\

On Defining and Computing “Good” Conservation Laws

Francois Lemaire, Alexandre Temperville

» To cite this version:

Francois Lemaire, Alexandre Temperville. On Defining and Computing “Good” Conservation Laws.
Computational Methods in Systems Biology, Nov 2014, Manchester, United Kingdom. pp.1 - 19,
10.1007/978-3-319-12982-2_ 1 . hal-01407915

HAL Id: hal-01407915
https://hal.science/hal-01407915
Submitted on 2 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01407915
https://hal.archives-ouvertes.fr

On Defining and Computing “Good”
Conservation Laws

Francois Lemaire! and Alexandre Temperville!

Université Lille 1, LIFL, UMR CNRS 8022, Computer Algebra Group,
francois.lemaire@univ-lillel.fr,a.temperville@ed.univ-1lillel.fr

Abstract. Conservation laws are a key-tool to study systems of chemi-
cal reactions in biology. We address the problem of defining and comput-
ing “good” sets of conservation laws. In this article, we chose to focus
on sparsest sets of conservation laws. We present a greedy algorithm
computing a sparsest set of conservation laws equivalent to a given set
of conservation laws. Benchmarks over a subset of the curated models
taken from the BioModels database are given.

Keywords: conservation analysis, sparse conservation laws, biological
models, sparse null space, greedy algorithm.

1 Introduction

Many biological processes can be modelled by systems of chemical reactions. In
order to study such systems, one usually computes its (linear) conservation laws
(i.e. linear combinations of number of species) which have the property of being
constant along the time. In this article, we only consider (linear) conservation
laws. For a given chemical reaction system, a complete set of conservation laws
is easily computed by computing a basis of the kernel of the transpose of the
stoichiometry matrix of the system [10].

This paper tries to answer to the difficult question: “what is a good conserva-
tion law ?”. Consider for example the well known enzymatic degradation given
by the reactions £ 4+ S < C and C' — E + P. It admits for example E + C
and S + C + P as conservation laws. One could as well consider their sum (i.e.
E + 2C + S + P), their difference (i.e. E — S — P), ...On the example, the
laws E + C and S + C' + P seem less artificial and closer to the physics of the
system, than the two laws F+2C+ S+ P and E— S — P. Indeed the law E+C
corresponds to the conservation of the enzyme E, and S + C' + P corresponds
to the conservation of the substract S (which is either in the form S, C or P).

In an attempt to define “good conservation laws”, we think that a good con-
servation law should have many zero coeflicients (i.e. sparse laws) and many
positive coefficients. Concerning the sparse property, we think that a practi-
tioner would understand better sparse laws than dense laws, since sparse laws
are shorter and thus easier to read. Moreover, a sparse conservation law can
also be useful when doing substitutions in differential equations to preserve the

sparsity of the differential equations. For example, if one has a sparse system
X = F(X) (where X is a vector of species X1, X, ...), one can use a conser-
vation law involving X; (say X7 + X5 — Xs = ¢¢) to discard the variable X;
by substituting X; by an expression in the other species (cp — X5 + X5 on the
example). Consequently, a sparse conservation law will more likely preserve the
sparsity of the differential equations. Concerning positive coefficients, we think
that conservation laws with positive coefficients are more likely to represent a
conservation of matter.

Those two criteria (sparsity and positiveness) are sometimes impossible to
satisfy at the same time. For example, if we have a basis of two conservation laws
X1+ Xo+ X3 and X5+ X3+ X4, then the difference X; — X4 is sparser than any
of the two laws but involves a negative coefficient. Moreover, in some particular
examples, there are no conservation laws with positive coefficients only (like in
A+ B — 0 which only admits A — B as a conservation law).

In this paper, we have chosen to compute a sparsest basis of conservation
laws, leaving the positivity argument for a further work. As a consequence, our
approach differs from computing minimal semi-positive P-invariants (i.e. con-
servation laws with non-negative coeflicients with minimal support [13]).

Our approach corresponds to the well known Nullspace Sparsest Problem
(NSP) which is proven to be NP-hard in [3]. NSP consists in finding a matrix
with the fewest nonzeros, whose columns span the null space of a given matrix.
Approximate algorithms to solve NSP are given in [3,4].

We chose to develop our method by testing it on the Biomodels database [1].
Our hope was that biological models might have special properties and might
be solved easily even if the problem is NP-hard. Even if we could not exhibit
special properties of the biological models, our method computes the sparsest
basis of conservation laws for most curated models of the Biomodels database
(see Section 5), thus validating our approach.

Some usual linear algebra algorithms can sometimes produce a sparser basis,
with no guarantee it is a sparsest one. The Hermite normal form is such a
technique, the (reduced or not) row echelon form is another. In the context of
Z-lattices, [5] introduces and computes “short” (pseudo-) bases using the LLL
algorithm [7] and a variant of the Hermite normal form. In a numerical context
(i.e. using floating point coefficients), there are methods to compute sparser basis
(as in [2] where the turnback algorithm computes a sparse and banded null basis
of a large and sparse matrix).

[14,10] present method based on numerical computations (QR decomposi-
tion, SVD,...) to compute exact conservation laws of large systems. Finally, we
wonder if the techniques used in the extreme pathways [12,11] could be used to
compute sparse conservation laws.

The paper is organized in the following way. Section 2 presents, on an exam-
ple, the idea of our algorithm ComputeSparsestBasis(B), which computes a spars-
est basis equivalent to B. Section 3 presents the algorithm ComputeSparsestBasis
and its sub-algorithms, and Appendix A details their proofs. Section 4 details the
implementation and improvements. Finally, Section 5 shows our benchmarks.

