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Abstract—In this work, the inter-linked problems of band-
width allocation by wireless service providers (WSPs) and WSP
selection by users in heterogeneous cellular networks (HCNs) are
addressed. This work employs a multi-hierarchical game frame-
work. While the interaction between users are modelled using
evolutionary game theory, the interactions between competing
WSP’s are modelled as a non-cooperative spectrum bandwidth
allocation game (N-BAG). Finally the interaction between the
WSPs and the users is modelled as a multi-leader multi-follower
Stackelberg game. Moreover, for the formulated evolutionary
game, the existence and uniqueness of the evolutionary equilib-
rium (EE) was investigated. Conditioned on the obtained EE, the
existence of a Nash equilibrium (NE) for the proposed N-BAG
was proven and an offline algorithm to achieve the equilibrium
state was proposed. Finally, simulation results verify the validity
of the analysis and demonstrate that a unique NE would be
achieved by the HCNs adopting the proposed scheme.

I. INTRODUCTION

Heterogeneous cellular networks (HCNs) are regarded as
a promising approach to cater for the increased demand of
high-data-rate services and requirement of ubiquitous access
[1]–[4]. In this light, HCNs is a novel network structure for the
future. Particularly, in contrast to the traditional pure macro
cellular network, HCNs would consist of high power macro
base stations (MBSs) as well as various classes of low power
nodes, which may include micro BSs (often called eNBs),
femto BSs (FBSs), and possibly future radiating elements [5].

Several works on game theory focused on HCN based sce-
narios can be found in literature [6]–[9]. The major difference
between the above mentioned works and ours the type of
HCN considered in these works. Specifically, different tiers
are deployed by different wireless service providers (WSPs)
and each WSP only provides one service to users. Hence, their
main concerns are spectrum leasing among different WSPs.
This work however, jointly studies the WSP selection by users
and spectrum allocation of WSPs.

In this work, the interactions between the users in an envi-
ronment where HCNs are deployed by several WSPs is studied
and the population share for each WSP is predicted using
results from evolutionary game theory. The WSPs assume
that the user population stabilizes at the EE and competes
for a higher revenue. Each WSP determines the bandwidth
allocation for each service while the users decide which
WSP to subscribe to. Naturally, as every user and WSP are
independent decision makers, this results in a situation best
modelled through game theory.

II. SYSTEM MODEL

In the following sections, we consider an area of interest
where a total of K different service would be provided to users
(e.g., the macrocell service, picocell service and femtocell
service) by N different WSPs having deployed N different
HCNs. Additionally, for each HCN n, there are Kn tiers, each
of which has the BSs of a particular class, such as MBSs or
FBSs. Note that the BSs in different tiers may be differ among
each other due to differences in the transmit power, coverage
area and spatial density [10], [11].

A. Network deployment model

For notational simplicity, we denote the set of WSPs as
N = {1, 2, · · · , N} and meanwhile, for each WSP n, we
denote the set of the Kn tiers of networks as Kn. Without loss
of generality, we consider that Kn ⊆ K = {1, 2 · · ·K}, which
means different WSPs may like to provide different services
to users. For instance, some WSPs may provide macrocell
service, picocell service and femtocell service, but some WSPs
may only provide macrocell service.

The HCNs are operating on the orthogonal spectrum and
each WSP n has to properly allocate the available spec-
trum bandwidth Bn to different tiers, i.e., the WSP deploy-
ment framework is adopted [12]. For the HCN operated
by WSP n, we denote the spectrum bandwidth allocated
to tier k by Bn,k and the spectrum allocation profile by
Bn = (Bn,1, Bn,2, · · · , Bn,Kn). Therefore, there is no inter-
tier interference, only intra-tier interference. Meanwhile, each
user can independently decide to get the corresponding service
from any WSP they prefer. For each user, let us denote the
price charged by WSP n for service k as Cn,k which is the
fixed access fee having units $ per unit of time. For each
service k, the WSPs supporting this service are given by Nk.

