Bollig Benedikt
email: bollig@lsv.fr

Lsv

One-Counter Automata with Counter Observability

Keywords: 1998 ACM Subject Classification F.1.1 Models of Computation One-counter automata, inclusion checking, observability, visibly onecounter automata, strong automata

In a one-counter automaton (OCA), one can produce a letter from some finite alphabet, increment and decrement the counter by one, or compare it with constants up to some threshold. It is well-known that universality and language inclusion for OCAs are undecidable. In this paper, we consider OCAs with counter observability: Whenever the automaton produces a letter, it outputs the current counter value along with it. Hence, its language is now a set of words over an infinite alphabet. We show that universality and inclusion for that model are PSPACE-complete, thus no harder than the corresponding problems for finite automata. In fact, by establishing a link with visibly one-counter automata, we show that OCAs with counter observability are e ectively determinizable and closed under all boolean operations. Moreover, it turns out that they are expressively equivalent to strong automata, in which transitions are guarded by MSO formulas over the natural numbers with successor.

Introduction

One-counter automata (OCAs) are a fundamental model of infinite-state systems. Their expressive power resides between finite automata and pushdown automata. Unlike finite automata, however, OCAs are not robust: They lack closure under complementation and have an undecidable universality, equivalence, and inclusion problem [START_REF] Greibach | An infinite hierarchy of context-free languages[END_REF][START_REF] Ibarra | Restricted one-counter machines with undecidable universe problems[END_REF]. Several directions to overcome this drawback have been taken. One may underapproximate the above decision problems in terms of bisimilarity [START_REF] Ar | Decidability of bisimilarity for one-counter processes[END_REF] or overapproximate the system behavior by a finite-state abstraction, e.g., in terms of the downward closure or preserving the Parikh image [START_REF] Parikh | On context-free languages[END_REF][START_REF] Van Leeuwen | E ective constructions in well-partially-ordered free monoids[END_REF].

In this paper, we consider a new and simple way of obtaining a robust model of onecounter systems. Whenever the automaton produces a letter from a finite alphabet , it will also output the current counter value along with it (transitions that manipulate the counter are not concerned). Hence, its language is henceforth a subset of (◊ N) ú . For obvious reasons, we call this variant OCAs with counter observability. We will show that, under the observability semantics, OCAs form a robust automata model: They are closed under all boolean operations. Moreover, their universality and inclusion problem are in PSPACE and, as a simple reduction from universality for finite automata shows, PSPACE-complete.

These results may come as a surprise given that universality for OCAs is undecidable and introducing counter observability seems like an extension of OCAs. But, actually, the problem becomes quite di erent. The fact that a priori hidden details from a run (in terms of the counter values) are revealed makes the model more robust and the decision problems easier. Note that this is also what happens in input-driven/visibly pushdown automata [START_REF] Alur | Adding nesting structure to words[END_REF][START_REF] Mehlhorn | Pebbling mountain ranges and its application of DCFL-recognition[END_REF] XX:2

One-Counter Automata with Counter Observability

or their restriction of visibly OCAs [START_REF] Bárány | Regularity problems for visibly pushdown languages[END_REF][START_REF] Srba | Visibly pushdown automata: From language equivalence to simulation and bisimulation[END_REF]. They all recognize languages over a finite alphabet and the stack/counter operation can be deduced from the letter that is read. Interestingly, our proofs establish a link between the observability semantics and visibly OCAs. This link is not immediate and relies on a couple of technical lemmas. However, it somehow explains the robustness of OCAs under the observability semantics.

It is worth noting that revealing details from a system configuration does not always help, quite the contrary: Though timed automata and counter automata are closely related [START_REF] Haase | Relating reachability problems in timed and counter automata[END_REF], the universality problem of timed automata is decidable only if time stamps are excluded from the semantics [START_REF] Alur | A theory of timed automata[END_REF].

Note that it is not only for the pure fact that we obtain a robust model that we consider counter observability. Counter values usually have a meaning, such as energy level, value of a variable, or number of items yet to be produced (cf. Example 2). In those contexts, it is natural to include them in the semantics, just like including time stamps in timed automata.

Apart from the connection with visibly OCAs, another model closely related to ours is that of strong automata [START_REF] Czyba | Finite automata over infinite alphabets: Two models with transitions for local change[END_REF]. Strong automata operate on infinite alphabets and were introduced as an extension of symbolic automata [START_REF] Bès | An application of the Feferman-Vaught theorem to automata and logics for words over an infinite alphabet[END_REF][START_REF] Veanes | Minimization of symbolic automata[END_REF]. Essentially, a transition of a strong automaton is labeled with a formula from monadic second-order (MSO) logic over some infinite structure, say (N, +1). In fact, the formula has two free first-order variables so that it defines a binary relation over N. This relation is interpreted as a constraint between successive letters from the infinite alphabet. We will show that OCAs with the observability semantics and strong automata over (N, +1) (extended by a component for the finite alphabet) are expressively equivalent. This underpins a certain naturalness of the observability semantics. Note that the universality and the inclusion problem have been shown decidable for strong automata over (N, +1) [START_REF] Czyba | Finite automata over infinite alphabets: Two models with transitions for local change[END_REF]. However, strong automata do not allow us to derive any elementary complexity upper bounds. In fact, our model can be seen as an operational counterpart of strong automata over (N, +1).

The outline of the paper is as follows. Section 2 defines OCAs and their di erent semantics. Section 3 relates the observability semantics with visibly OCAs and shows that, under the new semantics, OCAs are closed under boolean operations and have a PSPACE-complete universality and inclusion problem. In Section 4, we show expressive equivalence of strong automata and OCAs with counter observability. We conclude in Section 5. Omitted proofs or proof details can be found in the full version of this paper, which is available at the following link: https://arxiv.org/abs/1602.05940

One-Counter Automata with Counter Observability

For n oe N = {0, 1, 2, . . .}, we set [n] := {1, . . . , n} and [n] 0 := {0, 1, . . . , n}. Given an alphabet , the set of finite words over , including the empty word Á, is denoted by ú .

