
HAL Id: hal-01407833
https://hal.science/hal-01407833

Preprint submitted on 2 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Asaga: Asynchronous Parallel Saga
Rémi Leblond, Fabian Pedregosa, Simon Lacoste-Julien

To cite this version:
Rémi Leblond, Fabian Pedregosa, Simon Lacoste-Julien. Asaga: Asynchronous Parallel Saga. 2016.
�hal-01407833�

https://hal.science/hal-01407833
https://hal.archives-ouvertes.fr

Asaga: Asynchronous Parallel Saga

Rémi Leblond† Fabian Pedregosa‡ Simon Lacoste-Julien†
† INRIA Paris - École Normale Supérieure, firstname.lastname@inria.fr
‡ Chaire Havas-Dauphine Économie des Nouvelles Données, f@bianp.net

June 16, 2016

Abstract

We describe Asaga, an asynchronous parallel version of the incremental gradient algorithm
Saga that enjoys fast linear convergence rates. We highlight a subtle but important technical
issue present in a large fraction of the recent convergence rate proofs for asynchronous parallel
optimization algorithms, and propose a simplification of the recently proposed “perturbed
iterate” framework that resolves it. We thereby prove that Asaga can obtain a theoretical
linear speedup on multi-core systems even without sparsity assumptions. We present results of
an implementation on a 40-core architecture illustrating the practical speedup as well as the
hardware overhead.

1 Introduction

We consider the unconstrained optimization problem of minimizing a finite sum of smooth convex
functions:

min
x∈Rd

f(x), f(x) :=
1

n

n∑
i=1

fi(x), (1)

where each fi is assumed to be convex with L-Lipschitz continuous gradient, f is µ-strongly convex
and n is large (for example, the number of data points in a regularized empirical risk minimization
setting). We define a condition number for this problem as κ := L/µ. A flurry of randomized
incremental algorithms (which at each iteration select i at random and process only one gradient
f ′i at a time) have recently been proposed to solve (1) with a fast1 linear convergence rate, such as
Sag [9], Sdca [18], Svrg [8] and Saga [4]. These algorithms can be interpreted as variance reduced
versions of the popular stochastic gradient descent (Sgd) algorithm, and they have demonstrated both
theoretical and practical improvements over Sgd (for the finite sum optimization problem (1)).

In order to take advantage of the multi-core architecture of modern computers, the aforementioned
optimization algorithms need to be adapted to the asynchronous parallel setting, where multiple
threads work concurrently. Much work has been devoted recently in proposing and analyzing
asynchronous parallel variants of algorithms such as Sgd [15], Sdca [7] and Svrg [16, 14, 19].
Among the incremental gradient algorithms with fast linear convergence rates that can optimize (1) in
its general form, only Svrg has had an asynchronous parallel version proposed.2 No such adaptation
has been attempted yet for Saga, even though one could argue that it is a more natural candidate
as, contrarily to Svrg, it is not epoch-based and thus has no synchronization barriers at all.

Contributions. In Section 2, we present a novel sparse variant of Saga that is more adapted to
the parallel setting than the original Saga algorithm. In Section 3, we present Asaga, a lock-free
asynchronous parallel version of Sparse Saga that does not require consistent reads. We propose
a simplification of the “perturbed iterate” framework from Mania et al. [14] as a basis for our
convergence analysis. We highlight at the same time a technical problem present in a large fraction

1For example their complexity in terms of gradient evaluations to reach an accuracy of ε is O((n+ κ) log(1/ε)), in
contrast to O(nκ log(1/ε)) for batch gradient descent in the worst case.

2We note that Sdca requires the knowledge of an explicit µ-strongly convex regularizer in (1), whereas Sag / Saga
are adaptive to any local strong convexity of f [17, 4]. This is also true for a variant of Svrg [6].

1

ar
X

iv
:1

60
6.

04
80

9v
1

 [
m

at
h.

O
C

]
 1

5
Ju

n
20

16

of the literature on randomized asynchronous parallel algorithms (with the exception of [14]:3)
namely, they all assume unbiased gradient estimates, an assumption that is inconsistent with their
proof technique without further synchronization assumptions. In Section 3.3, we present a tailored
convergence analysis for Asaga. Our main result states that Asaga obtains the same geometric
convergence rate per update as Saga when the overlap bound τ (which scales with the number of
cores) satisfies τ ≤ O(n) and τ ≤ O(1√

∆
max{1, nκ}), where ∆ ≤ 1 is a measure of the sparsity of the

problem, notably implying that a linear speedup is theoretically possible even without sparsity in the
big data regime where n� κ. In Section 4.3, we provide a practical implementation of Asaga and
illustrate its performance on a 40-core architecture, showing improvements compared to asynchronous
variants of Svrg and Sgd.

Related Work. The seminal textbook of Bertsekas and Tsitsiklis [1] provides most of the founda-
tional work for parallel and distributed optimization algorithms. An asynchronous variant of Sgd
with constant step-size called Hogwild was presented by Niu et al. [15]; part of their framework of
analysis was re-used and inspired most of the recent literature on asynchronous parallel optimiza-
tion algorithms with convergence rates, including asynchronous variants of coordinate descent [12],
Sdca [7], Sgd for non-convex problems [3, 11], Sgd for stochastic optimization [5] and Svrg [16, 19].
These papers make use of an unbiased gradient assumption that is not consistent with the proof
technique, and thus suffers from technical problems4 that we highlight in Section 3.2.

The “perturbed iterate” framework presented in [14] is to the best of our knowledge the only one that
does not suffer from this problem, and our convergence analysis builds heavily from their approach,
while simplifying it. In particular, the authors assumed that f was both strongly convex and had a
bound on the gradient, two inconsistent assumptions in the unconstrained setting that they analyzed.
We overcome these difficulties by using tighter inequalities that remove the requirement of a bound
on the gradient. We also propose a more convenient way to label the iterates (see Section 3.2). The
sparse version of Saga that we propose is also inspired from the sparse version of Svrg proposed
by Mania et al. [14]. Reddi et al. [16] presents a hybrid algorithm called Hsag that includes Saga
and Svrg as special cases. Their asynchronous analysis is epoch-based though, and thus does not
handle a fully asynchronous version of Saga as we do. Moreover, they require consistent reads and
do not propose an efficient sparse implementation for Saga, in contrast to Asaga.

Notation. We denote by E a full expectation with respect to all the randomness, and by E
the conditional expectation of a random i (the index of the factor fi chosen in Sgd and other
algorithms), conditioned on all the past, where “past” will be clear from the context. [x]v represents
the coordinate v of the vector x ∈ Rd. x+ is the updated parameter vector after one algorithm
iteration.

2 Sparse Saga

Borrowing our notation from Hofmann et al. [6], we first present the original Saga algorithm and
then describe a novel sparse variant that is more appropriate for a parallel implementation.

Original Saga Algorithm. The standard Saga algorithm [4] maintains two moving quantities
to optimize (1): the current iterate x and a table (memory) of historical gradients (αi)

n
i=1.5 At

every iteration, the Saga algorithm samples uniformly at random an index i ∈ {1, . . . , n}, and then
executes the following update on x and α (for the unconstrained optimization version):

x+ = x− γ
(
f ′i(x)− αi + ᾱ

)
; α+

i = f ′i(x), (2)

3We note that our work was done using the first version of this paper which did not highlight this problem. Since
then, a new version which does has appeared online, but our work was conducted independently beforehand.

4With the exception of [5] that can be easily fixed by incrementing their global counter before sampling.
5For linear predictor models, the memory α0

i can be stored as a scalar. Following [6], α0
i can be initialized to any

computationally convenient value (typically 0), unlike the prescribed f ′i(x0) analyzed in [4].

2

where γ is the step size and ᾱ := 1/n
∑n
i=1 αi can be updated efficiently in an online fashion. Crucially,

Eαi = ᾱ and thus the update direction is unbiased (Ex+ = x − γf ′(x)). Furthermore, it can be
proven (see [4]) that under a reasonable condition on γ, the update has vanishing variance, which
enables the algorithm to converge linearly with a constant step size.

Motivation for a Variant. In its current form, every Saga update is dense even if the individual
gradients are sparse due to the historical gradient (ᾱ) term. Schmidt et al. [17] introduced a special
implementation with lagged updates in which every iteration has a cost proportional to the size
of the support of vector f ′i(x). However, this technique is not straightforward to implement and
more importantly, it is not easily adaptable to the parallel setting (see App. F.2). We therefore
introduce Sparse Saga, a novel variant which explicitly takes sparsity into account and is easily
parallelizable.

Sparse Saga Algorithm. As in the Sparse Svrg algorithm proposed in [14], we obtain Sparse
Saga by a simple modification of the parameter update rule in (2) where ᾱ is replaced by a sparse
version equivalent in expectation:

x+ = x− γ(f ′i(x)− αi +Diᾱ), (3)

where Di is a diagonal matrix that makes a weighted projection on the support of f ′i . More precisely,
let Si be the support of the gradient f ′i function (i.e., the set of coordinates where f ′i can be nonzero).
Let D be a d× d diagonal reweighting matrix, with coefficients 1/pv on the diagonal, where pv is the
probability that dimension v belongs to Si when i is sampled uniformly at random in {1, ..., n}. We
then define Di := PSi

D, where PSi
is the projection onto Si. The normalization from D ensures that

EDiᾱ = ᾱ, and thus that the update is still unbiased despite the projection.

Convergence Result for (Serial) Sparse Saga. For clarity of exposition, we model our con-
vergence result after Hofmann et al. [6, Corollary 3], which provides the simplest form (note that the
rate for Sparse Saga is the same as Saga). The proof is given in Appendix B.
Theorem 1. Let γ = a

5L for any a ≤ 1. Then Sparse Saga converges geometrically in expectation
with a rate factor of at least ρ(a) = 1

5 min
{

1
n , a

1
κ

}
, i.e., for xt obtained after t updates, we have

Ef(xt)− f(x∗) ≤ (1− ρ)t C0, where C0 := ‖x0 − x∗‖2 + n
5L2E‖α0

i − f ′i(x∗)‖2.