Finally, we assume that the user population density is given
by λuk . Here, each service is associated to a certain user
density. This is explained by the preferences of different kinds
of users to different services. For example a highly mobile user
population will prefer the macro-cell service in order to avoid
regular hand-overs. Of course in practice, the same user can
jump from one population set to another, but on an average the
population of each set of user types can be assumed to be a
constant. Each user in a certain population type, picks one out
of the N WSPs to get his service. This choice is determined
by the data rates and prices offered by the WSP, and results



Fig. 1. Illustration of the hierarchical game framework.

in a population share of xn,k associated to each WSP n and
service k, where

∑
n∈Nk

xn,k = 1,∀k.

B. Hierarchical game framework

For each WSP n, a key problem becomes how to accurately
estimate the equilibrium behavior of users and thus make an
informed decision. Here, we consider that all the WSPs and
users are selfish, i.e., each individual user wants to maximize
his payoff by selecting the best WSP and meanwhile, each
WSP wants to attract more users and further improve his
own revenue by properly allocating the spectrum resource to
different tiers. To be more specific, after selecting the service
provided by a particular WSP, each user will obtain some
payoff determined by both the service price and expected
transmission rate. Intuitively, the expected rate of each user
will be determined by both the number of users choosing the
same network (i.e., the effects of other users’ actions) and the
available spectrum bandwidth of the network (i.e., the effect
of WSPs’ actions). Similarly, to attract more users, each WSP
also need to make his own decision on the spectrum partition
by fully considering the behavior of other WSPs and the WSP
selection of users. The scenario under investigation therefore
allows two levels of competition and meanwhile one cyclic
dependency as described above.1

These competitions and cyclic dependency can be illustrated
with the hierarchical framework shown Fig. 1, where three
different game formulation are proposed to investigate the
concerned problem. Specifically, in the lower level we for-
mulate the WSP selection of users as an evolutionary game,
with which the long-term equilibrium behavior of users can be
captured. Meanwhile, in the upper level we have formulated a
non-cooperative game to depict the competition among WSPs.
In addition, the cyclic dependency interaction between the
users and WSPs is modeled by applying the multi-leader multi-
follower Stackelberg game theory, where the WSPs are the

1The definitions for both the user’s payoff function and WSP’s revenue will
be sequentially given in the following section.

leaders and the populations of users are the followers.

III. EQUILIBRIUM ANALYSIS

The formulated Stackelberg game can be solved with
backward induction, i.e., the leaders (WSPs) can make their
responses (i.e., B∗) by fully considering the followers’ (users’)
equilibrium reactions (i.e., x∗(B∗)). The mapping x∗(B∗)
denotes the equilibrium behaviour of users, when given the
WSPs’ strategy profile B∗. Here, x = (x1,x2, · · · ,xK) where
∀k ∈ K ,xk = (xak,k; ak ∈ Nk) represents the population
states. In this section, the evolutionary game modelling the
user reaction to the WSP bandwidth allocation is studied first.
Following which, the WSP’s compete for a higher revenue
assuming the user population to stabilize at the proposed EE
based on their bandwidth allocation.

A. Evolutionary equilibrium analysis

For the WSP selection of users, the formulated evolutionary
game can be formally depicted as follows:
• Population: The users that request for the various ser-

vices. The density of these usrrs is denoted by λuk .
• Strategy space: Each user in the k-th population can

decide to get the service from which WSP. Therefore,
his strategy space can be depicted with the set

Nk = {n |n ∈ N , k ∈ Kn } . (1)

• Population state: Given by x
• Payoff function: The payoff is used to quantify the

satisfaction level or fitness of a user adopting a strat-
egy when given the population state. Mathematically
speaking, the payoff function of an individual player
choosing strategy ak can be considered as a mapping
πak : x → R, ak ∈ Nk, ∀k. We define the payoff
function of each user as:

πak,k = ln

(
1 +

βak,k
xak,k

)
(2)

where βak,k =
R̄ak,kBak,k

ln 2λu
kCak,k

and Rak,k is the expected rate
per bandwidth allocated for a user on WSP n accessing
the network through tier k2. We note that, from the
economic perspective, the logarithmic payoff function
π = ln (1 + y) can capture both the user’s non-satiation,
i.e., dπ

dy > 0, and risk aversion, i.e., dπ2

dy2 < 0, properties.
Hence, such a function has been widely used in wireless
resource allocation to evaluate satisfaction degree of an
agent [13]. It is worth noticing that although only the
logarithmic function is considered here, the following
analysis also holds when other monotonically increasing
functions are adopted.

To depict the dynamically learning behavior of users, the
replicator dynamic is adopted in this paper, which can be

2Rn,k is determined by the infrastructure, transmission power, noise and
many such factors but for the purpose of this work, is treated as a constant
which can be calculated using a stochastic geometry approach.



expressed as follows:

ẋak = δxak (πak (xk)− π̄k (xk)) (3)

= δxak

πak − ∑
a
′
k∈Ak

xa′k
πa′k

(xk)

 ,∀k ∈ K

where δ > 0 is the rate of strategy adaptation and π̄ (x) is
the average payoff in the population. Under this dynamic in
each population, the percentage growth rate of the population
share of each strategy is proportional to the excess of the
strategy’s payoff over the population’s average payoff. This
dynamic could be interpreted biologically as a model of natural
selection, and economically as a model of imitation [14]. As
shown in the above equation, the dynamics of service selection
can be described with K first-order differential equations.
Hence, in order to investigate the equilibrium behaviour of
users, we consider the solution of this evolutionary dynamic
as the fixed point of the differential equations, which is termed
as the evolutionary equilibrium (EE) represented by x∗. When
the population state of the game is at EE, then no user would
like to change his strategy.

Based on the support, the EE can be mainly divided into
two classes, i.e., the boundary EE and interior EE. Partic-
ularly, let us consider a EE x∗ and denote its support as
supp (x∗) =

{
(ak, k)

∣∣ak ∈ Ak, k ∈ K, x∗ak > 0, x∗ak ∈ x∗
}

.
If supp (x∗) = (Ak, k)k∈K we say x∗ is an interior EE.
Otherwise, we term it as a boundary EE. Generally, the class
of the achieved EE for each replicator dynamic is determined
by the initial state x(0), i.e., supp (x(0)) = supp (x∗). In the
concerned problem, we note for the applied replicator dynamic
the boundary EE is not stable since any small perturbation
will make the system deviate from this boundary state. Hence,
in the rest of this paper, we just focus on the interior EE.
Furthermore, we have the following Theorem.

Theorem 1: For the replicator dynamic in (3), the formu-
lated WSP selection game has an unique interior EE state. Let
us denote this EE by x∗, and each element x∗ak in x∗ can be
expressed as

x∗ak =
ηakBak,k∑

a
′
k∈AK

ηa′k
Ba′k,k

,∀ak ∈ Ak,∀k ∈ K (4)

where ηak,k =
λak,kR̄

0
ak,k

Cak,k
. Intuitively, ηak,k can be seen as

the cost performance per unit bandwidth of the k-th service
provided by WSP ak.

Proof: Substituting (2) into (3), we can equally transform
the replicator dynamics of the formulated evolutionary service
selection game as (5). Based on (5), we note that to get the
EE x∗ we should make sure that ẋ∗ak = 0, ∀ak ∈ Ak,∀k ∈ K.
Meanwhile, recalling that x∗ak > 0 (∀ak ∈ Ak,∀k ∈ K) and∑
ak∈Ak

xak = 1, we have

x∗ak =
βak,kR̄

0
ak,k

βa′′k ,k
R̄0
a
′′
k ,k

x∗
a
′′
k

,∀ak, a
′′

k ∈ Ak (6)

and ∑
a
′
k∈Ak

βa′k,k
R̄0
a
′
k,k

βa′′k ,k
R̄0
a
′′
k ,k

x∗
a
′′
k

= 1 (7)