One-Counter Automata and Their Semantics

We consider ordinary one-counter automata over some nonempty finite alphabet . In addition to a finite-state control and transitions that produce a letter from , they have a counter that can be incremented, decremented, or tested for values up to some threshold m oe N (as defined in [START_REF] Bárány | Regularity problems for visibly pushdown languages[END_REF]). Accordingly, the set of counter operations is Op = {ˆ, ´}, where ˆstands for "increment the counter by one" and ´for "decrement the counter by one". A transition is of the form (q, k, ‡, q Õ) where q, q Õ are states, k oe [m] 0 is a counter test, and ‡ oe fi Op. It leads from q to q Õ , while ‡ either produces a letter from or modifies the B. Bollig XX:3 counter. However, the transition can only be taken if the current counter value x oe N satisfies k = min{x, m}. That is, counter values can be checked against any number strictly below m or for being at least m. In particular, if m = 1, then we deal with the classical definition of one-counter automata, which only allows for zero and non-zero tests.

q 0 q 1 q 2 q 3 ≥1 | req ˆ≥1 | prod =0 | prod
I Definition 1 (OCA, cf. [START_REF] Bárány | Regularity problems for visibly pushdown languages[END_REF]). A one-counter automaton (or simply OCA) is a tuple A = (Q, , ÿ, F, m,) where Q is a finite set of states, is a nonempty finite alphabet (disjoint from Op), ÿ oe Q is the initial state, F ™ Q is the set of final states, m oe N is the threshold, and

™ Q ◊ [m]
0 ◊ (fi Op) ◊ Q is the transition relation. We also say that A is an m-OCA. Its size is defined as

|Q| + | | + m + | |.
An OCA A = (Q, , ÿ, F, m,) can have several di erent semantics: L oca (A) ™ ú is the classical semantics when A is seen as an ordinary OCA. L vis (A) ™ (fi Op) ú is the visibly semantics where, in addition to the letters from , all counter movements are made apparent.

L

obs (A) ™ (◊ N) ú is the semantics with counter observability where the current counter value is output each time a -transition is taken.

We define all three semantics in one go. Let Conf A := Q ◊ N be the set of configurations of A. In a configuration (q, x), q is the current state and x is the current counter value. The initial configuration is (ÿ, 0), and a configuration (q, x) is final if q oe F .

We determine a global transition relation =∆ A ™ Conf A ◊ ((◊ N) fi Op) ◊ Conf A . For two configurations (q, x), (q Õ , x Õ) oe Conf A and • oe (◊ N) fi Op, we have (q, x)

• =∆ A (q Õ , x Õ) if one of the following holds:

• = ˆand x Õ = x + 1 and (q, min{x, m}, ˆ, q Õ) oe , or • = ´and x Õ = x ≠ 1 and (q, min{x, m}, ´, q Õ) oe , or

x Õ = x and there is a oe such that • = (a, x) and (q, min{x, m}, a, q Õ) oe . A partial run of A is a sequence fl = (q 0 , x 0)

•1 =∆ A (q 1 , x 1) •2 =∆ A . . . •n =∆ A (q n , x n), with n Ø 0. If, in addition, (q 0 , x 0)
is the initial configuration, then we say that fl is a run. We call fl accepting if its last configuration (q n , x n) is final. Now, the semantics of A that we consider depends on what we would like to extract from trace(fl

) := • 1 . . . • n oe ((◊ N) fi Op) ú .
We let (given (a, x) oe ◊ N): oca((a, x)) = a and oca(ˆ) = oca(´) = Á vis((a, x)) = a and vis(ˆ) = ˆand vis(´) = óbs((a,

x)) = (a, x) and obs(ˆ) = obs(´) = Á Moreover, we extend each such mapping ÷ oe {oca, vis, obs} to For readability, counter tests 0 and 1 are written as =0 and Ø1, respectively. A transition without counter test stands for two distinct transitions, one for =0 and one for Ø1 (i.e., the counter value may actually be arbitrary). When looking at the semantics L obs (A), i.e., with counter observability, we can think of (req, n) signalizing that the production of n Ø 1 items is required (where n is the current counter value). Moreover, prod indicates that an item has been produced so that, along a run, the counter value represents the number of items yet to be produced. It is thus natural to include it in the semantics. Concretely, we have the following:

• 1 . . . • n oe ((◊ N) fi Op) ú letting ÷(• 1 . . . • n) := ÷(• 1) • . . . • ÷(• n). Note that, hereby u • Á = Á • u = u
L oca (A) = {req prod n | n Ø 1} L vis (A) = {ˆnreq (´prod) n | n Ø 1} L obs (A) = {(req, n)(prod, n ≠ 1)(prod, n ≠ 2) . . . (prod, 0) | n Ø 1} Apparently, L vis (A)
and L obs (A) are the only meaningful semantics in the context described above.

I Remark. Visibly OCAs [START_REF] Bárány | Regularity problems for visibly pushdown languages[END_REF][START_REF] Srba | Visibly pushdown automata: From language equivalence to simulation and bisimulation[END_REF] usually allow for general input alphabets , which are partitioned into = inc ‡ dec ‡ nop so that every " oe is associated with a unique counter operation (or "no counter operation" if " oe nop). In fact, we consider here (wrt. the visibly semantics) a particular case where = fi Op with inc = {ˆ}, dec = {´}, and nop = .