Comparison with Lagged Updates. The lagged updates technique in Saga is based on the
observation that the updates for component [x]v can be delayed until this coefficient is next accessed.
Interestingly, the expected number of iterations between two steps where a given dimension v
is involved in the partial gradient is p−1

v , where pv is the probability that v is involved. p−1
v is

precisely the term which we use to multiply the update to [x]v in Sparse Saga. Therefore one may
see the updates in Sparse Saga as anticipated updates, whereas those in the Schmidt et al. [17]
implementation are lagged.

Although Sparse Saga requires the computation of the pv probabilities, this can be done during a
first pass throughout the data (during which constant step-size Sgd may be used) at a negligible cost.
In our experiments, both Sparse Saga and Saga with lagged updates had similar convergence in
terms of number of iterations, with the Sparse Saga scheme being slightly faster in terms of runtime.
We refer the reader to Schmidt et al. [17] and Appendix F for more details.

3 Asynchronous Parallel Sparse Saga

As in most recent parallel optimization contributions, we use a similar hardware model to Niu et al.
[15]. We have multiple cores which all have read and write access to a shared memory. They update
a central parameter vector in an asynchronous and lock-free fashion. Unlike Niu et al. [15], we do not
assume that the vector reads are consistent: multiple cores can read and write different coordinates
of the shared vector at the same time. This means that a full vector read for a core might not
correspond to any consistent state in the shared memory at any specific point in time.

3

3.1 Perturbed Iterate Framework

We first review the “perturbed iterate” framework recently introduced by Mania et al. [14] which will
form the basis of our analysis. In the sequential setting, stochastic gradient descent and its variants
can be characterized by the following update rule:

xt+1 = xt − γg(xt, it), (4)

where it is a random variable independent from xt and we have the unbiasedness condition Eg(xt, it) =
f ′(xt) (recall that E is the relevant-past conditional expectation with respect to it).

Unfortunately, in the parallel setting, we manipulate stale, inconsistent reads of shared parameters
and thus we do not have such a straightforward relationship. Instead, Mania et al. [14] proposed to
separate x̂t, the actual value read by a core to compute an update, with xt, a “virtual iterate” that
we can analyze and is defined by the update equation: xt+1 := xt − γg(x̂t, it). We can thus interpret
x̂t as a noisy (perturbed) version of xt due to the effect of asynchrony. In the specific case of (Sparse)
Saga, we have to add the additional read memory argument α̂t to our update:

xt+1 := xt − γg(x̂t, α̂
t, it); g(x̂t, α̂

t, it) := f ′it(x̂t)− α̂
t
it +Dit (1/n

∑n
i=1 α̂

t
i) . (5)

We formalize the precise meaning of xt and x̂t in the next section. We first note that all the papers
mentioned in the related work section that analyzed asynchronous parallel randomized algorithms
assumed that the following unbiasedness condition holds:

[unbiasedness condition] E[g(x̂t, it)|x̂t] = f ′(x̂t). (6)

This condition is at the heart of most convergence proofs for randomized optimization methods.6
Mania et al. [14] correctly pointed out that most of the literature thus made the often implicit
assumption that it is independent of x̂t. But as we explain below, this assumption is incompati-
ble with a non-uniform asynchronous model in the analysis approach used in most of the recent
literature.

3.2 On the Difficulty of Labeling the Iterates

Formalizing the meaning of xt and x̂t highlights a subtle but important difficulty arising when
analyzing randomized parallel algorithms: what is the meaning of t? This is the problem of labeling
the iterates for the purpose of the analysis, and this labeling can have randomness itself that needs to
be taken in consideration when interpreting the meaning of an expression like E[xt]. In this section,
we contrast three different approaches in a unified framework. We notably clarify the dependency
issues that the labeling from Mania et al. [14] resolve and propose a new, simpler labeling which allows
for much simpler proof techniques. We consider algorithms that execute in parallel the following four
steps, where t is a global labeling that needs to be defined:

1. Read the information in shared memory (x̂t).
2. Sample it.
3. Perform some computations using (x̂t, it).
4. Write an update to shared memory.

(7)

The “After Write” Approach. We call the “after write” approach the standard global labeling
scheme used in Niu et al. [15] and re-used in all the later papers that we mentioned in the related
work section, with the notable exceptions of Mania et al. [14] and Duchi et al. [5]. In this approach,
t is a (virtual) global counter recording the number of successful writes to the shared memory x
(incremented after step 4 in (7)); xt thus represents the (true) content of the shared memory after t
updates. The interpretation of the crucial equation (5) then means that x̂t represents the (delayed)
local copy value of the core that made the (t+ 1)th successful update; it represents the factor sampled
by this core for this update. Notice that in this framework, the value of x̂t and it is unknown at

6A notable exception is Sag [9], which uses biased updates and thus requires a significantly more complex convergence
proof. Making Sag unbiased leads to Saga [4], with a much simpler convergence proof.

4

“time t”; we have to wait to the later time when the next core writes to memory to finally determine
that its local variables are the ones labeled by t. We thus see that here x̂t and it are not necessarily
independent – they share dependence through the t label assignment. In particular, if some values
of it yield faster updates than others, it will influence the label assignment defining x̂t. We illustrate
this point with a concrete problematic example in Appendix A that shows that in order to preserve
the unbiasedness condition (6), the “after write” framework makes the implicit assumption that the
computation time for the algorithm running on a core is independent of the sample i chosen. This
assumption seems overly strong in the context of potentially heterogeneous factors fi’s, and is thus a
fundamental flaw for analyzing non-uniform asynchronous computation.

The “Before Read” Approach. Mania et al. [14] addresses this issue by proposing instead to
increment the global t counter just before a new core starts to read the shared memory (before step 1
in (7)). In their framework, x̂t represents the (inconsistent) read that was made by this core in this
computational block, and it represents the picked sample. The update rule (5) represents a definition
of the meaning of xt, which is now a “virtual iterate” as it does not necessarily correspond to the
content of the shared memory at any point. The real quantities manipulated by the algorithm in
this approach are the x̂t’s, whereas xt is used only for the analysis. The independence of it with x̂t
can be simply enforced in this approach by making sure that the way the shared memory x is read
does not depend on it (e.g. by reading all its coordinates in a fixed order). Note that this means
that we have to read all of x’s coordinates, regardless of the size of fit ’s support. This is a much
weaker condition than the assumption that all the computation in a block does not depend on it as
required by the “after write” approach, and is thus more reasonable and practical (especially when x
is a dense vector).

A New Global Ordering: the “After Read” Approach. The “before read” approach gives
rise to the following complication in the analysis: x̂t can depend on ir for r > t. This is because t is
a global time ordering only on the assignment of computation to a core, not on when x̂t was finished
to be read. This means that we need to consider both the “future” and the “past” when analyzing xt.
To simplify the analysis (which proved crucial for our Asaga proof), we thus propose a third way to
label the iterates: x̂t represents the (t+ 1)th fully completed read (t incremented after step 1 in (7)).
As in the “before read” approach, we can ensure that it is independent of x̂t by ensuring that how we
read does not depend on it. But unlike in the “before read” approach, t here now does represent a
global ordering on the x̂t iterates – and thus we have that ir is independent of x̂t for r > t. Again
using (5) as the definition of the virtual iterate xt as in the perturbed iterate framework, we then
have a very simple form for the value of xt and x̂t (assuming atomic writes, see Property 3 below):

xt = x0 − γ
t−1∑
u=0

g(x̂u, α̂
u, iu) ; [x̂t]v = [x0]v − γ

t−1∑
u=0

u s.t. coordinate v was written
for u before t

[g(x̂u, α̂
u, iu)]v . (8)

The main idea of the perturbed iterate framework is to use this handle on x̂t − xt to analyze the
convergence for xt. In this paper, we can instead give directly the convergence of x̂t, and so unlike
in Mania et al. [14], we do not require that there exists a T such that xT lives in shared memory.

3.3 Analysis setup

We describe Asaga, a sparse asynchronous parallel implementation of Sparse Saga, in Algorithm 1 in
the theoretical form that we analyze, and in Algorithm 2 as its practical implementation. Before stating
its convergence, we highlight some properties of Algorithm 1 and make one central assumption.
Property 1 (independence). Given the “after read” global ordering, ir is independent of x̂t ∀r ≥ t.
We enforce the independence for r = t in Algorithm 1 by having the core read all the shared data
parameters and historical gradients before starting their iterations. Although this is too expensive to
be practical if the data is sparse, this is required by the theoretical Algorithm 1 that we can analyze.
We stress that, as noted by Mania et al. [14], this independence property is assumed in most of the
parallel optimization literature. The independence for r > t is a consequence of using the “after read”
global ordering instead of the “before read” one.

