Stefan Haar 
  
Serge Haddad 
  
Tarek Melliti 
  
Stefan Schwoon 
  
  
Optimal constructions for active diagnosis

Keywords: Partial observation, diagnosis, game and automata theory, controller synthesis

come   L'archive ouverte pluridisciplinaire

Introduction

In monitoring discrete event systems, one of the central tasks is that of diagnosis: Given a finite labeled transition system A (also called "plant") whose events are partially observable, our task is to decide -based on the stream of observation labels -whether or not particular unobservable events, called faults, have occurred. More precisely, the system is considered diagnosable i↵ there exists some k 1 such that at most k (observed) events after the occurrence of a fault, the observation is su cient to detect a fault occurrence with certainty, i.e. all possible system runs compatible with the partial observation collected so far are faulty. As the available observations may be insu cient, diagnosability verification has received considerable attention since the seminal paper by Sampath et al [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF]; see also [START_REF] Cassez | Fault diagnosis with static and dynamic observers[END_REF][START_REF] Cassandras | Introduction to Discrete Event Systems -Second Edition[END_REF]. These works construct a dedicated deterministic version of the original plant, a so-called diagnoser such that the absence of a particular kind of cycles (called indeterminate cycles) in this auxiliary automaton is equivalent to diagnosability. Via a di↵erent approach called twin-plant construction the diagnosability problem is shown to be solvable in polynomial time [START_REF] Yoo | Polynomial-time verification of diagnosability of partially observed discrete-event systems[END_REF].

On the other hand, once a system has been shown to be undiagnosable -in a sense that we will formalize later -several actions can follow, such as complete redesign of the system, or adding further sensors to enhance observability. Sampath et al [START_REF] Sampath | Active diagnosis of discrete-event systems[END_REF] have initiated a di↵erent approach, that of active diagnosis: if the given plant A is not diagnosable, synthesize a partial-observation controller C that, while letting the system live, forces the behavior of A to stay within a diagnosable subset of its behaviors (or, equivalently, such that the controlled plant A C is diagnosable). The pair consisting of the controller and the diagnoser is called an active diagnoser. Later, Chanthery and Pencolé [START_REF] Chanthery | Monitoring and active diagnosis for discreteevent systems[END_REF] have proposed a planning-based approach via a twin plant construction.

In this paper, we follow the approach of Sampath et al [START_REF] Sampath | Active diagnosis of discrete-event systems[END_REF], but via a di↵erent method based on !-automata and game theory. This allows us to improve the construction of diagnosers and moreover establish complexity results that were not treated in previous works:

1. We build a deterministic Büchi automaton that accepts the sublanguage of infinite unambiguous observable sequences, i.e. those that are either (i) only triggered by correct runs or (ii) only triggered by faulty runs. Its size is upper-bounded by 2 O(n) where n is the number of states, which is better than all previous constructions. In addition we show the optimality of our construction proving that there is a family of systems for which any corresponding deterministic Büchi automaton must have a size in 2 ⌦(n) .

2. Based on these Büchi automata, we design a Büchi game; a winning strategy for it yields an active diagnoser for the system, and vice versa. We thus solve the active diagnosis problem by deciding whether there exists a winning strategy, and the synthesis problem by giving an active diagnoser associated with a positional strategy. The size of the active diagnoser is singly exponential with respect to the size of the system, while that of [START_REF] Sampath | Active diagnosis of discrete-event systems[END_REF] is doubly exponential. We also prove that the decision problem is EXPTIME-complete and that the synthesis procedure is optimal with respect to the number of states of the active diagnoser (still in 2 O(n) ).

3. We then study the delay between a fault and its detection by an active diagnoser. We first present a family of systems for which a minimaldelay diagnoser must have 2 ⌦(n log(n)) states. However, refining our earlier construction yields an active diagnoser with size 2 O(n) , whose delay is at most twice the minimal possible delay called the intrinsic delay. In addition, we sketch the construction of a minimal-delay active diagnoser with at most 2 O(n 2 ) states.

4. The aforementioned work allows to minimize the delay between the occurrence of a fault and its detection. However, in designing a controller there is a tradeo↵ to be made between minimizing the detection delay and the permissiveness of the controller -the smaller the delay, the more restrictive the controller needs to be. We have therefore developed a parametrized version of active diagnosis where the parameter d is a delay. Our algorithm builds a parametrized controller with delay at most 2d + 1 that is more or equally permissive than any controller with delay d. Since controllers with same delay can be incomparable with respect to permissiveness, such a controller achieves a good tradeo↵.

In Section 2, we recall notions related to diagnosis and active diagnosis. In Section 3, we establish the lower bounds related to the computational complexity, the memory requirements and the intrinsic delay. Section 4.1 presents the construction of the deterministic Büchi automaton. Then in Section 4.2, we solve the decision and the synthesis problems for active diagnosis. After that, Section 4.3 refines the synthesis problem with respect to the delay. Section 5 designs a parametrized version of active diagnoser. Section 6 concludes and gives some perspectives of this work.

The active diagnosis problem

Labeled transition systems

When dealing with discrete event systems (DES) diagnosis, systems are often modeled using labeled transition systems (LTS). So we define LTS, their properties and languages. Definition 1. A labeled transition system is a tuple A = hQ, q 0 , ⌃, T i where: • Q is a set of states with q 0 2 Q the initial state; • ⌃ is a finite set of events;

• T ✓ Q ⇥ ⌃ ⇥ Q is the set of transitions.
We note q a ! q 0 for (q, a, q 0 ) 2 T . A run over the word = a 1 a 2 . . . 2 ⌃ ! is a sequence of states (q i ) i 0 such that q i ai+1 ! q i+1 for all i 0, and we write q 0 = ) if such a run exists. A finite run over w 2 ⌃ ⇤ is defined analogously, and we write q w = ) q 0 if such a run ends at state q 0 . A state q is reachable if there exists a run q 0 w = ) q for some w.

Definition 2 (Languages of an LTS). Let A = hQ, q 0 , ⌃, T i be an LTS. The finite language L ⇤ (A) ✓ ⌃ ⇤ of A and the infinite language L ! (A) ✓ ⌃ ! of A are defined by:

L ⇤ (A) = { w 2 ⌃ ⇤ | 9q : q 0 w = ) q } L ! (A) = { 2 ⌃ ! | q 0 = ) }
An LTS A is live if for any reachable state there exists a transition outgoing from that state. An LTS A is deterministic if for every pair q 2 Q, a 2 ⌃ there is at most one q 0 such that q a ! q 0 . For a deterministic automaton we write T (q, a) = q 0 if q a ! q 0 .

Observations

In order to formalize problems related to diagnosis, we partition ⌃ into two disjoint sets ⌃ o and ⌃ uo , the sets of observable and of unobservable events, respectively. Moreover, we distinguish a special fault event f 2 ⌃ uo . Let be a finite word; its length is denoted | |. For ⌃ 0 ✓ ⌃, define P ⌃ 0 ( ) inductively by: P ⌃ 0 (") = "; for a 2 ⌃ 0 , P ⌃ 0 ( a) = P ⌃ 0 ( )a; and

P ⌃ 0 ( a) = P ⌃ 0 ( ) for a / 2 ⌃ 0 . Write | | ⌃ 0 for |P ⌃ 0 ( )|, and for a 2 ⌃, write | | a for | | {a} .
When is an infinite word, its projection is the limit of the projections of its finite prefixes. This projection can be either finite or infinite. As usual the projection is extended to languages. P ⌃o will be more simply denoted by P.

An LTS A is convergent if L ! (A) \ ⌃ ⇤ ⌃ ! uo = ; (i.e.
there is no infinite sequence of unobservable events from any reachable state). When A is convergent, then for all 2 L ! (A), one has P( ) 2 ⌃ ! o . In this paper, we shall assume that the system under diagnosis is live and convergent.

q 2 q 0 q 1 a, b b c f a Figure 1: An LTS.
Example 1. Figure 1 shows a live and convergent LTS with ⌃ o = {a, b, c} and ⌃ uo = {f }.

Diagnosability

A finite (resp. infinite) sequence is correct if it belongs to (⌃ \ {f }) ⇤ (resp. (⌃ \ {f }) ! ). Otherwise is called faulty. We shall introduce several notions related to the fact that an observation sequence may be the projection of both a correct and a faulty sequence: Definition 3 (ambiguous and surely faulty sequence). Let A be an LTS, 1 , 2 2 L ! (A) be two sequences and 2 ⌃ ! o be a sequence of observations such that:

(1)

P( 1 ) = P( 2 ) = , ( 2 
)
1 is correct, and (3) 2 is faulty. Then is called ambiguous and the pair ( 1 ,

2 ) is a witness for the ambiguity of . Finite ambiguous sequences are defined analogously. A sequence

0 2 P(L ⇤ (A)) is surely faulty i↵ P 1 ( 0 ) \ L ⇤ (A) ✓ ⌃ ⇤ f ⌃ ⇤ . Definition 4 (Diagnosability). Let k 2 N. An LTS A is k-diagnosable if: 8 = 0 f 00 2 L ⇤ (A) | 00 | ⌃o k ) P( ) is a surely faulty sequence. Furthermore, A is diagnosable if there exists a k such that A is k-diagnosable.
Our definition of diagnosability is a slight variation of the one given in [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF]. Indeed the number k above is related to observable events while in former works, it is related to any kind of events. However, for finite-state convergent systems, which are addressed by both works, the definitions of diagnosability coincide (except for the precise value of k).

Example 2. The LTS of Figure 1 is not diagnosable since the correct infinite trace b ! and the faulty infinite trace fb ! have the same projection.

We remark that the setting we present here only allows to treat simple fault patterns with one type of fault, while other work on diagnosis has considered more complex fault patterns, or multiple fault types. We discuss this issue in Section 6.

Active diagnosability

We suppose that ⌃ o is partitioned into subsets ⌃ c ✓ ⌃ o of controllable and ⌃ uc = ⌃ o \⌃ c of uncontrollable actions. Intuitively, a controller may forbid a subset of the controllable actions based on the observations made so far, thereby restricting the behaviour of A.

Definition 5 (Controller).

Let A be an LTS. A controller for A is a partial mapping cont : ⌃ ⇤ o ! 2 ⌃ that fulfills the following (inductive) requirement: • cont (") is defined and contains ⌃ uc [ ⌃ uo ;

• for all such that cont( ) is defined, if a 2 ⌃ o \ cont ( ) and a 2 P(L ⇤ (A)) then cont( a) is defined and contains ⌃ uc [ ⌃ uo .

Definition 6 (Controlled LTS).