Standard Results for OCAs

Let us recall some well-known results for classical OCAs and visibly OCAs. For ÷ oe {oca, vis, obs}, the nonemptiness problem for OCAs wrt. the ÷-semantics is defined as follows: Given an OCA A, do we have L ÷ (A) " = ÿ ? Of course, this reduces to a reachability problem that is independent of the actual choice of the semantics: ([25]). The nonemptiness problem for OCAs is NL-complete, wrt. any of the three semantics.

I Theorem 3
However, the universality (and, therefore, inclusion) problem for classical OCAs is undecidable: ([12, 14]). The following problem is undecidable: Given an OCA A with alphabet , do we have L oca (A) = ú ? In this paper, we show that universality and inclusion are decidable when considering counter observability. To do so, we make use of the theory of the visibly semantics. Concretely, we exploit determinizability as well as closure under complementation and intersection. In fact, the following definition of determinism only makes sense for the visibly semantics, but we will see later that a subclass of deterministic OCAs gives a natural notion of determinism for the observability semantics as well.

I Theorem 4
I Definition 5 (deterministic OCA). An OCA A = (Q, , ÿ, F, m,) is called deterministic (dOCA or m-dOCA) if, for all (q, k, ‡) oe Q ◊ [m] 0 ◊ (fi Op)
, there is exactly one q Õ oe Q such that (q, k, ‡, q Õ) oe . In that case, represents a (total) function " : Q◊ [m] 0 ◊(fiOp) ae Q so that we rather consider A to be the tuple (Q, , ÿ, F, m, ").

A powerset construction like for finite automata can be used to determinize OCAs wrt. the visibly semantics [START_REF] Bárány | Regularity problems for visibly pushdown languages[END_REF]. That construction also preserves the two other semantics. However, Definition 5 only guarantees uniqueness of runs for words from (fi Op) ú . That is, for complementation, we have to restrict to the visibly semantics (cf. Lemma 7 below).

B. Bollig

XX:5

counter value

a 1 a 2 x 1 x 2 ι p 1 p 2 p ′ 2 p 3 p 4 p 5 p 6 p 7 p 8 2 |= ϕ p2,p ′ 2 1 |= ψ p7,p8 ∧ ψ q7,q8 a 1 a 2 x 1 x 2 ι q 1 q 2 q 3 q 4 q 5 q 6 q 7 q 8 a 1 a 2 x 1 x 2
. . . ι p 1 p 2 p 3 p 4 p 5 p 6 p 7 q 1 q 2 q 3 q 4 q 5 q 6 q 7 ↘ ↗ Figure 2 Decompositions of two runs on (a1, 3)(a2, 1), and corresponding runs in normal form I Lemma 6 (cf. [START_REF] Bárány | Regularity problems for visibly pushdown languages[END_REF]). Let A be an m-OCA. There is an m-dOCA A det of exponential size such that L ÷ (A det) = L ÷ (A) for all ÷ oe {oca, vis, obs}. A (visibly) dOCA can be easily complemented wrt. the set of well-formed words WF := {w oe (fi Op) ú | no prefix of w contains more ´'s than ˆ's}. In fact, for all OCAs A with alphabet , we have L vis (A) ™ WF .

I Lemma 7. Let A = (Q, , ÿ, F, m, ") be a dOCA and define Ā as the dOCA (Q, , ÿ, Q \ F, m, "). Then, L vis (Ā) = WF \ L vis (A).
Finally, visibility of counter operations allows us to simulate two OCAs in sync by a straightforward product construction: I Lemma 8 (cf. [START_REF] Alur | Adding nesting structure to words[END_REF]). Let A 1 be an m 1 -OCA and A 2 be an m 2 -OCA over the same alphabet. There is a max{m

1 , m 2 }-OCA A 1 ◊ A 2 of polynomial size such that L vis (A 1 ◊ A 2) = L vis (A 1) fl L vis (A 2). Moreover, if A 1 and A 2 are deterministic, then so is A 1 ◊ A 2 .

Determinizing and Complementing OCAs

In this section, we will show that, under the observability semantics, OCAs are e ectively closed under all boolean operations. The main ingredient of the proof is a determinization procedure, which we first describe informally. Let A = (Q, , ÿ, F, m,) be the OCA to be determinized (wrt. the observability semantics). Moreover, let w = (a

1 , x 1) . . . (a n , x n) oe (◊ N) ú .
Every run fl of A such that obs(trace(fl)) = w has to have reached the counter value x

1 by the time it reads the first letter a 1 . In particular, it has to perform at least x 1 counter increments. In other words, we can identify x 1 transitions that lift the counter value from 0 to 1, from 1 to 2, and, finally, from x 1 ≠ 1 to x 1 , respectively, and that are separated by partial runs that "oscillate" around the current counter value but, at the end, return to their original level. Similarly, before reading the second letter a 2 , A will perform |x 2 ≠ x 1 |-many identical counter operations to reach x 2 , again separated by some oscillation phases, and so on. This is illustrated on the left hand side of Figure 2 for two runs on the word (a 1 , 3)(a 2 , 1). We will transform A into another automaton that decomposes a run into oscillations and increment/decrement/letter transitions, but, in fact, abstracts away oscillations. Thus, the automaton starts in an increasing mode and goes straight to the value x 1 . Once it reads letter a 1 , it may go into an increasing or decreasing mode, and so on. Observe that a run fl F S T T C S 2 0 1 6

XX:6

One-Counter Automata with Counter Observability of this new automaton is in a sort of normal form as illustrated on the right hand side of Figure 2. The crux is that vis(trace(fl)) is a unique encoding of w: Of course, it determines the counter values output when a letter is read; and it is unique, since it continues incrementing (decrementing, respectively) until a letter is read. This normalization and encoding finally allows us to apply known results on visibly one-counter automata for determinization and complementation.

