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Abstract

In this paper, we consider the problem of wireless power control in an interference channel where trans-
mitters aim to maximize their own benefit. When the individual payoff or utility function is derived from
the transmission efficiency and the spent power, previous works typically study the Nash equilibrium of the
resulting power control game. We propose to introduce concepts of correlated and communication equilibria
from game theory to find efficient solutions (compared to the Nash equilibrium) for this problem. Commu-
nication and correlated equilibria are analyzed for the power control game, and we provide algorithms that
can achieve these equilibria. Simulation results demonstrate that the correlation is beneficial under some
settings, and the players achieve better payoffs.

1 Introduction

In this work, the notion of correlated equilibrium, which is a generalization of the Nash equilibrium, is
applied in the context of power control in wireless network to determine efficient cooperative strategies.
Power control in wireless networks has been studied using game theory in literature [8, 18] by characterizing
the Nash equilibrium. However, as the Nash equilibrium is often inefficient, introducing the concept of
correlated equilibrium will improve the players utility.

Several works apply the concept of correlated equilibrium to the wireless communications paradigm, we
will now present some of the relevant papers. The papers [21, 22] look at peer-to-peer (P2P) networks, where
the behavior of greedy users can degrade the network performance. Here, the authors introduce correlated
equilibrium to improve the player utilities. The paper [23] studied the energy efficiency in ad hoc networks,
and proposed a cooperative behavior control scheme to determine cooperative strategies, and help non-
cooperative players to coordinate their strategies using the correlated equilibrium. An efficient broadcasting
strategy in wireless ad hoc networks is proposed in [12], modeling the interaction among nodes as a game,
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the action set comprises two actions, to forward or drop the received message from the source. To achieve
the correlated equilibrium, linear programming, and a distributed learning algorithm based on the regret
matching procedure [13] are used.

The main objective of this paper is to propose another equilibrium concept (i.e., correlated equilibrium)
in the context of wireless power control games, which allows players to obtain a larger equilibrium set and
more efficient points in the presence of a correlation device. Assuming that we can add a correlation device
to the game, is it possible to create a mechanism such that the equilibrium payoff set of the obtained game
includes payoffs that are not in the initial set (game without correlation mechanism)? We provide answers to
this question in this paper.

The key contributions and novelty of our paper are as follows:

1. Introduce the concepts of correlated and communication equilibrium to power control in wireless net-
works.

2. Provide an algorithm to achieve a correlated equilibrium via regret matching.
3. Provide an algorithm to obtain the pareto-optimal correlated equilibrium via Linear programming.
4. An extensive numerical study comparing the efficiency of the proposed correlated equilibrium with the

standard Nash equilibrium.

2 System model

We consider a system comprised K ≥ 2 pairs of interfering transmitters and receivers, where the transmitters
want to communicate with their respective receivers. The channel gain of the link between Transmitter
i ∈ {1, ...,K} and Receiver j ∈ {1, ...,K} is denoted by gi j ∈ G (here gi j are the real valued channel gains),
where G = {g1, . . . ,gN} represents the alphabet of the possible channel gains. The transmitter i transmits at
discrete power level pi ∈Pi = {p1

i , . . . , pM
i }, with p1

i = Pmin
i and pM

i = Pmax
i . Note that G ,Pi ⊂ R≥0∀i.

We denote by ϕ a communication efficiency function which measures the packet success rate as a function
of the signal to interference and noise ratio (SINR). It is an increasing function and lie in [0,1], and is
identical for all the users. Let Ai denote a finite discrete set of actions that can be taken by player i. In a
power control game, this action corresponds to the wireless signal power used by the transmitter i. The SINR
at receiver i ∈K writes as:

SINRi =
aigii

σ2 +∑ j 6=i a jg ji
. (1)

where ai ∈A〉 is the power of the transmitter i and σ2 is the noise power.
Using these notations, the power control game denoted by G , is defined in its normal form as follows.

Definition 2.1 A power control game is a triplet:

G = {K ,{Ai}i∈K ,{ui}i∈K }; (2)

where:

1. K = {1, . . . ,K} is the set of players.
2. Ai = {a1

i , . . . ,a
M
i }, is the corresponding power level set of the player i ∈ {1, . . . ,K}; with am sorted such that

am < am+1m, a1
i = Pmin

i and aM
i = Pmax

i , are respectively the minimum and maximum transmitting power of
player i, M ≥ 1.
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3. u1, . . . ,uK are the function utilities of the K players for a combination of choices a = (a1, . . . ,aK) = (ai,a−i),
where a−i = (a1, . . . ,ai−1,ai+1, . . . ,aK) denotes the power levels of all other players except player i. For
each player i, the utility function ui depends on the success of its transmission, which is a function of all
players’ actions through a, and on the energy spent in transmission ai. Mathematically, the players’ utilities
are defined by the following formula (3):

ui(a1, . . . ,aK) = ϕ(SINRi)−αai, (3)

The parameter α > 0, is introduced to weigh the energy cost.