Let A be an LTS and cont be a controller. The controlled LTS A cont = hQ cont , q 0cont , ⌃, T cont i is defined by:

• Q cont is the smallest subset of ⌃ ⇤ o ⇥ Q such that 1. (", q 0 ) 2 Q cont ; 2. ( , q) 2 Q cont ^a 2 cont ( ) ^q a ! q 0 implies (P( a), q 0 ) 2 Q cont . • q 0cont = (", q 0 ) • (( , q), a, ( 0 , q 0 )) 2 T cont i↵ q a ! q 0 ^a 2 cont ( ) ^ 0 = P( a)
In the diagnosis framework, the goal of our controller is to make the system diagnosable, and to perform diagnosis. However, one requires that the control cannot introduce deadlocks. 

= 0 f 00 2 L ⇤ (A cont ) with | 00 | ⌃o k, diag(P( )) = >;
in other words, every fault is diagnosed within at most k observations. The minimal value k such that h is a k-active diagnoser is called the delay of h. We call A (k-)actively diagnosable if a (k-)active diagnoser exists, and the minimal such k the intrinsic delay of A.

Example 3. In the LTS of Figure 1, assume that ⌃ c = {a, b}. Let h n = hcont n , diagi, with n 1, be the pilot defined by:

• cont n ( b n ) = {a, c, f } for 2 ⌃ ⇤ c and cont n ( ) = ⌃ otherwise; • diag( ) = > i↵ 2 ⌃ ⇤ o c⌃ ⇤ o . Then h n is an active diagnoser with delay n + 2.
Notice that an active diagnoser does not necessarily have a finite delay. For instance, in Figure 1, there is an active diagnoser that admits the sequence bab 2 ab 3 a • • • and is not a k-active diagnoser for any k. However, we will see that if A is actively diagnosable, there does exist a k-active diagnoser (for some k). We come back to this point in Section 4.3.

We are now in a position to formally state the relevant problems for active diagnosis. Let A be a live and convergent LTS with finitely many states. We are interested in:

• the active diagnosis decision problem, i.e. decide whether A is actively diagnosable;

• the synthesis problem, i.e. decide whether A is actively diagnosable and in the positive case build an active diagnoser.

• the parametrized synthesis problem, i.e. decide whether A is actively diagnosable and in the positive case build an active diagnoser whose delay is a user-specified parameter.

To implement an active diagnoser, it must be finitely representable; for this, we introduce the notion of state-based pilot. A state-based pilot is a pilot whose memory is finite and thus can be represented by a deterministic LTS. Depending on the current state, (1) it may or not announce a fault, (2) it allows a subset of events including the uncontrollable ones, and (3) the observable events that are allowed label the outgoing edges from the state. Definition 8 (state-based pilot).

A state-based pilot C = hB, cont C , diag C i consists of a deterministic LTS B = hQ c , q c 0 , ⌃ o , T c i and labellings cont C , diag C : Q c ! 2 ⌃ ⇥ {?, >}, such that for all q 2 Q c , (1) ⌃ uc [ ⌃ uo ✓ cont C (q), and (2) 9q a ! q 0 i↵ a 2 ⌃ o \ cont C (q).
The pilot h C = hcont , diagi associated with C is specified as follows: cont is defined for i↵ there exists a (unique) q such that q c 0 = ) q. In this case, cont ( ) = cont C (q) and diag( ) = diag C (q). By extension, we will say that C is a (k-)active diagnoser for some LTS if h C is. Example 4. Figure 2 shows a state-based pilot for the LTS of Figure 1. Observe that b is disabled in the rightmost state in order to implement the active diagnoser h 1 .

Lower bounds

We first establish that the active diagnosis decision problem is EXPTIMEhard. The proof relies on a reduction from safety games with imperfect information [START_REF] Berwanger | On the power of imperfect information[END_REF].

Theorem 1 (hardness). The active diagnosis decision problem is EXPTIMEhard.

Proof: A tuple G = hL, l 0 , ⌃, , O, F, obsi is called a safety game with imperfect information, where:

• L is a finite set of locations with initial location l 0 2 L; • ⌃ is a finite alphabet;

• ✓ L ⇥ ⌃ ⇥ L is the transition relation such that for all l 2 L and a 2 ⌃ there exists at least one l 0 with hl, a, l 0 i 2 ;

• O is a finite set of observations, where F ✓ O are the final observations;

• obs : L 7 ! O is the observation mapping. G is a turn-based game played by two players Control and Environment. It starts in location l 0 with Control to play. In the first round, Control chooses a letter a 0 in ⌃, and then Environment chooses a location l 1 such that hl 0 , a 0 , l 1 i 2 . Control only observes o 1 = obs(l 1 ). The next rounds are played similarly. Control wins if for all i, o i / 2 F . Figure 3 (a) shows an example of a game with alphabet ⌃ = {a, b} and observations O = {o, p, q}, annotated next to the locations, where q 2 F is the only final observation. Control must therefore prevent the system from entering location l 3 . A strategy for doing so is to choose a in the beginning or after seeing o and b after seeing p. (Notice that in this example, all states have di↵erent observations, so that Control e↵ectively has perfect information. However, the example illustrates all aspects of the construction.)

The problem of existence of a winning strategy for Control is EXPTIMEcomplete [START_REF] Berwanger | On the power of imperfect information[END_REF]. We now describe the reduction of this problem to an activediagnosis decision problem with LTS A defined as follows.

• Q, the set of states, is defined by

Q = L ] ((L \ obs 1 (F )) ⇥ ⌃) ] {?} and q 0 = l 0 . • The alphabet ⌃ 0 = ⌃ ] O ] {u, f, z}.
The unobservable events are u and f and the (observable) uncontrollable events are O ] {z}.

• T , the transition relation, is defined as follows.

1. For all l 2 L \ obs 1 (F ) and a 2 ⌃, hl, a, hl, aii 2 T .

2. For all l 2 L \ obs 1 (F ), a 2 ⌃ and l 0 2 L, hhl, ai, obs(l 0 ), l 0 i 2 T if hl, a, l 0 i 2 .

3. For all l 2 obs 1 (F ), hl, u, ?i and hl, f, ?i belong to T . From the construction of A, a sequence is ambiguous if and only if it contains an occurrence of z, which is preceded by either u or f . Thus a pilot is an active diagnoser if and only if it avoids states obs 1 (F ). In addition, such a pilot only "controls" the subset of states L \ obs 1 (F ) and due to the assumptions on G, it can safely restrict the allowed events to a single one. Furthermore the information available to the pilot is exactly that of Control, i.e. the letters chosen by Control himself and the observations due to the states chosen by Environment. Therefore, a winning strategy for Control in G provides an active diagnoser for A and vice versa. Figure 3 (b) shows the LTS constructed from the safety game in Figure 3 (a). ⇤

f f f f f f f f q 0 q 1 q 2 q n 1 r 0 r 1 r 2 r n 1 l 0 l 1 l 2 l n 1 a, b a, b • • • • • • • • •
The following theorems focus on the memory required for synthesis problems related to active diagnosis. We start with the language of unambiguous sequences of an LTS; as we shall see, that language can be accepted by a Büchi automaton.

Definition 9 (Büchi automaton). A Büchi automaton over ⌃ is a tuple B = hB 0 , F i, where B 0 = hS, s 0 , ⌃, i is an LTS such that S is finite, and F ✓ S an acceptance condition. A run (q i ) i 0 is accepting if q i 2 F for infinitely many values of i. The language L(B) consists of all words in L ! (B 0 ) for which there exists an accepting run. A Büchi automaton is called deterministic (live) if its underlying LTS is.

Theorem 2 (lower bound for determinization).

There exists a family of LTS (A n ) n 1 with the size of A n in O(n) such that any deterministic Büchi automaton recognizing the unambiguous sequences of A n has at least 2 n states.

Proof: The family of LTS (A n ) n 1 is depicted in Figure 4, where ⌃ o = {a, b, c, d}, ⌃ c = {c, d}, and the initial state is q 0 . Intuitively, during the n first steps a fault can occur leading to the upper (resp. lower) "branch" of the LTS when followed by a (resp. b).

Formally, let = w 1 w 2 ya ! 2 ⌃ ⇤ o be a sequence of observations, where

w 1 w 2 2 {a, b} ⇤ , 1  |w 1 |  n, |w 2 | = n 1, y 2 {c, d}. Let x 1 • • • x |w1| be the letters of w 1 .
There are two possible sequences that have triggered 0 = w 1 w 2 y: the correct sequence 0 itself and the faulty sequence

x 1 • • • x |w1| 1 fx |w1| w 2 y. If x |w1| = a,
before the occurrence of y, the current state is q n in the correct sequence and l n in the faulty sequence. So if y = d the two sequences will lead to the same state q n+1 while if y = c one sequence will lead to l n+1 and the other one to q n+1 and they will be discriminated by the next observation. The case x |w1| = b is symmetrical. So is ambiguous i↵ x |w1| = a and y = d or x |w1| = b and y = c. Thus any automaton that distinguishes ambiguous and unambiguous sequences must remember the first n observations, which requires at least 2 n states.

⇤ Observe that the proof of Theorem 2 is independent of the acceptance conditions; thus, the lower bound of 2 n remains valid even for more powerful acceptance conditions like parity, Rabin, Streett, or Muller.

With an appropriate choice of controllable events, the family from Figure 4 also provides a lower bound for a state-based active diagnoser.

Theorem 3 (lower bound for pilots).

There exists a family (A n ) n 1 of actively diagnosable LTS with the size of A n in O(n) such that the LTS of any state-based pilot C, where h C is an active diagnoser for A n , has at least 2 n states.

Proof: The family is the same as in Theorem 2. The LTS A n , shown in Figure 4, is actively diagnosable. However assume that one observes a word = a 1 . . . a m 2 {a, b} ⇤ such that n  m  2n 1. Then when a m n+1 = a, A may be in either q n or l n , and when a m n+1 = b, A may be in either q n or r n . In the former case the controller must forbid d while in the latter it must forbid c. In addition it cannot forbid both c and d since the controlled system would then have dead state. This implies that a corresponding state-based pilot C must be in two di↵erent states after seeing two di↵erent words from {a, b} n , therefore it must have at least 2 n states. We next come to the question how expensive it is to build an active diagnoser that realizes the minimal delay possible. It turns out that this requires an even larger controller.