There is a little issue here, since the possibility of performing an oscillation leading from p 2 to p Õ 2 (cf. left hand side of Figure 2) depends on the current counter value. However, it was shown in [START_REF] Göller | On the computational complexity of verifying one-counter processes[END_REF] that the set of counter values allowing for such a shortcut can be described as a boolean combination of arithmetic progressions that can be computed in polynomial time. We will, therefore, work with an extended version of OCAs that includes arithmetic-progression tests (but is no more expressive, as we show afterwards).

The outline of this section is as follows: We present extended OCAs in Section 3.1 and the link between the observability and the visibly semantics in Section 3.2. In Section 3.3, we solve the universality and inclusion problem for OCAs wrt. the observability semantics.

Extended One-Counter Automata

While OCAs can only test a counter value up to some threshold, extended OCAs have access to boolean combinations of modulo constraints. The set Guards mod is given by the grammar Before we introduce extended OCAs, we will state a lemma saying that the "possibility" of a shortcut in terms of an oscillation (see above) is definable in Guards mod . Let A = (Q, , ÿ, F, m,) be an OCA and p, q oe Q. By X A p,q , we denote the set of natural numbers x oe N such that (p, x) (=∆ A fi =∆ A) ú (q, x), i.e., there is a partial run from (p, x) to (q, x) that performs only counter operations. Moreover, we define Y A p,q to be the set of natural numbers x oe N such that (p, x) (=∆ A fi =∆ A) ú (q, x Õ) for some x Õ oe N. Note that

Ï ::= c + dN | ¬Ï | Ï • Ï | Ï ' Ï
X A p,q ™ Y A p,q .
The following result is due to [11, Lemmas 6-9]: I Lemma 9 ([11]). Let A = (Q, , ÿ, F, m,) be an OCA and p, q oe Q. We can compute, in polynomial time, guards Ï p,q , p,q oe Guards mod such that [[Ï p,q]] = X A p,q and [[p,q]] = Y A p,q . In particular, the constants in Ï p,q and p,q are all polynomially bounded. I Definition 10 (extended OCA). An extended OCA (eOCA) is a tuple A = (Q, , ÿ, f,) where Q, , ÿ are like in an OCA, f : Q ae Guards mod is the acceptance condition, and is the transition relation:

a finite subset of Q ◊ Guards mod ◊ (fi Op) ◊ Q

Runs and the languages L

÷ (A), with ÷ oe {oca, vis, obs}, of an eOCA A = (Q, , ÿ, f,) are defined very similarly to OCAs. In fact, there are only two (slight) changes:

The definition of =∆

A ™ Conf A ◊ ((◊ N) fi Op) ◊ Conf A is
now as follows: For (q, x), (q Õ , x Õ) oe Conf A and • oe (◊ N) fi Op, we have (q, x)

• =∆ A (q Õ , x Õ) if there is Ï oe Guards mod such that x |= Ï and one of the following holds:

• = ˆand x Õ = x + 1 and (q, Ï, ˆ, q Õ) oe , or • = ´and x Õ = x ≠ 1 and (q, Ï, ´, q Õ) oe , or x Õ = x and there is a oe such that • = (a, x) and (q, Ï, a, q Õ) oe .

B. Bollig XX:7

2. A run is now accepting if its last configuration (q, x) is such that x |= f (q). Apart from these modifications, the languages L oca (A), L vis (A), and L obs (A) are defined in exactly the same way as for OCAs.

From OCAs with Counter Observability to Visibly OCAs

To establish a link between the observability and the visibly semantics, we will encode a word w = (a Obviously, there is a small dOCA whose visibly semantics is Enc . It will be needed later for complementation of OCAs wrt. the observability semantics. I Lemma 11. There is a 0-dOCA B enc with only four states such that L vis (B enc) = Enc . The idea is that B enc enters an "increasing" or "decreasing" mode as soon as it performs ˆor, respectively, ´. Such a mode can only be quit by reading a letter from or entering a sink state. This avoids forbidden reversals between ˆand ´. Finally, it is easy to ensure that any nonempty accepted word ends in a letter from .

In fact, there is a tight link between the visibly and the observability semantics of OCAs provided the visibly semantics contains only valid encodings: I Lemma 12. Let A be an OCA with alphabet such that L vis (A) ™ Enc . Then, we have L vis (A) = enc(L obs (A)) and, equivalently, L obs (A) = enc ≠1 (L vis (A)). Lemmas 8 and 12 imply the following closure property, which will later be exploited to solve the inclusion problem: Lemma 8). The next lemma constitutes the main ingredient of the determinization procedure. It will eventually allow us to rely on OCAs whose visibly semantics consists only of valid encodings. I Lemma 14. Let A be an OCA. We can compute, in polynomial time, an eOCA A ext such that L obs (A ext) = L obs (A) and, for all w oe L obs (A ext), we have enc(w) oe L vis (A ext). Proof. Suppose A = (Q, , ÿ, F, m,) is the given OCA. We first translate a simple "threshold constraint" into an arithmetic expression that can be used as a guard in the eOCA A ext : Let fi m = m + 1N, and fi k = k + 0N for all k oe {0, . . . , m ≠ 1}. We define A ext = (Q, , ÿ, f, Õ) as follows: Essentially, A ext simulates A so that it has the same state space. However, when A allows for a shortcut (oscillation) from state p to state q (which will be checked in terms of Ï p,q from Lemma 9) and there is a transition (q, k, ‡, q Õ) of A, then A ext may perform ‡ and go directly from p to q Õ , provided fi k is satisfied as well. Formally, the transition relation is given as for some q oe F (cf. Lemma 9). That is, for all p oe Q, we let f (p) = x qoeF Â p,q . J To transform an eOCA back into an ordinary OCA while determinizing it and preserving its observability semantics, we will need a dOCA that takes care of the modulo constraints: I Lemma 15. Let ™ Guards mod be a nonempty finite set. Set m := max{c | c + dN is an atomic subformula of some Ï oe } + 2. There are a dOCA B = (Q, , ÿ, Q, m , ") of exponential size and ⁄ : Q ae 2 such that, for all (q, x) oe Conf B and all runs of B ending in (q, x), we have ⁄(q) = {Ï oe | x |= Ï}.

