
HAL Id: hal-01407919
https://hal.science/hal-01407919

Submitted on 2 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing Sparse Representations of Systems of
Rational Fractions

François Lemaire, Alexandre Temperville

To cite this version:
François Lemaire, Alexandre Temperville. Computing Sparse Representations of Systems of Rational
Fractions. Computer Algebra in Scientific Computing, Sep 2016, Bucharest, Romania. pp.349 - 366,
�10.1007/978-3-319-45641-6_23�. �hal-01407919�

https://hal.science/hal-01407919
https://hal.archives-ouvertes.fr

Computing Sparse Representations of
Systems of Rational Fractions

François Lemaire, Alexandre Temperville

Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL -
Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille,
France francois.lemaire@univ-lille1.fr, a.temperville@ed.univ-lille1.fr

Abstract. We present new algorithms for computing sparse represen-
tations of systems of parametric rational fractions by means of change
of coordinates. Our algorithms are based on computing sparse matrices
encoding the degrees of the parameters occurring in the fractions. Our
methods facilitate further qualitative analysis of systems involving ra-
tional fractions. Contrary to symmetry based approaches which reduce
the number of parameters, our methods only increase the sparsity, and
are thus complementary. Previously hand made computations can now
be fully automated by our methods.

Keywords: Parametric systems ; simplification of rational fractions ; sparse
basis of vector spaces

1 Introduction

This article presents new algorithms for computing sparse representations of
systems of parametric rational fractions by means of change of variables. The
goal of these algorithms is to help the analysis of parametric systems of rational
fractions by producing sparser and equivalent formulations. Simplifying para-
metric systems is a central task, since many qualitative analyses (such as steady
point analysis, bifurcation analysis, . . .) rely on quite costly computations in
real algebraic geometry (see [1] and references therein).

Symmetry based approaches [2,3,4,5,6] reduce the number of parameters and
as a consequence usually help the analysis of parametric systems. On the con-
trary, our approach keeps the number of parameters (in the same spirit as [2, Al-
gorithm SemiRectifySteadyPoints]) and makes the systems sparsest (in the sense
of Algorithms getSparsestFraction and getSparsestSumOfFractions given later).

This work was motivated by the differential system (see Example 14):
G′ = θ(1−G)− αk1k2k3P

4G

M ′ = ρb(1−G) + ρfG− δMM

P ′ =
4θ(1−G)− 4αk1k2k3P

4G− δPP + βM

16k1k2k3P 3 + 9k1k2P 2 + 4k1P + 1

(1)

where the unknown functions are G = G(t), M = M(t) and P = P (t), and
where the parameters are θ, α, k1, k2, k3, ρb, ρf , δM , δP and β.

Equation (1) was considered in [7], and rewritten with the guessed change of
variables k̄3 = k1k2k3, k̄2 = k1k2, k̄1 = k1, in order to obtain [7, Equation (3.4)]
(in the case n = 4 and γ0 = 1). Our new algorithm getSparsestSumOfFractions
(see Section 4) was designed to automatically compute this change of variables,
which yields the following simpler system:

G′ = θ(1−G)− αk̄3P
4G

M ′ = ρb(1−G) + ρfG− δMM

P ′ =
4θ(1−G)− 4αk̄3P

4G− δPP + βM

16k̄3P 3 + 9k̄2P 2 + 4k̄1P + 1
·

(2)

The relatively small improvement between (1) and (2) in terms of degrees proves
useful while searching for a Hopf Bifurcation. Indeed, the Routh-Hurwitz crite-
rion applied on systems (1) and (2) leads to semi-algebraic systems of the form
h1, h2, h3, h4 = 0, h5, h6, h7 > 0, with respective degrees 9, 2, 9, 42, 12, 20, 23 in
the case of (1), and smaller degrees 7, 2, 7, 32, 8, 14, 19 in the case of (2).

Consider a system of parametric rational fractions, involving parameters of a
set U . To this system, we associate the so-called matrix representation encoding
the degrees of the monomials in U . We then consider an invertible monomial
map φ (i.e. an application which sends each parameter of U to a monomial
in the elements of a set Ū). The monomial map φ acts linearly on the matrix
representation above, which allows us to look for a sparsest matrix representation
using only linear algebra techniques. However, the use of fractions brings some
difficulty since fractions are invariant when both numerators and denominators
are multiplied by the same value. Example 10 shows how to automatically rewrite
the fraction x

1+x+ixτ1w
into the sparser fraction 1

y+1+iτ1w
by first dividing both

numerators and denominators by x and then introducing y = 1/x.
Section 2 introduces the basic concepts. Section 3 introduces two new algo-

rithms. Roughly speaking, the first one called CSBmodulo computes a sparsest
representation of a vector space modulo another vector space, where both vec-
tor spaces are given by their basis. The second one called getSparsestFraction is
a direct application of CSBmodulo for computing a sparsest representation of
a fraction. Section 4 describes Algorithm getSparsestSumOfFractions which is a
generalization of getSparsestFraction for systems or sums of rational fractions.
Section 5 details the (technical) proof of CSBmodulo, relying on Corollary 4
which clarifies the structure of the sparsest bases.

2 Preliminaries

Consider K a commutative field and U = {u1, . . . , un} a set of variables. We
consider monomials in U of the form uα1

1 · · ·uαn
n where the αi are in Z. Since

negative integer exponents are allowed, u1u
−1
2 u3 is considered as a monomial.

