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Abstract

The mechanisms of decision-making and action selection are generally thought

to be under the control of parallel cortico-subcortical loops connecting back to

distinct areas of cortex through the basal ganglia and processing motor, cogni-

tive and limbic modalities of decision-making. We have used these properties to

develop and extend a connectionist model at a spiking neuron level based on a

previous rate model approach. This model is demonstrated on decision-making

tasks that have been studied in primates and the electrophysiology interpreted

to show that the decision is made in two steps. To model this, we have used two

parallel loops, each of which performs decision-making based on interactions

between positive and negative feedback pathways. This model is able to perform

two-level decision-making as in primates. We show here that, before learning,

synaptic noise is sufficient to drive the decision-making process and that, after

learning, the decision is based on the choice that has proven most likely to

be rewarded. The model is then submitted to lesion tests, reversal learning

and extinction protocols. We show that, under these conditions, it behaves

in a consistent manner and provides predictions in accordance with observed

experimental data.

Keywords: Basal ganglia; decision making; connectionist models; action

selection.

Page 2 of 45



1 Introduction

Decision making is a process that permits an organism to choose an action

[Lee et al., 2012] from among several alternatives. This process is performed

by a complex network consisting of cortical and sub-cortical structures, among

which the basal ganglia (BG) and thalamus play a major role. Over the past

two decades, the BG have gradually been regarded as involved in selecting

motor actions [Mink, 1996, Kropotov and Etlinger, 1999, Redgrave et al., 1999]

and are now also known to have limbic and cognitive roles [Bar-Gad et al.,

2003]. The structures of the BG therefore have an important role in information

processing at the heart of the nervous system. However, even though their

patterns of connectivity have been in large part described [Gurney et al., 2001]

their complexity is such that they are difficult to analyze formally.

Many models and functional hypotheses have been developed since the original

box and arrow description of connectivity was developed more than 25 years

ago [Albin et al., 1989, Alexander et al., 1986]. These have attempted to

understand the dynamic interactions between the different pathways and their

consequences for functionality [Bar-Gad and Bergman, 2001, Mink, 1996, Red-

grave et al., 1999, Suri and Schultz, 1999]. For instance in the computational

study of Suri [Suri and Schultz, 1999], a single compartment represents a

neuronal subpopulation that describes a given region. The transfer of infor-

mation between the compartments is represented by scalar numeric activity

values. This formalism provides mesoscopic views of information exchange

and show dynamic characteristics that are compatible with behavioral and

electrophysiological experimental results [Berthet et al., 2012, Frank et al.,
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2001, Leblois et al., 2006a, Sukumar et al., 2012]. It has the major advantage

of being computationally tractable because, in general, a single differential

equation allows an entire area to be simulated. Moreover, the parameter space

is relatively small generally because the parameters are mainly used to control

interactions between compartments. On the other hand, it is infrequent that an

attempt is made to describe behavioral findings by means of an integrated neu-

ral model. Here we define the integrated neural model as a bottom-up designed

architecture in which elementary building blocks represent spiking neurons and

synaptic subunits and of which assembly covers a whole neuronal system. For

a deeper understanding of complex central nervous system mechanisms, it is

necessary at some point to attempt a description at this level. For example,

this can be useful to demonstrate the relation between a pathophysiological or

pharmacological mechanism described at the cellular scale and its impact on

the properties of whole nervous system regions. It is therefore clear that these

steps need to be taken in parallel with the development of models at a coarser

scale. The idea of an integrated neural model should thus be seen as a supple-

mentary guarantee of validity and an improvement in the predictive capacities

of mesoscopic computational models (e.g., population rate-models). Along with

the difficulties inherent in neuronal scale models, are the need for a great deal

of computational power, the combinatorial explosion of their dimensionality

and the resulting difficulty in adjusting the system parameters. Despite these

difficulties, some studies of neuronal networks of small and medium size have

shown both their feasibility and the pertinence of their results [Sarvestani et al.,

2013]. Moreover, large scale projects already exist that apply this approach
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with a view to the integration and multi-scale coherence of the computational

model produced [Hines et al., 2008, Migliore et al., 2006].

In this study we have developed a neural network model mainly inspired by

previous architecture and dynamical properties initiated by Leblois [Leblois

et al., 2006a] and extended by Guthrie [Guthrie et al., 2013]. The initial tasks

chosen to test the characteristics of the computational model for this study

come from behavioral and electrophysiological recordings made in non-human

primates by our team [Piron et al., 2016, Pasquereau et al., 2007]. The neural

architecture has been modified [Mink, 1996, Nambu, 2011] to include additional

circuitry details. The first difference in our approach is that, instead of using

population rate-models, we have implemented spiking neurons and synaptic

units circuits with a higher level of detail and dynamics. Moreover we have

submitted the resulting model to additional tests and protocols. We have

first reproduced previous modeling results regarding the role of BG loops in

optimal decision making learning with this new model. We have then shown

that it was able to perform classes of tasks that have not previously been

demonstrated in this type of model. First the model was able to switch to a

different learning task with good performances and without requiring intrinsic

modification. Second it was able to perform additional behavioral processes

related to such as reversal learning and extinction protocol. Third the model

was also able to reproduce the effect of partial lesion studies in a consistent

manner. Our spiking neuron-based description of the BG system has thus

shown, in addition to several innovative results, its coherence with previous

population rate models and moreover, it offers the possibility of investigating
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the effect of cell-level mechanisms on the global BG network properties.