I Proposition 13. Let A 1 and A 2 be OCAs over such that L vis (A 1) ™ Enc and L vis (A 2) ™ Enc . Then, L obs (A 1 ◊ A 2) = L obs (A 1) fl L obs (A 2) (where A 1 ◊ A 2 is due to
Õ = {(p, Ï p,q • fi k , ‡, q Õ) | p oe Q and (q, k, ‡, q Õ) oe } .

F S T T C S

Proof. We sketch the idea. For every arithmetic-progression formula c + dN that occurs in (for simplicity, let us assume d Ø 1), we introduce a state component {0, 1, . . . , c} ◊ {0, 1, . . . , d ≠ 1}. Increasing the counter, we increment the first component until c and then count modulo d in the second. We proceed similarly when decreasing the counter. The current state (x, y) oe [c] 0 ◊ [d ≠ 1] 0 will then tell us whether c + dN holds, namely i x = c and y = 0. Finally, the mapping ⁄ evaluates a formula based on the outcome for its atomic subformulas. Note that B can be computed in exponential time. Its size is exponential in the number of arithmetic-progression formulas that occur in . J

We will now apply Lemma 15 to transform an eOCA into a dOCA (cf. also Lemma 6).

I Lemma 16. Let A be an eOCA. We can compute, in exponential time, a dOCA A Õ (deterministic according to Definition 5) such that L ÷ (A Õ) = L ÷ (A) for all ÷ oe {oca, vis, obs}. Proof. Suppose A = (Q, , ÿ, f,) is the given eOCA. Let ™ Guards mod be the set of formulas that occur in or f , and let B = (Q, , ÿ, Q, m , ") be the dOCA along with the function ⁄ according to Lemma 15.

We build the dOCA A Õ = (Q Õ , , ÿ Õ , F Õ , m , " Õ) as follows. Essentially, we perform a simple powerset construction for A. Moreover, to eliminate modulo guards, we run B in parallel. Thus, the set of states is Q Õ = 2 Q ◊ Q, with initial state ÿ Õ = ({ÿ}, ÿ) and set of final states

F Õ = {(P, q) oe Q Õ | f (p) oe ⁄(q)
for some p oe P }. Finally, the transition function is given by " Õ ((P, q), k, ‡) = (P Õ , "(q, k, ‡)) where

P Õ =) p Õ | (p, Ï, ‡, p Õ) oe fl (P ◊ ⁄(q) ◊{ ‡}◊Q) * . J
There is a "nondeterministic version" of Lemma 16, which does not perform a powerset construction but rather computes a nondeterministic OCA. The latter is then still of exponential size, but only wrt. to the number of arithmetic-progression formulas in A.

With Theorem 3, it follows that nonemptiness for eOCAs can be solved in PSPACE. We do not know if this upper bound is tight.

Let A be a dOCA with alphabet and let w oe (◊ N) ú . By fl A (w), we denote the unique run of A such that vis(trace(fl A (w))) = enc(w).

By the following observation, which follows directly from Lemma 12, it is justified to call any dOCA A with L vis (A) ™ Enc deterministic wrt. the observability semantics: I Lemma 17. Let A be a dOCA such that L vis (A) ™ Enc . For every word w oe (◊ N) ú , we have w oe L obs (A) i fl A (w) is accepting. Altogether, we obtain that OCAs are determinizable wrt. the observability semantics.

I Theorem 18 (determinizability). Let A be an OCA over . We can compute, in exponential time, an m-dOCA A Õ (with m only polynomial) such that L obs (A Õ) = L obs (A) and L vis (A Õ) ™ Enc .

B. Bollig XX:9

Proof. Let A be the given OCA. We apply Lemmas 14 and 16 to obtain a dOCA Â A of exponential size such that L obs (Â A) = L obs (A) and, for all w oe L obs (Â A), we have enc(w) oe Lemmas 8 and 11) and obtain L obs (A Õ) = L obs (A) and L vis (A Õ) ™ Enc . J

L vis (Â A). We set A Õ = Â A ◊ B enc (cf.
We conclude that OCAs are complementable wrt. the observability semantics:

I Theorem 19 (complementability). Let A be an OCA with alphabet . We can compute, in exponential time, a dOCA

Ā such that L obs (Ā) = (◊ N) ú \ L obs (A). Proof. We first transform A into the dOCA A Õ = A ◊ B enc according to (the proof of) Theorem 18. Suppose A = (Q, , ÿ, F, m, "). Then, we set Ā = (Q, , ÿ, Q \ F, m, ") ◊ B enc .
Note that Ā is indeed a dOCA and that L vis (Ā) ™ Enc . For w oe (◊ N) ú , we have:

w oe L obs (Ā)
Lem. 17

≈∆ fl Ā(w) is accepting (ú)
≈∆ fl A Õ (w) is not accepting Lem. 17

≈∆ w " oe L obs (A Õ) Equivalence (ú) holds as fl Ā(w) and fl A Õ (w) have the same projection to the Q-component. J Determinization and complementation of extended OCAs are a priori more expensive: Lemmas 9 and 14 only apply to OCAs so that one has to go through Lemma 16 first.