The row vector (1, . . . , 1) of length ` is denoted by 1` (or simply 1 when the
context is clear).

2.1 Matrix Representation of a Fraction

Definition 1. Consider a matrix N = (αi,j) in Zn×`, a set T = {t1, . . . , t`} of
elements of K, and an integer g with 1 ≤ g < `. By definition, the triple (N,T, g)
written in the form  α1,1 . . . α1,g α1,g+1 . . . α1,` u1

...
. . .

...
...

. . .
...

...
αn,1 . . . αn,g αn,g+1 . . . αn,` un
t1 . . . tg tg+1 . . . t`

, (3)

represents the fraction q =

∑g
i=1 timi∑`

i=g+1 timi

where mi = u
α1,i

1 u
α2,i

2 · · ·uαn,i
n . The

triple (N,T, g) (or simply N) is called a matrix representation of q.

Example 1. Taking g = 2, U = {a, b}, and K = Q(x, y), the triple

N =

(
1 0

∣∣∣∣ 1 0
)
a

0 2 0 1 b
t1 t2 t3 t4

(4)

with t1 = 2, t2 = 3xy, t3 = y2, t4 = 5x represents the fraction

q1 =
2a+ 3b2xy

ay2 + 5bx
∈ K(U). (5)

Proposition 1. Consider a triple (N,T, g) representing a fraction q. Then, for
any column vector v ∈ Zn, the triple (N+v1, T, g) also represents the fraction q.

Proof. For any integer δ ∈ Z, adding δ1 to the k-th row ofN amounts to multiply
both numerator and denominator of q by the same monomial uδk.

Example 2. By Proposition 1 with v = (−1, 2), the two triples()
1 2 1 1 ā
−2 −2 −2 −1 b̄
t1 t2 t3 t4

(6)

()
0 1 0 0 ā
0 0 0 1 b̄
t1 t2 t3 t4

(7)

represent the same fraction q̄1 of K(ā, b̄) written in two different ways:

q̄1 =
2 ā
b̄2

+ 3 ā
2

b̄2
xy

ā
b̄2
y2 + 5 ā

b̄
x

(8) q̄1 =
2 + 3āxy

y2 + 5b̄x
· (9)

2.2 Monomial Map

In the following definition, the ring K(Ū1/p), where Ū = {ū1, . . . , ūn}, denotes

the ring of fractions K
(
ū

1/p
1 , . . . , ū

1/p
n

)
.

Definition 2. Consider an invertible matrix C ∈ Qn×n, and two sets of vari-
ables U = {u1, u2, . . . , un} and Ū = {ū1, ū2, . . . , ūn}. The matrix C defines the
ring homomorphism φC from K(U) to K(Ū1/p), where p is the lcm of all denom-
inators of the elements of C, in the following way: φC(uk) =

∏n
i=1 ū

ci,k
i for 1 ≤

k ≤ n. The map φC is called a monomial map. One simply denotes φC by φ
when no confusion is possible.

In this article, we will consider special monomials maps φ and fractions q
such that φ(q) is also a rational fraction of K(Ū).

2.3 Action of a Monomial Map

Proposition 2. Consider a triple (N,T, g) representing a fraction q in K(U),
and an invertible matrix C in Qn×n. If CN only contains elements of Z, then
the triple (CN, T, g) is a matrix representation of the fraction φC(q) of K(Ū).

Proof. Immediate.

Corollary 1. Consider a triple (N,T, g) representing a fraction q, an invertible
matrix C in Qn×n, and a column vector v in Qn. If N̄ = CN +v1 only contains
elements of Z, then the triple (N̄ , T, g) is a matrix representation of φC(q).

Proof. Direct consequence of Propositions 1 and 2.

Example 3. Let us respectively denote by N and N̄ the matrices from Equa-
tions (4) and (7), and consider the invertible matrix C()

1 1 ā
−2 −1 b̄
a b

. (10)

Recall the fractions q1 and q̄1 from Examples 1 and 2. One easily checks that
N̄ = CN + v1, where v = (−1, 2). Consequently Corollary 1 implies that q̄1 is
indeed equal to φC(q1).

3 Sparsifying a Fraction

Consider a triple (N,T, g) representing a fraction q ∈ K(U) with the notations
of Definition 1. A sparse matrix N means that many monomials mi involve a
few uj , implying that the fraction q is sparse w.r.t. to the uj .

In this article, we have chosen to make the matrix N sparsest in order to
simplify the corresponding fraction q. To do so, we allow ourselves monomial
changes of variables on U . More precisely, by relying on Corollary 1, we look
for an invertible matrix C in Qn×n and a column vector v in Qn, such that the
matrix N̄ = CN+v1 only has integer values and is sparsest. Anticipating on the
algorithms, the matrix C and the vector v given in Example 3 yield a sparsest
possible matrix N̄ .

[8, Algorithm CSB (Compute Sparsest Basis)] solves the problem above in
the particular case where v is the zero vector. Indeed, [8, Algorithm CSB] takes
as input a full row rank matrix M and returns a sparsest (i.e. with the least
number of nonzeros) matrix M̄ with entries in Z, which is row-equivalent to M
(recall two matrices A and B of the same dimension are called row-equivalent if
A = PB for some invertible matrix P).

As a consequence, Algorithm CSB needs to be generalized to compute a
sparsest basis of the rows of N “modulo” some other basis ; this is what Algo-
rithm CSBmodulo does.