2 A Worked Out Example

We illustrate our method on the model number 361 (BIOMD0000000361) of the

BioModels database [1,8]. For clarity reasons, one renames the species in the

following way : VIIa.TF — V, VIIa.TF_X — VX, VIIa.TF_Xa — VX,

TFPI - T,XaTFPI - X,T, XaTFPI.VIIa.TF — X,TV, Xa — X,.
The model contains the five following chemical reactions:

X+V o VX, VX = VX, VX, & Xo+V
X, 4+ T X, T, V+X, T X,TV.

By choosing the vector of species t(XaTV, X, X, VX, VX TV, XaT), one
can compute the stoichiometry matrix M and a basis of conservation laws (writ-
11 1 1 1001
ten row by row) B = [1 0 0 1 1 010| by computing a basis of the
0-1-1-1-1100
nullspace of the transpose of M (denoted ‘M). Thus, the matrix B represents
the three conservation laws:

L XTIV A+ X+ X+ VX, + VX + X, T
2. X IV+VX, + VX4V
3. - Xo—X-VX,-VX+T

Our method for decreasing the number of nonzeros consists in finding a linear
combination w = B of the rows of B such that w contains less nonzeros than
one row B; of B. If one can find such a combination w, it feels natural to
replace the row B; by w in order to decrease the total number of nonzeros in
B. Repeating this process until no such linear combination can be found, one
obtains a sparsest basis in terms of nonzeros. This approach is greedy and is
justified in Section 3.

However, replacing a row of B by w should only be done if one maintains a
basis. This last requirement is fulfilled by replacing the row B; of B by w only
if v; # 0 (which loosely speaking means that the information in the row B; has
been kept).

Consider the linear combination w = WwB with v = («, 3,7), so one has
w=(a+8,a—y,a—vy,a+—v,a+8—,7,8,a). The number of nonzeros of
w clearly depends on the values of «, § and ~. In order to compute the number of
nonzeros of w, one considers all possible cases, corresponding to the cancellation
or the non cancellation of each element of w. In theory, if w has n components,
one has 2™ cases to consider. For example, if we request w to have the form
(#£0,0,0,0,0,# 0,0,# 0) one considers the following system of equations and
inequations:

a+ B #0 (column 1)

a—v =0 (columns 2 and 3)
a+pB—~v=0 (columns 4 and 5)
v # O (column 6)

B8=0 (column 7)
a # 0 (column 8)

This last system admits for example the solution a = =1 and 8 = 0. The
corresponding linear combination w = wB is w = By + B3z = (1,0,0,0,0,1,0, 1)
which contains 3 nonzeros, and is thus better than the rows By, Bs and Bs
(which respectively involves 6, 4, and 5 nonzeros). Since w involves the rows
B; and Bj (i.e. a # 0 and 8 # 0), one can replace By or Bs by w. Note that
replacing Bo by w would lead to a matrix of rank 2, meaning that our basis has
been lost. For example, replacing B; by w, one obtains an equivalent basis:

10 0 0 0101
B'=[10 0 1 1010
0-1-1-1-1100

In practice, one does not enumerate all the possible patterns of zeros and
nonzeros for the vector w. Instead, one considers the columns of B one by one
from left to right, and one builds systems of equations (corresponding to the zeros
in w) and inequations (corresponding to the nonzeros in w). Since each column
of B yields two cases, one builds a binary tree of systems of equations and in-
equations. By doing this, many branches are hopefully cut before all the columns
of B have been treated. For example, if one tries to cancel the first five columns

a+B =0 (1% column of B)
of w, one gets the system of equations { « —v =0 (2"¢, 3" columns of B) .
a+B —y =0 (41" 5t" columns of B)
which only admits the useless solution « = 8 =~y = 0.

Let us continue the improvement of B’. Following the same ideas as above,

one can find the following linear combinations of the rows of B’:

w' =B, — B, — B, =1(0,1,1,0,0,0,—1,1)
which has less nonzeros than Bj. By replacing B} by w, one gets the basis

100001 0 1
B"=[10011010
011000-11

Finally, further computations would show that there does not exist a linear
combination of the rows allowing to improve our basis B”. In that case, one
knows that our basis is a sparsest one. If one replaces the third line of B” by
(1 111100 1), then one gets three conservation laws with a total of 13 non-
negative coeflicients (instead of 11 nonzero coefficients for B”). One can show
that computing the minimal semi-positive P-invariants (as done in [13]) would
retrieve these three conservation laws with 13 nonzeros.

To summarize, our method adopts a greedy approach by successively im-
proving the initial basis (each time by only changing one row), until it reaches
a sparsest basis. Each improvement consists in a binary tree exploration where
each node is a system of equations and inequations.

3 The Algorithm ComputeSparsestBasis

3.1 Sparsest Basis of Conservation Laws

As mentioned in the introduction, we have chosen to compute sparsest basis of
conservation laws. We define that notion precisely in this part.

Let B be a matrix of dimensions m x n over Q, with m < n. The matrix B
is called a basis matriz if B is a full rank matrix i.e. Rank(B) = m. In this
paper, a basis matrix contains a basis of conservation laws written row by row.
Let B and B’ be basis matrices of same dimensions. B and B’ are equivalent
if and only if there exists an invertible matrix () such that B = QB’. Let M
(resp. v) be a matrix (resp. vector), we denote N (M) (resp. N'(v)) the number
of nonzero coefficients of M (resp. v). Let v be a vector, we denote N (v) the
number of nonzero coefficients in the first k coefficients of v. A basis matrix B’
is a sparsest basis matriz if and only if for any basis matrix B equivalent to B,
one has N (B') < N(B).