Universality and Inclusion Problem wrt. Observability Semantics

We are now ready to solve the universality and the inclusion problem for OCAs wrt. the observability semantics. The universality problem is defined as follows: Given an OCA A over some alphabet , do we have L obs (A) = (◊ N) ú ? The inclusion problem asks whether, given OCAs A Proof. To solve the universality problem for a given OCA A = (Q, , ÿ, F, m,) in (nondeterministic) polynomial space, we apply the construction from Theorem 19 (and, in particular, Theorem 18) on the fly to obtain a dOCA Ā such that L obs (Ā) = (◊ N) ú \ L obs (A). That is, we have to keep in memory a state of the form (P, q, r), where P ™ Q, q is the modulo-counting component (Lemma 15), and r is a state of B enc (Lemma 11). In addition, we will maintain a component for the current counter value. In fact, the latter can be supposed to be polynomially bounded (cf. [START_REF] Chistikov | Shortest paths in one-counter systems[END_REF] for a tight upper bound) in the size of Ā. The size of Ā is exponential in the size of A, and so the required information can be stored in polynomial space. To compute a successor state of (P, q, r), we first guess an operation ‡ oe fi Op. We then compute (P Õ , q Õ) according to the proof of Lemma 16 and update r to r Õ according to the type of ‡. Note that this takes polynomial time only, since the function ⁄ as required in Lemma 15 can be computed on the fly. Finally, the algorithm outputs "non-universal" when we find a final state of Ā.

For the inclusion problem, we rely on Proposition 13 and perform the determinization procedure on-the-fly for both of the given OCAs.

For the lower bound, we will restrict to the universality problem, since it is a special case of the inclusion problem. We reduce from the universality problem for ordinary finite automata, which is known to be PSPACE-complete [START_REF] Meyer | The equivalence problem for regular expressions with squaring requires exponential space[END_REF]. If we suppose that is part of the input, then there is a straightforward reduction, which essentially takes the (ordinary) finite F S T T C S 2 0 1 6 XX:10 One-Counter Automata with Counter Observability automaton and adds self-looping increment/decrement transitions to each state. Assuming | | = 1, the reduction is as follows. Let A be a finite automaton over some finite alphabet = {a 0 , . . . , a n≠1 }. We construct an OCA A Õ over the singleton alphabet such that

L(A) = ú i L(A Õ) = (◊ N) ú .
The idea is to represent letter a i by (counter) value i. To obtain A Õ , an a i -transition in A is replaced with a gadget that nondeterministically outputs i or any other natural number strictly greater than n ≠ 1. J

Relation with Strong Automata

In this section, we show that OCAs with counter observability are expressively equivalent to strong automata over (N, +1) [START_REF] Czyba | Finite automata over infinite alphabets: Two models with transitions for local change[END_REF]. As the latter are descriptive in spirit, OCAs can thus be seen as their operational counterpart.

Let us first give a short account of monadic second-order (MSO) logic over (N, +1) (see [START_REF] Thomas | Languages, automata and logic[END_REF] for more details). We have infinite supplies of first-order variables, ranging over N, and second-order variables, ranging over subsets of N. The atomic formulas are true, x Õ = x + 1, x Õ = x, and x oe X where x and x Õ are first-order variables and X is a second-order variable. Those formulas have the expected meaning. Further, MSO logic includes all boolean combinations, first-order quantification ÷x , and second-order quantification ÷X (with an MSO formula). The latter requires that there is a (possibly infinite) subset of N satisfying . As abbreviations, we may also employ x Õ = x ≠ 1 and formulas of the form x Õ oe (x + c + dN), where c, d oe N. This does not change the expressive power of MSO logic.

In the following, we assume that x and x Õ are two distinguished first-order variables. We write (x, x Õ) to indicate that the free variables of are among x and x Õ . If (x, x Õ) is evaluated to true when x is interpreted as x oe N and x Õ is interpreted as x Õ oe N, then we write (x, x Õ) |= . In fact, a transition of a strong automaton is labeled with a formula (x, x Õ) and can only be executed if (x, x Õ) |= where x and x Õ are the natural numbers read at the previous and the current position, respectively. Thus, two successive natural numbers in a word can be related explicitly in terms of an MSO formula.

I Definition 21 ([9]). A strong automaton is a tuple S = (Q, , ÿ, F,) where Q is the finite set of states, is a nonempty finite alphabet, ÿ oe Q is the initial state, and F ™ Q is the set of final states. Further, is a finite set of transitions, which are of the form (q, , a, q Õ) where q, q Õ oe Q are the source and the target state, a oe , and (x, x Õ) is an MSO formula.

Similarly to an OCA, S induces a relation =∆ S ™ Conf S ◊ (◊ N) ◊ Conf S , where Conf S = Q ◊ N. For (q, x), (q Õ , x Õ) oe Conf S and (a, y) oe ◊ N, we have (q, x) (a,y)

===∆ S (q Õ , x Õ) if y = x Õ and there is an MSO formula (x, x Õ) such that (q, , a, q Õ) oe and (x, x Õ) |= .