3.1 Algorithm CSBmodulo

Algorithm CSBmodulo below takes as input two matrices N and P such that(
N
P

)
has a full row rank. It returns a matrix N̄ and an invertible matrix C ∈

Qn×n such that N̄ = CN + V P for some matrix V in Qn×s. Moreover, N̄ is
sparsest and only has entries in Z. The proof of Algorithm CSBmodulo is quite
technical, especially proving that the computed N̄ is sparsest. Since the proof
is not necessary to understand the rest of the article, it has been placed in the
appendix.

The idea of Algorithm CSBmodulo is the following. One first considers N

and P in a symmetric way by building a sparsest basis of M =

(
N
P

)
at Line 2,

thus obtaining a matrix M̄ , whose rows are then sorted by increasing number of
nonzeros at Line 4. As a consequence, M̄ = DM for some invertible matrix D.
Then the matrix N̄ is obtained by choosing n rows M̄r1 , . . . , M̄rn of M̄ . Denoting
by E the matrix composed of the n first columns of D, for any choice of rows
in M̄ , one gets N̄ = CN + V P for some matrix V , and where C is composed
by the rows Er1 , . . . , Ern . The choice of rows has to be done carefully. First, the
matrix C should be invertible. This condition is ensured by Line 9. Second, the
matrix N̄ should be sparsest. This condition will be ensured by first selecting
the sparsest rows (i.e. the first rows of M̄ since its rows are sorted).

Example 4. Take the following full row rank matrices

N =

1 1 1 0 1 0 1 1 1
0 1 0 1 1 0 1 0 0
0 0 0 0 1 0 1 0 0

 and P =

1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 1


considered later in Example 12. The matrices D and M̄ computed by Lines 2–5
of Algorithm CSBmodulo are (using our implementation of CSB)

M̄ =


0 1 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0
1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 1 1

 and D =


1 1 −1 −1 0 −1
0 0 0 0 1 0
0 −1 1 1 0 0
0 1 −1 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

 ·

Algorithm 1: CSBmodulo(N,P)

Input: Two matrices N ∈ Zn×` and P ∈ Zs×` such that

(
N
P

)
has full row rank.

Output: A matrix N̄ ∈ Zn×` and an invertible matrix C ∈ Qn×n such that
N̄ = CN + V P for some matrix V in Qn×s. Moreover, N̄ is sparsest.

1 begin

2 M ←
(
N
P

)
;

3 M̄ ← CSB(M) ;
4 Sort the rows of M̄ by increasing number of nonzeros (from top to bottom) ;

5 Compute the invertible matrix D ∈ Q(n+s)×(n+s) such that M̄ = DM ;

6 Denote by E ∈ Q(n+s)×n the n first columns of D ;

7 Consider empty matrices C ∈ Q0×n and N̄ ∈ Z0×` ;
8 for i from 1 to n+ s do

9 if Rank

(
C
Ei

)
> Rank(C) then

10 C ←
(
C
Ei

)
; N̄ ←

(
N̄
M̄i

)
;

11 return N̄ , C ;

The extraction from M̄ of the matrix N̄ by Lines 6–10 will consider the three
first columns of D and ignore rows 2, 4 and 6 of M̄ , yielding

N̄ =

0 1 0 0 1 0 0 0 0
1 0 1 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0

 ·
Remark 1. Algorithm CSBmodulo extracts the matrix C from the n first columns
of D. This extraction could be made by computing the row rank profile [9]: the
row rank profile of an m×n matrix A of rank r is the lexicographically smallest
sequence of r indices of linearly independent rows of A. An PLUQ decomposition
algorithm using Gaussian elimination is proposed in [9] to compute such a set.

3.2 Algorithm getSparsestFraction

This section presents Algorithm getSparsestFraction which computes a sparsest
representation of a fraction q. It relies on Algorithm CSBmodulo. We first present
Propositions 3 and 4 which are needed when the number of variables in U can
be decreased by a monomial map. Propositions 3 and 4 are in fact a particular
case of a more general treatment based on scaling type symmetries.

Proposition 3. Consider a triple (N,T, g) representing a fraction q ∈ K(U).
If N has not full row rank, then there exist a monomial map φC and a full row
rank matrix N ′ such that (N ′, T, g) represents the fraction q̄ = φC(q).

Proof. If N ∈ Zn×` with Rank(N) = p < n, then there exists a full row rank

matrix N ′ ∈ Zp×` and an invertible matrix C ∈ Qn×n such that CN =

(
N ′

0

)
.

By Proposition 2, the fraction q̄ represented by the triple (CN, T, g) is equal to
φC(q). Because the matrix CN has n − p zero rows, one can discard the n − p
last variables and the triple (N ′, T, g) still represents the fraction q̄.

Example 5. Take q2 = 2+3abxy
y2+5abx ∈ K(U) with K = Q(x, y) and U = {a, b}. A

matrix representation of q2 is N =

(
0 1 0 1
0 1 0 1

)
a
b

with t1 = 2, t2 = 3xy, t3 =

y2, t4 = 5x. By taking C =

(
1 0
−1 1

)
and N ′ =

(
0 1 0 1

)
, one has CN =

(
N ′

0

)
.

Consequently, the monomial map φC satisfies φC(a) = ā/b̄ and φC(b) = b̄, thus
φC(q2) = 2+3āxy

y2+5āx ∈ K(Ū).