For any basis matrix B, it is clear that there exists a sparsest matrix B’
equivalent to B. Indeed, consider the set of all equivalent matrices to B, and
pick one matrix B’ in that set such that N (B’) is minimal.

3.2 A Greedy Approach

Our method follows a greedy approach. Given a basis matrix B, one looks for a
vector v and an index ¢ such that N(vB) < N(B;) and v; # 0. If such v and i
exists, one can decrease the number of nonzeros of B by replacing the row B;
by wB. Moreover, the rank of B does not drop since one has v; # 0. When such
suitable v and 7 do no exist, our method stops and claims that our basis has
become a sparsest one. This last claim is not obvious, since one could have fallen
in a local minimum. The following theorem justifies our greedy approach.

Theorem 1. A basis matriz B is not a sparsest one if and only if there exist a
vector v and an index j such that N(vB) < N'(B;) and v; # 0.

Proof. «: Taking B’ = B and replacing the row B’ by B, one gets a matrix B’
equivalent to B such that N'(B’) < N(B), which proves that B is not a sparsest
one.

=: Assume B has dimensions m x n. There exists B’ equivalent to B such
that M(B’) < N(B). By permuting the rows of B and the rows of B’, one can
assume N (By) > N(Bg) > -+ > N(B,,) and N (B}) > N (Bj) > --- > N(B),).
As N(B) =30, N(B;) > >0 | N(BL) = N(B’), there exists an index k such
that N'(By) > N (By,). Since B and B’ are equivalent, each row of B’ is a linear
combination of rows of B. If all the m —k+1 rows By, By |, , B}, were linear
combinations of the m — k rows By.11,..., Bm, then B’ would not be a full rank
matrix. Thus, there exist a vector v and indices j,I with 57 < k < [such that
B] = B with v; # 0. Since N(B]) < N(B},) < N(By) < N(Bj), one has
N(wB) = N (Bj) < N(Bj) with v; # 0. O

3.3 Description of a Task

As explained in Section 2, our method builds a (binary) tree of systems of equa-
tions and inequations. In practice, one only stores the leaves of the tree in con-
struction. One introduces the notion of task which basically represents one leaf
of the tree. In order to cut useless branches as soon as possible, one also requires
a task to satisfy the extra properties LCP and IZP of Definition 1. Let v be a
vector of dimension n. The notation v # 0 means that Vi € [1,n], v; # 0.

Definition 1. Let B be a basis matrix. Let A, A be matrices with m columns. Let
(S): jj; ;8 be a system in the variable x. Let ¢ be the number of rows of A.
Let k be the sum of the number of rows of A and A. A taskt = TASK[A, A, ¢, k],
stemming from B, is defined as follow :

e the union of the rows of A and A coincides with the first k columns of B (up
to the order),

o (A, A) satisfies the so-called LCP property (Linear Combination Property)
i.e. there exists a solution v of (S) with at least two nonzero coefficients,

o (A, A, c k) satisfies the so-called IZP property (Increase Zeros Property) i.e.
there exist a solution v of (8) and an index j such thatv; # 0 and Ny, ('vB) <
N(B;).

Proposition 1. Consider a task t = TASK[A, A, ¢, k] stemming from a basis
matriz B, and the system (S), as defined in Definition 1. Consider U = {i €
[1,m],c < N(B;)}. Then one has the following properties:

1. Ae QF=9xm gnd A € Q™ with 0 < ¢ < k < n,

2. For each nonzero solution v of (S), Ny(vB) = c i.e. ¢ is the number of
nonzeros in the first k coefficients of any solution of (S),

3. There exist a solution v of (S) and j € U such that v; # 0 and ¢ < N(By).

Proof. 1. Trivial.

2. Take a nonzero solution v of (S) and consider w = 'wB. Consider a column j
of B with j < k. Then the transpose of this column is either a row of A
or a row of A. If it is a row A; of A (resp. a row A; of A), then the j**
coefficient of w equals zero (resp. is nonzero) since A;v = 0 (resp. A;v # 0).
Consequently, the number of nonzero elements among the first k coefficients
of w =B equals ¢ (i.e. the number of rows of A).

3. It is a consequence of the IZP property and Ny (vB) = c. a

The task tg = TASK[the 0 x m matrix, the 0 x m matrix, 0,0] is called the
initial task. A task t = TASK[A, A, ¢, k] stemming from a basis matrix B of
dimensions m X n is called a solved task if k = n.

Using Proposition 1, a solved task ensures the existence of a vector v and an
index i such that AN (wB) < N(B;) and v; # 0, allowing the improvement of B.

3.4 The Algorithms

In this section, one presents the pseudo codes of the algorithms, and gives some
hints on the way they work. The rigorous proofs of the algorithms are given in
Appendix A.

Algorithm ComputeSparsestBasis(B). It is the main algorithm. It takes
a basis B as an input and returns a sparsest basis B’ equivalent to B. It re-
lies on the algorithm EnhanceBasis(B) which either returns an equivalent ba-
sis B’ with N(B’) < N(B) or proves that B was a sparsest basis. Thus,
ComputeSparsestBasis(B) iterates calls to EnhanceBasis(B) until the basis is a
sparsest one.