Further, we can get the expression of the EE as

x∗ak =
βak,kR̄

0
ak,k∑

a
′
k∈Ak

βa′k,k
R̄0
a
′
k,k

=

λak,kBak,k

Cak,k
R̄0
ak,k∑

a
′
k∈Ak

λ
a
′
k
,k
B

a
′
k
,k

C
a
′
k
,k

R̄0
a
′
k,k

(8)

where ∀ak ∈ Ak,∀k ∈ K.
Then, replacing the term λak,kBak,k

Cak,k
by ηak,k we conclude

the proof.
Remark 1: From an economic perspective, elements in x∗

denote the expected long-term equilibrium of market shares
of different services. For instance, the expected market share
of each WSP n can be represented as

∑
k∈K

∑
ak∈Nk,ak=n

x∗ak .

Therefore, with such statistical results, WSPs can get some
insights about the effect of bandwidth allocation on users’
WSP selection and further, appropriately deploy the HCNs.

B. Spectrum Bandwidth Allocation Game

In order to obtain a higher market share and revenue, a
WSP must properly allocate the available spectrum. Since the
spectrum allocation profile may not be frequently adjusted,
each WSP should make his decision based on the equilibrium
state of the service selection of users, i.e., the EE.3 Hence, we
define the utility function for the WSP as follows

Un (Bn,B−n) =
∑
k∈Kn

Un,k =
∑
k∈Kn

λukx
∗
n,kCn,k (9)

=
∑
k∈Kn

ϕn,kBn,k∑
m∈Nk

ηm,kBm,k

=
∑
k∈Kn

ϕn,kBn,k∑
m∈Nk,m 6=n

ηm,kBm,k + ηn,kBn,k

where B−n = (B1, · · · ,Bn−1,Bn+1, · · · ,BN ) denotes
bandwidth allocation profiles of WSPs other than WSP n.
Where ϕn,k = λukηn,kCn,k, ∀k ∈ Kn,∀n ∈ N . We also
impose the constraint Bn,k ≥ b on each WSP’s bandwidth
allocation strategy, where b > 0 is a positive constant. 4

As shown in (9), the utility of each WSP is determined
by both its own bandwidth allocation profile and those of
other WSPs. In contrast to the study in the previous section,
we assume that each WSP is fully capable of acquiring all
the information on HCNs deployed by its competitors (other
operators) i.e., the expected average rate and pricing for each
service. Conditioned on this, we can formulate the problem as

3This consideration is mainly because in practice, each operator usually
makes a long-term decision instead of changing his decision frequently [15].

4This b can be interpreted as a minimum bandwidth allocation required in
order to deploy a certain service. b = 0 leads to a potentially undefined utility
function when Bn,k = 0, ∀n for any k. So from a mathematical point of
view this constraint keeps the function continuous and easier to handle.



ẋak = δxak

(
ln

(
1 +

βak,kR̄ak,k,u
xak

)
−

∑
a′k∈Ak

xa′k ln

(
1 +

βa′k,kR̄a′k,k,u
xa′k

))
,∀ak ∈ Ak,∀k ∈ N (5)

a non-cooperative spectrum Bandwidth Allocation Game (N-
BAG) and hereafter, the terms WSP and player would be used
interchangeably in this section.