Proposition 4. Consider a triple (N,T, g) representing a fraction q ∈ K(U),

such that N has full row rank. If

(
N
1

)
has not full row rank, then there exist a

monomial map φC and a matrix N ′ such that (N ′, T, g) represents the fraction

q̄ = φC(q), where

(
N ′

1

)
has full row rank.

Proof. Since N has full row rank and

(
N
1

)
has not full row rank, one has 1 =∑n

i=1 βiNi for some βi ∈ Q. Without loss of generality, one assumes that βn 6= 0
(by exchanging some variables in the set U). Using Corollary 1 and the relation

CN − v1 =

(
N ′

0

)
where C =


0

I
...
0

β1 · · · βn

, v =


0
...
0
1

 and N ′ =

 N1

...
Nn−1

, the

fraction q̄ represented by the (CN, T, g) is equal to φC(q). Because the last row
of CN is zero, one can discard the last variable of U , and the triple (N ′, T, g)

still represents the fraction q̄. Moreover, the matrix

(
N ′

1

)
has full row rank.

Example 6. Take q3 = 2a+3bxy
ay2+5bx ∈ K(U) with K = Q(x, y) and U = {a, b}. A

matrix representation of q3 is N =

(
1 0 1 0
0 1 0 1

)
a
b

with t1 = 2, t2 = 3xy, t3 =

y2, t4 = 5x. One has CN − v1 =

(
N ′

0

)
where C =

(
1 0
1 1

)
, v = (0, 1) and

N ′ =
(
1 0 1 0

)
. Consequently, q̄3 equals φC(q3) = 2āb̄+3b̄xy

āb̄y2+5b̄x
= 2ā+3xy

āy2+5x ∈ K(ā).

Furthermore, q̄3 can be represented by N ′ =
(

1 0 1 0
)
ā , where

(
N ′

1

)
has full

row rank.

Algorithm 2: getSparsestFraction(N,T, g)

Input: A triple (N,T, g) representing a fraction q ∈ K(U)
Output: A triple (N̄ , T, g) and an invertible matrix C in Qn×n, such that

(N̄ , T, g) represents φC(q). Moreover, N̄ is sparsest and only has
entries in Z.

1 begin

2 Apply Propositions 3 and 4 for ensuring that

(
N
1

)
has full row rank ;

3 N̄ , C ← CSBmodulo(N,1) ;
4 return (N̄ , T, g), C ;

Example 7. Let us apply Algorithm getSparsestFraction on the triple (N,T, g)

of (4), representing the rational fraction q1 of (5). The matrix

(
N
1

)
has full row

rank (which is 3) so getSparsestFraction(N,T, g) calls CSBmodulo(N,1). During
the CSBmodulo(N,1) call, the matrix M̄ computed at Line 4 and the invertible
matrix D computed at Line 5 are:

M̄ =

0 1 0 0
0 0 0 1
1 0 1 0

 and D =

 1 1 −1
−2 −1 2

1 0 0

 .

Moreover, the matrix C computed by Lines 6–10 is simply the upper-left two
by two submatrix of D, which is exactly the matrix (10). Finally the matrix N̄
computed by Lines 6–10 is obtained by selecting the two first rows of M̄ , yielding
the matrix (7) and its corresponding fraction (9).

Remark that if one simply computes CN , one gets the matrix representation
(6) corresponding to the fraction (8), which is not as nice as the fraction (9)
represented by N̄ .

The following example shows that the monomial map φC computed by Al-
gorithm getSparsestFraction can involve fractional exponents.

Example 8. Take the matrix representation

N =

 1 0
∣∣∣∣∣∣

0 0
 a

0 3 1 0 b
0 0 0 1 c
x y x y

representing the fraction q = ax+b3y
bx+cy ∈ K(a, b, c) where K = Q(x, y, z). Then

getSparsestFraction(N,T, g) returns

N̄ =

 1 0
∣∣∣∣∣∣

0 0
 ā

0 1 0 0 b̄
0 0 1 0 c̄
x y x y

and C =

 1 0 0
1/2 1/2 1/2
−3/2 −1/2 −3/2

 ·

The following example shows that negative exponents for the parameters are
sometimes needed.

Example 9. Take the matrix representation

N =

(
0 1 −1

∣∣ 0
)
a

2 x y z + 1

representing the fraction q =
2+ax+ y

a

z+1 ∈ K(a) where K = Q(x, y, z). Then
getSparsestFraction(N,T, g) returns N , showing that the representation above,
which contains a negative exponent, is already sparsest. Moreover, N is the
unique sparsest representation (in the sense of this article), since any addition
of a multiple of 1 to N will produce at least three nonzeros.

Vin

R1

R2 C

Vout

Fig. 1. An electric circuit with two resistors R1 and R2 and a capacitor C.

Example 10. The transfer function H = Vout/Vin of the circuit given in Figure 1

is H =
R2

R1 +R2 + iR1R2Cw
, where i2 = −1 and w is the frequency. We consider

H ∈ K(R1, R2, C) with K = C(w) i.e. we consider R1, R2 and C as parameters.
It can be shown that H admits a scaling symmetry acting on R1, R2, and C. As
a consequence, using symmetry based techniques, one can discard one parameter
by a suitable (nonunique) change of variables. For example, H can be rewritten
as

H =
x

1 + x+ ixτ1w
(11)

by taking x = R2/R1 and τ1 = R1C. Also, H can be rewritten as

H =
1

y + 1 + iyτ2w
(12)

by taking y = R1/R2 and τ2 = R2C. Other changes of variables would also be
possible but are not given here.