Note that this kind of payoff, different from the traditional energy efficiency (the ratio of the data rate to
the power) has been studied in literature [1], and is relevant when the payoff corresponds to the profit (in
terms of money) for each step. In the following section, we introduce the problem of correlated equilibrium
from the power control game, where an observer is added to help the players to correlate their actions.

3 Problem formulation

In the proposed game (2), the users are modeled as rational players, which means they are expected to
choose actions from the possible choices to maximize their utilities. An important concept to characterize
the outcome of the game is the Nash equilibrium, which states that every player will select an action which
maximizes its utility given the actions of every other player. It corresponds to an action profile from which
no player has interest in changing unilaterally its action. However, it is well known that the Nash equilibrium
does not always lead to the best performance for players [8, 18].

Therefore, other concepts to reach such a more efficient equilibrium needs to be investigated. In this
paper, we will study the concepts of correlated equilibrium and communication equilibrium, introduced by
Aumann [5], and Forges [9], respectively. These concepts allow players to use an external mediator which
provides each of them information about the action to be played in the game. Such a coordination scheme
between players may sustain some equilibrium payoffs that are not achievable by an equilibrium without it
(Nash equilibrium). The same conclusions hold for the sub-game perfect correlated equilibrium in repeated
games, [16]. Moreover, the correlated equilibrium is simpler to compute than the Nash equilibrium [7]. In
the following sub-section, we define the extended game, including an outside observer, and the correlated
equilibrium concept.

3.1 Power control games using a correlated device

The concept of correlated equilibrium is developed by considering an extended game that includes an outside
observer (mediator), which provides each user with a private recommendation regarding which action to
perform. The recommendations are chosen according to a probability distribution over the set of action
profiles. This probability distribution is called a correlated equilibrium, if the action profile in which all
players follow the observer’s recommendations is a Nash equilibrium of the extended game.

Definition 3.1 Define p as a joint probability distribution on the action profile set A = ∏i∈K Ai. The
distribution p is a correlated equilibrium if and only if for every player i ∈K :
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∑
a−i∈A−i

p(ai,a−i)ui(ai,a−i)≥ ∑
a−i∈A−i

p(ai,a−i)ui(a′i,a−i),∀ai,a′i ∈Ai. (4)

Inequality (4) means that for each user i, choosing power level a′i while it received recommendation to
choose the power ai, does not provide a higher expected utility. Thus, it is in the best interest for the users
to follow the recommended action. The set of correlated equilibria is nonempty, closed and convex in every
finite game [13], and it can include distributions that are not in the convex hull of the Nash equilibria distri-
butions. Indeed, Nash equilibrium is a special case of correlated equilibria, where p(ai,a−i) corresponds to
the product of each individual probability. Thus, the set of Nash equilibrium points are a subset of the set of
the correlated equilibrium points.

The correlated equilibrium considers the ability of users to coordinate actions, and computes the opti-
mality by the joint distribution, so it provides a better solution compared with the non-cooperative Nash
equilibrium, where each user acts in isolation. Further, the correlation can provide important insights, when
we face the problem of equilibrium selection in games admitting multiple equilibria, which could be the case
of the proposed game in some setups.

Now, if the problem is to add a mediator to the game and enable players to coordinate their actions, but
also assume that the mediator receives information from the players before gives them recommendations, we
could construct another kind of mechanism, that makes the information coming from players as inputs, and
uses them to find the suitable outputs that correspond to the recommendations. In this scenario, the mech-
anism is also created such that the players have no interest to deviate from the recommendations, which is
the communication equilibrium concept. This information exchange could bring performance improvement
with respect to the case where players coordinate their actions without reporting any information to the me-
diator. In the following Section 3.2, we present how could we apply this concept to the power control game
(2).

3.2 Communication equilibrium in power control games

Here, we assume that the mediator collects information from the players before making them recom-
mendations. In the studied power control game, we assume the players have type sets represented by
Ti = {(g1

ii, . . . ,g
1
Ki), . . . ,(g

N
ii , . . . ,g

N
Ki)}. In the case of a wireless channel, the channel gains are randomly

chosen following a certain (known) probability distribution. Therefore, the ’type’ for each player is chosen
randomly according to the given probability distribution over each player’s type set. Each player i sends in-
formation about his type, i.e., ti ∈ Ti to the mediator (the player might lie if it brings some gain). Thus,
a communication device consists of a system p of probability distributions p = p(.|t)t∈T =∏i∈K Ti over
A =∏i∈K Ai. The interpretation is that every player i∈K reports its type ti = (gii,g ji)∀ j 6=i to the mediator,
which privately recommend ai according to p = p(.|t). The system p defines a communication equilibrium
if none of the players can gain by unilaterally lying on its type or by deviating from the recommended action.