⇤ , \ {b n } c b 2 f a 2 • • • p 1 p 2 p n r q 1 q 2 , \ {b 2 } q n s f b 1 b n a 1 a n f • • • = {b 1 , . . . , b n } = {a 1 , . . . , a n } , \ {b 1 }
Theorem 4 (minimal-delay diagnoser). There exists a family

(A n ) n 1 of f (n)-actively diagnosable LTS (for some function f ) of size O(n) such that any state-based f (n)-active diagnoser C for A n has at least n! states.
Proof: We first exhibit a family of examples (A n ) n 1 , for which the proof is easy to understand. However, in that family, A n has an alphabet of size O(n) and in fact O(n 2 ) transitions. We then show that the principle also works when the alphabet size does not depend on n, i.e. we provide a family (A 0 n ) n 1 where A 0 n is truly of size O(n). As for the first example, consider the LTS A n in Figure 5, where ⌃ = [ [ {c, f }, with := {a 1 , . . . , a n } and = {b 1 , . . . , b n }. In the following proof, we also use the abbreviation i := \ {b i }. As usual, ⌃ uo = {f } and ⌃ o = ⌃ \ ⌃ uo , and moreover, the set of controllable actions is ⌃ c = .

Intuitively, in this example, the first n observations can be uncontrollable and can be used by the environment to encode a permutation ⇡. In order to minimize the maximal delay between the occurrence of any fault and its detection, the controller must remember ⇡ and repeat it, in a sense made more precise below.

For i = 1, . . . , n, when the system is in p i , the system can do any action from or commit a fault, do a j , and go to q j , for any j = 1, . . . , n. Suppose that in the first n steps, one observes = a ⇡(1) • • • a ⇡(n) 2 n , where ⇡ is a bijection on {1, . . . , n} (i.e., a permutation). Then the system could be either in state r, or for any i = 1, . . . , n, a fault may have occurred immediately before a ⇡(i) , in which case the system has been in state q i for n + 1 ⇡ 1 (i) steps.

After the first n observations, if we make another observation from , then we know immediately that the system is in one of the states q i , and we can diagnose a fault. However, since the system could be in state r, any active diagnoser must admit at least one action from to leave the system alive. So let us assume from now on that the system chooses an action from whenever possible. Since the actions from are available when the system is either in r or in any of the q i , the controller must exclude the latter possibility. Now, if the system is in state q i , then blocking i will provoke a move to s. Thus, for any permutation ⇡ 0 , after the controller blocks the action sets ⇡ 0

(1) , . . . , ⇡ 0 (n) in that order, the system is guaranteed to be in either r or s. Moreover, if ⇡ 0 = ⇡, then any fault will be discovered after at most f (n) = n + 2 observations, and if ⇡ 0 6 = ⇡, it is easy to see that the controller cannot guarantee a delay of n + 2 (e.g., when i is the smallest value such that ⇡ 0 (i) 6 = ⇡(i) and the fault occurred before the i-th observation). It is equally easy to see that n + 2 is also a lower bound for the intrinsic delay of A n , since initially the controller cannot prevent a sequence of n consecutive actions from the uncontrollable set , and after this it takes at least two more steps to force the system to produce a c if a fault has previously occurred.

We remark that when the initial observations described by ⇡ do not correspond to a permutation, then the job of the controller becomes easier. Indeed it only has to memorize the earliest occurrence of any a i for discarding the possibility of a fault leading to q i as soon as possible.

To conclude, in order to enforce the correct sequence of actions, any statebased pilot must remember ⇡, requiring at least n! states.

The example in Figure 5 has an alphabet of size O(n). We now show that the result of Theorem 4 holds even when the size of the alphabet is fixed. Consider the system A 0 n shown in Figure 6, a variant of Figure 5 where the observable alphabet is {a, b, c, 0, 1, 0, 1}, with f the only invisible action and 0, 1, 0, 1 controllable. Notice that the size of A 0 n is in O(n), like that of A n . The system of Figure 6 works mostly like the one of Figure 5, but with indices from 1, . . . , n encoded in unary. For i = 1, . . . , n, let code(a i ) = 1 i 0 n i a and code(b i ) = 1i 0n i b. Moreover, for the sake of completeness code(c) = c. The reader can convince himself that, modulo this encoding, A 0 "simulates" A in the following sense: Let s 0 , s 00 2 {p 1 , . . . , p n , q 1 , . . . , q n , r, s} be two states of A n and x be an observable action in A n . Then s 0 x ! s 00 (respectively

s 0 fx = ) s 00 ) in A n if and only if s 0 code(x) ====) s 00 (respectively s 0 f code(x) =====) s 00 ) in A 0 n .
Notice that, among others, the letters 0, 1 are controllable. This is despite them being used to encode elements of , which are uncontrollable in A n . As we shall see, this is actually necessary to prevent A 0 n from becoming undiagnosable. Other than this, we shall see that the controller draws no profit from the controllability of those letters, compared with A n : neither can it prevent A 0 n to choose a permutation as in A n , nor can it enforce any sequence that does not correspond to an encoding of [ [ {c}:

• Suppose that the system is (potentially) in states p i and q j (having seen code(a j ) before). Because of p i , the controller must now admit 1, and if 1 occurs, the system is potentially in states t 1 or t 0 1 . Thus for the next n 1 steps, the controller cannot forbid 0 and it can forbid a 1 only after the occurrence of a 0. So the environment can therefore play code(a i ), for any i = 1, . . . , n. Only when the system has potentially reached t n or t 0 n , a controller can forbid both 0, 1, thus forcing the system to make either c (in case it really is in t n or t 0 n ), or a. Indeed, unless the controller enforces this, the system may loop indefinitely between p i and p i+1 (without fault occurrence) as well as in q j (after fault occurrence), which is undesirable for achieving diagnosis.

• Suppose that the system is potentially in state r. Then a similar mechanism (using the states from r 1 to r n , r 0 n ) ensures that the system must admit n successive observations of 1 and 0, followed by a b, encoding an element of . symbols from A [ B plus one occurrence of c, that is (n + 1) 2 + 1 = n 2 + 2n + 2, which is again the minimum possible. ⇤ 0 1 1 While the previous examples exhibit an intrinsic delay linear or quadratic w.r.t. the size of the LTS, the intrinsic delay may be exponential in the worst case (and no more as shown in the next section).

t 2 t 0 2 t 1 t 0 1 1 0 1 tn t 0 n c c 0 1 • • • • • • • • • • • • 1 1 0 0 0 b r 2 rn r 0 2 r 0 n b 0 1 1 r 1 0 1 1 q 2 0 • • • • • • qn 1 a s b c b 0 0 q 1 1 1 a 0 0 a 0, 1, a, b 0, 1, a b b b 0 • • • 0 0 0 0 0 0 1 1 1 0 a, b 1 1 f a r 0, 1 p 2 0, 1 1 p 1 a 1 a pn 0, 1 a 1 • • • f f 0, 1,

Theorem 5 (lower bound for intrinsic delay). There exists a family of actively diagnosable LTS

(A n ) n 1 of size O(n) such that the intrinsic delay of A n is at least 2 n .
Proof: As in the proof of Theorem 4, we first present an easy-to-understand example where A n has an alphabet of size O(n) and O(n 2 ) transitions. We then prove that the result holds as stated, by exhibiting another family with O(n) states and fixed alphabet.

q s • • • n 1 0 0 ⌃ c 2 1 ⌃ 2 ⌃ 1 ⌃ 3 ⌃ o = {b, 0, . . . , n} ⌃ c = {0, . . . , n} ⌃ i := {i, . . . , n} i := {0, . . . , i} n 2 n 1 ⌃ n p r 0 r 1 r 2 r n 1 fnn n b n 1 t Figure 7: A system whose delay is 2 n + 3.
Consider the LTS A n shown in Figure 7. Its alphabet consists of the observable actions b and 0 to n and the unobservable fault f , which may only happen in the beginning. The actions 0 to n are controllable, and b shall serve only to reveal the initial fault. Notice that the size of the alphabet of A n depends on n; we shall later show that the result even holds for a fixed alphabet.

In this automaton, as in the one of Figure 8, we sometimes label transition with multiple letters; this is merely for clarity, and these transitions could be replaced by a sequence of transitions with intermediate states without changing the fact that A n has O(n) states.

We claim that A n is actively diagnosable with an intrinsic delay in ⌦(2 n ). Indeed, suppose that the two initial observations, which a controller cannot prevent to leave the system alive, are nn. After these, the system may be in the state q (after committing a fault), in p, or in any state from the set R := {r 0 , . . . , r n 1 } (without fault). Since the system can loop in q with all actions from 0 to n 1, the goal of the controller must be to force an occurrence of n (by prohibiting actions 0 to n 1). This would cause the system to leave state q (if indeed it is there) and play a b, which would reveal the fault. However, the actions available to the states in R are limited, so in order to respect the liveness criterion, the controller must first try to exclude the possibility of the system being in any state from R before forcing n. Then again, this takes at least 2 n 1 steps, as we explain now.

For an observation sequence , let us define as U ( ) (uncertainty set) the subset of R to which can lead. Moreover, for R 0 ✓ R, define the value v(R 0 ) := P ri2R 0 2 i . Thus, v(U (nn)) = 2 n 1, and the controller must enforce a su x 0 such that v(U (nn 0 )) = 0. One can now see that the controller can decrease the value v by at most one per observable action, where the uncertainty set behaves like a binary counter. For instance, if U ( ) contains r 0 , then the controller must allow 0, the only action available to r 0 . If the system then indeed plays 0, then U ( 0) = U ( ) \ {r 0 } since all other states in R (and p, q) can loop with 0, so v(U ( 0)) = v(U ( )) 1. More generally, if i is the least value such that r i 2 U ( ), then the controller must admit at least one of the actions from 0 to i. However, the actions from 0 to i 1 will cause all states in U ( ) to loop, so the controller gains nothing from allowing these actions, and it will allow only i (and optionally higher values). If the system then plays the i action, this will remove r i from the uncertainty set but add all the states from r 0 to r i 1 (from p). Thus, U ( i) = U ( ) \ {r i } [ {r 0 , . . . , r i 1 }, and again the value has decreased by exactly one.

This concludes the proof for A n ; the intrinsic delay is precisely 2 n +3 since the shortest sequence enforceable by a controller that reveals the initial occurrence of the fault is nn nb, where is a sequence of length 2 n 1.

We now demonstrate that the result still holds even when the alphabet is of a fixed size, i.e. independent of n. Consider the automaton A 0 n in Figure 8, a version of Figure 7 in which the values 0 to n are encoded in unary: for i 2 {0, . . . , n}, let code(i) = 1 i 0 n i a the action sequence in Figure 8 that corresponds to the action i in Figure 7. Again, we allow multiple letters on transitions for the sake of clarity, but the automaton still has O(n) states even without this trick.