The relations (11) and (12) are not sparsest. Relation (12) can easily be made
sparsest using the change of variables a = yτ2 yielding H = 1

y+1+iaw · However,

Relation (11) requires a slightly more subtle treatment, by first dividing both
numerators and denominators by x thus writing H = 1

1
x +1+iτ1w

and then taking

y = 1/x (please note that a = τ1 since a = yτ2 = (R1/R2)R2C = R1C = τ1).
The division by x will be automatically discovered by getSparsestFraction applied
to the triple

N =

(
1
∣∣∣∣ 0 1 1

)
x

0 0 0 1 τ1
1 1 1 iw

thanks to the line 1 added to N during the call of CSB, allowing to replace the
first line N1 of N by N1 − 1 =

(
0 | −1 0 0

)
. Moreover, our implementation of

CSB will negate the row
(
0 | −1 0 0

)
since it only contains nonpositive entries.

3.3 Complexity of getSparsestFraction

Except the CSBmodulo call, the instructions of Algorithm getSparsestFraction are
done at most in O(n3). In fact, the complexity of getSparsestFraction is dominated
by the one of CSBmodulo, which can be exponential in n in the worst case [8].

4 Sparsifying a Sum of Fractions

We now consider a sum of rational fractions in K(U). It could be rewritten as
a single fraction by reducing the fractions to the same denominator. However,
one will avoid such a manipulation for two reasons. First, this can increase the
sizes of the numerator and denominator. Second, a practitioner might want to
keep an expression as a sum of fractions. This last point occurs for example in
the Biology context with expressions of the shape p+

∑ Vixi

xi+ki
where the xi are

concentrations, p is a polynomial in the xi and some other parameters, and the
Vi and ki are the constants of some Michaelis-Menten terms [10,11].

4.1 Matrix Representation of a Sum of Fractions

Definition 3. Consider s fractions qi ∈ K(U), where each fraction qi is repre-
sented by a triple (N i, T i, gi). Then, the set of the triples H = {(N i, T i, gi)1≤i≤s}
is called the matrix representation of the sum S =

∑s
i=1 qi. The set H of triples

can be written as the following matrix, where the double bar separates two dif-
ferent fractions:

N =
(
N1 N2 . . . Ns

)
. (13)

Example 11. Consider the sum of rational fractions S1 defined by

S1 =
2a+ abxy

ay2 + 7bx
+ abcy +

abcy2 + 3ay

ax
· (14)

A possible matrix representation of S1 is()
1 1 1 0 1 0 1 1 1 a
0 1 0 1 1 0 1 0 0 b
0 0 0 0 1 0 1 0 0 c
t1 t2 t3 t4 t5 t6 t7 t8 t9

(15)

with t1 = 2, t2 = xy, t3 = y2, t4 = 7x, t5 = y, t6 = 1, t7 = y2, t8 = 3y, t9 = x.

Consider a matrix representation (N i, T i, gi)1≤i≤s of a sum S =
∑
qi. Be-

cause Proposition 1 can be applied independently on each fraction qi, one in-
troduces Proposition 5 which generalizes Proposition 1, after introducing the
matrix 1S of size s× (

∑s
i=1 card(T i)) defined as

1S =


1card(T 1)

1card(T 2)

. . .

1card(T s)

 . (16)

Proposition 5. Consider a set of triples (N i, T i, gi) representing a sum of ra-
tional fractions S =

∑s
i=1 qi as written in Definition 3. For any V ∈ Zn×s,

N̄ = N + V 1S is a matrix representation of S.

Proof. Apply Proposition 1 on each fraction qi.

4.2 Action of a Monomial Map

The following Proposition 6 and Corollary 2 are respectively the generalizations
of Proposition 2 and Corollary 1 for sum of fractions.

Proposition 6. Consider a set of triples (N i, T i, gi) representing a sum of ra-
tional fractions S =

∑s
i=1 qi as written in Definition 3. Consider an invertible

matrix C in Qn×n. If CN only have entries in Z, then CN is a matrix repre-
sentation of S̄ = φC(S).

Corollary 2. Consider a set of triples (N i, T i, gi) representing a sum of ra-
tional fractions S =

∑s
i=1 qi as written in Definition 3. Consider an invertible

matrix C in Qn×n and a vector V in Qn×s. If CN + V 1S only have integer
entries, then CN + V 1S is a matrix representation of S̄ = φC(S).

Example 12. Take the map φ(a) = ā, φ(b) = ā
b̄
, φ(c) = b̄c̄

ā defined by the follow-
ing invertible matrix C: ()

1 1 −1 ā
0 −1 1 b̄
0 0 1 c̄
a b c

. (17)

With this change of variables, the fraction S1 of Example 11 becomes

S̄1 =
2ā+ ā2

b̄
xy

āy2 + 7 ā
b̄
x

+ āc̄y +
āc̄y2 + 3āy

āx
· (18)

Taking the matrix representation N of S1 as written in (15), CN is a matrix
representation of S̄1 = φC(S1). The matrix CN can however be made sparser
by considering

V =

−1 0 −1
1 0 0
0 0 0

 , (19)

and by applying Corollary 2. Indeed the following matrix N̄ = CN + V 1S1 is
also a matrix representation of S̄10 1 0 0 1 0 0 0 0

1 0 1 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0

 ā
b̄
c̄
, (20)

and represents

S̄1 =
2b̄+ āxy

b̄y2 + 7x
+ āc̄y +

c̄y2 + 3y

x
· (21)

Remark that adding V 1S1 to CN corresponds to multiplying by b̄
ā the numerator

and the denominator of the first fraction, and dividing by ā the numerator and
the denominator of the third fraction in (18).

