 ∈ |OU0(1)|. In particular, the pair (U,∆hor) is snc over U0

and ∆hor is reduced. Note that p̃ : U → p̃(U) is a finite morphism, so the
invertible sheaf p̃∗OX(−KF ) is ample over U ′ = U ∩ p̃−1(X ′), i.e. the sheaf
OU (−KU/C −∆) is ample over U ′, which contradicts to Theorem 4.1. �

Now we are in the position to prove our main theorem.

Proof of Theorem 1.1. According to Theorem 2.1, there exists an open sub-
set X0 ⊂ X and a normal variety T0 such that X0 → T0 is a Pd+1-bundle
and d + 1 ≥ r. Without loss of generality, we may assume r < dim(X).
By Theorem 3.9 followed by Proposition 4.3, F defines an algebraically in-
tegrable foliation over X such that there is a common point in the general
leaves of F . However, this cannot happen if dim(T0) ≥ 1. Thus dimT0 = 0
and X ∼= Pn. �

5. Pr-bundles as ample divisors

As an application of Theorem 1.1, we classify projective manifolds X
containing a Pr-bundle as an ample divisor. This is originally conjectured
by Beltrametti and Sommese [BS95, Conjecture 5.5.1]. In the sequel, we
follow the same notation and assumptions as in Theorem 1.3.

The case r ≥ 2 follows from Sommese’s extension theorem [Som76] (see
also [BS95, Theorem 5.5.2]). For r = 1 and b = 1, it is due to Bădescu
[Băd84, Theorem D] (see also [BS95, Theorem 5.5.3]). For r = 1 and b = 2,
it was done by the work of several authors [BI09, Theorem 7.4]. Recently,
D. Litt proved the following result by which we can deduce Theorem 1.3
from Corollary 1.2.

5.1. Proposition.[Lit16] Let X be a projective manifold of dimension ≥ 3,
and let A be an ample divisor. Assume that p : A → B is a P1-bundle, then
either p extends to a morphism p̂ : X → B, or there exists an ample vector
bundle E on B and a non-zero map E → TB.

For the reader’s convenience, we outline the argument of D. Litt that
reduces Theorem 1.3 to Corollary 1.2 [Lit16].

Proof of Theorem 1.3. Since the case r ≥ 2 is already known, we can assume
that r = 1, i.e. p : A → B is a P1-bundle.

If p extends to a morphism p̂ : X → B, then the result follows from [BI09,
Theorem 5.5] and we are in the case 1) of our theorem.

If p does not extend to a morphism X → B, by Proposition 5.1, there
exists an ample vector bundle E over B with a non-zero map E → TB. Own
to Corollary 1.2, we have B ∼= Pb. As the case b ≤ 2 is also known, we may

11



assume that b ≥ 3. In this case, by [FSS87, Theorem 2.1], we conclude that
X is a Pn−1-bundle over P1 and we are in the case 2) of our theorem. �
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