A 0 n allows loops starting and ending in q that read exactly the sequences code(i), for i = 0, . . . , n 1. It also allows the sequence q code(n) ====) t. If ever the environment causes a sequence of symbols from 0, 1, a that does not correspond to this encoding, it will reveal that the initial fault did not happen, but the controller cannot actually enforce such an invalid encoding sequence due to liveness constraints in the states q 1 , . . . , q n and q 0 1 , . . . , q 0 n . Therefore, w.l.o.g., we can suppose that the environment always chooses sequences that correspond to valid encodings, and the controller can only limit the choices among these encodings. For the sake of completeness, we also let code(b) = b.

Like in the proof of Theorem 4, we remark that A 0 n "simulates" A n in the following sense: Let v, v 0 be any two states of A n and x an observable symbol.

Then v x ! v 0 (respectively v fx = ) v 0 ) in A n if and only if v code(x) ====) v 0 (respectively v f code(x) =====) v 0 ) in A 0
n . Thus, the controller has the same options as in Figure 7, modulo the aforementioned encoding, and the intrinsic delay is proportional to n • 2 n , hence in ⌦(2 n ). ⇤

Size-Optimal Controller

Characterization of unambiguous sequences

In this section, we characterize the infinite unambiguous sequences in an efficient way. Fix a finite-state live, convergent LTS A = hQ, q 0 , ⌃, T i for the rest of the section. We build a Büchi automaton B = (B 0 , F ) that "reads" the observation sequences of A, i.e. L ! (B 0 ) = P(L ! (A)), and accepts the unambiguous sequences among those. Since B is the base of the active diagnoser constructed in Section 4.2, we want B to be deterministic. A potential procedure for obtaining a deterministic automaton accepting unambiguous sequences is as follows: First, build a non-deterministic Büchi automaton which accepts sequences of observations that can be triggered by both a correct and a faulty sequence, leading to a quadratic blow up w.r.t. the size of A. Then, determinize it by the Safra procedure [START_REF] Safra | On the complexity of omega-automata[END_REF], yielding a deterministic Rabin automaton, and complement it so that it accepts the unambiguous sequences. However, this construction has several drawbacks that will be discussed at the end of the subsection. In the following we provide a simpler and more e cient construction.

q 1 q n 0, 1 1 1 0, 1 1 0, 1 1 
a a a r 0 r 2 r 1 0 0 1 1 • • • a r n 1 • • • 1 1 1 0 0 0 • • • 0 0 0 0 a 0 a a a 1 n a q 1 q 0 1 0 1 0 p 0 f 1 n a1 n a s ⌃ o = {a, b, 0, 1} ⌃ c = {0, 1} 0, 1, a • • • • • • q 0 n 1 q n 1 1 0 0 q 0 n a a t b
We first give some intuition about the way our automaton B works. Its states are triples hU, V, W i, where U, V, W ✓ Q. The states in U represent states reachable by non-faulty traces in A, whereas V [ W are states reachable by performing a fault. Let = a 1 a 2 . . . 2 ⌃ ! o be an observation sequence. An ambiguous prefix of will lead to a state in which both U and V [ W are non-empty, and if is ambiguous, then its run will eventually remain in such states forever. Unfortunately, the reverse implication is not true, as the example from Figure 1 shows: every finite prefix of the sequence a ! is ambiguous, but a ! is not. In order to distinguish ambiguous sequences from those that merely have infinitely many ambiguous prefixes, V and W assume di↵erent functions: W represents a "watchlist", initially empty. Suppose that for some j 1, the observation a 1 . . . a j 1 only corresponds to correct sequences (implying V = W = ;) and the observation a 1 . . . a j corresponds to some faulty executions. Then we put the states reachable by these faulty executions into W and trace their successor states there while making further observations. If W never becomes empty, then indeed there exists a faulty element of P( ) in L ! (A). On the other hand, if some observation a j 0 , for j 0 > j, is impossible in all states of W , then we can conclude that no fault has occurred before a j . In the meantime, V serves as a "waiting room": it stores states that can be reached by faulty sequences where the fault has occurred between observations a j and a j 0 . When W becomes empty, those states are shifted from V to W to form the new watchlist.

Let us introduce some notations. Let S 0 ✓ S, a 2 ⌃ o , and L ✓ ⌃ ⇤ uo be a language of unobservable actions. We denote L (S 0 , a) := { q 2 Q | 9q 0 2 S 0 , w 2 L : q 0 wa =) q }, and introduce the abbreviations

• n for L = (⌃ uo \ {f }) ⇤ (non-faulty executions), • f for L = ⌃ ⇤ uo f ⌃ ⇤ uo (faulty executions),
• and ⇤ for L = ⌃ ⇤ uo (arbitrary executions).

We can now state the formal construction of B = hhS, s 0 , ⌃ o , i, F i as follows:

• S = 2 Q ⇥ 2 Q ⇥ 2 Q \ {h;, ;, ;i}; • s 0 = h{q 0 }, ;, ;i; • for s = hU, V, W i 2 S and a 2 ⌃ o such that ⇤ (U [ V [ W, a) 6 = ;, let := f (U, a) [ ⇤ (V, a); then (s, a) = ( h n (U, a), ;, i if W = ; h n (U, a), \ ⇤ (W, a), ⇤ (W, a)i otherwise; • F = { h;, S 1 , S 2 i, hS 1 , S 2 , ;i | S 1 , S 2 ✓ Q }.
Observe that disregarding the acceptance condition, the sequences read by B exactly correspond to sequences of observations from A, i.e. P(L ! (A)). As for F , notice that a state hU, V, W i is accepting if either U = ; or W = ;. The case U = ; is reached when the sequence of observations is surely faulty (and U will remain empty in all successor states). On the other hand, W = ; means that we can rule out that a fault has happened up to a certain point in the past; thus if W becomes empty infinitely often, the execution is unambiguously correct. We underline this intuition by the following proposition:

Proposition 1. A sequence of observations 2 ⌃ !
o is accepted by B i↵ it is an unambiguous sequence of A.

Proof: Fix an observation sequence of A, and a run ( For one direction assume that is ambiguous; we show that the run is nonaccepting. Let ( 0 , 00 ) be a pair of witnesses for . Because of 0 , we have U i 6 = ; for all i 0. Moreover, we will show that 00 implies the existence of some i 0 such that for all i i 0 we have W i 6 = ;. These two facts together mean that the run is non-accepting, since s i / 2 F for all i i 0 . So, let w the minimal prefix of 00 containing f , and let |w| ⌃o = j. Then clearly, V i [ W i 6 = ; for all i > j.

s i := hU i , V i , W i i) i 0 of B for .
• Either W j = ;, i.e. the watchlist is empty after j observations; then the faulty run of A for 00 will be recorded in the watchlist after the next observation, and remain there; we take i 0 := j + 1. • Or W j 6 = ;; then either the watchlist never becomes empty and we take i 0 := j; or the watchlist becomes empty at a later time, i.e. W j 0 = ; for some j 0 > j, which implies that the successive states reached by the faulty run 00 were recorded in V j 00 for j  j 00  j 0 . So W j 0 +1 will contain the state associated with 00 , and we take i 0 := j 0 + 1; For the other direction, assume that this run is non-accepting. Let j be the highest index such that s j 2 F . Then U i , W i 6 = ; for all i > j. Using König's Lemma, the structure of implies (i) the existence of some non-faulty prefix that can reach a state of U j and continue from there (without faults), and (ii) the existence of a faulty prefix that can reach a state from W j that can continue forever (with or without faults). Thus is ambiguous. ⇤ Example 5. Figure 9 shows the result of the construction on the system from Figure 1. Since all non-empty sets are singletons we have represented them by their item. Notice that any sequence ending in b ! is ambiguous in Figure 1 and hence not accepted in Figure 9. On the other hand, e.g., sequence a ! is accepted: while every prefix a i , for i 1, is ambiguous, we always know after i + 1 observation that no fault has occurred before the i-th observation.

We briefly discuss the relationship of our determinization construction with other standard constructions in diagnosis and automata theory. In [START_REF] Yoo | Polynomial-time verification of diagnosability of partially observed discrete-event systems[END_REF], diagnosability of an LTS A is decided by building two automata: one is a modification of A that accepts the projections all non-faulty sequences, the other accepts the projections of all faulty sequences, remembering whether a fault has occurred in the current state. The cross product of these two is a non-deterministic Büchi automaton of size 2n 2 (for |Q| = n) that accepts all ambiguous sequences. A direct determinization [START_REF] Safra | On the complexity of omega-automata[END_REF] of that cross product would yield a Rabin automaton of size 2 O(n 2 log n) . For subsequent theoretical considerations, we want to avoid complex acceptance conditions. It turns out, given that the cross product is weak in the sense that all its strongly connected components are either fully accepting or fully non-accepting, one could apply the breakpoint construction of Miyano and Hayashi [START_REF] Miyano | Alternating finite automata on !-words[END_REF] to obtain a deterministic Büchi automaton of its complement language, of size 3 2n 2 . Our construction, while similar in spirit to that of [START_REF] Miyano | Alternating finite automata on !-words[END_REF], is more e cient than that: for a reachable Büchi state hU, V, W i 2 S, any LTS state q 2 Q may or may not appear in U , and it may appear in at most one of V or W , but not in both. Thus, the number of reachable states in B is bounded by 2 n • 3 n = 6 n = 2 O(n) . Theorem 2 shows that an exponential blowup in n is unavoidable in general, i.e. our construction is optimal up to a constant factor in the exponent.

Synthesizing the controller

We simultaneously solve the decision and synthesis problems. As before, we fix an LTS A = hQ, q 0 , ⌃, T i. We shall try to construct a state-based activediagnoser C for A. The construction succeeds i↵ A is actively diagnosable. According to Definition 7, the main challenges in building an active diagnoser are to ensure that (i) the controlled system remains live, (ii) the controller excludes the ambiguous sequences, and (iii) diagnosis information is provided. For this, we introduce Büchi games with perfect information.

Definition 10 (Büchi game).

A tuple G = hV C , V E , E, v 0 , V F i is called Büchi game with perfect information (between two players called Control and Environment), where V C are the vertices owned by Control, V E are the vertices owned by Environment; V G denotes all vertices, and v

0 2 V C is an initial vertex. E ✓ V G ⇥ V G is a set of directed edges such that for all v 2 V C there exists (v, w) 2 E, and V F ✓ V G is a winning condition. A play is a function ⇢ : N ! V G such that ⇢(0) = v
0 and h⇢(i), ⇢(i + 1)i 2 E for all i 0; we call ⇢ k := ⇢(0) • • • ⇢(k), for some k 0, a partial play if ⇢(k) 2 V C , and set state(⇢ k ) := ⇢(k). We write Play ⇤ (G) for the set of partial plays of G. A play ⇢ is called winning (for Control) if ⇢(i) 2 V F for infinitely many i.