4.3 Algorithm getSparsestSumOfFractions

Algorithm getSparsestSumOfFractions relies on the same ideas as Section 3: given
a set of triples (N i, T i, gi) representing a sum of rational fractions S =

∑s
i=1 qi

as written in Definition 3, one looks for an invertible matrix C and a matrix V
such that CN + V 1S is sparsest.

We first present Proposition 7, which is a slight generalization of Proposi-
tion 4. As in Section 3, Proposition 7 is needed when the sum of fractions admits
scaling type symmetries in the U variables.

Proposition 7. Consider a set of triples (N i, T i, gi) representing a sum of ra-
tional fractions S =

∑s
i=1 qi as written in Definition 3. Assume that N has full

row rank. If

(
N
1S

)
has not full row rank, then there exists a monomial map φC

and matrices N ′i such that the set of triples (N ′i, T i, gi) represents the fraction

S̄ = φC(S), where

(
N ′

1S

)
has full row rank.

Proof. The matrix M =

(
N
1S

)
has not full row rank, so there exists a non

trivial linear dependency between the rows of M . Since both matrices N and 1S

have full row rank, the linear dependency necessarily involves a row of N with a
nonzero coefficient. The end of the proof is similar to the one of Proposition 4.

Algorithm 3: getSparsestSumOfFractions(H)

Input: A set H = {(N i, T i, gi)1≤i≤s} representing a sum of rational fractions
S =

∑s
i=1 qi ∈ K(U) as in Definition 3.

Output: A set H̄ = {(N̄ i, T i, gi)1≤i≤s} and an invertible matrix C in Qn×n,
such that H̄ represents φC(q). Moreover N̄ =

(
N̄1|| · · · ||N̄s

)
is

sparsest and only has entries in Z.
1 begin

2 Apply Propositions 3 and 7 for ensuring that

(
N
1S

)
has full row rank ;

3 N̄ , C ← CSBmodulo(N,1S) ;

4 Write N̄ as
(
N̄1|| · · · ||N̄s

)
;

5 return {(N̄ i, T i, gi)1≤i≤s}, C ;

Example 13. Recall the fraction S1 from Example 11 and its matrix representa-

tion N of Equation (15). One checks that the matrix

(
N
1S

)
has full row rank.

Consequently getSparsestSumOfFractions(N) calls CSBmodulo(N,1S). Our im-
plementation of CSBmodulo returns the matrix N̄ of Equation (20) and the
matrix C of Equation (17). Consequently, getSparsestSumOfFractions computes
the sparsest sum of fractions S̄1 = φC(S1) of Equation (21).

4.4 Application to systems of ODEs

The techniques presented for the sum of fractions can be adapted for systems of
differential equations of the form X ′(t) = F (Θ,X(t)) (where X(t) is a vector of
functions, F (Θ,X(t)) is a vector of fractions and the Θ are parameters), such as
Equation (1). Indeed, one can consider the sum of fractions

∑s
i=1 Fi(Θ,X(t)),

where the Fi(Θ,X(t)) denotes the components of the vector F (Θ,X(t)), and
apply Algorithm getSparsestSumOfFractions.

Example 14. Consider the sum S of the three right-hand sides of Equation (1)
seen as a fraction of K(k1, k2, k3) with K = Q(θ, α, ρb, ρf , δM , δP , β). It can
represented by

N =

 0 1
∣∣∣∣∣∣

0
∥∥∥∥∥∥

0
∣∣∣∣∣∣

0
∥∥∥∥∥∥

0 1
∣∣∣∣∣∣

1 1 1 0
 k1

0 1 0 0 0 0 1 1 1 0 0 k2

0 1 0 0 0 0 1 1 0 0 0 k3

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

.

with t1 = θ(1−G), t2 = −αP 4G, t3 = 1, t4 = ρb(1−G) + ρfG− δMM , t5 = 1,
t6 = 4θ(1 − G) − δPP + βM , t7 = −4αP 4G, t8 = 16P 3, t9 = 9P 2, t10 = 4P ,
t11 = 1.

Algorithm getSparsestSumOfFractions(S) yields the sparsest Equation (2) and
the monomial map φ(k1) = k̄1, φ(k2) = k̄2/k̄1, φ(k3) = k̄3/k̄2 encoded by the

matrix C =

1 −1 0
0 1 −1
0 0 1

. Please note that the matrix 1S was not useful in the

computations, since N̄ = CN .

5 Proof of Algorithm CSBmodulo

This last section is the most technical part of the article. We first present some
definitions and intermediate results. We then present a new corollary showing
that all the sparsest row bases of the same matrix (see Definition 4) share some
common structure (see Corollary 4). Finally the proof of Algorithm CSBmodulo
is presented.

Let M (resp. v) be a matrix (resp. vector). We denote by N (M) (resp. N (v))
the number of nonzero coefficients of M (resp. v).

Definition 4. Let M ∈ Qn×` a matrix with full row rank. One calls sparsest
row basis of M any matrix M̄ which is sparsest and row-equivalent to M .

Definition 5. Let N ∈ Qn×` and P ∈ Qn×s two matrices with full row rank.