Input: B a basis matrix of dimensions m X n
Output: B’, a sparsest basis matrix equivalent to B
1 begin
B’ + B ; a ¢+ true;
while a do
L a, B' < EnhanceBasis(B’) ;

return B’ ;

[SLUN NIV V)

Algorithm 1: ComputeSparsestBasis(B)

Algorithm EnhanceBasis(B). It relies on the algorithms BasisToSolved Task
and EnhanceBasisUsingSolvedTask. The algorithm BasisToSolvedTask(B) builds
a solved task stemming from B if it exists, or returns the empty set if no
such solved task exists. If such a solved task can be computed, Algorithm
EnhanceBasisUsingSolved Task is used to improve the basis B.

Input: B a basis matrix of dimensions m X n

Output: One of the two cases: false and B if B is a sparsest basis matrix ;
true and a basis matrix B’ equivalent to B such that A (B’) < N (B)
otherwise

1 begin

2 t < BasisToSolvedTask(B) ;

3 if ¢t # () then

4 B’ < EnhanceBasisUsingSolvedTask(t, B) ;

5 L return true, B’ ;

6 else
L return false, B ;

Algorithm 2: EnhanceBasis(B)

Algorithm BasisToSolvedTask(B). It looks for a solved task by exploring a
binary tree. It makes use of a stack, initially filled with the initial task. At each
step of the loop, a task ¢ (where k columns of B have been processed) is popped
and two new candidate tasks ¢; and o are built by processing the column k41 of
B. These candidates are pushed onto the stack if they are actually tasks (which
is checked by Algorithm IsTask).

Input: a basis matrix B
Output: a solved task t, stemming from B, or () if no such solved task exists
(i-e. B is a sparsest basis)

1 begin

2 Let S: be an empty stack ;

3 Push the initial task to onto St ;

4 while S; # 0 do

5 Pop a task t = TASK[A, A, ¢, k] from S; ;

6 if k < n then

7 // The task t is not solved

8 Let w be the transpose of the (k + 1)** column of B ;

9 A’<—<A);A’<—<A>;
w w

10 t < [A A ek +1] 5 // t1 may be a task
11 if IsTask(t1, B) then Push ¢; onto S, ;

12 ;

13 to < [A, A e+ 1Lk +1]; // t2 may be a task
14 if IsTask(t2, B) then Push ¢2 onto S; ;

15 |

16 else

17 L return t ;

18 | return () ;

Algorithm 3: BasisToSolvedTask(B)

Algorithm EnhanceBasisUsingSolvedTask(¢, B). It basically finds a vector
v and an index 7 such that N (vB) < N(B;) and v; # 0, which necessarily exist
since t is a solved task. It then builds an improved basis B’ by making a copy
of B and replacing the row B/ by wB.

Algorithm IsTask(t). It checks where a candidate task ¢ is indeed a task, by
checking if ¢ satisfies the LCP and IZP properties. The goal of this function is
to detect as soon as possible useless tasks (i.e. tasks that will not help improving
our basis).

Algorithm NextVector(u). The goal of NextVector is to iterate the p-tuples
of ZP. This is needed in Algorithm EnhanceBasisUsingSolvedTask to obtain a
solution v of the system (&), which is composed of equations (i.e. Az = 0) and
inequations (i.e. Az # 0). Indeed, the only way we have found to obtain solutions

w N

L =RV BN

© ®

10
11
12
13
14
15

16
17
18
19

Input: a solved task t = TASK[A, 4, ¢, n], stemming from B of size m x n
Output: B’ a basis matrix equivalent to B such that B and B’ only differ by

one row and N (B') < N(B)

begin

B+ B
Compute a basis of Ker(A) and store it columnwise in the matrix K of
dimensions m x p, where p = m — Rank(A) ;
Compute U = {i € [1,m],c < N(B;)} ;
if p=1 then
v = the unique column of K ;
Choose ¢ € U such that v; # 0 ;

else
i 0;u+0; // u is the zero vector of dimension p
while ¢ = 0 do

u < NextVector(u) ;

v+ Ku ;

if Av # 0 then

// v is a nonzero solution of (S)
L Choose i € U such that v; # 0 if it exists ;

B+ WwB

Multiply B; by the LCM of the denominators of the elements of B, ;
Divide B; by the GCD of the elements of B; ;

return B’ ;

Algorithm 4: EnhanceBasisUsingSolved Task(t, B)

w

© w N o

10
11
12

13

Input: t = [A, A, ¢, k], satisfying all conditions of a task stemming from a basis

matrix B of dimensions m X n, except LCP and IZP properties

Output: true if ¢ satisfies LCP and IZP (i.e. ¢ is a task), false otherwise
begin

// LCP (resp. IZP) is true if the tests lines 6 (resp. 11) and 8 are false
if (31’ € [1,], Rank (f) = Rank(A)) or (Rank(A) = m) then

L return false ;

// One has (Vi,Rank (;14

if (Rank(A) =m — 1) and A contains at least one zero column then
L return false ;

) = Rank(A4) + 1) and (Rank(A) <m —1)

// One has (Rank(A) < m — 2) or A does not have any zero column
Compute Arrer, the RREF form of A ;
Compute U = {i € [1,m],c < N (B;)} ;
if Vj e U, Arrer is row-unit of index j then
L return false ;

return true ;

Algorithm 5: IsTask(t, B)

of Az = 0 also satisfying Az # 0 consists in iterating some solutions of Ax =0
until Az # 0 is satisfied.