1.1 Behavioral task

Electrophysiological and behavioral data have been obtained from macaque

monkeys in two center-out reinforcement learning tasks [Pasquereau et al.,

2007, Piron et al., 2016]. In the first task, a typical session consisted of series of

trials in which four different target shapes (four-cue protocol) were used, each

associated with a different reward probability (P(R)) of 0, 0.33, 0.66 and 1).

On each trial, two of the cues were selected pseudo-randomly such that each of

the six possible cue combinations was presented 20 times in a complete session.

Our simulation sessions thus contained 120 trials. In the second task only two

different cues were used with P(R)s of 0.25 and 0.75. In both cases, the aim

for the monkeys was to select the cue with the highest reward probability in

order to maximize the reward delivered (fruit juice). Extra-cellular recordings

were performed simultaneously in the left Globus Pallidus pars interna (GPi)

and in the dorsal striatum.

Analysis of the electrophysiology suggests that the cues used in the first be-

havioral task [Pasquereau et al., 2007] can be decomposed into a cognitive

aspect (the cue shape) and a motor aspect (the direction to move). We have

therefore modeled this as two sets of action selection loops in parallel. Each

action selection loop is represented as an area of cortex in closed-loop feedback

through the BG with itself. These loops also comprise associative areas of

cortex and striatum that represent a compression of the two dimensions of the

cue. Associative cortex inputs to the striatum are assumed to be a high-level
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visual representation (arising from parietal cortical areas) that is a combination

of both the cue shape and position [Guthrie et al., 2013]. The four possible

cue shapes are associated with four cognitive cortical subpopulations and a

similar distribution is applied to direction/motor subpopulations. There are

therefore 16 possible combinations of cue shape and direction, each represented

by a subpopulation in associative cortex and striatum. For instance if two

cues are shown in two positions on each trial, only two of the cognitive, two

of the motor and two of the corresponding cortical associative subpopulations

will be activated on each trial. For clarity and ease, we will use the following

nomenclature in this paper. The target shapes will be named C0, C1, C2

and C3 (where C means cortical ”cognitive” subpopulations) and the motor

directions will be named M0, M1, M2 and M3. The P(R) will be distributed as

follow: C0: 0, C1: 0.33, C2: 0.66 and C3: 1. The second task has two different

cues with P(R) of 0.25 and 0.75 that are represented in the same four locations

and processed in a similar manner (two-cue protocol).

1.2 Model architecture

A general schema of the circuitry involving the cortex, BG and thalamus is

shown in Figure 1. There are three main pathways that form cortico-cortical

loops through the BG. The direct pathway (i) overall exerts an excitatory

(positive) feedback that is convergent and focused [Percheron et al., 1984]. In

contrast, the hyperdirect pathway (ii) exercises an inhibitory feedback that

is widespread due to divergence of connections from the subthalamic nucleus

(STN) to the GPi. The interaction between these two pathways has a tendency
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to amplify any difference between cortical networks activating different direct

pathway loops [Mink, 1996]. The indirect pathway (iii) has not been included in

this modeling study for various reasons. It was originally thought to provide a

closed, negative feedback loop [Albin et al., 1989], but with further delineation

of anatomical connections, would seem to form a sub-network with internal

positive and negative feedback loops, at the heart of the BG [Bevan et al.,

1997, Kita and Kita, 1994, Smith and Bolam, 1989]. With this proliferation of

anatomical complexity, it is no longer clear that the indirect pathway forms a

closed cortico-subcortical loop that would be able to transfer precise spatiotem-

poral information [Levy, 1997]. Divergence both in the Globus Pallidus pars

externa (GPe)-STN and the GPe-striatum sub-loops [Bevan et al., 1997, Chang

et al., 1981, Gerfen, 1985] as well as local GPe axon collaterals [Bevan et al.,

1997, Brown et al., 1998] would suggest that this is unlikely.

We have also taken into account the effect of medium spiny neurons lateral

inhibition (LI) in striatal populations of our model. The exact functional

role of these connections remains mostly unknown or controversial but in a

neuronal population LI often plays a role in information processing [Schaette and

Kempter, 2012, Ghodratitoostani et al., 2016]. Recent studies has emphasized

LI involvement in the striatum where it tends to increase the signal-to-noise

ratio [Moyer et al., 2014] and also the BG capability to deal with complex tasks

[Berthet et al., 2016].