Assume that

(
N
P

)
has full row rank. One calls sparsest row basis of N modulo P

any matrix N ′ which is sparsest and satisfies N ′ = CN+V P for some invertible
matrix C and some matrix V .

Following Lemma 1 is a rephrasing of [8, Theorem 1]. It is the key ingredient
ensuring the greedy approach chosen in [8], which consists in repeatedly reducing
the number of nonzeros of some row of M , until it is not possible anymore.

Lemma 1. Take a full row rank matrix M . The matrix M is not a sparsest row
basis of M iff there exists an index i and a row vector v such that vi 6= 0 and
N (vM) < N (Mi).

Corollary 3. Take a full row rank matrix M . If the matrix M is not a spars-
est row basis of M , Lemma 1 applies. Moreover, replacing the row Mi by vM
yields a sparser row-equivalent matrix. See [8, Algorithm EnhanceBasis] for an
implementation of Corollary 3.

Proposition 8. Take a sparsest basis N ′ of N modulo P with the same as-
sumptions as in Definition 5. Then there exist matrices P ′, C ′, V ′, G′,W ′ such

that

(
N ′

P ′

)
is a sparsest basis of the matrix

(
N
P

)
, with

(
N ′

P ′

)
=

(
C ′ V ′

G′ W ′

)(
N
P

)
where C ′ is invertible.

Proof. The existence of C ′ and V ′ is given by Definition 5. Consider the matrix

M ′ =

(
N ′

P

)
. If M ′ is not a sparsest row basis of

(
N
P

)
, it can be made sparser

using Corollary 3. Moreover, the row to improve is necessarily not a row of N ′,

since N ′ is a sparsest row basis of N modulo P . After applying Corollary 3 a

certain number of times, one gets a sparsest row basis

(
N ′

P ′

)
of

(
N
P

)
which

proves the existence of P ′, G′ and W ′.

Proposition 9. Take a sparsest basis M̄ of a full row rank matrix M . Assume
that the rows of M̄ and M are sorted by increasing number of nonzeros. Let D
be the matrix defined by DM̄ = M . Then N (M̄i) ≤ N (Mi) for any 1 ≤ i ≤ n.
Moreover, for any 1 ≤ i, j ≤ n, if N (Mi) < N (M̄j), then Dij = 0.

Proof. Let us prove the first point and assume N (Mi) < N (M̄j) for some i and
j with Dij 6= 0. Following ideas from Corollary 3, M̄ is not sparsest since M̄j

could be replaced by the sparser row Mi since Mi =
∑
j DijM̄j and Dij 6= 0.

Let us now prove that N (M̄i) ≤ N (Mi) for any 1 ≤ i ≤ n. By contradiction,
assume that there exists a k such that N (M̄k) > N (Mk) and N (M̄i) = N (Mi)
for i ≤ k − 1. Each row Mi is a linear combination of rows of M̄ . If all k first
rows of Mi were linear combinations of the k − 1 rows of M̄ , then the k first
rows would not be linear independent, and M could not have full row rank.
Consequently, there exist two indices i, l and a row vector v such that i ≤ k ≤ l,
M̄i = vM̄ with vl 6= 0. Since N (M̄l) ≥ N (M̄k) > N (Mk) ≥ N (Mi), the row M̄l

can be made sparser by replacing it by the sparser row Mi using Lemma 1. This
leads to a contradiction since M̄ is sparsest.

The new following corollary proves that all sparsest row bases of some fixed
matrix share some common structure.

Corollary 4. Take two sparsest basis M̄ and M ′ of the same matrix M . Assume
that the rows of M̄ and M ′ are sorted by increasing number of nonzeros. Let T
the matrix defined by M̄ = TM ′. Then for any 1 ≤ i ≤ n, one has N (M̄i) =
N (M ′i). Moreover, T is a lower block triangular matrix, where the widths of
blocks correspond to the width of the blocks of rows of M̄ which have the same
number of nonzeros.

Proof. It is a direct consequence of Proposition 9 applied twice: the first time by
considering that M̄ is a sparsest row basis of M ′, the second time by considering
that M ′ is a sparsest row basis of M̄ .

Lemma 2. Let H ∈ Qm×` and U ′ = Qt×m. If U ′H = 0 then Rank(U ′) +
Rank(H) ≤ m.

Proof. Consequence of the Rank-nullity theorem applied on the transpose of H

Proof (CSBmodulo is correct). The fact that the computed matrices N̄ , C sat-
isfies N̄ = CN + V P for some V is a consequence of the selection strategy in
the loop. It is left to the reader. Moreover, the matrix N̄ has entries in Z since
it is a submatrix of M̄ which also have entries in Z because it was computed by
Algorithm CSB.

The difficult point is to show that N̄ is sparsest. To prove that point, we
assume that N (N̄) > N (N ′) for some sparsest row basis N ′ of N modulo P ,
and show a contradiction. By Proposition 8, there exists a matrix P ′ such that(
N ′

P ′

)
is a sparsest basis of the matrix

(
N
P

)
. Let us denote M ′ the matrix

obtained by sorting the rows of

(
N ′

P ′

)
by increasing number of nonzeros. Let

us introduce the indices s1 < . . . < sn such that M ′si = N ′i . By Corollary 4,
N (M̄i) = N (M ′i) for any 1 ≤ i ≤ n, and there exists an invertible lower block
triangular matrix T such that M̄ = TM ′.