In contrast to [START_REF]Automata, Logics, and Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar[END_REF], a state of Control cannot be a deadlock. This is adapted to our framework and simplifies the previous definition in which implicitly all partial plays ending in a deadlock are winning for Control. In the sequel, unless explicitly stated, all games are Büchi games with perfect information.

Definition 11 (strategy). Let

G = hV C , V E , E, v 0 , V F i be a game. A strategy (for Control) is a function ✓ : Play ⇤ (G) ! V G such that hstate(⇠), ✓(⇠)i 2 E for all ⇠ 2 Play ⇤ (G). A play ⇢ adheres to ✓ if ⇢(i) 2 V C implies ⇢(i + 1) = ✓(⇢ i
) for all i 0. A strategy is called winning if every play ⇢ that adheres to ✓ is winning.

A positional strategy is a function ✓ 0 : V C ! V G such that hv, ✓ 0 (v)i 2 E for all v 2 V C ; we call ✓ 0 winning if the strategy ✓ with ✓(⇠) = ✓ 0 (state(⇠)) is winning.

Let B = hB 0 , F i, with B 0 = hS, s 0 , ⌃ o , i, be the deterministic Büchi automaton constructed from A in Section 4.1. We shall take B 0 as the LTS component of C. To determine cont C , we construct a Büchi game based on B. The objective of Control is to obtain an accepting run by suitably restricting the possible actions, and any winning strategy will be a suitable candidate for cont C . Intuitively, a round of the game is played as follows:

1. Control restricts the set of possible actions to ⌃ 0 .

2. Environment chooses an action a 2 ⌃ 0 to determine the next state of B.

The choices of Control are subject to some restrictions. Indeed, each state s = hU, V, W i represents Control's knowledge about the current potential states of A. To ensure that the controlled system remains live, ⌃ 0 must not cause deadlocks in any state reachable by unobservable events from U [ V [ W . Also, Control cannot prevent the uncontrollable events. So we define the admissible sets and the game as follows.

Definition 12 (admissible action set). Let s = hU, V, W i be a state of B. We call ⌃ 0 ✓ ⌃ o admissible for s if (i) ⌃ uc ✓ ⌃ 0 and (ii) for all states q 0 of A with q w = ) q 0 for some q 2 U [ V [ W and w 2 ⌃ ⇤ uo , there exists a 2 ⌃ 0 and q 00 2 Q with q 0 a ! q 00 . The admissible sets for s are denoted adm(s).

Definition 13 (controller-synthesis game). Let B = hhS, s 0 , ⌃ o , i, F i be a Büchi automaton. We denote G(B) the game hV C , V E , E, s 0 , F i, where

V C = S, V E = (S ⇥ 2 ⌃o ) [ (S ⇥ ⌃ o ), and E = E 1 [ E 2 [ E 3 , where • E 1 = { hs, hs, ⌃ 0 ii | s 2 S, ⌃ 0 2 adm(s) }; • E 2 = { hhs, ⌃ 0 i, hs, aii | s 2 S, a 2 ⌃ 0 }; • E 3 = { hhs, ai, s 0 i | (s, a) = s 0 }.

The set E

3 is only introduced to record the sequence of observable actions that occur during a play. Furthermore Environment can be stuck in a vertex of S ⇥ ⌃ o meaning that the action chosen by Environment does not correspond to a possible behavior of the system. Example 6. Figure 10 depicts an excerpt of the game for Example 1. In the initial state, there are three possible admissible sets, all including c, the uncontrollable observable action. {c} is not an admissible set as it blocks the system. If Environment chooses action c, it immediately loses since c is not possible initially even after a fault. We can now address the decision and synthesis problems. To this aim, we shall mainly exploit the following facts: (1) Büchi games can be solved in polynomial time, (2) a positional winning strategy can always be chosen for Control if it wins and (3) there is a tight correspondence between winning strategies and active diagnosers. Notations. In the following proofs, we will, for any 2 L ⇤ (B 0 ), denote by 0 ( ) the unique state s such that s 0 = ) s. Recall also that L ! (B 0 ) = P(L ! (A)). Moreover, let ⇠ 2 Play ⇤ (G(B)) be a partial play. We define word (⇠) as the observable actions played along ⇠, i.e. word (") = ", word (⇠v) = word (⇠) if v 6 = S ⇥ ⌃ o , and word (⇠hs, ai) = word (⇠)a. In a similar way, run(⇠) are the states of S touched along ⇠, formally run(⇠) = P S (⇠). We extend these notions to infinite plays in the natural way. The following remark is obvious by construction of G(B).

Remark 1. Let ⇢ be a play of G(B). Then word (⇢) 2 L ! (B 0 ) and run(⇢) is the corresponding run in B 0 . Moreover, for a partial play ⇠, we have state(⇠) = 0 (word (⇠)).

The next two lemmas establish the strong connection between winning strategies of the above game and active diagnosers. Furthermore, they show how to build an active diagnoser from a positional strategy. Lemma 1. Given h = hcont , diagi an active diagnoser for A, there exists a winning strategy ✓ h in the game G(B). Moreover, there also exists a winning positional strategy ✓ in G(B).

Proof: Suppose that h = hcont , diagi is any active diagnoser for A. Then, cont defines a (not necessarily positional) strategy

✓ h in G = G(B): for ⇠ 2 Play ⇤ (G), let ✓ h (⇠) = hstate(⇠), cont (word (⇠)) \ ⌃ uo i. Since cont

depends only on the observable actions and A

cont is live, it is easy to see that for any 2 P(L ! (A)), cont ( ) must be admissible for 0 ( ) = state(⇠). Thus, there is indeed an edge from state(⇠) to ✓ h (⇠) in G.

Now, for any play ⇢ that adheres to ✓ h we have that word (⇢) 2 P(L ! (A cont )), thus by Definition 5, word (⇢) is not ambiguous and hence by Proposition 1 accepted by B, so by Remark 1 run(⇢) touches F infinitely often and ⇢ is winning, which means that ✓ h is a winning strategy.

Finally, the existence of ✓ h implies the existence of a positional winning strategy due to well-known results of game theory, see, e.g., [START_REF] Küsters | Memoryless Determinacy of Parity Games[END_REF]. ⇤

For the reverse direction, we show how to define a state-based pilot from a positional strategy and we prove that this pilot is an active diagnoser if the strategy is winning. Definition 14. Let ✓ be a positional strategy in G(B). We define a statebased pilot C(✓) := hB 0 , cont C , diag C i by setting, for any s = hU, V, W i 2 S, cont C (s) := 0 [ ⌃ uo , where ✓(s) = hs, 0 i, and diag C (s) := > i↵ U = ;. Lemma 2. Let ✓ be a positional winning strategy in G(B). Then C(✓) is an active diagnoser for A.

Proof: We fix C := C(✓) for the rest of the proof. Note that for any state s 2 S, cont C (s) contains ⌃ uo (by construction) and ⌃ uc (by Definition 12 (i)). Thus, in h C = hcont , diagi, cont is a controller according to Definition 5. Moreover, we show that h C fulfils the three conditions from Definition 7, which shows that A is actively diagnosable.

1. Let 0 2 ⌃ ⇤ and suppose that h", q 0 i 0 ! h , qi in A cont . Then = P( 0 ), and for s = hU, V, W i := 0 ( ) we have cont ( ) = cont C (s). Moreover, by construction of A cont and B we have q 0 w ! q, for some q 0 2 U [ V [ W and where w is the maximal su x of 0 consisting of letters from ⌃ uo . Since cont ( ) is admissible for s and by Definition 12 (ii), there exists an a 2 cont ( ) such that q a ! q 00 for some q 00 , so by Definition 5, A cont is live.

2. Let 2 P(L ! (A cont )), let ⇢ = (s i ) i 0 its unique run in B 0 , and denote by w i , for i 0, the prefix of of length i. By construction of A cont , we have that w i+1 = w i a i↵ a 2 cont (w i ) \ ⌃ o , by construction of B 0 , s i+1 = (s i , a), and by construction, cont (s i ) \ ⌃ o 2 adm(s i ) and ✓(s i ) = hs i , cont (s i ) \ ⌃ o i. Therefore, the sequence s 0 , hs 0 , ✓(s 0 )i, hs 0 , a 1 i, s 1 , . . . is a play of G(B) that adheres to ✓. Since by assumption that play is winning, s i 2 F for infinitely many i, so 2 L(B), and by Proposition 1, is non-ambiguous.

3. For s = hU, V, W i := 0 ( ) we have by construction of B that (a) q 2 U i↵ there exists

w 2 P 1 ( ) \ L ⇤ (A) \ (⌃ \ {f }) ⇤ and (b) q 2 V [ W i↵ there exists w 2 P 1 ( ) \ L ⇤ (A) \ ⌃ ⇤ f ⌃ ⇤ . Now, diag( ) = diag(s) = > i↵ U = ;,
which by the above and Definition 3 is equivalent to saying that is surely faulty.

⇤

We are now in a position to state the main result of this section. Theorem 6. Let A be an LTS with n states and m controllable actions. The active diagnosis decision and synthesis problems for A can be solved in 2 O(n+m) time. Moreover, if A is actively diagnosable, then one can synthesize a statebased active diagnoser C for A with at most 6 n states.

Proof: Lemma 1 and Lemma 2 imply that A is actively diagnosable i↵ there is a positional winning strategy for s 0 in G(B), and the second part of the theorem follows from Lemma 2 and Proposition 1. As for the complexity statement, we note that the game G(B) has O(6 n • 2 m ) vertices and edges, and a winning strategy can be computed in polynomial time in the size of the game [START_REF] Küsters | Memoryless Determinacy of Parity Games[END_REF], which gives the result. ⇤ We briefly discuss the relationship of our construction with that of [START_REF] Sampath | Active diagnosis of discrete-event systems[END_REF]. There, an active diagnoser is built on the basis of a powerset construction that is similar to ours but without splitting the possibly faulty states into a 'watchlist' W and a 'waiting room' V . However, they then face the aforementioned problem of distinguishing sequences with infinitely many ambiguous prefixes (like a ! in Example 1) from truly ambiguous sequences (like b ! ), which they resolve by examining each cycle of the automaton. Since the number of states in that automaton is 3 n ,1 and there can be exponentially many cycles, this procedure is doubly exponential in n. Our construction is only singly exponential in n.