The network inputs are sensory representations of the environmental cues and

the action selection occurs over the course of many circuits through the loops.
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Figure 1: Box and arrow diagram of the cortico-basal ganglia network and pathways,
based on [Bar-Gad et al., 2003, Moyer et al., 2014].

,

The model architecture is initially based on that of Leblois [Leblois et al.,

2006a] and Guthrie [Guthrie et al., 2013] and has been adapted to represent

the task under consideration and additional circuitry (cf. Figure 2). The small

number of neurons in each subpopulation is a tradeoff which approximately

takes into account relative structure sizes [Schroll et al., 2014]. It was chosen

for computational tractability and not to represent exact neuronal population

ratios [Humphries et al., 2006]. The subpopulation sizes are: cortex, 100;

striatum, 40; STN, 10; GPi 10; thalamus, 20. The total network size is 3,680
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neurons and the connectivity ensemble between regions comprises 723,200

synapses. This provides a network of sufficient size to produce realistically

complex synaptic interactions, but still computationally tractable on a standard

desktop computer.

1.3 Analysis of cortical activity

As well as representing the salience of the sensory inputs, cognitive and motor

cortical activity also serve as detectors of the choice made and therefore the

behavior of the animal. Presentation of the cues is simulated by an additional

current injection into the corresponding cortical subpopulations [cf. Figs. 3(b)

and 3(c)]. Each simulated trial lasts 1 second from the presentation of the

stimuli. Each ms, the spikes timestamps of each neuron are recorded in parallel

with behavioral events, reward scores and cognitive cortico-striatal synaptic

weight values. For each neuronal subpopulation i of size Nneurons(i), an average

firing rate (i) is computed each ms and expressed in Hz:

α(i) =
Nspikes(i)

Nneurons(i)
.103, (1)

where Nspikes(i) is the number of recorded spikes during this ms. To link

the spiking activity of the model to the behavior and thus to define when

the decision to choose a particular target is made, we compute the difference

in average firing rates between the two activated subpopulations. When this

difference surpasses a threshold value of 40 Hz [Guthrie et al., 2013] this is

referred to as symmetry breaking and the movement selection is then designated
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Figure 2: (Color online) Detailed architecture of the 72 regions of the model. The
cortico-basal ganglia loops are described taking into account the two levels of decision
making: (i) a cognitive loop (blue subpopulations) and (ii) a motor loop (pale red
subpopulations). The cortical and striatal associative regions are in green. Each cell
of the grid (for instance M1 or C3) represents a neuronal subpopulation which size
depends on the region. A partial connectivity template taking into account M3 and
A4 cortical inputs is shown here (for the sake of clarity the complete connectivity
pattern is not shown). The plastic synapses considered in the model exclusively arise
from the cognitive (magenta frame) cortico-striatal projections. The central part of
the figure represents the hyper-direct pathway (cortex - STN - GPi) whereas the right
side represents the direct pathway (cortex - striatum - GPi).

by the cortical motor subpopulation that has the highest firing rate. During

a trial this symmetry breaking can be seen in both the cognitive and motor

loops. In the motor cortex, it is interpreted as the onset of a movement in one
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direction (M0, M1, M2 or M3). A reward is then given or withheld based on

the P(R) of the target chosen by the movement. If the movement is toward the

target shape with the highest P(R), this is considered as a good choice (GC)

even if no reward is given. Similarly a good decision (GD) occurs when the

activity of the cognitive cortical subpopulation associated with the highest P(R)

is greater than the activity of the cognitive cortical subpopulation associated

with the other presented cue.

Figure 3: (Color online) (a) Average neuronal firing rates (Hz) pooled from 30
different networks recorded over 30 trials of 1 s each (N = 30; p < 0 : 05; one −
wayANOV A). Error bars represent standard deviation of the pooled data. (b)
Combination sample of displayed targets during the task with their shape/color
and localization on the screen and (c) encoding of the target presentation in the
corresponding cortical subpopulations (yellow for motor, black for associative and
dark blue and red for the two cognitive subregions).
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1.4 Model implementation

This study required a neuronal model that was sufficiently simple to be im-

plemented in a large-scale network. To restrict the complexity and the size of

the parameter space of the model, we have chosen a leaky integrate-and-fire

neuron (LIF):

C.
dVm(t)

dt
+
Vm(t)− Vrest

R
= I(t) + ξ(t), (2)

if Vm(t) > Vthres : Vm(t)← Vrest, (3)

where Vm(t) is the membrane potential and Vrest the resting potential.

Default values are: C=10−10 F, R = 108 ohms, Vrest=-65 mV, Vthres=-55 mV

and refractory period is 1 ms. ξ(t) is a gaussian white noise current which

simulates synaptic bombardment [Neymotin et al., 2011] and I(t) the externally

applied current. The network was built using voltage-jump weighted synapses.