For sake of simplicity, one assumes that the number of nonzeros in the rows
of M̄ are strictly increasing, hence the matrix T is lower triangular with nonzero
diagonal elements. Denote by r1, . . . , rn the indices of the rows of M̄ which are
selected by the loop in Algorithm CSBmodulo to produce the matrix N̄ (i.e. N̄i =
M̄ri for 1 ≤ i ≤ n). Since we assumed N (N̄) > N (N ′), then N (N̄k) > N (N ′k)
for some k. By taking k minimal, one has N (N̄1) ≤ N (N ′1), . . . , N (N̄k−1) ≤
N (N ′k−1) and N (N̄k) > N (N ′k). From the inequalities above, one has r1 ≤ s1,
r2 ≤ s2, . . . , rk−1 ≤ sk−1 and rk > sk, which we summarize here:

M̄ T M ′

...
M̄r1

...
M̄rk−1

...

...

...
M̄rk

...



=

T1,1

...
. . .

Tn,1 · · · Tn,n





...

...
M ′s1

...
M ′sk−1

...
M ′sk

...

...



.

Among the first sk rows of M̄ , there are k − 1 rows which were selected by
the algorithm. As a consequence, sk − k + 1 rows were not selected, implying
that each unselected row Ei with i ≤ sk is a linear combination of the previous
rows Ej with j < i. By storing row-wise those linear combinations above in a
matrix U , one gets a (sk − k+ 1)×n matrix, where columns from indices sk + 1
to n are zero. Moreover, the matrix U has full row rank since U has a echelon
form.

Let us write D =
(
E F

)
. By definition of U , one has UD =

(
UE UF

)
=(

0 UF
)
. Since M̄ = DM , then UM̄ = UDM =

(
0 UF

)(N
P

)
= UFP .

On the other side, since M̄ = TM ′, then UM̄ = UTM ′. Since the columns
from indices sk + 1 to n of U are zero, the matrix UT also have columns from
indices sk + 1 to n which are zero. Moreover, UT has also full rank.

With notations of Proposition 8 and some easy computations, the product
UTM ′ can be written as UTHN + JP where H has sk rows including the rows
1, 2, . . . , k of C ′ and some rows of G′, and some matrix J .

Consequently, UM̄ = UFP = UTHN + JP which implies (UF − J)P =

(UTH)N . Since

(
N
P

)
has full row rank, UTH (and also (UF−J)) is necessarily

the zero matrix.
By Lemma 2, Rank(UT)+Rank(H) ≤ sk. However, Rank(UT) = sk−k+1,

and Rank(H) ≥ k since the k rows C ′1, . . . , C ′k are taken from the invertible
matrix C ′. Thus Rank(UT) + Rank(H) ≥ sk + 1 which contradicts Rank(UT) +
Rank(H) ≤ sk. As a consequence, the assumption N (N̄) > N (N ′) leads to a
contradiction, so N (N̄) ≤ N (N ′) and N̄ is indeed sparsest.

References

1. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. 2nd
edn. Volume 10 of Algorithms and Computation in Mathematics. Springer-Verlag
Berlin Heidelberg (2006)

2. Lemaire, F., Ürgüplü, A.: A Method for Semi-rectifying Algebraic and Differ-
ential Systems Using Scaling Type Lie Point Symmetries with Linear Algebra.
In: Proceedings of the 2010 International Symposium on Symbolic and Algebraic
Computation. ISSAC ’10, New York, NY, USA, ACM (2010) 85–92

3. Sedoglavic, A.: Reduction of Algebraic Parametric Systems by Rectification of
Their Affine Expanded Lie Symmetries. In Anai, H., Horimoto, K., Kutsia, T., eds.:
Proceedings of the 2007 Algebraic Biology. AB 2007, Springer Berlin Heidelberg
(2007) 277–291

4. Hubert, E., Labahn, G.: Scaling Invariants and Symmetry Reduction of Dynamical
Systems. Foundations of Computational Mathematics 13(4) (2013) 479–516

5. Fels, M., Olver, P.J.: Moving Coframes: II. Regularization and Theoretical Foun-
dations. Acta Applicandae Mathematica 55(2) (1999) 127–208

6. Olver, P.J.: Applications of Lie groups to differential equations. 2nd edn. Volume
107 of Graduate Texts in Mathematics. Springer Verlag New York (1993)

7. Boulier, F., Lemaire, F., Sedoglavic, A., Ürgüplü, A.: Towards an Automated
Reduction Method for Polynomial ODE Models of Biochemical Reaction Systems.
Mathematics in Computer Science 2(3) (2009) 443–464

8. Lemaire, F., Temperville, A.: On Defining and Computing “Good” Conservation
Laws. In Mendes, P., Dada, J.O., Smallbone, K., eds.: Proceedings of the 2014
Computational Methods in Systems Biology. CMSB 2014, Springer International
Publishing Switzerland (2014) 1–19

9. Dumas, J.G., Pernet, C., Sultan, Z.: Computing the Rank Profile Matrix. In: Pro-
ceedings of the 2015 International Symposium on Symbolic and Algebraic Compu-
tation. ISSAC ’15, New York, NY, USA, ACM (2015) 149–156

10. Henri, V.: Lois générales de l’action des diastases. Librairie Scientifique A. Her-
mann, Paris (1903)

11. Michaelis, L., Menten, M.L.: Die Kinetik der Invertinwirkung. Biochemische
Zeitschrift 49 (1913) 333–369

	Computing Sparse Representations ofSystems of Rational Fractions