Definition 1: N-BAG: This game can be represented by the
tuple

G = Γ
(
N , (Bn)n∈N , (Un)n∈N

)
. (10)

Here, N denotes the set of players which is identical to the
WSP set. For each player n, its strategy space Bn is defined
as the set of available spectrum bandwidth allocation profiles

Bn =

{
Bn

∣∣∣∣∣Bn = (Bn,k)k∈Kn
, Bn,k > b,

∑
k∈Kn

Bn,k = Bn

}
(11)

Based on (9), when given a strategy profile

(Bn)n∈N = (B1,B2, · · · ,BN ) ∈ (Bn)n∈N , (12)

the utility function of each player n, n ∈ N , can be expressed
as

Un (Bn,B−n) =
∑
k∈Kn

ϕn,kBn,k
χn,k(B−n) + ηn,kBn,k

(13)

where the term χn,k(B−n) =
∑

m∈Nk,m6=n
ηm,kBm,k depicts

the competition caused to player n from other players.
For a non-cooperative game, NE is the standard solution

standing for the equilibrium state, under which no player can
unilaterally improve its own utility by choosing a different
strategy [16]. Accordingly, we have the following theorem
about the existence of NE for N-BAG.

Theorem 2: For our formulated non-cooperative game N-
BAG, there always admits at least one NE under which no
WSP would like to unilaterally change his own bandwidth allo-
cation strategy. Furthermore, when given other WSPs’ strategy
profile B−n, the best response of WSP n, B∗n =

(
B∗n,k

)
k∈Kn

,
is unique and can be expressed as

B∗n,k = max

{
b,

√
λukCn,kχn,k(B−n)

υ∗nηn,k
− χn,k(B−n)

ηn,k

}
.

(14)

where∑
k∈Kn

max

{
b,

√
λukCn,kχn,k(B−n)

υ∗nηn,k
− χn,k(B−n)

ηn,k

}
= Bn.

(15)

Proof: First, we will prove the existence of NE for the
formulated game N-BAG. After some algebraic computations,

the utility of WSP n is transformed into:

Un (Bn,B−n) = τn −
∑
k∈Kn

λukCn,kχn,k(B−n)

χn,k(B−n) + ηn,kBn,k
(16)

where τn =
∑
k∈Kn

ϕn,k

ηn,k
=

∑
k∈Kn

λukCn,k. It is straightforward

to verify that the n-th player’s utility Un is concave over
his strategy set Bn for each fixed B−n and meanwhile, the
strategy space (Bn)n∈N is a closed and bounded convex set
[17]. Therefore, we can know that G is a concave game
which always admits at least one NE [18]. We note that this
proposition can be proved through three steps. First, when
given a strategy profile, the best response of each player should
be compact and convex. This is true due to the continuity and
concavity of the utility function. Then, it can be proved that
that the best response function Ω : (Bn)n∈N → (Bn)n∈N
is upper semi-continuous. Finally, by applying Kakutani fixed
point theorem, it can be proved that there exists a fixed point
Ω((B∗n)n∈N ) = (B∗n)n∈N . To be more specific, this fixed
point (B∗n)n∈N is an NE for the considered concave game.

Next, we will derive the expression of the best response of
WSP n when given the strategy profile of other WSPs B−n. In
this case, for each player n, selecting the strategy maximizing
his own utility is equivalent to solving the following optimal
spectrum allocation problem

P : min
Bn

∑
k∈Kn

λukCn,kχn,k(B−n)

χn,k(B−n) + ηn,kBn,k
(17)

s.t. Bn,k ≥ b,∀k ∈ Kn, (18)∑
k∈Kn

Bn,k = Bn, (19)

which is a convex problem. For problem P, the Lagrangian
can be written as

Ln =
∑
k∈Kn

λukCn,kχn,k(B−n)

χn,k(B−n) + ηn,kBn,k
(20)

−
∑
k∈Kn

θn,k (Bn,k − b) + υn

(∑
k∈Kn

Bn,k −Bn

)
where θn,k ≥ 0 and υn are the Lagrange multipliers [17].
Moreover, the KKT conditions can be expressed as

∂Ln

∂Bn,k
= − λukCn,kχn,k(B−n)ηn,k

(χn,k(B−n) + ηn,kBn,k)
2 − θn,k + υn = 0,

Bn,k ≥ b,
∑
k∈Kn

Bn,k = Bn,

θn,k ≥ 0, θn,k (Bn,k − b) = 0, ∀k ∈ Nk. (21)