Input: an integer vector u of dimension p
Output: the vector following u for some fixed ordering on Z”

Algorithm 6: NextVector(u)

4 Complexity and Improvements

4.1 Complexity

The bottleneck of ComputeSparsestBasis is located in BasisToSolved Task. Indeed,
the number of while loops performed in BasisToSolved Task can be close to 21 —
1 in the worst case (i.e. when the binary tree is almost completely explored). It is
the only place where an exponential complexity occurs, since all other operations
rely on linear algebra operations (such as computing a nullspace, a RREF, ...).

However, many branches are cut thanks to the line 11 in the algorithm IsTask.
The sparser the matrix B is, the more branches are cut. Indeed, let us de-
note d = max{N(B;),i € [1,m]}. Suppose that, in our binary tree, the left
(resp. right) child corresponds to adding an equation (resp. an inequation). If
the number of inequations ¢ of some task is greater than or equal to d, the
set U at line 10 in IsTask is empty, thus IsTask returns false. This implies that
only the branches starting from the root and going through the right children
at most d times will be explored. The number of processed nodes at depth k
is equal to E?:o (]:) Thus the total number of processed nodes is bounded

n d d n d
k k n+1)

by ZZ <z> = ZZ (z) = Z (i—l— 1). Easy computations show that

k=0 i=0 =0 k=i =0

¢ m+1
Z (- 1) < 2(n+1)**"! which can be much smaller than 2"+ — 1 (for exam-
i

i=0
ple when d is much smaller than n). Experimentally, we observed that models
with small values d were easily solved.

Finally, the number of calls to EnhanceBasis is bounded by the number of
nonzeros of the initial basis B, which is bounded by nd (since the number of

nonzeros decreases at least by 1 at each call of EnhanceBasis, except for the last
call).

4.2 Implementation

We chose to implement algorithms given in Section 3 using the Computer Al-
gebra software Maple, which natively handles long integers and contains many
linear algebra routines with exact coefficients. With no surprise, those algorithms

can be improved because many useless computations are performed. For exam-
ple, many useless rank computations are done in Algorithm IsTask. The next
section describes the improvements of the algorithms given in Section 3.

4.3 Improvements

Computation and Choice of the Solved Task Algorithm BasisToSolved Task
stops when it first encounters a solved task. This solved task may change if one
pushes t5 before ¢; in the Algorithm BasisToSolved Task. This change has no real
impact since it speeds up some examples, and slows down others.

We have experimented another strategy consisting in computing the set of
all the solved tasks stemming from B instead of stopping at the first solved
task. Once this set is computed, one can choose the solved task that leads to
the biggest decrease of the number of nonzeros, and only keep solved tasks with
Rank(A) = m —1 if one encounters a solved task with Rank(A) = m —1 at some
point. Indeed, solved tasks with Rank(A) = m — 1 lead to easy computations in
Algorithm EnhanceBasisUsingSolved Task since p = 1.

It is not clear whether the strategy of computing all the solved tasks is better
or worst than stopping on the first solved task. Indeed, searching all solved tasks
is obviously more costly, but choosing a suitable solved task might decrease the
number of subsequent calls to Algorithm EnhanceBasis.

Using Reduced Row Echelon Forms It is possible to request more properties
for a task TASK[A, A, ¢, k]. For example, one can request A to be in reduced row
echelon form with no zero rows. Moreover, one can request the rows of A to be
reduced w.r.t. the matrix A in the following sense: a row b is reduced w.r.t. A
if the row contains a zero at the location of the pivots of A (reducing a row A4;
by A can be done by subtracting multiple of rows of A to A; to get zeros at the
positions of the pivots of A).

Those requirements have several advantages, especially in Algorithms 4 and
5. In Algorithm 4, the computation of Rank(A) is immediate since it equals the
number of rows of A. Moreover the condition Rank <f > = Rank(A)+1 can be

3
checked immediately: indeed, since A; is reduced w.r.t. A, the condition is true
if and only if the row A; is not the zero row. In Algorithm 5, the computation of
the matrix K is immediate and can be done by simply rearranging the entries
of A in a new matrix K.

Finally, since the rows A; are reduced w.r.t. A, it is easier to detect that two
rows A; and A; are equal modulo a linear combination of lines of A. Indeed, if
this is the case, both lines are necessarily proportional (and then one can discard
one of them).

5 Benchmarks

We have tested our methods on some models taken from the BioModels database
[1] (accessed on June 16th, 2014). Among the curated models, we have selected

all the models involving only one compartment, with rational and integer sto-
ichiometric coefficients. After rejecting models without conservation laws, we
ended up with 214 models.

After computing a basis of linear conservation laws for each of the 214 models,
our method detected that 141 bases were already sparsest ones. In the rest of
the section, one only considers the remaining 73 models.

In this section, the CSB version denotes the non-improved version of the
algorithm ComputeSparsestBasis, as described in Section 3, and the CSB’ version
denotes the version based on RREF computations as described in Section 4.3.
Timings were measured on a Pentium Xeon 3.40GHz with 32Gb of memory.