5

Algorithm 1 Asaga (analyzed algorithm)

1: Initialize shared variables x and (αi)
n
i=1

2: keep doing in parallel
3: x̂ = inconsistent read of x
4: ∀j, α̂j = inconsistent read of αj
5: Sample i uniformly at random in {1, ..., n}
6: Let Si be fi’s support
7: [ᾱ]Si

:= 1/n
∑n
k=1[α̂k]Si

8: [δx]Si := −γ(f ′i(x̂)− α̂i +Di[ᾱ]Si)
9:

10: for v in Si do
11: [x]v ← [x]v + [δx]v // atomic
12: [αi]v ← [f ′i(x̂)]v
13:
14: end for
15: end parallel loop

Algorithm 2 Asaga (implementation)

1: Initialize shared variables x, (αi)
n
i=1 and ᾱ

2: keep doing in parallel
3: Sample i uniformly at random in {1, ..., n}
4: Let Si be fi’s support
5: [x̂]Si

= inconsistent read of x on Si
6: α̂i = inconsistent read of αi
7: [ᾱ]Si = inconsistent read of ᾱ on Si
8: [δα]Si = f ′i([x̂]Si)− α̂i
9: [δx]Si

= −γ([δα]Si
+Di[ᾱ]Si

)
10: for v in Si do
11: [x]v = [x]v + [δx]v // atomic
12: [αi]v = [αi]v + [δα]v // atomic
13: [ᾱ]v = [ᾱ]v + 1/n[δα]v // atomic
14: end for
15: end parallel loop

Property 2 (Unbiased estimator). The update, gt := g(x̂t, α̂
t, it), is an unbiased estimator of the

true gradient at x̂t (i.e. (5) yields (6) in conditional expectation).
This property is crucial for the analysis, as in most related literature. It follows by the independence
of it with x̂t and from the computation of ᾱ on line 7 of Algorithm 1, which ensures that Eα̂i =
1/n

∑n
k=1[α̂k]Si

= [ᾱ]Si
, making the update unbiased. In practice, recomputing ᾱ is not optimal, but

storing it instead introduces potential bias issues in the proof (as detailed in Appendix G.3).
Property 3 (atomicity). The shared parameter coordinate update of [x]v on line 11 is atomic.
Since our updates are additions, this means that there are no overwrites, even when several cores
compete for the same resources. In practice, this is enforced by using compare-and-swap semantics,
which are heavily optimized at the processor level and have minimal overhead. Our experiments
with non-thread safe algorithms (i.e. where this property is not verified, see Figure 6 of Appendix G)
show that compare-and-swap is necessary to optimize to high accuracy.

Finally, as is standard in the literature, we make an assumption on the maximum delay asynchrony
can cause – this is the partially asynchronous setting as defined in Bertsekas and Tsitsiklis [1]:
Assumption 1 (bounded overlaps). We assume that there exists a uniform bound, called τ , on the
maximum number of iterations that can overlap together. We say that iterations r and t overlap if at
some point they are processed concurrently. One iteration is being processed from the start of the
reading of the shared parameters to the end of the writing of its update. The bound τ means that
iterations r cannot overlap with iteration t for r ≥ t+ τ + 1, and thus that every coordinate update
from iteration t is successfully written to memory before the iteration t+ τ + 1 starts.
Our result will give us conditions on τ subject to which we have linear speedups. τ is usually seen as a
proxy for the number of cores (which lowerbounds it). However, though τ appears to depend linearly
on p, it actually depends on several other factors (notably including the data sparsity distribution)
and can be orders of magnitude bigger than p in real-life experiments. We can upper bound τ by
(p− 1)R, where R is the ratio of the maximum over the minimum iteration time (which encompasses
theoretical aspects as well as hardware overhead). More details can be found in Appendix E.

Explicit effect of asynchrony. By using the overlap Assumption 1 in the expression (8) for the
iterates, we obtain the following explicit effect of asynchrony that is crucially used in our proof:

x̂t − xt = γ

t−1∑
u=(t−τ)+

Stug(x̂u, α̂
u, iu), (9)

where Stu are d× d diagonal matrices with terms in {+1, 0}. We know from our definition of t and xt
that every update in x̂t is already in xt – this is the 0 case. Conversely, some updates might be late:
this is the +1 case. x̂t may be lacking some updates from the “past" in some sense, whereas given
our global ordering definition, it cannot contain updates from the “future".

6

3.4 Convergence and speedup results

We now state our main theoretical results. We give an outline of the proof in the next section and
its full details in Appendix C. We first define a notion of problem sparsity, as it will appear in our
results.
Definition 1 (Sparsity). As in Niu et al. [15], we introduce ∆r := maxv=1..d |{(i : v ∈ Si}|. ∆r is
the maximum right-degree in the bipartite graph of the factors and the dimensions, i.e., the maximum
number of data points with a specific feature. For succinctness, we also define ∆ := ∆r/n. We have
1 ≤ ∆r ≤ n, and hence 1/n ≤ ∆ ≤ 1.
Theorem 2 (Convergence guarantee and rate of Asaga). Suppose τ < n/10.7 Let

a∗(τ) :=
1

32
(

1 + τ
√

∆
)
ξ(κ,∆, τ)

where ξ(κ,∆, τ) :=

√
1 +

1

8κ
min{ 1√

∆
, τ}

(note that ξ(κ,∆, τ) ≈ 1 unless κ < 1/
√

∆ (≤
√
n)).

(10)

For any step size γ = a
L with a ≤ a∗(τ), the inconsistent read iterates of Algorithm 1 converge in

expectation at a geometric rate of at least: ρ(a) = 1
5 min

{
1
n , a

1
κ

}
, i.e., Ef(x̂t)− f(x∗) ≤ (1− ρ)t C̃0,

where C̃0 is a constant independent of t (≈ n
γC0 with C0 as defined in Theorem 1).

Within constants, this result is very close to Saga’s original convergence theorem, but with the
maximum step size divided by an extra 1 + τ

√
∆ factor. Referring to Hofmann et al. [6] and our

own Theorem 1, the rate factor for Saga is min{1/n, 1/κ} up to a constant factor. Comparing
this rate with Theorem 2 and inferring the conditions on the maximum step size a∗(τ), we get the
following conditions on the overlap τ for Asaga to have the same rate as Saga (comparing upper
bounds).
Corollary 3 (Speedup condition). Suppose τ ≤ O(n) and τ ≤ O(1√

∆
max{1, nκ}). Then using the

step size γ = a∗(τ)/L from (10), Asaga converges geometrically with the rate factor Ω(min{ 1
n ,

1
κ})

(similar to Saga), and is thus linearly faster than its sequential counterpart up to a constant factor.
Moreover, if τ ≤ O(1√

∆
), then a universal step size of Θ(1

L) can be used for Asaga to be adaptive to
local strong convexity with a similar rate to Saga (i.e., knowledge of κ is not required).
Interestingly, in the big data regime (n > κ, where Saga enjoys a range of stepsizes which all give
the same contraction ratio), Asaga can get the same rate as Saga even in the non-sparse regime
(∆ = 1) for τ < O(n/κ). This is in contrast to the previous work on asynchronous incremental
gradient methods which required some kind of sparsity to get a theoretical linear speedup over their
sequential counterpart [15, 14]. In the ill-conditioned regime (κ > n), sparsity is required for a linear
speedup, with a bound on τ of O(

√
n) in the best-case scenario where ∆ = 1/n.

Comparison to related work.

• We give the first convergence analysis for an asynchronous parallel version of Saga ([16] covers
only an epoch based version of Saga with random stopping times, a fairly different algorithm).

• Theorem 2 can be directly extended to the Svrg version from Hofmann et al. [6] which is adaptive
to the local strong convexity with similar rates (see Appendix C.2).

• In contrast to the Svrg analysis from Reddi et al. [16, Thm. 2], our proof technique handles
inconsistent reads and a non-uniform processing speed across fi’s. Except for the adaptivity to
local strong convexity of Asaga, our bounds are similar (noting that ∆ is equivalent to theirs).

• In contrast to the Svrg analysis from Mania et al. [14, Thm. 14], we obtain a better dependence
on the condition number in our rate (1/κ vs. 1/κ2 for them) and on the sparsity (they get
τ ≤ O(∆−1/3)), while we remove their gradient bound assumption. We also give our convergence
guarantee on x̂t during the algorithm, whereas they only bound the error for the “last” iterate xT .

7Asaga can actually converge for any τ , but the maximum step size then has a term of exp(τ/n) in the denominator
with much worse constants. See Appendix C.8.

7

3.5 Proof outline

We give here the outline of our proof. Its full details can be found in Appendix C.

Let gt := g(x̂t, α̂
t, it). By expanding the update equation (5) defining the virtual iterate xt+1 and

introducing x̂t in the inner product term we get:

‖xt+1 − x∗‖2 = ‖xt − γgt − x∗‖2 = ‖xt − x∗‖2 + γ2‖gt‖2 − 2γ〈x̂t − x∗, gt〉+ 2γ〈x̂t − xt, gt〉. (11)

In the sequential setting, we require it to be independent of xt to get unbiasedness. In the perturbed
iterate framework, we instead require that it is independent of x̂t (see Property 1). This crucial
property enables us to use the unbiasedness condition (6) to write: E〈x̂t−x∗, gt〉 = E〈x̂t−x∗, f ′(x̂t)〉.
We thus take the expectation of (23) that allows us to use the µ-strong convexity of f :8

〈x̂t − x∗, f ′(x̂t)〉 ≥ f(x̂t)− f(x∗) +
µ

2
‖x̂t − x∗‖2. (12)

With further manipulations on the expectation of (23), including the use of the standard inequality
‖a+b‖2 ≤ 2‖a‖2 +2‖b‖2 (see Section C.3), we obtain our basic recursive contraction inequality:

at+1 ≤ (1− γµ

2
)at + γ2E‖gt‖2 +γµE‖x̂t − x∗‖2 + 2γE〈x̂t − xt, gt〉︸ ︷︷ ︸

additional asynchrony terms

−2γet , (13)

where at := E‖xt − x∗‖2 and et := Ef(x̂t)− f(x∗).

In the sequential setting, one crucially uses the negative suboptimality term −2γet to cancel the
variance term γ2E‖gt‖2 (thus deriving a condition on γ). In our setting, we need to bound the
additional asynchrony terms using the same negative suboptimality in order to prove convergence
and speedup for our parallel algorithm – this will give stronger constraints on the maximum step
size.

The rest of the proof then proceeds as follows:

• Lemma 1: we first bound the additional asynchrony terms in (13) in terms of past updates
(E‖gu‖2, u ≤ t). We achieve this by crucially using the expansion (9) for xt − x̂t, together with
the sparsity inequality (46) (which is derived from Cauchy-Schwartz, see Appendix C.4).