The interneuronal transmission delays based on Humphries et al., (2006) and

weights necessary for coherent model dynamics are summarized in Table 1. To

simulate the network physiological basal activity, a base current was applied in

the network in addition to the synaptic noise ξ(t).

The model was developed with GNU C++ 4.9 library and numerical equations

were solved using a first order forward Euler algorithm with a one ms time

step. Simulation were run using Monte Carlo methods. Data analysis and

visualization were performed with python-matplotlib [Hunter, 2007] and R

[R-Team, 2015].
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Table 1: Synaptic weights and delays used in the connections between subpopulations
of the circuit (M: motor, C: cognitive, A: associative).

Connexion Weight (mVolt) Delay (ms)

Cortex (M/C) → Striatum (M/C) 0.1 11
Cortex (M/C) → Striatum (A) 0.035 11

Cortex (A) → Striatum (A) 0.02 11
Cortex (M/C) → STN 0.125 6
Cortex (M/C) → Thalamus 0.125 5

STN → GPi 2 2
Thalamus → Cortex 10 5
Striatum → GPi -5 6
Striatum → Striatum -0.25 2

GPi → Thalamus -10 5

1.5 Plasticity and learning

As this first study is essentially looking to show how the decision making

capabilities and learning take place, we have chosen to implement a simple

LTP/LTD weight update rule driven by the presence or absence of a reward

following a move in an outcome specific manner [Cools et al., 2009]. In the

model, learning occurs only at the cognitive cortico-striatal synapse where

phasic changes in dopamine concentration have been shown to be necessary

for the production of long-term synaptic weight variations [Pawlak and Kerr,

2008, Kerr and Wickens, 2001, Reynolds et al., 2001]. When a chosen target

results in a reward, all the weights of the cognitive cortico-striatal projections

contributing to the choice of this target are slightly increased. In all other

outcome situations, they are decreased. The synaptic weight variation rule is

computed as follow:
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wi,j(n+ 1) = wi,j(n) + η.∆G, η =
wmax − wi,j(n)

wmax − wmin

, (4)

where wi,j is the weight of the synapse between cells i and j, η the learning

rate and ∆G an increment that was set to 5% of the average weight values.

η depends on the current wi,j value and the resulting weight variation curve

follows a Sutton–Barto model [Klopf, 1988].

2 Results

2.1 Parameterization and model behavior

The first stage of the setup of the model was to simultaneously adjust the

various parameters to produce average firing rate activities in the different

regions that were in accordance with those observed in vivo. For example,

striatal activity is generally very low compared to cortical activity or GPi

activity [Pasquereau et al., 2007]. In the same way, thalamic activity shows

large variation in the model, but the range of frequencies observed remains in

accordance with experimental data [Chen et al., 2010].

As previously mentioned, we apply a Monte Carlo approach to run our simula-

tions. Due to randomization in the assignment of initial weights and conduction

delays, each network model is unique. To rule out the possibility of a sample

effect on the functional properties of the networks, 30 simulations were run for

each of the six possible cue combinations. Figure 3(b) shows a combination

composed of M2-C2 for target 1 (blue triangle) and M1-C3 for target 2 (red
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cross). This configuration is encoded in the model by the stimulation of the

corresponding framed subpopulations [cf. Fig. 3(c)]. The firing rates recorded

in the various cognitive, associative and motor subpopulations remains globally

consistent with the input pattern and no significant difference was found in each

of the 72 subregions between the 30 generated networks. Therefore, there is no

noticeable ”network effect” on the model dynamics and all of the generated

models behave in a comparable way.

As shown in Fig. 3(a), the stimulated cortical regions have a higher average

frequency, as would be expected. Referring to Fig. 2 for the connectivity,

propagation of information through the network can also be observed. The

striatal cognitive and motor subpopulations are activated in a similar pattern

to the corresponding cortical areas. Subpopulations in the associative striatal

region receive the sum of cognitive, motor and associative cortical inputs. In

Figure 3(a), peaks in A10 and A13 and, to a lesser extent (due to the lack of

additional associative cortex input) in A9 and A14 can be observed in striatal

subpopulations. Activity in the STN is aligned with that of cortex. In the

GPi the activities observed are the inverse of those seen in the cognitive and

motor subpopulations of striatum. This is consistent with the known action of

the inhibitory outputs from striatum. Finally, thalamic activity is balanced

by excitation from cortex and inhibition from GPi and differences in activity

are therefore amplified. This amplification is the mechanism that leads to

symmetry breaking, where the activity in one channel increases while that in

the other channel decreases.
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2.2 Dynamic action selection

In the absence of learning the network is still able to make a decision. At the

start of a trial, the presentation of the two targets leads to the activation of

two channels in the positive feedback direct pathway loop. Symmetry breaking

between the two channels occurs as follows: because the loop gain of the

direct pathway is greater than one, differential activation of one channel due to

noise is amplified. The resultant increased cortical activation starts a positive

feedback takeoff in that channel specifically because direct pathway channels

are segregated. The increase of average firing rates measured in this channel

finally reaches a plateau that leads to a stabilization of all the subregions

activities in the system [cf. Fig. 4(a)]. This upper bound results from the

model constraints, notably regarding the circuitry, the conduction delays and

the cellular properties. But the increased cortical activation of one channel also

increases the input to the divergent, negative feedback hyperdirect pathway

causing suppression of all channels, especially the competing channel. A small

difference in channel activations due to noise thus leads to one channel being

highly activated to the detriment of the others.