Using Theorems 1 and 6, we get the following theorem.

Theorem 7. The active diagnosis decision problem is EXPTIME-complete.

Intrinsic delay and waiting time

We assume that A is actively diagnosable and develop the construction of an active diagnoser with a delay close to the intrinsic delay of A, and a computational complexity still in 2 O(n) . For simplicity, we denote the game G(B) by G. Let G 0 be any game. Given a strategy ✓ for G 0 , we denote by Play ! ✓ (G 0 ) the set of plays that adhere to strategy ✓, and by R(✓) the subset of states of S that are visited by a play of Play ! ✓ (G 0 ). We are now in the position to introduce the main concept of this section, the waiting time of a strategy: the maximal number of states of S visited without encountering an accepting state over all plays of the strategy. Observe that given a play ⇢ this only depends on P S (⇢) the sequence of states of S visited by ⇢.

Definition 15 (waiting time). Let ✓ be a strategy for G. Then the waiting time K(✓) is defined as:

sup(j i + 1 | 9⇢ 2 Play ! ✓ (G) 9i  j 8k 2 [i, j] P S (⇢)(k) / 2 F )
with the convention sup(;) = 0.

Observe that K(✓) may be infinite for a non-positional winning strategy. However, it is finite and strictly smaller than |S| (since there is at least one accepting state) for a winning positional strategy. In fact, for ✓ a winning positional strategy, K(✓) can be computed in linear time (with appropriate data structures) w.r.t. the size of G. In order to present it and for subsequent use, we introduce the following notation. Let s be a state of the Büchi automaton, Out(s

) := {a 2 ⌃ o | (s, a) is defined }.
First one computes, by increasing values, the minimal solution of the follow-

ing equation system. If s 2 R(✓) \ F then V ✓ (s) = 0. Otherwise: V ✓ (s) = 1 + max(V ✓ ( (s, a)) | a 2 ⌃ 0 \ Out(s) s.t. (s, ⌃ 0 ) = ✓(s)) Then K(✓) = max(V ✓ (s) | s 2 R(✓)).
Denote by D(✓) the delay of the active diagnoser related to strategy ✓. The next lemma shows that K(✓) provides useful information about D(✓). Lemma 3. Let ✓ be a strategy for game G with finite waiting time. Then:

1 + K(✓)  D(✓)  1 + 2K(✓)
Proof: Intuitively, the upper bound is potentially due to a fault staying in the "waiting room" of B for at most K(✓) steps, then in the "watchlist" for at most K(✓)+1 steps. The lower bound is due to the fact that along a subrun with a non-empty watchlist, a possible fault could have occurred before this subrun. Formally, let us denote h C(✓) = hcont , diagi the active diagnoser associated with strategy ✓. "Upper bound:" We first prove that D(✓)  1 + 2K(✓). Let = 0 f 00 2 L ⇤ (A cont ) be an arbitrary faulty sequence with M := | 00 | ⌃o 2K(✓) + 1. Consider the state s 0 = 0 (P( 0 )) denoted by hU 0 , V 0 , W 0 i, and for 1  i  M , the states s i = 0 (P( 0 f i )) denoted by hU i , V i , W i i 2 S and some q i with q 0 0 f i ===) q i , where i is the minimal prefix of 00 with | i | ⌃o = i. Notice that it su ces to show U j = ; for some j  2K(✓) + 1 to prove the desired property. There are three possibilities:

• Either W 0 = ;, then by construction of B we have q i 2 W i for i = 1 and indeed for all i  M since A cont is live. Then by assumption on K(✓), s k 2 F for some k  K(✓) + 1. Since W k 6 = ;, this means that U k = ;, so we set j := k.

• Or W 0 6 = ; and U 0 = ;, then we set j := 1.

• Or W 0 6 = ; and U 0 6 = ;, so s 0 / 2 F . then q

1 2 V 1 [ W 1 . Let k 2 {1, . . . , K(✓)} be the minimal value with s k 2 F . Observe that q k 2 V k [ W k . If U k = ;, we set j := k. Otherwise W k = ;
. Then q k 2 V k and its successor will be "transferred" to the watchlist in the next step, i.e. q i 2 W i for i > k. Using again the definition of K(✓), there is s k 0 2 F for some k < k 0  k + K(✓) + 1  2K(✓) + 1, and since W k 0 6 = ;, this means U k 0 = ;, so we set j := k 0 . "Lower bound:" We now prove that 1 + K

(✓)  D(✓). Let = 0 a 1 • • • a K(✓) 2 P(L ⇤ (A cont )
), and

t i = hU i , V i , W i i := 0 ( 0 a 1 • • • a i ), for i = 0, . . . , K(✓)
, where t 0 2 F and t 1 , . . . , t K(✓) / 2 F . Such a word exists by assumption on K(✓). First, t K(✓) / 2 F implies U K(✓) , W K(✓) 6 = ;. Since U K(✓) 6 = ;, there is a non faulty sequence w 1 2 A cont ending in some state of U K(✓) with P(w 1 ) = . On the other hand, since W i 6 = ; for all 0 < i  K(✓), there is a faulty sequence w 2 = w 0 fw 00 with P(w 2 ) = and where |w 00 | ⌃o K(✓) (i.e. a fault that occurs "between" t 0 and t 1 at the latest). But this implies that h C(✓) admits the observation sequence but cannot diagnose it as surely faulty even K(✓) observations after the possible occurrence of f in w 2 . ⇤

Define K A = min(K(✓))
, where ✓ ranges over the winning strategies for G. Since a positional such strategy exists, we know that K A is finite and belongs to 2 O(n) . Let us note D A = min(D(✓)) the intrinsic delay of A. The following corollary provides a tight frame for D A and shows that the intrinsic delay is in 2 O(n) . Corollary 1. Let A be actively diagnosable. Then:

1 + K A  D A  1 + 2K A
Let us compute an active diagnoser or, equivalently, a strategy ✓ that achieves K(✓) = K A . To this aim, we introduce a family of games (G i ) i2N defined as follows. The set of vertices of G i are:

V Gi = {v j | v 2 V G ^0  j  i}[{lost} where the subset of vertices owned by Control are {v j | v 2 V C ^0  j  i} [ {lost},
the initial vertex is s 0 0 , and the set of accepting states are

{s 0 | s 2 F }. Its set of edges E 0 = E 0 1 [ E 0 2 [ E 0
3 is defined by: • for all j  i, hv j , w j i belongs to E 0 1 i↵ hv, wi belongs to E 1 ; • for all j  i, hv j , w j i belongs to E 0 2 i↵ hv, wi belongs to E 2 ; • for all j  i, hhs, ai j , s 00 i 2 E 0 3 i↵ hhs, ai, s 0 i 2 E 3 and s 0 2 F ; • for all j < i, hhs, ai j , s 0j+1 i 2 E 0 3 i↵ hhs, ai, s 0 i 2 E 3 and s 0 / 2 F ;

• hhs, ai i , losti belongs to E 0 3 i↵ hhs, ai, s 0 i belongs to E 3 and s 0 / 2 F ;

• hlost, losti belongs to E 0 3 . Let us explain the intuition behind the definition of G i . First, any G i mimics G while memorizing the number of consecutive states of the Büchi automaton up to the current state of the game that are not accepting. Thus state v j in G i means that in G the current state would be v reached by a play where the last j th states of the automaton (and no more) were not accepting. Furthermore, when a play in G i has more than i such visited non accepting states it immediately loses by reaching the additional state lost.

So game G i has the following properties: an infinite play either ends up in lost or visits the accepting states infinitely often, with at most i visits of the set {v j | v 2 S \ F, 0  j  i} between two visits of accepting states. The following lemma relates strategies in G and G i . Based on it an e cient computation of an optimal strategy w.r.t. K(✓) can be performed.

For the remainder, we use the following notations to classify the states according to their behaviour in G i . Let WS i be the set of states that are part of a winning strategy with waiting time i, i.e. s 2 WS i if there exists a strategy ✓ with K(✓) = i and s 2 R(✓) (the set of reachable states under strategy ✓). Obviously, K A is the smallest i such that s 0 0 2 WS i . Lemma 4. There is a winning strategy ✓ in G with K(✓)  i i↵ there is a winning strategy ✓ i in G i . Moreover, in the positive case, ✓ can be chosen to be positional.

Proof: Let ✓ be a winning strategy of G with K(✓)  i. Let ⇢ i = v ↵(0) 0 • • • v ↵(n) n be a play (not visiting lost) in G i with v n 2 S. Define ✓ i by: ✓ i (⇢ i ) = ✓(v 0 • • • v n ). Now a finite play ⇢ i = v ↵(0) 0 • • • v ↵(n) n that adheres to ✓ i corresponds to the play ⇢ = v 0 • • • v n that adheres to ✓ and ↵(n)
is the number of consecutive states of S \ F without visiting F up to v n . Since K(✓)  i such a play will never visit lost at the next state. So all the infinite plays of G i that adhere to ✓ i are

⇢ i = v ↵(0) 0 • • • v ↵(n) n • • • with ⇢ = v 0 • • • v n • •
• a play that adheres to ✓ and ↵(n) the number of consecutive states of S \ F without visiting F up to v n . This proves that such plays are winning in G i . Let ✓ i be a winning strategy of G i . Since G i is a Büchi game, w.l.o.g. we assume that ✓ i is positional. We denote by S 0 the subset S 0 = {v | {v j } ji \ R(✓ i ) 6 = ;}. For v 2 S 0 , define m(v) = max{ j | v j 2 R(✓ i ) }. Let us (partially) define the positional strategy ✓ 0 i by ✓ 0 i (v j ) = ✓ i (v m(v) ) for v 2 S 0 . In order to prove that ✓ 0 i is well-defined we show by induction on the reachability relation that v j 2 R(✓ 0 i )\S implies that v 2 S 0 and j  m(v). The only interesting case is the one of a finite play ⇢ that adheres to ✓ 0 i ends by: v j hv j , ⌃ 0 ihv j , ai with o (v, a) = v 0 . Assume that v 2 S 0 . This means that v m(v) 2 R(✓ i ) and j  m(v). So ⌃ 0 = ✓ i (v m(v) ) and from v m(v) adhering to ✓ i one can reach hv m(v) , ai and since o (v, a) = v 0 , one reaches either

v 00 if v 0 2 F or v 0m(v)+1 if v 0 / 2 F . So from hv j , ai one reaches either v 00 if v 0 2 F or v 0j+1 if v 0 / 2 F since j + 1  m(v) + 1  m(v 0 )  i.
In both cases, the induction is proved. Thus an infinite play adhering to ✓ 0 i will never reach lost. Due to the preliminary observation ✓ 0 i is a winning strategy. Now let us (partially) define in G the positional strategy

✓(v) = ✓ 0 i (v j ) for v 2 S 0 and an arbitrary j  m(v) (since it is irrelevant). A play ⇢ = v 0 • • • v n • • • that adheres to ✓ corresponds to a play ⇢ i = v ↵(0) 0 • • • v ↵(n) n • • • that adheres to ✓ 0
i with ↵(n) the number of consecutive states of S \ F without visiting F up to v n . So ✓ is well-defined and it is a winning strategy with K(✓)  i. ⇤ Theorem 8. If A is actively diagnosable, there exists a positional strategy ✓ that fulfills K(✓) = K A . Moreover, such a strategy can be computed in 2 O(n) .