• Lemma 2: we then bound the updates E‖gu‖2 with respect to past suboptimalities (ev, v ≤ u).
From our analysis of Sparse Saga in the sequential case we have:

E‖gt‖2 ≤ 2E‖f ′it(x̂t)− f
′
it(x

∗)‖2 + 2E‖α̂tit − f
′
it(x

∗)‖2. (14)

We bound the first term by 4Let using [6, Equation (8)]. To express the second term in terms
of past suboptimalities, we note that it can be seen as an expectation of past first terms with
an adequate probability distribution which we derive and bound.

• By substituting Lemma 2 into Lemma 1, we get a master contraction inequality (30) in terms
of at+1, at and eu, u ≤ t.

• We define a novel Lyapunov function Lt =
∑t
u=0(1 − ρ)t−uau and manipulate the master

inequality to show that Lt is bounded by a contraction, subject to a maximum step size
condition on γ (given in Lemma 3, see Appendix C.1).

• Finally, we unroll the Lyapunov inequality to get the convergence Theorem 2.

4 Empirical results

In this section, we present the main results of our empirical comparison of asynchronous Saga, Svrg
and Hogwild. Additional results, including convergence and speedup figures with respect to the
number of iteration and measures on the τ constant are available in the appendix.

8Note that here is our departure point with Mania et al. [14] who replaced the f(x̂t)− f(x∗) term with the lower
bound µ

2
‖x̂t − x∗‖2 in this relationship (see their Equation (2.4)), thus yielding an inequality too loose afterwards to

get the fast rates for Svrg.

8

0 50 100 150 200
Time (in seconds)

10-5

10-4

10-3

10-2

10-1

100

O
b
je

ct
iv

e
 m

in
u
s

o
p
ti

m
u
m

RCV1-full dataset

0 2 4 6 8 10
Time (in hours)

10-5

10-4

10-3

10-2

10-1

100 URL dataset

SAGA

ASAGA (10 cores)

Hogwild! (1 core)

Hogwild! (10 cores)

SVRG

Kromagnon (10 cores)

(a) Suboptimality as a function of time.

5 10 15 20 25
Number of cores

5

10

15

20

25

S
p
e
e
d
u
p

RCV1-full dataset

5 10 15 20 25
Number of cores

5

10

15

20

25 URL dataset

Ideal ASAGA Kromagnon Hogwild!

(b) Speedup as a function of the number of cores

Figure 1: Convergence and speedup for asynchronous stochastic gradient descent methods. We
display results for RCV1 and URL. Results for Covtype can be found in Appendix D.2.

4.1 Experimental setup

Models. Although Asaga can be applied more broadly, we focus on logistic regression, a model
of particular practical importance. The associated objective function takes the following form:
1
n

∑n
i=1 log

(
1+exp(−biaᵀi x)

)
+ λ

2 ‖x‖
2, where ai ∈ Rp and bi ∈ {−1,+1} are the data samples.

Datasets. We consider two sparse
datasets (RCV1 [10] and URL [13]) and
a dense one (Covtype [2]), with statistics
listed in the table to the right. As in [9],
Covtype is standardized and thus 100%
dense.

n d density L

RCV1 697,641 47,236 0.15% 0.25
URL 2,396,130 3,231,961 0.004% 128.4
Covtype 581,012 54 100% 48428

Hardware and software. Experiments were run on a 40-core machine with 384GB of memory.
All algorithms were implemented in the Scala language. Atomic operations from Algorithm 2 were
implemented using CPU-optimized compare-and-swap instructions. The code we used to run all the
experiments is available at http://www.di.ens.fr/sierra/research/asaga/.

4.2 Implementation details

Exact regularization. Following Schmidt et al. [17], the amount of regularization used was set
to λ = 1/n. In each update, we project the gradient of the regularization term (we multiply it
by Di as we also do with the vector ᾱ) to preserve the sparsity pattern while maintaining an
unbiased estimate of the gradient. For squared `2, the Sparse Saga updates becomes: x+ =
x− γ(f ′i(x)− αi +Diᾱ+ λDix).

Comparison with the theoretical algorithm. The algorithm we used in the experiments is fully
detailed in Algorithm 2. There are two differences with Algorithm 1. First, in the implementation
we pick it at random before we read data. This enables us to only read the necessary data for a
given iteration (i.e. [x̂t]Si

, [α̂ti], [ᾱ
t]Si

). Although this violates Property 1, it still performs well in
practice.

Second, we maintain ᾱt in memory. This saves the cost of recomputing it at every iteration (which
we can no longer do since we only read a subset data). Again, in practice the implemented algorithm
enjoys good performance. But this design choice raises a subtle point: the update is not guaranteed
to be unbiased in this setup (see Appendix G.3 for more details).

4.3 Results

We first compare three different asynchronous variants of stochastic gradient methods on the
aforementioned datasets: Asaga, presented in this work, Kromagnon, the asynchronous sparse
Svrg method described in [14] and Hogwild [15]. Each method had its step size chosen so as

9

http://www.di.ens.fr/sierra/research/asaga/

to give the fastest convergence (up to 10−3 in the special case of Hogwild). The results can be
seen in Figure 1a where for each method we consider its asynchronous version with both one (hence
sequential) and ten processors. This figure reveals that the asynchronous version offers a significant
speedup when compared with its sequential counterpart.

We then examine the speedup relative to the increase in the number of cores. The speedup is
measured as time to achieve a suboptimality of 10−5 (10−3 for Hogwild) with one core divided
by time to achieve the same suboptimality with several cores, averaged over 3 runs. Each method
had its step size parameter chosen so as to give the fastest convergence. Results are displayed in
Figure 1b.

As predicted by our theory, we observe linear “theoretical” speedups (i.e. in terms of number of
iterations, see Appendix D.2). However, with respect to running time the speedups seem to taper
off after 20 cores. This phenomenon can be explained by the fact that our hardware model is by
necessity a simplification of reality. As noted in Duchi et al. [5], in a modern machine there is no such
thing as shared memory. Each core has its own levels of cache (L1, L2, L3) in addition to RAM. The
more cores are used, the lower in the memory stack information goes and the slower it gets. More
experimentation is needed to quantify that effect and potentially get better performance.

5 Conclusions and future work

We have described Asaga, a novel sparse and fully asynchronous variant of the incremental gradient
algorithm Saga. Building on the recently proposed “perturbed iterate” framework, we have introduced
a novel analysis of the algorithm and proven that under mild conditions Asaga is linearly faster
than its sequential version. Our empirical benchmarks confirm speedups up to 10x.

Our proof technique accommodates more realistic settings than is usually the case in the literature
(such as inconsistent reads and writes and an unbounded gradient); we obtain tighter conditions
than in previous work. In particular, we show that sparsity is not always necessary to get linear
speedups. Furthermore, we have highlighted an important technical issue present in a large fraction
of the recent convergence rate proofs for asynchronous parallel optimization algorithms.

Schmidt et al. [17] have shown that Saga enjoys much improved performance when combined with
non-uniform sampling and line-search. We have also noticed that our ∆r constant (being essentially
a maximum) sometimes fails to accurately represent the full sparsity distribution of our datasets.
These constitute interesting directions for future analysis, as well as a further exploration of the τ
term, which we have shown encompasses more complexity than previously thought.

Acknowledgments

We would like to thank Xinghao Pan for sharing with us their implementation of Kromagnon.

This work was partially supported by a Google Research Award. FP acknowledges financial support
from the “Chaire Economie des Nouvelles Données”, under the auspices of Institut Louis Bachelier,
Havas-Media and Université Paris-Dauphine.

References
[1] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods.

Prentice Hall, 1989.

[2] R. Collobert, S. Bengio, and Y. Bengio. A parallel mixture of svms for very large scale problems.

[3] C. De Sa, C. Zhang, K. Olukotun, and C. Ré. Taming the wild: a unified analysis of Hogwild!-style
algorithms. In NIPS, 2015.

[4] A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient method with
support for non-strongly convex composite objectives. In NIPS, 2014.

10

[5] J. C. Duchi, S. Chaturapruek, and C. Ré. Asynchronous stochastic convex optimization. In
NIPS, 2015.

[6] T. Hofmann, A. Lucchi, S. Lacoste-Julien, and B. McWilliams. Variance reduced stochastic
gradient descent with neighbors. In NIPS, 2015.

[7] C.-J. Hsieh, H.-F. Yu, and I. Dhillon. PASSCoDe: Parallel ASynchronous Stochastic dual
Co-ordinate Descent. In ICML, 2015.

[8] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In NIPS, 2013.

[9] N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential
convergence rate for finite training sets. In NIPS, 2012.

[10] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1: A new benchmark collection for text
categorization research. JMLR, 2004.

[11] X. Lian, Y. Huang, Y. Li, and J. Liu. Asynchronous parallel stochastic gradient for nonconvex
optimization. In NIPS, 2015.

[12] J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Sridhar. An asynchronous parallel stochastic
coordinate descent algorithm. Journal of Machine Learning Research, 16:285–322, 2015.

[13] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker. Identifying suspicious urls: an application of
large-scale online learning. In ICML, 2009.

[14] H. Mania, X. Pan, D. Papailiopoulos, B. Recht, K. Ramchandran, and M. I. Jordan. Perturbed
iterate analysis for asynchronous stochastic optimization. arXiv:1507.06970v1, 2015.

[15] F. Niu, B. Recht, C. Re, and S. Wright. Hogwild: a lock-free approach to parallelizing stochastic
gradient descent. In NIPS, 2011.

[16] S. J. Reddi, A. Hefny, S. Sra, B. Póczos, and A. Smola. On variance reduction in stochastic
gradient descent and its asynchronous variants. In NIPS, 2015.

[17] M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochastic average
gradient. arXiv:1309.2388, 2013.

[18] S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized loss.
JMLR, 14(1):567–599, 2013.

[19] S.-Y. Zhao and W.-J. Li. Fast asynchronous parallel stochastic gradient descent. In AAAI, 2016.