Definition 3.2 The system p defines a communication equilibrium if:

∑
t−i∈T−i

q(t−i|ti) ∑
a∈A

p(a|t)ui(t,a)≥ ∑
t−i∈T−i

q(t−i|ti) ∑
a∈A

p(a|t ′i , t−i)ui(t,a′i,a−i)∀i∈K , ∀ti, t ′i ∈Ti,∀a′i ∈Ai.

(5)
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where q(t−i|ti) = q(t)
∑ti∈Ti q(ti,t−i)

, is the subjective probability assigned to the event t−i, that is the actual profile
of the other players’ types, if ti is the type of i. The definition 3.2 implies that player i does not get a
higher expected utility if it lies about its true type ti and reports t ′i , or if it plays another action a′i instead
the recommended action ai. In the following section, we propose some techniques to achieve correlated and
communication equilibria.

4 Implementation of communication and correlated equilibria

The sets of correlated equilibria and communication equilibria are the subsets defined by the intersection of
the half-spaces given by the inequalities (4) and (5), respectively. In this section, we investigate methods to
obtain correlated and communication equilibria.

4.1 Linear programming method

In this paper, among the multiple correlated equilibria, we consider the one that provides the highest social
welfare. Thus, the problem reduces to computing a correlated equilibrium that maximizes the sum of the
players’ expected utilities. In order to characterize that optimal equilibrium, we propose a linear program-
ming method in which the optimization problem of the power control game can be formulated as follows:

maxc′x
Aix > 0 ∀i ∈K

∑
MK

j=1 x j = 1;
0≤ x j ≤ 1 ∀ j = {1, . . . ,MK}

(6)

Where x′ = (p(a1
1, . . . ,a

1
K), . . . , p(aM

1 , . . . ,aM
K )); c′ = (∑i∈K ui(a1

1, . . . ,a
1
K), . . . ,∑i∈K ui(aM

1 , . . . ,aM
K )).

Ai =



(ui(a
1
i ,a

1
−i)−ui(a

2
i ,a

1
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i ,a

M
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.

(7)

p(ai,a−i) is the probability that the action profile (ai,a−i) is chosen. Thus, a distribution x∗ is said to be
correlated optimal if it is solution of the linear program (6).

In the same manner, we can characterize the optimal communication equilibrium. The solution could be
obtained by solving the following optimization problem:



6 Sara Berri, Vineeth Varma, Samson Lasaulce, and Mohammed Said Radjef

Algorithm 1 Algorithm leading to the optimal correlated equilibrium in power control game
1: In the beginning, the mediator chooses a power profile (ai,a−i) ∈ A according to p∗, that is obtained solving the described

linear program, using an appropriate method.
2: The mediator informs each user i of the power to choose ai.

max ∑
a∈A t∈T

q(t)p(a|t) ∑
i∈K

ui(t,a). (8)

subject to constraint (5)

∑
t−i∈T−i

q(t−i|ti) ∑
a∈A

p(a|t)ui(t,a)≥ ∑
t−i∈T−i

q(t−i|ti) ∑
a∈A

p(a|t ′i , t−i)ui(t,a′i,a−i)∀i∈N , ∀ti, t ′i ∈Ti,∀a′i ∈Ai.

(9)

and for all t ∈T .
∑

a∈A
p(a|t) = 1. (10)

p(a|t)≥ 0. (11)

In the following we summarize the different steps to reach the optimal communication equilibrium.

Algorithm 2 Algorithm leading to the optimal communication equilibrium in power control game
1: The mediator simulates the sequence of reports that could receive from the users, that correspond to channel gain profiles,

and the power profiles that could be received by the users given a channel gain profile.
2: Using a method to solve the linear program constituted by the objective function (8) and the constraints (9)-(11), to find the

optimal probability distributions p(.|t) for all type profile t.
3: For each player i, the Nature randomly chooses type, that corresponds to the channel gain profile (gii, . . . ,gKi), according

to a given probability distribution over the type set Ti.
4: Each player i reports its type, ti, to the mediator.
5: The mediator performs lotteries according to the received type profile, and sends private recommendations to the players,

that corresponds to the transmitting power.