Proof: Using Lemma 4, one knows that there is positional strategy ✓ that fulfills K A = min(K(✓)). The synthesis algorithm consists to look for a winning strategy in G i by increasing values of i starting from i = 0 and stop as soon as such a strategy is found. Since i cannot reach |S|, the size of the game G i is quadratic w.r.t. the size of G. For the same reason, the number of iterations is bounded by the size of G. So the positional winning strategy ✓ is found in polynomial time w.r.t. the size of G i.e. still in 2 O(n) . ⇤ Due to Theorem 4, this construction represents a reasonable tradeo↵, since an active diagnoser that realizes a delay equal to the intrinsic delay of A may need to be much larger, i.e. 2 ⌦(n log(n)) . We sketch the construction of a controller that realizes the intrinsic delay once one knows that the system is actively diagnosable. One iteratively builds a safety game G 0 i parametrized by increasing values of i. A controller state of this game is defined by (U, d) where U is the set of states reached by a correct sequence while d (defined when U 6 = ;) associates with every state s reached by a faulty sequence a duration d(s)  i + 1 since the occurrence of the earliest fault that would lead to s. As in the previous games the controller selects a subset of observable actions letting the environment select an action among them. The aim of the controller is to avoid states with some d(s) = i + 1. The first i for which G 0 i has a winning strategy is the intrinsic delay and the winning strategy yields an active diagnoser with minimal delay. Observe that since the intrinsic delay is bounded by 2 O(n) , in the worst case the final game has 2 O(n 2

) states due to the number of possible functions d.

Parametrized active diagnosis

In this section, we discuss a parametrized version of the synthesis problem for active diagnosers. Consider once again the example from Figure 1. As we have already seen in Section 2, it is possible to construct active diagnosers with a delay of k, for every k 2, where such a diagnoser can admit at most k 2 consecutive occurrences of b. This example shows that there is a certain trade-o↵ between the permissivity of the control component of the active diagnoser and the delay to diagnose a fault. In the following, we propose the construction of a parametrized active diagnoser in which the user can arbitrate this trade-o↵ by fixing the value of the parameter.

Fix an LTS A = hQ, q 0 , ⌃, T i, the corresponding Büchi automaton B = hB 0 , F i, with B 0 = hS, s 0 , ⌃ o , i, and G := G(B) as in the previous sections. Definition 16 (permissiveness). Let h = hcont , diagi and h 0 = hcont 0 , diag 0 i be two pilots for A. Then h is said to be more permissive than h 0 (written

h h 0 ) if L ⇤ (A cont 0 ) ✓ L ⇤ (A cont ). To illustrate the definition, in Example 1 we have h k h k 1 , but the delay of h k is k + 2 while that of h k 1 is only k + 1.
In Section 4. Recall that in G, the set WS i denotes the states that are part of a winning strategy with waiting time i, i.e. a strategy that avoids the accepting states of B for at most i turns. Essentially, we shall see that C d can be constructed from a strategy that remains in WS d .

Let WS := S i 0 WS i be the set of winning states in G, and K + A the smallest i such that WS = WS i ; observe that K + A < |S|. We shall see that for d 0 = K + A , the entire family (C d ) d d0 can be obtained from essentially one single computation, which we present in Section 5.1. Then in Section 5.2, we discuss the more general case d 0 = K A .

Active diagnosis using parametrized LTS

We first study how to obtain the active diagnosers (C d ) d d0 , for d 0 = K + A . We shall see that the entire family (C d ) d d0 can be represented in the form of a single, so-called parametrized counter LTS.

Definition 17 (parametrized counter LTS).

A parametrized counter LTS (p-LTS) is a tuple A p = hS, s 0 , ⌃ 0 , T 0 , opi, where hS, s 0 , ⌃ 0 , T 0 i is an LTS, S is finite, and op is a mapping op : S ! ({"} [ N 1 ). Intuitively, a p-LTS represents an LTS equipped with an additional counter, and states are equipped with operations working with that counter. A state with operation " sets the value of the counter back to its initial value when the LTS enters that state. A state with operation o 2 N decreases the value of the counter and can only be entered when the remaining value is at least o. Note that the value to which the counter is set by " is itself not part of the p-LTS; it depends on a parameter that, after constructing the p-LTS, can be instantiated to an arbitrary value.

Example 7. Consider the p-LTS of Figure 11, where a label of the form s/o means that op(s) = o. Suppose that the p-LTS is initially in state s 0 with an initial counter value of 4. Since op(s 2 ) = 2, we can go with b to s 2 and then take the b-labelled loop around s 2 once, which decreases the counter to 2. Next, decreasing the counter again would yield 1, so we can only go to s 1 with a, following which the options are to go to s 3 , s 4 or s 5 , which will both set the counter back to its initial value. The concrete semantics of A p thus depends on the value of the aforementioned parameter and, for a value d, can be expressed as an LTS

A p (d) := hS ⇥ {1, . . . , d + 1}, hs 0 , d + 1i, ⌃ 0 , T 0 d i,
where the second component of the states is the current value of a finite counter and hhs, xi, a, hs 0 , x 0 ii 2 T 0 d i↵ there exists hs, a, s 0 i 2 T 0 such that • either op(s 0 ) = " and x 0 = d + 1;

• or op(s 0 ) = v 2 N 1 , x > v, and x 0 = x 1. Example 8. Figure 12 shows an excerpt of the LTS B p (3), for the p-LTS B p from Figure 11.

A p is called deterministic if the underlying LTS is deterministic, and in this case A p (d) is also deterministic for all d.

We shall now synthesize such a deterministic p-LTS B p from the Büchi automaton B and the game G. It uses the states of B, and for any d d 0 , B p (d) can serve as the LTS component of a state-based pilot for A, where no run stays outside the accepting states F for more than d steps. For this latter property, consider the following equation system, whose variables are the elements of S.

V (s) = 8 > < > : 1 if s / 2 WS ; 0 i f s 2 F \ WS ; 1 + min ⌃ 0 2adm(s) max a2⌃ 0 \Out(s) V ( (s, a)) otherwise (1) 
Let v ⇤ denote the smallest solution for V . Recall that states outside WS can never be touched by any winning strategy. It is therefore easy to see that when v ⇤ (s) = k for s / 2 F , then the "fastest" strategy for Control to force G back into F requires k further observations in the worst case; moreover, the largest value in v ⇤ equals K + A . We formalize these observations in the following remark, which will be useful later: Remark 2. The construction of G and Equation (1) imply that for every state s of WS there exists a set ⌃ 0 ✓ ⌃ such that ⌃ 0 is admissible for s, for every a 2 ⌃ 0 \Out(s), (s, a) = s 0 2 WS , and additionally, (i

) if s / 2 F and v ⇤ (s) = k, then v ⇤ (s 0 ) < k; (ii) if s 2 F , then v ⇤ (s 0 )  K + A .
The p-LTS B p is constructed from the solution for v ⇤ , more precisely B p := hWS , s 0 , ⌃ o , 0 , opi, where 0 is the restriction of to WS and op(s) = " if s 0 2 F , or op(s) = v ⇤ (s) otherwise. The behaviour of a controller for d K +

A is now given by C d := hB p (d), cont d , diag d i, where for all states r = hhU,

V, W i, xi of B p (d) we set cont d (r) = { a | 9r 0 : r a ! r 0 } [ ⌃ uc [ ⌃ uo and diag d (r) = > i↵ U = ;.
Note that such a controller can be realized without explicitly generating the LTS B p (d). At runtime, it su ces to keep in memory the p-LTS B p and to keep track of the current state r = hs, xi, where s 2 WS and x is the value of the counter. Then cont d (r) can be obtained from inspecting x and op(s 0 ) for all successors s 0 of s, and diag d (r) only depends on s, so both can be easily determined at runtime. We remark that this scheme is actually quite powerfulfor instance, if the user desires to dynamically change the value of d at runtime, this can be done whenever the controller passes a state from F . Example 9. Consider the LTS of Figure 1, for which the deterministic Büchi automaton B is shown in Figure 9. The values of v ⇤ in B are 0 for the accepting states and 1 or 2 for the non-accepting states. Figure 11 shows the automaton with states renamed for simplicity and annotated with their operations. Otherwise, the p-LTS B p has the same transition structure as B.

In this example, we have K + A = 2. Thus, in B p (3), for instance, the initial state would be hs 0 , 4i, allowing to move into hs 2 , 3i with b. In hs 2 , 3i, the control allows {a, b}, and if the environment chooses b, that would lead us to hs 2 , 2i. In that state, however, the value of the counter obliges the controller to block action b and force an a, going to hs 1 , 1i. In this case, the actual delay of the controller is 4 (realised, for instance, by the observation bbac).

We now formally prove that the construction given above has the desired properties.

Theorem 9 (parameterized active diagnosis). Let A be an actively diagnosable LTS with n states. Then B p can be computed in 2 O(n) Proof: The complexity result follows mostly from previous results (Proposition 1 and Theorem 6), coupled with the fact that v ⇤ can be obtained by a Kleene fixpoint computation in at most K + A iterations, where K + A is trivially bounded by the number of non-accepting states, i.e. less than 6 n .

As for the remaining items, let us first denote, for 2 ⌃ ⇤ o , the unique state q such that hs 0 , d + 1i = ) q in B p (d) by 0 0 ( ).

1. Observe that C d fulfils requirements (1) and ( 2) of Definition 8 by construction. Moreover, we need to show that h C d fulfils the three conditions from Definition 7.