11

Appendix Outline:

• In Appendix A, we give a simple example illustrating why the “After Write” approach can
break the crucial unbiasedness condition (6) needed for standard convergence proofs.

• In Appendix B, we adapt the proof from Hofmann et al. [6] to prove Theorem 1, our convergence
result for serial Sparse Saga.

• In Appendix C, we first give a detailed outline and then the complete details for the proof of
convergence for Asaga (Theorem 2) as well as its linear speedup regimes (Corollary 3).

• In Appendix D, we analyze additional experimental results, including a comparison of serial
Saga algorithms and a look at “theoretical speedups” for Asaga.

• In Appendix E, we take a closer look at the τ constant. We argue that it encompasses more
complexity than is usually implied in the literature, as additional results that we present
indicate.

• In Appendix F, we compare the lagged updates implementation of Saga with our sparse
algorithm, and explain why adapting the former to the asynchronous setting is difficult.

• In Appendix G, we give additional details about the datasets and our implementation.

A Problematic Example for the “After Write” Approach

We provide a concrete example to illustrate the non-independence issue arising from the “after write”
approach. Suppose that we have two cores and that f has two factors: f1 which has support on
only one variable, and f2 which has support on 106 variables and thus yields a gradient step that is
significantly more expensive to compute. In the “after write” approach, x0 is the initial content of
the memory, and we do not officially know yet whether x̂0 is the local copy read by the first core or
the second core, but we are sure that x̂0 = x0 as no update can occur in shared memory without
incrementing the counter. There are four possibilities for the next step defining x1 depending on
which index i was sampled on each core. If any core samples i = 1, we know that x1 = x0 − γf ′1(x0)
as it will be the first (much faster update) to complete. This happens in 3 out of 4 possibilities; we
thus have that Ex1 = x0 − γ(3

4f
′
1(x0) + 1

4f
′
2(x0)) – we see that this analysis scheme does not satisfy

the crucial unbiasedness condition (6).

To understand this subtle point better, note that in this very simple example, i0 and i1 are not
independent. We can show that P (i1 = 2 | i0 = 2) = 1. They share dependency through the labeling
assignment.

The only way we can think to resolve this issue and ensure unbiasedness in the “after write” framework
is to assume that the computation time for the algorithm running on a core is independent of the
sample i chosen. This assumption seems overly strong in the context of potentially heterogeneous
factors fi’s, and is thus a fundamental flaw in the “after write” framework that has mostly been
ignored in the recent asynchronous optimization literature.

We note that Bertsekas and Tsitsiklis [1] briefly discussed this issue in Section 7.8.3 of their book,
stressing that their analysis for SGD required that the scheduling of computation was independent
from the randomness from SGD, but they did not offer any solution if this assumption was not
satisfied. Both the “before read” labeling from Mania et al. [14] and our proposed “after read” labeling
resolve this issue.

B Proof of Theorem 1

Proof outline. We reuse the proof technique from Hofmann et al. [6], in which a combination of clas-
sical strong convexity and Lipschitz inequalities is used to derive the inequality [6, Lemma 1]:

E‖x+−x∗‖2 ≤(1−γµ)‖x−x∗‖2 + 2γ2E‖αi − f ′i(x∗)‖2 + (4γ2L− 2γ)
(
f(x)− f(x∗)

)
. (15)

12

This gives a contraction term. A Lyapunov function is then defined to control the two other terms.
To ensure our variant converges at the same rate as regular Saga, one only needs to prove that the
above inequality ([6, Lemma 1]) is still verified. To prove this, we derive close variants of equations
(6) and (9) in their paper. The rest of the proof can be reused without modification.

Deriving [6, Equation (6)]. We first show that the update estimator is unbiased. The estimator
is unbiased if:

EDiᾱ = Eαi =
1

n

n∑
i=1

αi . (16)

We have:

EDiᾱ =
1

n

n∑
i=1

Diᾱ =
1

n

n∑
i=1

PSi
Dᾱ =

1

n

n∑
i=1

∑
v∈Si

[ᾱ]vev
pv

=

d∑
v=1

 ∑
i | v∈Si

1

 [ᾱ]vev
npv

,

where ev is the vector whose only nonzero component is the v component which is equal to 1.

By definition,
∑
i|v∈Si

1 = npv, which gives us Equation (16).

We define ᾱi := αi −Diᾱ. By using the classical inequality ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2, we get:

E‖f ′i(x)− ᾱi‖2 ≤ 2E‖f ′i(x)− f ′i(x∗)‖2 + 2E‖ᾱi − f ′i(x∗)‖2, (17)

which is our equivalent to their Equation (6), where only our definition of ᾱi differs.

Deriving [6, Equation (9)]. We want to prove that:

E‖ᾱi − f ′i(x∗)‖2 ≤ E‖αi − f ′i(x∗)‖2. (18)

We have:

E‖ᾱi − f ′i(x∗)‖2 = E‖αi − f ′i(x∗)‖2 − 2E〈αi − f ′i(x∗), Diᾱ〉+ E‖Diᾱ‖2. (19)

Let D¬i := PSc
i
D; we then have the orthogonal decomposition Dα = Diα+D¬iα with Diα ⊥ D¬iα,

as they have disjoint support. We now use the orthogonality of D¬iα with any vector with support
in Si to simplify the expression (19) as follows:

E〈αi − f ′i(x∗), Diᾱ〉 = E〈αi − f ′i(x∗), Diᾱ+D¬iᾱ〉 (αi − f ′i(x∗) ⊥ D¬iα)

= E〈αi − f ′i(x∗), Dᾱ〉
= 〈E

(
αi − f ′i(x∗)

)
, Dᾱ〉

= 〈Eαi, Dᾱ〉 (f ′(x∗) = 0)
= ᾱᵀDᾱ . (20)

Similarly,

E‖Diᾱ‖2 = E〈Diᾱ,Diᾱ〉
= E〈Diᾱ,Dᾱ〉 (Diα ⊥ D¬iα)
= 〈EDiᾱ,Dᾱ〉
= ᾱᵀDᾱ . (21)

Putting it all together,

E‖ᾱi − f ′i(x∗)‖2 = E‖αi − f ′i(x∗)‖2 − ᾱᵀDᾱ ≤ E‖αi − f ′i(x∗)‖2. (22)

This is our version of Hofmann et al. [6, Equation (9)], which finishes the proof of [6, Lemma 1].

13

C Proof of Theorem 2 and Corollary 3

C.1 Detailed outline

We first give a detailed outline of the proof. The complete proof is given in the rest of Ap-
pendix C.

Initial recursive inequality. Let gt := g(x̂t, α̂
t, it). From the update equation (5) defining the

virtual iterate xt+1, the perturbed iterate framework [14] gives:

‖xt+1 − x∗‖2 = ‖xt − γgt − x∗‖2

= ‖xt − x∗‖2 + γ2‖gt‖2 − 2γ〈xt − x∗, gt〉
= ‖xt − x∗‖2 + γ2‖gt‖2 − 2γ〈x̂t − x∗, gt〉+ 2γ〈x̂t − xt, gt〉 . (23)

Note that we have introduced x̂t in the inner product because gt is a function of x̂t, not xt.

In the sequential setting, we require it to be independent of xt to get unbiasedness. In the perturbed
iterate framework, we instead require that it is independent of x̂t (see Property 1). This crucial
property enables us to use the unbiasedness condition (6) to write: E〈x̂t−x∗, gt〉 = E〈x̂t−x∗, f ′(x̂t)〉.
We thus take the expectation of (23) that allows us to use the µ-strong convexity of f :9

〈x̂t − x∗, f ′(x̂t)〉 ≥ f(x̂t)− f(x∗) +
µ

2
‖x̂t − x∗‖2. (24)

With further manipulations on the expectation of (23), including the use of the standard inequality
‖a+b‖2 ≤ 2‖a‖2 +2‖b‖2 (see Section C.3), we obtain our basic recursive contraction inequality:

at+1 ≤ (1− γµ

2
)at + γ2E‖gt‖2 +γµE‖x̂t − x∗‖2 + 2γE〈x̂t − xt, gt〉︸ ︷︷ ︸

additional asynchrony terms

−2γet , (25)

where at := E‖xt − x∗‖2 and et := Ef(x̂t)− f(x∗).

Inequality (25) is a midway point between the one derived in the proof of Lemma 1 in Hofmann et al.
[6] and Equation (2.5) in Mania et al. [14], because we use the tighter strong convexity bound (24)
than in the latter (giving us the important extra term −2γet).

In the sequential setting, one crucially uses the negative suboptimality term −2γet to cancel the
variance term γ2E‖gt‖2 (thus deriving a condition on γ). In our setting, we need to bound the
additional asynchrony terms using the same negative suboptimality in order to prove convergence
and speedup for our parallel algorithm – this will give stronger constraints on the maximum step
size.

The rest of the proof then proceeds as follows:

1. By using the expansion (9) for x̂t − xt, we can bound the additional asynchrony terms in (25)
in terms of the past updates (E‖gu‖2, u ≤ t). This gives Lemma 1 below.

2. We then bound the updates E‖gt‖2 in terms of past suboptimalities (eu, u ≤ v) by using
standard Saga inequalities and carefully analyzing the update rule for α+

i (2) in expectation.
This gives Lemma 2 below.

3. By substituting Lemma 2 into Lemma 1, we get a master contraction inequality (30) in terms
of at+1, at and eu, u ≤ t.

4. We define a novel Lyapunov function Lt =
∑t
u=0(1 − ρ)t−uau and manipulate the master

inequality to show that Lt is bounded by a contraction, subject to a maximum step size
condition on γ (given in Lemma 3 below).

9Note that here is our departure point with Mania et al. [14] who replaced the f(x̂t)− f(x∗) term with the lower
bound µ

2
‖x̂t − x∗‖2 in this relationship (see their Equation (2.4)), thus yielding an inequality too loose afterwards to

get the fast rates for Svrg.