In a näıve network, the symmetry breaking should select one of the two sub-

populations with equal probabilities and the average GC rate should be close

to 0.5. Similarly, the average reward rate should correspond to the average

probability value: (1+0.66+0.33+0)/4=0.5. As shown in Figure 4(b), our

simulations results are consistent with these predictions and in the absence of

learning, the GC and reward rates are both close to 0.5.
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Figure 4: (a) Recording of the average firing rate in the subpopulations M0, M3, C1
and C3 following the simultaneous presentation of the target C3 at the M0 location
and of the target C1 at the M3 location. This trial illustrates a GC example since the
selected motor activity is M0 which corresponds to the direction of the presentation
of the shape C3 which has the highest P(R). (b) Average percentage of reward and
GC rates in 16 sessions of 100 trials. Both scores are consistent with 50% chance
(N = 16; p < 0 : 05; two-sided Wilcoxon test).

The symmetry breaking events onsets are effective when a 40 Hz average firing

rate difference is detected between two subpopulations. Figure 4 shows an

example of a decision making (cognitive level) preceding an action selection

(motor level) by 50 ms. For practical reasons symmetry breaking delays are

computed from the smoothed firing rate curves difference. A 100 ms sliding

window averaging convolution was applied. Changing the window size only

slightly shifts the action selection times but the relative delays between cognitive

and motor threshold onsets as well as the event orders are not affected.
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2.3 Sensitivity study

2.3.1 Effect of noise and base current on symmetry breaking in the

model

Both noise and base current amplitude [cf. (refsec:implementation)] affect the

network ability to generate symmetry breaking. As shown in Fig. 5(a), setting

noise amplitude too low or too high decreases its symmetry breaking score in

the motor cortex (i.e, its action selection capability) and the optimum noise

level of our model is close to 50 pA.

When the base current is too low, there is not enough gain in the BG direct

pathway loops to destabilize their relative activities and no salience takes place

between the motor cortex subpopulations. When it is too high, it tends to

exceed its external inputs and therefore to drive the whole network activity in

a balanced way which prevents symmetry breaking [Fig. 5(b)]. As with the

noise level, there appears to be an optimum value to apply which is close to

100 pA.

We have then chosen these intermediate values of 50 pA for the noise and

100 pA for the base current in order (i) to maximize the network symmetry

breaking performances but also (ii) to provide average firing rates consistent

with those recorded in the different regions in vivo.
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Figure 5: Effect of ξ(t) (current noise amplitude) and (b) basal input current on the
percentage of symmetry breaking in the motor cortex (SB) following the presentation
of two random targets at two different positions (N = 16; p < 0 : 05, Kruskal–Nemenyi
multiple comparison test).

2.3.2 Lesion studies

Simulations have been performed to test the impact of lesions at each point

in the circuit on network regions activity. 30 sessions were run on 8 differ-

ent networks in four conditions. For each condition a given interconnection

was selectively interrupted (synaptic weights set to 0) and the activities of

different regions were recorded, pooled and averaged. The conditions used

were control (intact) model, striato-pallidal lesion, cortico-thalamic lesion and

pallido-thalamic lesion. The results are summarized in Fig. 6.

The striato-pallidal (direct pathway) lesion initially increases the GPi activity
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but rapidly, this increase inhibits in turn the thalamus and therefore the cortical

sub-regions. Since the model activity is mainly driven by the cortex, the net

effect of this lesion is then a global decrease in all subregions average firing rates.

Figure 6: Effect of selective lesions on the network populations average firing rates
(Hz) recorded in 8 different networks over 30 sessions. cX , mX and aX : respectively
cognitive, motor and associative X population. The populations abbreviations are:
ctx for the cortex, str for the striatum, stn for the sub-thalamic nucleus, gpi for the
GPi and tha for the thalamus.

The cortico-thalamic lesion also generates a global attenuation of firing rates.
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Since the cortical inputs are the main driving force of the network activity

and since the cortico-thalamic pathway is a positive gain feedback loop, when

this connection is removed, the only remaining input to the thalamus is the

inhibitory GPi input. The spontaneous thalamic activity is then drastically

reduced and consequently the cortical activity. Therefore, as with the striato-

pallidal lesion, the global network firing rate decreases.