(Tjgge gg];z Model Size of B d g;mBe gg;{

068 3x8 4 0.15 0.06 475 7x23 14 309.8 10.59
064 4x21 18 28.4 1.99 014 8 x &8 45 > 3000 235.9
183 4 x 67 61 505.1 36.50 478 11 x 33 11 419.4 1.85
086 5x 17 12 15.99 3.12 153 11 x75 38 > 3000 964.6
336 5 x 18 7 3.68 0.30 152 11 x 64 32 > 3000 97.46
237 6x26 17 57.93 0.91 334 13 x73 50 > 3000 132.6
431 6 x 27 15 70.68 10.93 019 15 x 61 13 > 3000 24.36

Model Size of B d

Fig. 1. Timing comparison between the basic version and the improved version
(with B basis matrices of the models and d = max{N(B;),: € [1, m]} as described Section 4.1)

Checking that the 141 bases are indeed sparsest ones takes at most 1s for
each model. The improved CSB’ version takes less than 3000s for 69 models out
of the 73 models. The remaining 4 models involve heavier computations: model
332 takes around 4000s, model 175 takes around 1 day, computation of models
205 and 457 were stopped after 2 days. These 4 models involve between 15 and
40 conservation laws (i.e. B has between 15 and 40 rows), and between 50 and
200 species (i.e. B has between 50 and 200 columns). As shown in [3], finding a
sparsest basis for the null space of a matrix is NP-hard, so it is not surprising
that some models are challenging.

The CSB’ version is faster than the basic version, usually by a factor of at
least 10. Figure 1 shows some timings for a sample of the 69 models. Note that
the timings can be different between models with bases of similar sizes (like
models 153 and 152).

For each basis B, one can define the ratio z = JJ\(/((%/)) where B’ is a sparsest

basis equivalent to B. For a non sparsest basis B, this ratio satisfies 0 < x < 1.
Figure 2 represents the frequency of the 69 models, plus the models 332 and 175
involving heavier computations, as a function of the ratio x.

Appendix B shows a comparison between the number of nonzeros obtained
after some usual linear algebra methods and our algorithm.

30

15

Frequency

10

Fig. 2. Number of bases given some proportion r = N(B)

6 Conclusion

We plan to implement our method in Python, for different reasons: it is a free
software, it handles large integers natively, and it is easy to interface with other
software. One could also implements our method in C (by using the multipreci-
sion arithmetic library GMP [6]) for performance reasons.

Looking back to the problem of getting “good” sets of conservation laws we
discussed in Section 1, it is not always possible to have a basis with the less
possible negative values and a sparsest basis at the same time. There probably
exists a compromise between these two properties, which is left for further work.

Acknowledgements. We would like to thank the reviewers for their helpful
comments and Sylvain Soliman for his help on the Nicotine software (http:
//contraintes.inria.fr/~soliman/nicotine.html).

References

1. Biomodels database. http://www.ebi.ac.uk/biomodels-main/publmodels. [On-
line; accessed June 16th, 2014].

2. M.W. Berry, M.T. Heath, I. Kaneko, M. Lawo, R.J. Plemmons, and R.C. Ward.
An algorithm to compute a sparse basis of the null space. Numerische Mathematik,
47(4):483-504, 1985.

3. Thomas F Coleman and Alex Pothen. The null space problem i. complexity. STAM
J. Algebraic Discrete Methods, 7(4):527-537, October 1986.

4. Thomas F Coleman and Alex Pothen. The null space problem ii. algorithms. STAM
Journal on Algebraic Discrete Methods, 8(4):544-563, 1987.

5. Claus Fieker and Damien Stehlé. Short bases of lattices over number fields. In
Guillaume Hanrot, Francois Morain, and Emmanuel Thomé, editors, Algorithmic

10.

11.

12.

13.

14.

Number Theory, volume 6197 of Lecture Notes in Computer Science, pages 157—
173. Springer Berlin Heidelberg, 2010.

Torbjorn Granlund and the GMP development team. GNU MP: The GNU Multiple
Precision Arithmetic Library. http://gmplib.org/.

A K. Lenstra, H'W. Lenstra, and L. Lovész. Factoring Polynomials with Rational
Coefficients. Afdeling Informatica: IW. Mathematisch Centrum, Afdeling Infor-
matica, 1982.

Mikhail A. Panteleev, Mikhail V. Ovanesov, Dmitrii A. Kireev, Aleksei M. Shibeko,
Elena I. Sinauridze, Natalya M. Ananyeva, Andrey A. Butylin, Evgueni L. Saenko,
and Fazoil I. Ataullakhanov. Spatial propagation and localization of blood coagu-
lation are regulated by intrinsic and protein ¢ pathways, respectively. Biophysical
Journal, 90(5):1489 — 1500, 2006.

. S. Roman. Advanced Linear Algebra. Graduate Texts in Mathematics. Springer,

2007.

Herbert M. Sauro and Brian Ingalls. Conservation analysis in biochemical net-
works: computational issues for software writers. Biophysical Chemistry, 109(1):1-
15, 2004.

Christophe H. Schilling, David Letscher, and Bernhard @. Palsson. Theory for the
Systemic Definition of Metabolic Pathways and their use in Interpreting Metabolic
Function from a Pathway-Oriented Perspective. Journal of Theoretical Biology,
203(3):229-248, April 2000.

Stefan Schuster and Claus Hilgetag. On elementary flux modes in biochemical
reaction systems at steady state. Journal of Biological Systems, 2(2):165-182,
1994.

Sylvain Soliman. Invariants and Other Structural Properties of Biochemical Models
as a Constraint Satisfaction Problem. Algorithms for Molecular Biology, 7(1):15,
2012.

Ravishankar Rao Vallabhajosyula, Vijay Chickarmane, and Herbert M. Sauro.
Conservation analysis of large biochemical networks. Bioinformatics, 22(3):346—
353, 2006.