14

5. Finally, we unroll the Lyapunov inequality to get the convergence Theorem 2.

We list the key lemmas below with their proof sketch, and give the detailed proof in the later sections
of Appendix C.
Lemma 1 (Inequality in terms of gt := g(x̂t, α̂

t, it)). For all t ≥ 0:

at+1 ≤ (1− γµ

2
)at + γ2C1E‖gt‖2 + γ2C2

t−1∑
u=(t−τ)+

E‖gu‖2 − 2γet , (26)

where C1 := 1 +
√

∆τ and C2 :=
√

∆ + γµ
(
1 +
√

∆(τ − 1)+

)
.

To prove this lemma we need to bound both E‖x̂t−x∗‖2 and E〈x̂t−xt, gt〉 with respect to (gu, u ≤ t).
We achieve this by crucially using Equation (9), together with the following proposition, which we
derive by a combination of Cauchy-Schwartz and our sparsity definition (see Section C.4).

E〈Stugu, gt〉 ≤
√

∆

2
(E‖gu‖2 + E‖gt‖2) . (27)

Lemma 2 (Suboptimality bound on E‖gt‖2). For all t ≥ 0,

E‖gt‖2 ≤ 4Let +
4L

n

t−1∑
u=1

(1− 1

n
)(t−2τ−u−1)+eu + 4L(1− 1

n
)(t−τ)+ ẽ0 . (28)

where ẽ0 = max{e0,
1

2LE‖α
0
i − f ′i(x∗)‖2}.10

From our Sparse Saga proof we know that (see Appendix B):

E‖gt‖2 ≤ 2E‖f ′it(x̂t)− f
′
it(x

∗)‖2 + 2E‖α̂tit − f
′
it(x

∗)‖2. (29)

We can handle the first term by taking the expectation over a Lipschitz inequality ([6, Equations
(7) and (8)]. All that remains to prove the lemma is to express the E‖α̂tit − f

′
it

(x∗)‖2 term in terms
of past suboptimalities. We note that it can be seen as an expectation of past first terms with an
adequate probability distribution which we derive and bound.

From our algorithm, we know that each dimension of the memory vector [α̂i]v contains a partial
gradient computed at some point in the past [f ′i(x̂ut

i,v
)]v

11 (unless u = 0, in which case we replace
the partial gradient with α0

i). We then derive bounds on P (uti,v = u) and sum on all possible u.
Together with clever conditioning, we obtain Lemma 2 (see Section C.5).

Master inequality. Let Ht be defined as Ht :=
∑t−1
u=1(1− 1

n)(t−2τ−u−1)+eu. Then, by setting (28)
into Lemma 1, we get (see Section C.6):

at+1 ≤(1− γµ

2
)at − 2γet + 4Lγ2C1

(
et + (1− 1

n
)(t−τ)+ ẽ0

)
+

4Lγ2C1

n
Ht

+ 4Lγ2C2

t−1∑
u=(t−τ)+

(eu + (1− 1

n
)(u−τ)+ ẽ0

)
+

4Lγ2C2

n

t−1∑
u=(t−τ)+

Hu .
(30)

Lyapunov function and associated recursive inequality. We now have the beginning of a
contraction with additional positive terms which all converge to 0 as we near the optimum, as
well as our classical negative suboptimality term. This is not unusual in the variance reduction
literature. One successful approach in the sequential case is then to define a Lyapunov function
which encompasses all terms and is a true contraction (see [4, 6]). We emulate this solution here.
However, while all terms in the sequential case only depend on the current iterate, t, in the parallel

10We introduce this quantity instead of e0 so as to be able to handle the arbitrary initialization of the α0
i .

11More precisely: ∀t, i, v ∃uti,v < t s.t. [α̂ti]v = [f ′i(x̂ut
i,v

)]v .

15

case we have terms “from the past” in our inequality. To resolve this issue, we define a more involved
Lyapunov function which also encompasses past iterates:

Lt =

t∑
u=0

(1− ρ)t−uau, 0 < ρ < 1, (31)

where ρ is a target contraction rate that we define later.

Using the master inequality (30), we get (see Appendix C.7):

Lt+1 = (1− ρ)t+1a0 +

t∑
u=0

(1− ρ)t−uau+1

≤ (1− ρ)t+1a0 + (1− γµ

2
)Lt +

t∑
u=1

rtueu + rt0ẽ0 . (32)

The aim is to prove that Lt is bounded by a contraction. We have two promising terms at the
beginning of the inequality, and then we need to handle the last term. Basically, we can rearrange
the sums in (30) to expose a simple sum of eu multiplied by factors rtu.

Under specific conditions on ρ and γ, we can prove that rtu is negative for all u ≥ 1, which coupled
with the fact that each eu is positive means that we can safely drop the sum term from the inequality.
The rt0 term is a bit trickier and is handled separately.

In order to have a bound on et directly rather than on E‖x̂t − x∗‖2, we then introduce an additional
γet term on both sides of (32). The bound on γ under which the modified rtt + γ is negative is then
twice as small (we could have used any multiplier between 0 and 2γ, but chose γ for simplicity’s
sake). This condition is given in the following Lemma.
Lemma 3 (Sufficient condition for convergence). Suppose τ < n/10 and ρ ≤ 1/4n. If

γ ≤ γ∗ =
1

32L(1 +
√

∆τ)
√

1 + 1
8κ min(τ, 1√

∆
)

(33)

then for all u ≥ 1, the rtu from (32) verify:

rtu ≤ 0 ; rtt + γ ≤ 0 , (34)

and thus we have:

γet + Lt+1 ≤ (1− ρ)t+1a0 + (1− γµ

2
)Lt + rt0ẽ0 . (35)

We obtain this result after carefully deriving the rtu terms. We find a second-order polynomial
inequality in γ, which we simplify down to (33) (see Appendix C.8).

We can then finish the argument to bound the suboptimality error et. We have:

Lt+1 ≤ γet + Lt+1 ≤ (1− γµ

2
)Lt + (1− ρ)t+1(a0 +Aẽ0) . (36)

We have two linearly contracting terms. The sum contracts linearly with the worst rate between the
two (the smallest geometric rate factor). If we define ρ∗ := νmin(ρ, γµ/2), with 0 < ν < 1,12 then
we get:

γet + Lt+1 ≤ (1− γµ

2
)t+1L0 + (1− ρ∗)t+1 a0 +Aẽ0

1− η
(37)

γet ≤ (1− ρ∗)t+1
(
L0 +

1

1− η
(a0 +Aẽ0)

)
, (38)

where η := 1−M
1−ρ∗ withM := max(ρ, γµ/2). Our geometric rate factor is thus ρ∗ (see Appendix C.9).

12ν is introduced to circumvent the problematic case where ρ and γµ/2 are too close together.

16

C.2 Extension to Svrg

Our proof can easily be adapted to accommodate the Svrg variant introduced in Hofmann et al. [6],
which is closer to Saga than the initial Svrg algorithm. In this variant, instead of computing a full
gradient every m iterations, at the beginning of every iteration a random binary variable U with
probability P (U = 1) = 1/m is sampled. If U = 1 then a full gradient is computed. Otherwise the
algorithm takes a normal inner Svrg step.13

All one has to do is modify Lemma 2 very slightly (the only difference is that the (t− 2τ − u− 1)+

exponent is replaced by t− u) and the rest of the proof can be used as is. The justification for this
small tweak is that the batch steps in Svrg are fully synchronized. More details can be found in
Section C.5 (see footnote 16).

By using our “after read” labeling, we were also able to derive a convergence and speedup proof for
the original Svrg algorithm, but the proof technique diverges after Lemma 1. This is beyond the
scope of this paper, so we omit it here. Using the “after read” labeling and a different proof technique
from Mania et al. [14]), we obtain an epoch size in O(κ) instead of O(κ2) and a dependency in our
overlap bound in O(∆−1/2) instead of O(∆−1/3).

C.3 Initial recursive inequality derivation

We start by proving Equation (25). Let gt := g(x̂t, α̂
t, it). From (5), we get:

‖xt+1 − x∗‖2 = ‖xt − γgt − x∗‖2 = ‖xt − x∗‖2 + γ2‖gt‖2 − 2γ〈xt − x∗, gt〉
= ‖xt − x∗‖2 + γ2‖gt‖2 − 2γ〈x̂t − x∗, gt〉+ 2γ〈x̂t − xt, gt〉.

In order to prove Equation (25), we need to bound the −2γ〈x̂t − x∗, gt〉 term. Thanks to Property 1,
we can write:

E〈x̂t − x∗, gt〉 = E〈x̂t − x∗,Egt〉 = E〈x̂t − x∗, f ′(x̂t)〉 .

We can now use a classical strong convexity bound as well as a squared triangle inequality to
get:

−〈x̂t − x∗, f ′(x̂t)〉 ≤ −
(
f(x̂t)− f(x∗)

)
− µ

2
‖x̂t − x∗‖2 (Strong convexity bound)

−‖x̂t − x∗‖2 ≤ ‖x̂t − xt‖2 −
1

2
‖xt − x∗‖2 (‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2)

−2γE〈x̂t − x∗, gt〉 ≤ −
γµ

2
E‖xt − x∗‖2 + γµE‖x̂t − xt‖2 − 2γ

(
Ef(x̂t)− f(x∗)

)
. (39)

Putting it all together, we get the initial recursive inequality (25), rewritten here explicitly:

at+1 ≤ (1− γµ

2
)at + γ2E‖gt‖2 + γµE‖x̂t − xt‖2 + 2γE〈x̂t − xt, gt〉 − 2γet , (40)

where at := E‖xt − x∗‖2 and et := Ef(x̂t)− f(x∗).

C.4 Proof of Lemma 1

To prove Lemma 1, we now bound both E‖x̂t − xt‖2 and E〈x̂t − xt, gt〉 with respect to E‖gu‖2, u ≤
t.