The pallido-thalamic lesion is also a consistent qualitative control of the behavior

of our model. When the inhibitory projections from the GPi to the thalamus

are removed, the brake that was exerted on the thalamo-cortical structures is

stopped. The mutual interaction between the thalamus and the cortex becomes

then more efficient which leads to an increase in the cortical regions firing rates

and therefore in all the network subpopulations.

2.4 Learning properties

2.4.1 The optimum cue shape direction was preferentially selected

During training our model learns to create a dynamic link between the cognitive

and motor sensory components of a cue without having to resort to rewiring

cortical motor projections. This can be seen from the profile of the learning

curves of the model. Indeed, the average reward and GC rates gradually in-

crease over the course of the session as shown in Fig. 7(d). As a result, both

the GCs and the GDs are significantly improved during a standard learning

session of the four-cue protocol [Fig. 7(a)]. The two-cue protocol produces

similar results [Fig. 7(b)] and achieves an even higher success rate for GCs and

GDs. This better performance can be explained by the larger difference in the
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respective P(R) of the two targets and by the resulting decrease in uncertainty.

Figure 7: Effect of learning on model behavioral metrics in (a) four-cue protocol
and (b) two-cue protocol, ”before” refers to the first 30 trials of a session and ”after”
to the last 30 trials (N = 16; p < 0.05;Wilcoxon test). (c) change in average cognitive
cortico-striatal synaptic weights during a training session. wi is the average weight for
cuei. In these simulations, the higher the index number (i), the higher the associated
cue reward probability (Pi=0(R) = 0, Pi=1(R) = 0.33, Pi=2(R) = 0.66, Pi=3(R) = 1).
(d) Normalized rate of GC and rewards averaged over 24 sessions of the four-cue
protocol. The smoothed curves are obtained by a local polynomial regression fitting
combined with a 95% confidence interval.
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The greater the cognitive cortico-striatal weight, the higher the gain in that

channel. This leads the channel with the higher cortico-striatal synaptic weights

being consistently selected [Fig. 7(c)]. Simultaneously the hyperdirect pathways

excite GPi regions, which selectively inhibit the thalamic inputs projecting to

the cortical regions whose striatal projections have the lowest weights. Cutting

the thalamo-cortical projections in the circuit stopped the symmetry breaking

(data not shown) showing that it was due to the action selection properties of

the network and not to the increased salience of one target.

2.4.2 The movement onset delay decreases with learning

The movement onset (which can be equated to reaction time) is defined as the

time between the appearance of the two cues and the symmetry breaking in

cortical motor subpopulations. With learning, the time for movement onset

decreased (Figs. 8(a) and 8(b)]. This is in accordance with previous modeling

studies [Guthrie et al., 2013] as well as with experimental results [Piron et al.,

2016].

2.4.3 Striatal LI plays an important role in model learning capability

The absence of LI (NLI condition) impairs both levels of the decision making

process [Figs. 8(c) and 8(e)]. This tends to confirm its role in gain control

[Moyer et al., 2014].

NLI decreases the GC rate in a näıve network [Fig. 8(c)-left] and abolishes its

learning capability (Fig. 8(c)-right]. This latter result seems related to the more

general fall of the symmetry breaking score shown in Fig. 8(d). NLI condition
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Figure 8: Top: average movement onset delay is decreased by learning in (a) four-
cue protocol and (b) two-cue protocol, ”before” refers to the first 30 trials of a session
and ”after” to the last 30 trials (N = 16; p < 0 : 05;Wilcoxon test), Bottom: effect
of striatal LI (or its absence NLI) on learning performances of the model (c) GC
score significantly differs both before and after learning when LI is absent (d) the
NLI condition dramatically decreases the number of SB motor events. This indicates
that a motor selection occurs less frequently both before and after learning (e) after
learning GD score depends on LI (N = 16; p < 0 : 05;Wilcoxon test).

does not impact the GD score in a näıve network [Fig. 8(e)-left] but after

training it tends to decrease the final GD score [Fig. 8(e)-right]. This effect

can be partially attributed to a deficient action selection process that prevents
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the model from reaching its optimum decision making performance. Together,

these findings show a possible role of LI in striatal information processing and

consequently, in the learning process.

2.5 Reversal learning protocol

Reversal learning consists of an n-step training procedure where the subject

has to adapt its behavior to gain reward after a contingency change. This

method is often used to unravel neuropsychological mechanisms [Dombrovski

et al., 2015, Cools et al., 2002, Costa et al., 2015]. To assess our model learning

characteristics, we have implemented a reversal learning protocol which is

summarized in Table 2.

Table 2: Reversal protocol description.