A run of S on w = (a

1 , x 1) . . . (a n , x n) oe (◊ N) ú is a sequence fl = (q 0 , x 0) (a1,x1) = ==== ∆ S (q 1 , x 1) (a2,x2) = ==== ∆ S . . . (an,xn)
= ==== ∆ S (q n , x n) such that q 0 = ÿ and x 0 = 0. It is accepting if q n oe F . The language L(S) ™ (◊ N) ú of S is defined as the set of words w oe (◊ N) ú such that there is an accepting run of S on w. I Example 22. We refer to the OCA A from Example 2. Figure 3 depicts a strong automaton

S such that L(S) = L obs (A) = {(req, n)(prod, n ≠ 1)(prod, n ≠ 2) . . . (prod, 0) | n Ø 1}.
In fact, we can transform any OCA into an equivalent strong automaton preserving the observability semantics, and vice versa: Proof. "=∆": Using the following observation, we can directly transform an OCA into a strong automaton: For all states q and q Õ of the given OCA A, there is an MSO formula q,q Õ (x, x Õ) such that, for all x, x Õ oe N, we have (x, x Õ) |= q,q Õ i (q, x)

I Theorem 23. Let L ™ (◊ N) ú . There is an OCA A such that L obs (A) = L i there is a strong automaton S such that L(S) = L. B. Bollig XX:11 q 0 q 1 q 2 x ′ ≥ 1 | req x ′ = x -1 | prod x ′ = x -1 ∧ x ′ = 0 | prod
! =∆ A fi =∆ A " ú (q Õ , x Õ
). The existence of q,q Õ can be shown using a two-way automaton over infinite words [START_REF] Pécuchet | Automates boustrophédon et mots infinis[END_REF], which simulates A and can be translated into an MSO formula [START_REF] Pécuchet | Automates boustrophédon et mots infinis[END_REF][START_REF] Thomas | Languages, automata and logic[END_REF].

More precisely, given q, q Õ , we build a two-way automaton T q,q Õ over the alphabet 2 {$,$ Õ } . The idea is that word positions represent counter values (the first position marking 0, the second 1, and so on), and $ and $ Õ represent x and x Õ , respectively. Thus, we are only interested in words in which $ and $ Õ each occur exactly once. Clearly, this is a regular property. At the beginning, T q,q Õ goes to the position carrying $. It then simulates A starting in q, and it accepts if it is on the position carrying $ Õ and in state q Õ . The simulation itself is straightforward: Counter increments and decrements of an OCA are simulated by going one step to the left or to the right, respectively, and a zero test simply checks whether the automaton is at the first position of the word. Note that T q,q Õ checks for the markers $ and $ Õ only at the beginning and at the end of an execution, but not during the actual simulation

of A. Let w = z 0 z 1 z 2 . . . oe ! 2 {$,$ Õ } "
Ê and x, x Õ oe N be unique positions such that $ oe z x and $ Õ oe z

x Õ . Then, w is accepted by T q,q Õ i (q, x) (=∆ A fi =∆ A) ú (q Õ , x Õ). It is well known that two-way word automata are expressively equivalent to one-way automata (cf. [START_REF] Pécuchet | Automates boustrophédon et mots infinis[END_REF]). Therefore, by Büchi's theorem, the word language accepted by T q,q Õ can be translated into a corresponding MSO formula without free variables but with subformulas of the form "position y carries $" and "position y carries $ Õ " [START_REF] Thomas | Languages, automata and logic[END_REF]. We replace the latter two by y = x and y = x Õ , respectively, and finally obtain q,q Õ as required.

"≈=": We will transform a strong automaton S into an equivalent OCA with super transitions.

A super transition can perform counter operations of the form + or ≠ where oe Guards mod . Operation + allows the counter value to be increased by n oe N provided n |= Â. Similarly, ≠ allows the counter value to be decreased by n if n |= Â.

I Definition 24 (OCA with super transitions). An OCA with super transitions is a tuple A = (Q, , ÿ, F,) where Q, , ÿ, F are like in an OCA and is the finite transition relation.

A transition is of the form (q, Ï, op, a, Ï Õ , q Õ) where q, q Õ oe Q are the source and the target state, Ï, Ï Õ oe Guards mod are guards checking the original and the modified counter value, respectively, a oe is the output letter, and op is of the form + or ≠ where oe Guards mod . We define a global transition relation =∆ A ™ Conf A ◊ (◊ N) ◊ Conf A where, as usual, Conf A = Q ◊ N. For (q, x), (q Õ , x Õ) oe Conf A and (a, y) oe ◊ N, we have (q, x) (a,y)

===∆ A (q Õ , x Õ) if y = x Õ and there are Ï, Ï Õ , Â oe Guards mod such that x |= Ï, x Õ |= Ï Õ , and one of the following holds:

x AE x Õ and (q, Ï, +Â, a, Ï Õ , q Õ) oe and x Õ ≠ x |= Â, or

x Ø x Õ and (q, Ï, ≠Â, a, Ï Õ , q Õ) oe and x ≠ x Õ |= Â. This concludes the correctness proof of A. Finally, recall that one can easily transform A into an OCA whose observability semantics coincides with L(A). J

Conclusion

The observability semantics opens several directions for follow-up work. We may carry it over to other classes of infinite-state systems such as Petri nets. Are there infinite-state restrictions of Petri nets other than 1-VASS whose observability semantics is robust? A direct application of our results is that the language L ™ (◊ N) ú of an OCA with observability semantics/strong automaton is learnable (in the sense of Angluin [START_REF] Angluin | Learning regular sets from queries and counterexamples[END_REF]) in terms of a visibly one-counter automaton for enc(L) [START_REF] Neider | Learning visibly one-counter automata in polynomial time[END_REF]. It would be worthwhile to transfer results on visibly one-counter/pushdown automata that concern Myhill-Nerode congruences or minimization [START_REF] Alur | Congruences for visibly pushdown languages[END_REF][START_REF] Chervet | Minimizing variants of visibly pushdown automata[END_REF].

Another interesting question is to which extent we can relax the requirement that the counter value be output with every letter a oe . It may indeed be possible to deal with a bounded number of -transitions between any two counter outputs. Note that there have been relaxations of the visibility condition in pushdown automata, albeit preserving closure under boolean operations [START_REF] Nowotka | Height-deterministic pushdown automata[END_REF].