We start by proving a relevant property of ∆, which enables us to derive an essential inequality for
both these terms, given in Proposition 1 below. We reuse the sparsity constant introduced in Reddi
et al. [16] and relate it to the one we have defined earlier, ∆r:

13Note that the parallel implementation is not very straightforward, as it requires a way to communicate to cores
when they should start computing a batch gradient instead of inner steps.

17

Remark 1. Let D be the smallest constant such that:

E‖x‖2i =
1

n

n∑
i=1

‖x‖2i ≤ D‖x‖2 ∀x ∈ Rd, (41)

where ‖.‖i is defined to be the `2-norm restricted to the support Si of fi. We have:

D =
∆r

n
= ∆ . (42)

Proof. We have:

E‖x‖2i =
1

n

n∑
i=1

‖x‖2i =
1

n

n∑
i=1

∑
v∈Si

[x]2v =
1

n

d∑
v=1

∑
i|v∈Si

[x]2v =
1

n

d∑
v=1

δv[x]2v , (43)

where δv := card(i | v ∈ Si).

This implies:

D ≥ 1

n

d∑
v=1

δv
[x]2v
‖x‖2

. (44)

Since D is the minimum constant satisfying this inequality, we have:

D = max
x∈Rd

1

n

d∑
v=1

δv
[x]2v
‖x‖2

. (45)

We need to find x such that it maximizes the right-hand side term. Note that the vector ([x]2v/‖x‖2)v=1..d

is in the unit probability simplex, which means that an equivalent problem is the maximization
over all convex combinations of (δv)v=1..d. This maximum is found by putting all the weight on the
maximum δv, which is ∆r by definition.

This means that ∆ = ∆r/n is indeed the smallest constant satisfying (41).

Proposition 1. For any u 6= t,

E|〈gu, gt〉| ≤
√

∆

2
(E‖gu‖2 + E‖gt‖2) . (46)

Proof. Let u 6= t. Without loss of generality, u < t.14 Then:

E|〈gu, gt〉| ≤ E‖gu‖it‖gt‖ (Sparse inner product; support of gt is Sit)

≤
√
E‖gu‖2it

√
E‖gt‖2 (Cauchy-Schwarz for expectations)

≤
√

∆E‖gu‖2
√

E‖gt‖2 (Remark 1 and it ⊥⊥ gu,∀u < t)

≤
√

∆

2
(E‖gu‖2 + E‖gt‖2) . (AM-GM inequality)

All told, we have:

E|〈gu, gt〉| ≤
√

∆

2
(E‖gu‖2 + E‖gt‖2) . (47)

14One only has to switch u and t if u > t.

18

Bounding E〈x̂t − xt, gt〉 in terms of gu.

1

γ
E〈x̂t − xt, gt〉 =

t−1∑
u=(t−τ)+

E〈Stugu, gt〉 (by Equation (9))

≤
t−1∑

u=(t−τ)+

E|〈gu, gt〉| (Stu diagonal matrices with terms in {0, 1})

≤
t−1∑

u=(t−τ)+

√
∆

2
(E‖gu‖2 + E‖gt‖2) (by Proposition 1)

≤
√

∆

2

t−1∑
u=(t−τ)+

E‖gu‖2 +

√
∆τ

2
E‖gt‖2. (48)

Bounding E‖x̂t−xt‖2 with respect to gu Thanks to the expansion for x̂t−xt (9), we get:

‖x̂t − xt‖2 ≤ γ2
t−1∑

u,v=(t−τ)+

|〈Stugu, Stvgv〉| ≤ γ2
t−1∑

u=(t−τ)+

‖gu‖2 + γ2
t−1∑

u,v=(t−τ)+

u6=v

|〈Stugu, Stvgv〉| .

Using (46) from Proposition 1, we have that for u 6= v:

E|〈Stugu, Stvgv〉| ≤ E|〈gu, gv〉| ≤
√

∆

2
(E‖gu‖2 + E‖gv‖2) . (49)

By taking the expectation and using (49), we get:

E‖x̂t − xt‖2 ≤ γ2
t−1∑

u=(t−τ)+

E‖gu‖2 + γ2
√

∆(τ − 1)+

t−1∑
u=(t−τ)+

E‖gu‖2

= γ2
(
1 +
√

∆(τ − 1)+

) t−1∑
u=(t−τ)+

E‖gu‖2. (50)

We can now rewrite (25) in terms of E‖gt‖2, which finishes the proof for Lemma 1 (by introducing
C1 and C2 as specified in Lemma 1):

at+1 ≤ (1− γµ

2
)at − 2γet + γ2E‖gt‖2 + γ3µ(1 +

√
∆(τ − 1)+)

t−1∑
u=(t−τ)+

E‖gu‖2

+ γ2
√

∆
t−1∑

u=(t−τ)+

E‖gu‖2 + γ2
√

∆τE‖gt‖2

≤ (1− γµ

2
)at − 2γet + γ2C1E‖gt‖2 + γ2C2

t−1∑
u=(t−τ)+

E‖gu‖2. (51)

C.5 Proof of Lemma 2

We now derive our bound on gt with respect to suboptimality. From Appendix B, we know that:

E‖gt‖2 ≤ 2E‖f ′it(x̂t)− f
′
it(x

∗)‖2 + 2E‖α̂tit − f
′
it(x

∗)‖2 (52)

E‖f ′it(x̂t)− f
′
it(x

∗)‖2 ≤ 2L
(
Ef(x̂t)− f(x∗)

)
= 2Let . (53)

19

N. B.: In the following, it is a random variable picked uniformly at random in {1, ..., n},
whereas i is a fixed constant.

We still have to handle the E‖α̂tit − f
′
it

(x∗)‖2 term and express it in terms of past suboptimalities.
We know from our definition of t that it and x̂u are independent ∀u < t. Given the “after read” global
ordering, E – the expectation on it conditioned on x̂t and all “past" x̂u and iu – is well defined, and
we can rewrite our quantity as:

E‖α̂tit − f
′
it(x

∗)‖2 = E
(
E‖α̂tit − f

′
it(x

∗)‖2
)

= E
1

n

n∑
i=1

‖α̂ti − f ′i(x∗)‖2

=
1

n

n∑
i=1

E‖α̂ti − f ′i(x∗)‖2.

Now, with i fixed, let uti,l be the time of the iterate last used to write the [α̂ti]l quantity, i.e.
[α̂ti]l = [f ′i(x̂ut

i,l
)]l. We know15 that 0 ≤ uti,l ≤ t− 1. To use this information, we first need to split α̂i

along its dimensions to handle the possible inconsistencies among them:

E‖α̂ti − f ′i(x∗)‖2 = E
d∑
l=1

(
[α̂ti]l − [f ′i(x

∗)]l
)2

=

d∑
l=1

E
[(

[α̂ti]l − [f ′i(x
∗)]l
)2]

.

This gives us:

E‖α̂ti − f ′i(x∗)‖2 =

d∑
l=1

E
[(
f ′i(x̂ut

i,l
)l − f ′i(x∗)l

)2]
=

d∑
l=1

E
[t−1∑
u=0

1{ut
i,l=u}

(
f ′i(x̂u)l − f ′i(x∗)l

)2]
=

t−1∑
u=0

d∑
l=1

E
[
1{ut

i,l=u}
(
f ′i(x̂u)l − f ′i(x∗)l

)2]
. (54)

We will now rewrite the indicator so as to obtain independent events from the rest of the equality.
This will enable us to distribute the expectation. Suppose u > 0 (u = 0 is a special case which we
will handle afterwards). {uti,l = u} requires two things:

1. at time u, i was picked uniformly at random,

2. (roughly) i was not picked again between u and t.

We need to refine both conditions because we have to account for possible collisions due to asynchrony.
We know from our definition of τ that the tth iteration finishes before at t+ τ + 1, but it may still be
unfinished by time t+ τ . This means that we can only be sure that an update selecting i at time v
has been written to memory at time t if v ≤ t− τ − 1. Later updates may not have been written
yet at time t. Similarly, updates before v = u+ τ + 1 may be overwritten by the uth update so we
cannot infer that they did not select i. From this discussion, we conclude that uti,l = u implies that
iv 6= i for all v between u+ τ + 1 and t− τ − 1, though it can still happen that iv = i for v outside
this range.

Using the fact that iu and iv are independent for v 6= u, we can thus upper bound the indicator
function appearing in (54) as follows:16

1{ut
i,l=u} ≤ 1{iu=i}1{iv 6=i ∀v s.t. u+τ+1≤v≤t−τ−1}. (55)

15In the case where u = 0, one would have to replace the partial gradient with α0
i . We omit this special case here for

clarity of exposition.
16In the simpler case of the variant of Svrg from Hofmann et al. [6] as described in C.2, the batch gradient

computations are fully synchronized. This means that we can write much the same inequality without having to worry
about possible overwrites, thus replacing 1{iv 6=i ∀v s.t. u+τ+1≤v≤t−τ−1} by 1{iv 6=i ∀v s.t. u+1≤v≤t}.