Since problem P is a convex problem, the optimal variable
B∗n =

(
B∗n,k

)
k∈Kn

can be achieved by solving the KKT



conditions (21), which could be further transformed as

υn ≥ λu
kCn,kχn,k(B−n)ηn,k

(χn,k(B−n)+ηn,kBn,k)2
,

(Bn,k − b)
(
υn − λu

kCn,kχn,k(B−n)ηn,k

(χn,k(B−n)+ηn,kBn,k)2

)
= 0,

Bn,k − b ≥ 0,
∑
k∈Kn

Bn,k = Bn, ∀k ∈ Nk. (22)

To solve the above equations, two disjoint cases need to
be considered. Firstly, if υn <

λu
kCn,kχn,k(B−n)ηn,k

(χn,k(B−n))2
=

λu
kCn,kηn,k

χn,k(B−n) , the first three conditions in (22) only hold when

Bn,k =

√
λukCn,kχn,k(B−n)

υnηn,k
− χn,k(B−n)

ηn,k
≥ b. (23)

or

Bn,k = b,

√
λukCn,kχn,k(B−n)

υnηn,k
− χn,k(B−n)

ηn,k
< b. (24)

On the other hand, if υn ≥ λu
kCn,kηn,k

χn,k(B−n) , then Bn,k > b > 0
and the second condition in (22) can not be satisfied simulta-
neously, which further means Bn,k can only equal to b. To this
end, the optimal solution B∗n =

(
B∗n,k

)
k∈Kn

can be expressed
as

B∗n,k = max

{
b,

√
λukCn,kχn,k(B−n)

υ∗nηn,k
− χn,k(B−n)

ηn,k

}
.

Meanwhile, recalling the constraint that
∑
k∈Kn

Bn,k = Bn, we

can get the optimal Lagrange multiplier υ∗n by solving∑
k∈Kn

max

{
b,

√
λukCn,kχn,k(B−n)

υ∗nηn,k
− χn,k(B−n)

ηn,k

}
= Bn.

Finally, we will prove the uniqueness of B∗n when given
B−n. It should be noted that the left side of the above equation
is a piece-wise-linear increasing function of 1

υ∗n
, hence the

solution of this equation is unique when given B−n, which
further means that the solution shown in (14) is also unique
in the same case, i.e., given B−n.

Based on the above, an iterative algorithm has been de-
veloped to obtain the NE of N-BAG, which is shown in
Algorithm 1. Particularly, at the beginning of this algorithm,
the starting point will be initialized based on the available
bandwidth of each WSP, i.e.,

∑
k∈Kn

Bn,k = Bn,∀n ∈ N . After

that, the algorithm goes into a loop. At each iteration t, each
WSP n calculates the optimal Lagrange multiplier υ∗n with
(15) and then, updates the best response Bn(t) by applying
(14). Then, the loop will stop when the relative difference
of the two optimal solutions obtained after the consecutive
iterations (i.e., (Bn(t− 1))n∈N and (Bn(t))n∈N ) is small
enough. Mathematically speaking, the stopping criterion of
Algorithm 1 can be expressed as∥∥(Bn(t))n∈N − (Bn(t− 1))n∈N

∥∥∥∥(Bn(t− 1))n∈N
∥∥ < ε (25)

Algorithm 1 : Computation of NE (B∗n)n∈N .
1: Initialization: For ∀n ∈ N , initialize the starting point
Bn,k(0) satisfying

∑
k∈Kn

Bn,k = Bn and set t = 0.

2: repeat
3: Set t = t+ 1 and Bn(t) = Bn(t− 1) .
4: for n = 1 to N users do
5: Calculate the optimal Lagrange multiplier υ∗n with

(15)and then, update the best response Bn(t) by
applying (14).

6: end for
7: until the stop criterion shown in (25) is satisfied.
8: For Bn,k(t) being equal to b set its value (i.e., Bn,k(t))

and the corresponding utility Un,k(t) to 0, ∀k ∈ Kn, ∀n ∈
N .