However, with the linear programming method, the computation complexity grows exponentially with
the number of users and actions since an increase in the number of users and actions, results an increase in
the number of constraints. There exists a distributed learning approach, i.e., regret matching [13] to achieve
a correlated equilibrium. However, regret matching does not ensure the pareto optimality of the given cor-
related equilibrium as it converges to an arbitrary correlated equilibrium, whereas the linear program as
defined in (6) gives a correlated equilibrium maximizes the social welfare. In the following, we present the
distributed learning approach.

4.2 Regret matching procedure

A game procedure is proposed in [13], called ’regret-matching’. In which the players measure the regret for
not choosing other actions in the past, and change their current action with probabilities that are proportional
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to these measures. Thus, the game is played with probability distribution over the action set. The details of
the regret-matching algorithm [13] is shown in 3.

Algorithm 3 Regret matching algorithm for power control game
1: For any two distinct power levels a′i 6= ai ∈ Ai calculate the average regret of user i at time t for not choosing a′i as:

Rt
i(ai,a′i) = max{1

t ∑
τ≤t

[ui(a′i,a
τ
−i)−ui(aτ

i )],0}. (12)

2: Let ai ∈ Ai the last power chosen by user i, at
i = ai. Then the probability distribution over the power levels for the next

period, is defined as {
pt+1

i (a′i) =
1
µ

Rt
i(ai,a′i), ∀a′i 6= ai;

pt+1
i (ai) = 1−∑a′i∈Aia′i 6=ai

pt+1
i (a′i),

where µ is an enough large constant.
3: Let For every t, the empirical distribution of the power profile a is:

pt(a) =
1
t
|{τ ≤ t : aτ = a}|. (13)

where |{τ ≤ t : aτ = a}| is the number of times the power profile a has been chosen in the periods before t.

It is shown in [13] that if the players follow the proposed algorithm 3, the empirical distribution (13)
converges to an arbitrary correlated equilibrium of the game if it is not unique. The obtained correlated
equilibrium by applying this procedure is not always Pareto-optimal (but the procedure can achieve the PO
equilibrium). However, the one provided by the linear programming method is Pareto-optima.

5 Numerical Results and Analysis

In this section, we present numerical results. The simulation setup is as follows. The number of Transmitter
and Receiver pairs is equal to 2, K = {1,2}. Set of possible powers, that is the action set Ai, ∀i ∈ K :
M = 25, Pmin

i (dB) = −20, Pmax
i (dB) = +20. The presented results correspond to the expected values over

different values of (g11,g12,g22,g21) that lie in a discrete set Gi = {g1
i , . . . ,g

N
i }, with g1

i = gmin
i , gN

i = gmax
i ,

∀ ∈ iK : N = 10, gmin
i = 0.01, gmax

i = 3, the channel gain increment equals 3−0.01
10 . The means of the channel

gains are given by: (ḡ11, ḡ12, ḡ22, ḡ21) = (1,1,1,1). The communication efficiency function is: ϕ(x) = (1−
e−x)L, L being the number of symbols per packet (see e.g., [8][18][15]). In most of the simulations provided
we take L = 100. The aforementioned parameters are assumed, otherwise they are explicitly mentioned in
figures.

Fig 1 compares the payoffs attained by the regular Nash equilibrium and the correlated equilibrium with
the region of all possible payoffs (in a centralized setting). We observe that the correlated equilibrium can
improve the utility of both the players when compared to the Nash. We are limited to the two action case, but
this is a very relevant case as seen from literature [24]. Fig 2a plots the utility of the correlated equilibrium
and the communication equilibrium for higher action sets, but we plot to a maximum of four actions due
to complexity issues in evaluating the communication equilibrium. Fig 2b compares the solution of regret
matching with that of correlated equilibrium when the action sets are of size 25. Fig 2b demonstrates that
although the regret matching algorithm is computationally fast, the solutions are not pareto-optimal.
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Fig. 1: Sets of: possible payoffs, correlated equilibrium payoffs and Nash equilibrium payoffs for two settings
of parameters.
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Fig. 2: Equilibrium payoffs for larger action sets.

6 Conclusion

We have introduced the concepts of correlated and communication equilibria to the paradigm of wireless
power control games and provided algorithms based on linear programming and regret matching to achieve
these equilibria. Our numerical results indicate that the resulting equilibria can be pareto-optimal and outper-
form the classical Nash equilibrium. While using linear programming to get the communication equilibrium
results in a pareto-efficient solution, it has a computational complexity that is exponential in the action set
size and number of players. Regret matching is computationally less demanding but results in solutions that
are not necessarily pareto-optimal.
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