(i) A cont is live: Let 0 2 ⌃ ⇤ and h", q 0 i 0 = ) h , qi in A cont . Then = P( 0 ). We prove that the following statements are invariant by induction over the length of :

(I) 0 0 ( ) = hs, xi for s = 0 ( ), s 2 WS , and some x > 0;

(II) s 2 F i↵ x = d + 1; (III) if s / 2 F then x v ⇤ (s); (IV) cont (hs, xi) is admissible for s.
The liveness statement then follows from the last item like in the proof of Lemma 2, part 1. Certainly (I)-(III) hold for = ", where s = s 0 2 F and x = d + 1. All successor states of s 0 in B p are annotated either by " or by a value v ⇤ (s 0 )  K + A < d + 1, so cont (hs 0 , d + 1i) authorizes all actions that remain in WS . Then (IV) follows from Remark 2. For the induction step, suppose that (I)-(IV) hold for , and we shall prove it for 0 = a, for some a 2 P(L ⇤ (A cont )), and let (ii) This follows from the fact that the counter x is decremented whenever B p (d) is in a state hs, xi with s / 2 F ; for x = 1, the only remaining possibility is to choose an admissible set that forces the run into F . Since the maximal value of F is d + 1, a run can stay outside F for at most d consecutive steps.

(iii) diag( ) = > i↵ is surely faulty: obvious by construction, cf the proof of Lemma 2, part 3. 3. Let h = hcont 0 , diag 0 i be a (d + 1)-active diagnoser and suppose by contradiction that h C d h does not hold. Then let us choose a minimal (by prefix order) word 0 from L ⇤ (A cont 0 )\L ⇤ (A cont ) (cf. Definition 16). Since cont can only block controllable actions, we have P( 0 ) = a (for some 2 ⌃ ⇤ o , a 2 ⌃ o such that a / 2 cont ( ). According to the proof of item 1, we know that cont ( ) = cont d (hs, xi), where hs, xi = 0 0 ( ). So either s 0 := (s, a) / 2 WS , but then h cannot avoid all ambiguous sequences and is not an active diagnoser. Or s, s 0 / 2 F and v ⇤ (s 0 ) = x 0 x. Notice the run of in B has already seen d + 1 x consecutive non-accepting states, s 0 adds one more, and from s 0 the environment can force us to see x 1 more such states before returning to F . So if ✓ h is the strategy obtained from h, then K(✓ h ) (d + 1 x) + 1 + (x 1) = d + 1. So by Lemma 3, D(✓ h ) d + 2, implying that h is not a (d + 1)-diagnoser. Thus, the initial contradictory hypothesis is impossible. ⇤

Let

Extending the parametrized construction

We briefly sketch how the synthesis of the family (C d ) can be extended to values K A  d < K + A . The general idea is the same, but is less conveniently represented in parametrized fashion.

In the construction for d K + A , the control admits actions that let C d remain in states from WS , while making sure that the runs return to states of F in "due time". For values between K A and K + A , two things change:

• The control must keep the runs of C d in states of WS d ⇢ WS ; indeed states in WS \ WS d cannot assure a waiting time of d.

• As a result, certain states of WS d must change their strategy. Consider Figure 13, displaying a hypothetical Büchi automaton, and suppose that in state s 1 we can choose to block either action a or b (but not both). Then state s 1 has a strategy to go to an accepting state in one single step by blocking a, hence v ⇤ (s 1 ) = 1; the v ⇤ values are annotated next to each state.

However, when we want to construct C 2 in this example, then we must remain in the set WS 2 , indicated by the dashed box. Now, blocking a is no longer an option for s 1 ; instead, it must block b and can reach F in only two steps. We must therefore replace Equation (1) to take into 32 account the restricted choices: The procedure now works as follows for a given d:

V d (s) =
1. Solve Equation ( 2) to obtain the minimal solution v ⇤ d . 2. Create B p as before, but the state space becomes WS d instead of WS , and the operations are obtained from v ⇤ d instead of v ⇤ .

In particular, this means that the construction of B p is no longer independent of d, unlike for the case d K + A . This also implies that the user does not have the option to dynamically change d during runtime.

Conclusion and Perspectives

We have developed an active-diagnosis method for finite-state systems, shown it to be optimal w.r.t. several criteria, and developed a parametrized version of active diagnosis that allows to obtain a controller achieving an almost optimal tradeo↵ between permissivity and delay.

In this work, we have considered a framework in which there is exactly one type of fault, and where the diagnosis objective is to identify whether one or more fault has happened. In the literature, di↵erent diagnosis objectives have been considered. For instance, [START_REF] Jron | Supervision patterns in discrete event systems diagnosis[END_REF] considers more general fault patterns given by finite automata. Our framework could be quite readily adapted to consider such patterns; essentially the construction in Section 4.1 would have to additionally synchronize the Büchi automaton with an automaton specifying the fault pattern. Moreover, past works on diagnosis have also considered how to make the diagnoser distinguish di↵erent types of faults. While for passive diagnosis [START_REF] Sampath | Failure diagnosis using discrete-event models[END_REF], the extension to multiple types of diagnosis is more or less straightforward, the problem becomes more complex for our case of active diagnosis, especially with respect to the quantitative aspects that we consider and the tradeo↵s between them (such as delay, size of the controller). For instance, a realistic setting should take into account that some types of faults are more urgent to detect than others. Extending our framework to multiple types of faults is therefore non-trivial.

In this paper, we study active diagnosis under the constraint that the controller must not introduce any deadlocks into the system, a restriction that was not present in [START_REF] Sampath | Active diagnosis of discrete-event systems[END_REF]. Some of our lower bounds exploit this restriction to limit the possibilities of the controller. It is therefore natural to ask whether our constructions and our lower bounds extend to the case where the controller may introduce deadlocks. In [START_REF] Böhm | Active diagnosis with observable quiescence[END_REF], some of us have studied this question with a positive answer; there, we give the active diagnoser the capability of observing whether its current control induces quiescent behaviour in the system, take this information into account for diagnosis purposes, and possibly change its control accordingly. It turns out that the results on lower bounds from Section 3 carry over to that framework.

Future work also has several other important research leads to address. First, it remains to determine the precise memory requirement for achieving the intrinsic delay; our results currently show that it lies between 2 ⇥(n log(n)) and 2 ⇥(n 2

) . In another lead, the control used for active diagnosis could be refined into a safe control, i.e. one that does not "encourage" the faulty behaviours. Finally we aim at addressing infinite-state systems or systems with quantitative features, as for passive diagnosability in pushdown systems [START_REF] Morvan | Diagnosability of pushdown systems[END_REF], Petri nets [START_REF] Cabasino | Diagnosability analysis of unbounded Petri nets[END_REF], timed [START_REF] Zad | Fault diagnosis in discrete-event systems: Incorporating timing information[END_REF][START_REF] Xu | Diagnosis of dense-time systems using digital clocks[END_REF] and probabilistic systems [START_REF] Thorsley | Diagnosability of stochastic discrete-event systems[END_REF]. Some of us have already analyzed the probabilistic case pointing out the di↵erent decidability status of active diagnosability and safe active diagnosability [START_REF] Bertrand | Active diagnosis for probabilistic systems[END_REF].

Figure 2 :

 2 Figure 2: A state-based pilot.

Figure 3 :

 3 Figure 3: (a) A safety game with imperfect information; Control must avoid observation q; (b) the corresponding active-diagnosis problem constructed by Theorem 1.

4 .

 4 h?, z, ?i 2 T .

Figure 4 :

 4 Figure 4: An LTS An with ⌃o = {a, b, c, d}, ⌃c = {c, d} used in Theorem 2.

Figure 5 :

 5 Figure 5: An LTS An with ⌃o = [ [ {c}, ⌃c = B, where minimizing the delay requires an active diagnoser with at least n! states.

Figure 6 :

 6 Figure 6: A variant of Figure 5 with fixed alphabet size.

Figure 8 :

 8 Figure 8: A variant of Figure 7 with fixed alphabet size.

Figure 9 :

 9 Figure 9: Büchi automaton resulting from Figure 1; accepting states have double frames.

Figure 11 :

 11 Figure 11: The p-LTS Bp arising from Figure 1.

s 2 , 3 s 2 , 2 s 1 , 1 s 3 , 4 s 4 , 4 s 1 , 3 s 1 , 2 sFigure 12 :

 321344131212 Figure 12: Excerpt from the instantiation Bp(3) for the p-LTS from Figure 11; states with " are shown with a solid border.

0 0 (

 0 0 ) = hs 0 , x 0 i. Then (I) follows from the construction of B p and the fact that a 2 cont (hs, xi) implies (s, a) 2 WS . (II) and (III) follow immediately from the construction of B p . Finally, (IV) follows again from Remark 2.

  ✓ h C d be the strategy obtained from h C d in Lemma 1. Then, by item 1 (ii) in this proof, K(✓ h C d )  d.The statement then follows from Lemma 3.

1 bFigure 13 :

 113 Figure 13: Illustrating the extended parametrized construction.

s 2 F

 2 \ WS d ; 1 + min ⌃ 0 2adm(s) max a2⌃ 0 \Out(s) V d ( (s, a)) otherwise(2)

  Definition 7 (Pilot and Active Diagnoser). Let A be an LTS. We call h = hcont , diagi a pilot for A if cont is a controller and diag is a mapping from P(L ⇤ (A

			:
	1. A	cont is live;
	cont )) does not contain any ambiguous sequence; 3. for all 2 P(L ⇤ (A 2. P(L ! (A cont )), diag( ) = > if and only if is a surely faulty sequence.
	Moreover, we say that h is a k-active diagnoser, for k	1, if for all

cont )) to {?, >}. Moreover, h is called an active diagnoser if

  Notice that in item (ii), h can be any active diagnoser, whether it is based on a finite-state pilot or not.

		3, we have established a factor of 2 between the waiting time
	and the delay of our active diagnosers. We shall therefore construct, for some
	starting value d	0 , a family (C d ) d d0 of state-based pilots such that for all d d	0 :
	(i) h C active diagnoser h of A. d is a (2d + 1)-active diagnoser for A, and (ii) h C	d	h for any (d + 1)-

This observation, together with the 'simulation' between A n and A 0 n , means that the controller once again needs to remember an n-permutation ⇡. Then, the controller achieves a delay corresponding to the length of n + 1 encodings of

This is the result when only one fault type is considered;[START_REF] Sampath | Active diagnosis of discrete-event systems[END_REF] actually provides for several fault types, which we omit here for sake of simplicity.

I This work has been supported by project ImpRo ANR-2010-BLAN-0317 and the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement 257462 HYCON2 NOE. II A shorter version of this paper was previously published as [1].