9: Set B∗n = Bn(t) and U∗n =
∑
n∈N

Un,k(t), ∀n ∈ N .

where ‖·‖ denotes a proper vector norm and ε is a small
positive constant.

Remark 2: It should be noted that when the initial point
changes, the finally achieved solution may be different unless
the NE of N-BAG is unique. However based on our extensive
simulation results, we conjecture that the NE is unique and
hence, the algorithm will converge to the same point irrespec-
tive of the starting allocation chosen.

Remark 3: From a mathematical perspective, note that this
game and the corresponding IWF algorithm proposed is indeed
quite similar to the well known IWFA for power allocation
[19]. However, a significant difference that makes the problem
harder to prove uniqueness of the NE is that, the water level in
each service k for this work are different unlike the uniform
water level over channels seen in [19].
Note that the developed algorithm is an offline algorithm. In
addition, since we assume that each WSP can acquire the
related information of the co-players, this algorithm can be
independently implemented by each WSP and will converge
to an NE. Since we observe from simulations that the NE is
unique, all WSPs will naturally operate at the unique NE by
adopting this algorithm.

IV. SIMULATION RESULTS

We have tested the uniqueness of the NE for an exhaustive
set of parameters using Monte-Carlo simulations. In this
section, we would like to study the efficiency of the NE. For
this purpose, we compare it with:
• Global Optimum : In a hypothetical case where all WSPs

are given instructions from a centralized agent, the WSPs
choose the bandwidth allocation maximizing their sum
utilities.

• Proportion to density of BSs (PDBS): With this approach
each WSP would allocate the available bandwidth to each
tier based on the density of BSs, i.e.,

Bn,k : Bn,l = λn,k : λn,l,∀k, l ∈ Kn,∀n ∈ N . (26)



Fig. 2. The utility obtained by WSP 1 and WSP 2 when different schemes
are adopted. The point indicated by "Our Alg. 1" converges is the NE.

• Proportion to density of users (PDU): With this approach
each WSP would allocate the available bandwidth to
each tier based on the density of potential users in each
population, i.e.,

Bn,k : Bn,l = λuk : λul ,∀k, l ∈ Kn,∀n ∈ N . (27)

We note that this scheme is similar to the one proposed
in [13], which focuses on the single WSP scenario.

Here, we consider there are two WSPs, each of which deploys
a two-tier HCN 5 to provide services to users with the popu-
lation density as (λu1 , λ

u
2 ) = (20, 60) per km2. In addition, the

available bandwidth of the three WSPs are set as (B1, B2) =
(10, 5) MHz, which means that the bandwidth obtained by
each WPS is not the same and may sometimes happen in some
practical cases. Based on the different deployment of HCNs,
we consider that the price charged by WSPs are also different:
(C1,1, C1,2) = (2, 0.8) and (C2,1, C2,2) = (0.8, 0.1). Also, we
take Rn,k ≈ 1.49nats/sec/Hz, ∀n ∈ {1, 2},∀k ∈ {1, 2}. The
performance of these schemes in terms of the utility achieved
by WSPs are compared in Fig. 2.

V. CONCLUSIONS

The bandwidth allocation of WSPs in a multi-tier HCN has
been formulated as a non-cooperative game and the existence
of Nash equilibrium (NE) has been proven. An algorithm used
to achieve the NE has also been developed. Simulation results
have shown the NE is unique. The resulting NE has also
been compared to the global optimum and other strategies.
These results can be used by competing WSPs to achieve the
NE without having to run an online algorithm which could
potentially take a long time to stabilize.

There are many interesting extensions for this work. One of
the possible extensions is to investigate infrastructure sharing
among WSPs, i.e., the WSPs co-operate to maximize their
revenue while minimizing the cost of infrastructure.

5Note that considering a three or higher tier HCN with more WSPs is easily
possible, however for the numerical part we consider the case of two for better
presentation of the results.
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