A Proof of Algorithms

Each subsection of this section proves an algorithm, by proving it stops and re-
turns the correct result. When needed, some mathematical properties are proved
at the beginning of the subsections.

Al

ComputeSparsestBasis(B)

Halting The algorithm halts because EnhanceBasis returns either false, B or
true, B’ and this last case cannot happen indefinitely as the number of nonzeros
in B’ is strictly decreasing and bounded by 0.

Correction The algorithm halts when a = false, i.e. when EnhanceBasis detects
that B’ is a sparsest basis.

A.2 EnhanceBasis(B)

Halting Trivial.

Correction BasisToSolvedTask returns either a solved task or) if no such solved
task exists. If ¢ # (), EnhanceBasisUsingSolved Task computes a new basis matrix
B’ with N(B') < N(B), otherwise no solved task exists, which proves that B is
a sparsest basis.

A.3 EnhanceBasisUsingSolvedTask(t, B)

Lemma 1 (Finite union of vector subspaces). Let K be an infinite field.
If E is a K-vector subspace, then every finite union of proper subspaces of E is
strictly included in E.

Proof. See [9]. O

Theorem 2 (Characteristic theorem of solutions of (S)). Consider A €
Q™ A € Q*™, K € Qm™*? a matriz representing a basis of Ker(A) stored
Az =0

Az £0°

The following assertions are equivalent:

columnwise, and the system (S) : {

1. (8) has nonzero solutions in Q™,
2. | Vi € [1,c],Rank Zl) = Rank(A) + 1) and (Rank(A4) <m — 1),
3. 3uez9\ {0}, AKu 2 0.

Proof. (1) = (3): Take a nonzero solution v in Q™ of (S). Thus, there exists v’
in Q7 \ {0} such that v = Ku’ (since the columns of K are a basis of Ker(A)).
Taking u = v’ (with a suitable integer A such that u belongs to Z9 \ {0}), one
has Ku = Av. Since Av is also a nonzero solution of (S), one has AKu # 0.

(3) = (1): Take v = Ku. Then Av = 0 and Av # 0, so v is a nonzero solution
of (S).

(1) = (2): Consider a nonzero solution v of (S). Since v is nonzero and sat-
isfies Av = 0, one has Ker(A) # {0} thus Rank(A) < m — 1 (according to the

/i = Rank(A) for some i.
Then, A; is a linear combination of rows of A so A;v = 0, hence v is not a solution
of (S), contradiction. We conclude that Vi € [1,], Rank (/Ii) = Rank(4) +1
and Rank(A4) <m — 1.

(2) = (1): The set of solutions of (S) is V = Ker(A) \ Ui, Ker(4;) =

Ker(A) \ U;_, Ker <;14> For any i € [1,c], Ker (f) is a proper vector

rank-nullity theorem). Let us suppose that Rank

subspace of Ker(A4) as Rank (4

A-) = Rank(A) + 1. According to Lemma 1,

U;_, Ker (;;1 is strictly included in Ker(A). Moreover, since Rank(A) < m—1,

one has Ker(A) # {0} which implies V' \ {0} # 0. O

Halting If p = 1, it is trivial that the algorithm halts. If p # 1, one needs to
check that the while loop halts:

e As t is a solved task, there exists a nonzero solution v in Q™ of (S) and
j € U such that v; # 0 and ¢ < N(B;) according to Proposition 1.

e Using the third point of Theorem 2, there exists a vector u in Z7 such that
the vector v = Kwu is a nonzero solution of (S). Hence, the while loop will
eventually reach such a u since NextVector enumerates all elements of Z4.

Correction At line 2, B’ < B. At the end of the algorithm, B} is modified and
contains more zeros than B;. Indeed, N (B}) = ¢ and since i € U, ¢ < N(B;).
Finally, B’ is also a basis matrix since B} = B with v; # 0.

A.4 NextVector

There is some freedom in coding this algorithm (which is not given in this paper),
in particular the ordering in which the p-tuples are output. However, to ensure
the termination of Algorithm EnhanceBasisUsingSolvedTask, one requires the Al-
gorithm NextVector(u) to iterate all the p-tuples of ZP. This can be achieved
for example by starting from the zero tuple, and enumerating the tuples of Z?
by increasing l-norm (where the 1-norm of a tuple is the sum of the absolute
values), and by lexicographic order for tuples of the same 1-norm. For example,
when p = 2, the p-tuples can be enumerated in the following way: (0,0), (—1,0),
(0,-1), (0,1), (1,0), (—2,0), (—1,-1), (-1,1), (0,—2), (0,2), ...

One could also rely on a random number generator, provided it has the
property to eventually generate any p-tuple with a nonzero probability (in order
to ensure the halting of Algorithm EnhanceBasisUsingSolved Task).

A.5 BasisToSolvedTask(B)

Halting Consider a current task ¢. The algorithm stops if ¢ is solved (i.e. k = n).
Otherwise, t is not a solved task and generates new tasks, obtained from ¢, with
k + 1 columns processed (instead of k). This last case cannot occur indefinitely.

Correction Consider a non solved task ¢ inside the while loop. One creates the
object t1 (resp. t2) corresponding to the cancellation (resp. the non cancellation)
of the coefficient number k£ + 1 of the linear combinations of the lines of B. The
objects t; and to are possibly discarded thanks to the function IsTask if they
are not tasks (i.e. if they cannot be used to increase the number of zeros).
Consequently, all cases are considered and the function will return () if and only
if there does not exist any solved task stemming from B.