Figure 1 A

 1 Figure 1 A one-counter automaton with threshold m = 1

FI Example 2 .

 2 for any word u. Finally, we let L ÷ (A) = {÷(trace(fl)) | fl is an accepting run of A}. Consider the 1-OCA A from Figure 1 over = {req, prod}.

 where c, d oe N. We call c + dN an arithmetic-progression formula and assume that c and d are encoded in unary. For x oe N (a counter value), we define x |= c + dN if x = c + d • i for some i oe N. Thus, we may use true as an abbreviation for 0 + 1N. The other formulas are interpreted as expected. Moreover, given Ï oe Guards mod , we set [[Ï]] := {x oe N | x |= Ï}.

1 and A 2 ,

 2 we have L obs (A 1) ™ L obs (A 2). I Theorem 20. The universality problem and the inclusion problem for OCAs wrt. the observability semantics are PSPACE-complete. In both cases, PSPACE-hardness already holds when | | = 1.

Figure 3 A

 3 Figure 3 A strong automaton over (N, +1)

F S T T C S 2 0 1 6 XXFigure 4

 64 Figure 4 Finite automaton for L + (c1, d1, c2, d2)

 The mapping enc is extended to sets L ™ (◊ N) ú by enc(L) = {enc(w) | w oe L}. Let Enc := enc((◊ N) ú) denote the set of valid encodings. Note that enc is a bijection between (◊ N) ú and Enc , and that Enc is the set of well-formed words of the form u

	1 , x 1)(a 2 , x 2) . . . (a n , x n) oe (◊ N) ú as a word enc(w) oe (fi Op) ú as follows: a 1 sign(x 2 ≠ x 1) |x2≠x1| a 2 . . . sign(x n ≠ x n≠1) |xn≠xn≠1| a n enc(w) := ˆx1 where, for an integer z oe Z, we let sign(z) = ˆif z Ø 0, and sign(z) = ´if z < 0. For example, enc(Á) = Á and enc((a, 5)(b, 2)(c, 4)) = ˆ5a ´3b ˆ2c. 1 a 1 u 2 a 2 . . . u n a n where a i oe and
	u

i oe {ˆ} ú fi {´} ú for all i oe {1, . . . , n}.

2 0 1 6 XX:8 One-Counter Automata with Counter Observability Moreover

 , a configuration (p, x) is "final" in A ext if the current counter value x satisfies Â

	p,q

Acknowledgments

The author is grateful to C. Aiswarya, Stefan Göller, Christoph Haase, and Arnaud Sangnier for numerous helpful discussions and pointers to the literature.

F S T T C S

2 0 1 6 XX:14 One-Counter Automata with Counter Observability

With this, the language L(A) ™ (◊ N) ú is defined in the expected way, like for strong automata.

It is easily seen that A can be translated into an eOCA A Õ such that L obs (A Õ) = L(A): For every oe Guards mod , the set {⇤ n | n oe [[Â]]} is a regular language over the unary alphabet {⇤}. Thus, counter operations of the form + or ≠ can be simulated by a finite-state gadget. Essentially, we take a finite automaton for {⇤ n | n oe [[Â]]} and replace ⇤ by ˆor, respectively, ´. It will thus be enough to translate a strong automaton into an OCA with super transitions.

Next, we demonstrate why super transitions are indeed useful to emulate an MSO formula (x, x Õ). Using Büchi's theorem (cf. [START_REF] Thomas | Languages, automata and logic[END_REF]), we can transform into finite automata B + and B ≠ recognizing the following regular languages over the alphabet {⇤, $ 1 , $ 2 }:

x, y oe N such that (x + y, x) |= } Similarly to $ and $ Õ in the other proof direction, the positions of $ 1 and $ 2 in a word from L(B +) fi L(B ≠) encode an interpretation of the free variables x and, respectively, x Õ that makes true. Note that L(B +) can be written as a finite union of sets

This is achieved by determinizing B + and splitting it into components as illustrated in Figure 4 (cf. also [START_REF] To | Unary finite automata vs. arithmetic progressions[END_REF] for a polynomial transformation). Similarly, L(B ≠) is the finite union of sets of the form

and

. We now turn to the actual translation of a strong automaton S = (Q, , ÿ, F,) into an OCA with super transitions A = (Q, , ÿ, F, Õ) such that L(A) = L(S). Note that the only change is in the transition relation: For all (q, , a, q Õ) oe and (c

), a, true, q Õ). Moreover, for all (q, , a, q Õ) oe and

). This concludes the construction of A.

To prove L(A) = L(S), it is enough to show that, for all configurations (q, x), (q Õ , x Õ) oe Conf A and all a oe , the following are equivalent:

(1) (q, x)

B. Bollig

XX:13

Suppose (1) holds. There is an MSO formula such that (q, , a, q Õ) oe and (x, x Õ) |= . We distinguish two (not necessarily disjoint) cases:

), a, true, q Õ) oe Õ , (2) holds as well. Now, suppose x Ø x Õ . Then, by (x, x Õ) |= , we have a,c 1 +d 1 N, q Õ) oe Õ . We conclude that (2) holds.

Towards the other direction, suppose that (2) is true. Again, we will distinguish two (not necessarily disjoint) cases: Suppose x AE x Õ and suppose there is

There is an MSO formula such that (q, , a, q Õ) oe and (c

). Thus, (x, x Õ) |= . We deduce that (1) holds.

Assume x Ø x Õ and suppose there is a transition (q, true, ≠(c 2 +d 2 N), a, c

. There is such that (q, , a, q Õ) oe and (c

). This implies (x, x Õ) |= . Thus, (1) holds.