Cue number C0 C1 C2 C3

Step 1 (120 trials) P(R)=0 P(R)=1/3 P(R)=2/3 P(R)=1
Step 2 (240 trials) P(R)=2/3 P(R)=1 P(R)=0 P(R)=1/3
Step 3 (240 trials) P(R)=0 P(R)=1/3 P(R)=2/3 P(R)=1

In step 2, the reward contingencies were changed and their new distribution

was chosen to maintain an homogeneous P(R) difference for all cues of 2/3.

The model behavior is very similar to what has been observed experimentally

[Xue et al., 2013, Morita and Kawaguchi, 2015]. Each new step was followed

by an adaptation of the model that successfully improved its score after several

tens of trials [Figs. 9(a)–9(c)]. However, each new step is followed by a short
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period of time during which GC score drops down below its initial average

50% rate. This can be explained by the fact that, during these periods, the

model spontaneously selects what it considers as a GC but with inverted P(R)

and thus, it temporarily decreases its reward rate and therefore its learning

rate. This process can also be visualized through the cortico-striatal cognitive

projection strength evolution [Fig. 9(b)]. In summary it takes more trials to

reach an optimum GC rate after each reversal learning step.

2.6 Extinction protocol

The extinction phenomenon is a common feature of most of the associative

learning processes [Barker et al., 2014]. We have applied to the model a simple

response extinction protocol [Goodman and Packard, 2015, Papachristou et al.,

2013] which comprised the same training procedure as before, followed by the

cessation of reward during 120 additional trials.

We observed that the GC performance gradually decreased [Fig. 10(a)]

and exhibited statistically significant differences before and after extinction

[Fig. 10(a)- inset]. This occurred in parallel with the cortico-striatal weights

variation over time [Fig. 10(b)]. The GC profile is consistent with the general

extinction process as described in classical conditioning context. Indeed when it

is deprived from reward, the model spontaneously loses its capacity to optimize

its choices and gradually ”forgot” what it learnt.

We also tested the model behavior when a recall was applied. Experimentally,

the conditional response to a cue recall following a learning extinction is faster
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Figure 9: (Color online) 3-step reversal learning protocol simulation results (a)
Normalized rates of GC averaged on 16 sessions (red: smoothed curve obtained
by a local polynomial regression fitting combined with a 95% confidence interval).
To compare the efficiency of reversal learning 30 trials samples (color boxes) were
analyzed at the beginning and at the end of the three steps (GCBi: good choice before
step i and GCAi: good choice rate after step i) (b) variation of average cortico-striatal
cognitive synaptic weights over a training session. wi is the average weight value for
each of the four cues. (c) GC rate comparison before and after training at each step
(N = 16; p < 0 : 05, Kruskal–Nemenyi multiple comparison test).

than the in the initial condition [Bouton, 2004] and this phenomenon is even

observed in invertebrates [Sandoz and Pham-Delegue, 2004]. As shown in Figs.

10(c) and 10(d) our model was not able to exhibit this property. We can observe

a memory effect if the extinction phase is not too long but the recall itself is
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Figure 10: (Color online) Extinction protocol simulation results (a) Normalized rates
of GC averaged on 16 sessions during the single extinction protocol (red: smoothed
curve obtained by a local polynomial regression fitting combined with a 95% confidence
interval). (A-inset) comparison of GC scores averaged on 30 trials samples (color
boxes) recorded (1) at the beginning, (2) before extinction and (3) after extinction
(N = 16; p < 0 : 05, Kruskal–Nemenyi multiple comparison test). (b) variation of
average cortico-striatal cognitive synaptic weights over time. wi is the average weight
value for each of the four cues. The extinction starts at 120 trials (orange marker),
(c) Normalized rates of GC averaged on 16 sessions during a single extinction protocol
followed by a recall. (d) variation of average cortico-striatal cognitive synaptic weights
over time. The extinction starts at 120 trials (orange marker) and ends at 180 trials
(recall: green marker).

not occurring faster.
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3 Discussion

3.1 Following the flow of information

We have demonstrated that a large-scale, neuron level model of BG circuitry

could be implemented with reasonable computation power and was capable

of making action selections in complex behavioral tasks. At this point of the

discussion, the question usually comes up: why using a spike-based approach

instead of a rate-based approach? The question remains open to decide whether

or not, population rate-models can reliably mimic the true dynamics emerging

of neural units interactions. This formalism is undeniably helpful when one

tries to link large neuronal assemblies to behavioral observations. Yet, if we

accept as true that the behavior of a system emerges from the interactions of its

fundamental processing units, the model has sooner or later to be downscaled

to this level to provide a more faithful and reliable description. This point has

been very often discussed in the past and is still a matter of debate [Brette,

2015] but it seems that individual or relative spike-timing plays a major role

in neural information encoding in different ways [Portelli et al., 2016, Jacobs

et al., 2009, Saal et al., 2015, Moyer et al., 2014]. Models relying on individual

spiking neurons and of which construction is constrained by anatomical and

physiological evidence of complex connectivity architectures often provide

fruitful results because they directly link a detailed circuitry to its assumed

function or behavior [Chersi et al., 2013, Mandali et al., 2015, Medina et al.,

2001, Yang et al., 2015].
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3.2 Comparison of action selection mechanisms