A.6 IsTask(t, B)

Proposition 2. Let M be a matriz. Then M has a zero column if and only if
Ker(M) contains at least one vector with exactly one nonzero coefficient.

Proof. Trivial a

Corollary 1. Let M be a matriz. Then M does not have any zero column if and
only if Ker(M)\ {0} only contains vectors with at least two nonzero coefficients.

spe rxm cxm Az =0
Proposition 3. Take A € Q ,AeQ and the system (S) : Ar 20" If
(8) has nonzero solutions and Rank(A) < m—2, then (S) has nonzero solutions
with at least two nonzero coefficients.

Proof. Rank(A) < m — 2 < Dim(Ker(A4)) > 2 with the rank-nullity theorem.
Consequently, there exist at least two independent nonzero vectors v; and vs so-
lutions of Az = 0. Consider a nonzero solution v of (S). By a topology argument
the vector v+e1v1+e2v9 is also solution of (S) for any e and &5 satisfying |e1| < €
and |ea| < e (for a suitable small fixed € > 0). Suppose that v 4+ £1v1 + £2v2 has
exactly one nonzero coefficient for any |e1] < € and |e3] < . That would imply
that both v; and vy have exactly one nonzero coefficient at the same position,
which is impossible since v; and vy are linearly independent. Consequently, V'
contains at least one nonzero vector with two nonzero coefficients.

Theorem 3. Consider A € Q™™ , A € Q°*™ and the system (S) : {j/élli ;8 ’

The following assertions are equivalent :

1. (8) has nonzero solutions with at least two nonzero coefficients,
2. (8) has nonzero solutions and at least one of the two following conditions is
true:
— Rank(A) <m —2,
— A does not have any zero column.

Proof. (1) = (2): Since (S) has nonzero solutions, then Rank(A) < m — 1. If
the condition Rank(A4) < m — 2 is not true, then one has Rank(A4) = m — 1.
Consequently, Ker(A) is generated by one vector containing at least two nonzero
coefficients. According to Corollary 1, A does not have any zero column.

(2) = (1): Direct consequence of Corollary 1 if Rank(A) = m — 1, or Propo-
sition 3 if Rank(A4) < m — 2. O

Definition 2. A matriz A is row-unit of index j if there exists a row of A
with only one nonzero coefficient, which is at position j.

Theorem 4. Consider a matrix A" in Q"™ under reduced row echelon form.
Let K be a matriz containing a basis of Ker(A") stored columnwise. Suppose that
Ker(A’) # {0}. For any index j, the following assertions are equivalent:

1. A’ is row-unit of index 7,

2. K; =0.

Proof. (1) = (2): There exists a row A} = (0---010---0) where the 1 is at
position j, for some ¢ in [1,7]. Thus, any solution v (in particular all elements
of the basis K) of A'v = 0 must satisfy v; = 0, hence K; = 0.

(2) = (1): From A’K = 0, one has ‘K'A" = 0. Since K; = 0, the column j
of 'K is zero, which implies that the canonical vector e; belongs to Ker(K)
using Proposition 2. Hence, the row [= tej = (O ---010--- 0), where the 1 is
at position j, is a linear combination of the rows of A’. Since A’ is in reduced
row echelon form, if the combination [of rows of A’ involved strictly more than
one row of A’, I would at least involve two nonzero coefficients (corresponding
to the pivots). Thus, [is a row of A’ and A’ is row-unit of index j. O

Halting Trivial.

Correction

1. If the first condition (line 3) is true, then (S) has no nonzero solutions in
Q™, so t does not satisfy condition LCP, and one returns false. Otherwise,
one has (Vi € [1,], Rank <;14> = Rank(A)+ 1) and (Rank(4) <m—1) so
3
(S) has nonzero solutions according to Theorem 2.

2. If the second condition (line 6) is true, since (S) admits nonzero solutions and
thanks to Theorem 3, (S) does not have solutions with at least two nonzero
coefficients, so ¢t does not satisfy LCP, and one returns false. Otherwise, ¢
satisfies LCP.

3. If the third condition (line 11) is true, then for any j € U, one has K; =0
thanks to Theorem 4. Consequently, any solution v of (S) satisfies v; = 0
for all j € U. Therefore, t does not satisfy IZP and one returns false.
Otherwise, there exists a j € U such that K; # 0 thanks to Theorem 4,
so there exists a column w of K such that w; # 0. It may happen that
w; is not solution of (S). In that case, consider a nonzero solution u of (S)
with at least two nonzero coefficients. By a topology argument, the vector
@ = u + eqw is also solution of (S§) for any rational e, satisfying |e1] < €
(where € is a small rational). Finally, one can choose a suitable £ to obtain
the condition @; # 0, and (S) satisfies IZP. One then returns true.

B Comparison with some Matrix Algorithms

We consider a sample of 10 models taken from the 61 models where computations
end in less than 3000s. We present here the number of nonzeros of the initial bases
and of the bases obtained after using our algorithm (CSB), the Reduced Row
Echelon Form (RREF), the LLL algorithm [7] and the Hermite Normal Form
(HNF). When comparing our algorithm with the usual linear algebra algorithms
we used, one sees that the sparsest bases are not always reached by these linear
algebra algorithms and that they sometimes make it worst.

Number of nonzero coefficients

70

60

_ initial basis
basis after CSB
basis after RREF
basis after LLL
basis after HNF

Sample of bases

Fig. 3. Number of nonzeros after some matrix algorithms

i