Action selection requires that, of multiple alternatives presented, only one is

chosen. This requires the use of a winner-takes-all architecture which usually

relies on two different mechanisms. The first mechanism (i) relies on the

feedback properties of the network itself. Our model is based on the presence

of two feedback pathways having opposite effects and passing from cortex

through the BG and back to cortex. On the basis of previous studies [Mink,

1996, Leblois et al., 2006a, Guthrie et al., 2013] we implemented a schematic

BG action selection model in which, separate cortical networks of individual

neurons are activated for each of a set of possible actions. In the model, the

hyperdirect pathway negative feedback imposes its global inhibitory effect on

cortical subregions. In parallel, the direct pathway exerts a more localized

disinhibition which is gradually amplified and leads to the selection of an action.

The second type of mechanism (ii) involves LI. This property has been observed

in the striatum where domains of mutually inhibitory connections have been

reported [Oorschot, 1996]. Many computational models have also explicitly used

LI to produce ”winner takes all” action selection networks involving competition

mechanisms [Bar-Gad and Bergman, 2001, Suri and Schultz, 1999, Alexander

and Wickens, 1993, Groves, 1983, Kotter and Wickens, 1998, Woodward et al.,

1995, Wickens and Arbuthnott, 1993]. Even if recurrent inhibition is often

considered as weak compared to feedforward inhibition [Jaeger et al., 1994, Koos

et al., 2004, Tunstall et al., 2002], it has recently been emphasized that its role

had to be considered [Moyer et al., 2014] and our simulations have shown its

positive effect on learning capabilities of the BG.
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3.3 Two-level action selection

Previous models of BG [Gurney et al., 2001, Leblois et al., 2006b] have imple-

mented selection between two choices at one level. In the current study, the

presented cue is separated into two types of sensory stimulus (levels): the cue

shape and its position [cf. Fig. 3(b)]. Under this interpretation, the action

selection then requires two choices, one of the cue shape (cognitive component)

and the other of the direction (motor component) which are implemented in

parallel. This two-level decision making process was initially foreseen in a

previous experimental study [Pasquereau et al., 2007]. A first implementation

relying on population rate-models and mathematical transfer function was

then developed in Guthrie et al., (2013) where anatomical evidences for its

underlying architecture were also presented. In this study, the divergence in

the cortical activations of cognitive and motor subpopulations was described

as an emergent property of the network. The present model still performs the

previously observed two-level action selection process and its related learning

properties but, including additional circuitry elements and using a more detailed

formalism, it extends this capability to new protocols and situations.

3.4 Learning in the network

In the näıve state, the network is able to spontaneously perform action selection.

SB results from its connectivity pattern and intrinsic noise. Since no initial

prewiring is present for any of the four-cue (or two-cue) protocol, GC and GD

rates are close to 50% [Figs. 7(a) and 7(b)). The reinforcement learning process

which takes place during a training session results from the synaptic weight
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changes of the cognitive cortex projections toward striatum and is modulated

by the phasic variations in dopamine concentrations which have been shown to

be necessary both for the LTP and for the LTD [Pawlak and Kerr, 2008, Kerr

and Wickens, 2001, Reynolds et al., 2001]. Our model predicts efficiently the

experimental observations of the four-cue and two-cue tasks [Pasquereau et al.,

2007, Piron et al., 2016].

Its learning properties also exhibit consistent dynamics when submitted to

reversal learning and extinction protocols. However, it also shows its limitation

on these occasions. Indeed, during the reversal learning protocol, it fails to

switch quicker to a new configuration as it is experimentally reported [Costa

et al., 2015]. Similarly, during the extinction protocol, it does not exhibit

a faster recall. These limitations do not necessarily throw doubt over the

consistency of the model. They just highlight the fact that other important

regions are not explicitly included in the model like the hippocampus which is

involved in reversal learning [Shohamy et al., 2009] and the amygdala which

is also known to play an important role in extinction process [Lingawi and

Balleine, 2012].

4 Conclusion

We have presented here, for the first time, a biophysically based, spiking neuron

model of the BG that is able to perform action selection explicitly relying on the

interaction between the cognitive and motor levels. This model is closely based

on the known anatomy and physiology of the BG and illustrates a reasonable
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network mechanism of decision making. In addition, it confirms that the action

selection can be driven by noise, but that simulated learning can overcome

this noise to produce optimum action selection performances [Guthrie et al.,

2013]. Our model bridges the gap between top-down mesoscopic approaches

and bottom-up models relying on emerging properties of neuronal networks

dynamics. It is also able to predict some important behavioral characteristics

like localized lesion effect on learning, reversal learning and extinction protocol.
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