20

This gives us:

E
[
1{ut

i,l=u}
(
f ′i(x̂u)l − f ′i(x∗)l

)2]
≤ E

[
1{iu=i}1{iv 6=i ∀v s.t. u+τ+1≤v≤t−τ−1}

(
f ′i(x̂u)l − f ′i(x∗)l

)2]
≤ P{iu = i}P{iv 6= i ∀v s.t. u+ τ + 1 ≤ v ≤ t− τ − 1}E

(
f ′i(x̂u)l − f ′i(x∗)l

)2
(iv ⊥⊥ x̂u,∀v ≥ u)

≤ 1

n
(1− 1

n
)(t−2τ−u−1)+E

(
f ′i(x̂u)l − f ′i(x∗)l

)2
. (56)

Note that the third line used the crucial independence assumption iv ⊥⊥ x̂u,∀v ≥ u arising from our
“After Read” ordering. Summing over all dimensions l, we then get:

E
[
1{ut

i,l=u}‖f
′
i(x̂u)− f ′i(x∗)‖2

]
≤ 1

n
(1− 1

n
)(t−2τ−u−1)+E‖f ′i(x̂u)− f ′i(x∗)‖2. (57)

So now:

E‖α̂tit − f
′
it(x

∗)‖2 − λẽ0 ≤
1

n

n∑
i=1

t−1∑
u=1

1

n
(1− 1

n
)(t−2τ−u−1)+E‖f ′i(x̂u)− f ′i(x∗)‖2

=
t−1∑
u=1

1

n
(1− 1

n
)(t−2τ−u−1)+

1

n

n∑
i=1

E‖f ′i(x̂u)− f ′i(x∗)‖2

=

t−1∑
u=1

1

n
(1− 1

n
)(t−2τ−u−1)+E

(
E‖f ′iu(x̂u)− f ′iu(x∗)‖2

)
(iu ⊥⊥ x̂u)

≤ 2L

n

t−1∑
u=1

(1− 1

n
)(t−2τ−u−1)+eu (by Equation (52))

=
2L

n

(t−2τ−1)+∑
u=1

(1− 1

n
)t−2τ−u−1eu +

2L

n

t−1∑
u=max(1,t−2τ)

eu . (58)

Note that we have excluded ẽ0 from our formula, using a generic λmultiplier. We need to treat the case
u = 0 differently to bound 1{ut

i,l=u}. Because all our initial αi are initialized to a fixed α0
i , {uti = 0}

just means that i has not been picked between 0 and t− τ − 1, i.e. {iv 6= i ∀ v s.t. 0 ≤ v ≤ t− τ − 1}.
This means that the 1{iu=i} term in (55) disappears and thus we lose a 1

n factor compared to the
case where u > 1.

Let us now evaluate λ. We have:

E
[
1{ut

i=0}‖α0
i − f ′i(x∗)‖2

]
≤ E

[
1{iv 6=i ∀ v s.t. 0≤v≤t−τ−1}‖α0

i − f ′i(x∗)‖2
]

≤ P{iv 6= i ∀ v s.t. 0 ≤ v ≤ t− τ − 1}E‖α0
i − f ′i(x∗)‖2

≤ (1− 1

n
)(t−τ)+E‖α0

i − f ′i(x∗)‖2. (59)

Plugging (58) and (59) into (52), we get Lemma 2:

E‖gt‖2 ≤ 4Let +
4L

n

t−1∑
u=1

(1− 1

n
)(t−2τ−u−1)+eu + 4L(1− 1

n
)(t−τ)+ ẽ0 , (60)

where we have introduced ẽ0 = max{e0,
1

2LE‖α
0
i − f ′i(x

∗)‖2}. Note that in the original Saga
algorithm, a batch gradient is computed to set the α0

i = f ′i(x0). In this setting, we can write Lemma 2
using only e0 thanks to (53). In the more general setting where we initialize all α0

i to a fixed quantity,
we cannot use (53) to bound E‖α0

i − f ′i(x∗)‖2 which means that we have to introduce ẽ0.

21

C.6 Master inequality derivation

Now, if we combine the bound on E‖gt‖2 which we just derived (i.e. Lemma 2) with Lemma 1, we
get:

at+1 ≤(1− γµ

2
)at − 2γet

+ 4Lγ2C1et +
4Lγ2C1

n

t−1∑
u=1

(1− 1

n
)(t−2τ−u−1)+eu + 4Lγ2C1(1− 1

n
)(t−τ)+ ẽ0

+ 4Lγ2C2

t−1∑
u=(t−τ)+

eu + 4Lγ2C2

t−1∑
u=(t−τ)+

(1− 1

n
)(u−τ)+ ẽ0

+
4Lγ2C2

n

t−1∑
u=(t−τ)+

u−1∑
v=1

(1− 1

n
)(u−2τ−v−1)+ev .

(61)

If we define Ht :=
∑t−1
u=1(1− 1

n)(t−2τ−u−1)+eu, then we get:

at+1 ≤(1− γµ

2
)at − 2γet

+ 4Lγ2C1

(
et + (1− 1

n
)(t−τ)+ ẽ0

)
+

4Lγ2C1

n
Ht

+ 4Lγ2C2

t−1∑
u=(t−τ)+

(eu + (1− 1

n
)(u−τ)+ ẽ0

)
+

4Lγ2C2

n

t−1∑
u=(t−τ)+

Hu ,

(62)

which is the master inequality (30).

C.7 Lyapunov function and associated recursive inequality

We define Lt :=
∑t
u=0(1− ρ)t−uau for some target contraction rate ρ < 1 to be defined later. We

have:

Lt+1 = (1− ρ)t+1a0 +

t+1∑
u=1

(1− ρ)t+1−uau = (1− ρ)t+1a0 +

t∑
u=0

(1− ρ)t−uau+1 . (63)

We now use our new bound on at+1, (62):

Lt+1 ≤ (1− ρ)t+1a0 +

t∑
u=0

(1− ρ)t−u
[
(1− γµ

2
)au − 2γeu + 4Lγ2C1

(
eu + (1− 1

n
)(u−τ)+ ẽ0

)
+

4Lγ2C1

n
Hu +

4Lγ2C2

n

u−1∑
v=(u−τ)+

Hv

+ 4Lγ2C2

u−1∑
v=(u−τ)+

(ev + (1− 1

n
)(v−τ)+ ẽ0

)]
≤ (1− ρ)t+1a0 + (1− γµ

2
)Lt

+

t∑
u=0

(1− ρ)t−u
[
− 2γeu + 4Lγ2C1

(
eu + (1− 1

n
)(u−τ)+ ẽ0

)
+

4Lγ2C1

n
Hu +

4Lγ2C2

n

u−1∑
v=(u−τ)+

Hv

+ 4Lγ2C2

u−1∑
v=(u−τ)+

(ev + (1− 1

n
)(v−τ)+ ẽ0

)]
. (64)

22

We can now rearrange the sums to expose a simple sum of eu multiplied by factors rtu:

Lt+1 ≤ (1− ρ)t+1a0 + (1− γµ

2
)Lt +

t∑
u=1

rtueu + rt0ẽ0 . (65)

C.8 Proof of Lemma 3

We want to make explicit what conditions on ρ and γ are necessary to ensure that rtu is negative
for all u ≥ 1. Since each eu is positive, we will then be able to safely drop the sum term from
the inequality. The rt0 term is a bit trickier and is handled separately. Indeed, trying to enforce
that rt0 is negative results in a significantly worse condition on γ and eventually a convergence rate
smaller by a factor of n than our final result. Instead, we handle this term directly in the Lyapunov
function.

Computation of rtu. Let’s now make the multiplying factor explicit. We assume u ≥ 1.

We split rtu into five parts:

• r1, the part coming from the −2γeu terms;

• r2, coming from 4Lγ2C1eu;

• r3, coming from 4Lγ2C1

n Hu;

• r4, coming from 4Lγ2C2

∑u−1
v=(u−τ)+

ev;

• r5, coming from 4Lγ2C2

n

∑u−1
v=(u−τ)+

Hv.

r1 is easy to derive. Each of these terms appears only in one inequality. So for u at time t, the term
is:

r1 = −2γ(1− ρ)t−u. (66)

For much the same reasons, r2 is also easy to derive and is:

r2 = 4Lγ2C1(1− ρ)t−u. (67)

r3 is a bit trickier, because for a given v > 0 there are several Hu which contain ev. The key insight
is that we can rewrite our double sum in the following manner:

t∑
u=0

(1− ρ)t−u
u−1∑
v=1

(1− 1

n
)(u−2τ−v−1)+ev

=

t−1∑
v=1

ev

t∑
u=v+1

(1− ρ)t−u(1− 1

n
)(u−2τ−v−1)+

≤
t−1∑
v=1

ev

[min(t,v+2τ)∑
u=v+1

(1− ρ)t−u +

t∑
u=v+2τ+1

(1− ρ)t−u(1− 1

n
)u−2τ−v−1

]
≤

t−1∑
v=1

ev

[
2τ(1− ρ)t−v−1 + (1− ρ)t−v−2τ−1

t∑
u=v+2τ+1

qu−2τ−v−1
]

≤
t−1∑
v=1

(1− ρ)t−vev
[2τ

1− ρ
+ (1− ρ)−2τ−1 1

1− q
]
, (68)

where we have defined:

q :=
1− 1/n

1− ρ
, with the assumption ρ <

1

n
. (69)

Note that we have bounded the min(t, v + 2τ) term by v + 2τ in the first sub-sum, effectively adding
more positive terms.

23

This gives us that at time t, for u:

r3 ≤
4Lγ2C1

n
(1− ρ)t−u

[2τ

1− ρ
+ (1− ρ)−2τ−1 1

1− q
]
. (70)

For r4 we use the same trick:

t∑
u=0

(1− ρ)t−u
u−1∑

v=(u−τ)+

ev =

t−1∑
v=0

ev

min(t,v+τ)∑
u=v+1

(1− ρ)t−u

≤
t−1∑
v=0

ev

v+τ∑
u=v+1

(1− ρ)t−u ≤
t−1∑
v=0

ev(1− ρ)t−v
τ

1− ρ
. (71)

This gives us that at time t, for u:

r4 ≤ 4Lγ2C2(1− ρ)t−u
τ

1− ρ
. (72)

Finally we compute r5 which is the most complicated term. Indeed, to find the factor of ew for a given
w > 0, one has to compute a triple sum,

∑t
u=0(1− ρ)t−u

∑u−1
v=(u−τ)+

Hv. We start by computing the
factor of ew in the inner double sum,

∑u−1
v=(u−τ)+

Hv.

u−1∑
v=(u−τ)+

v−1∑
w=1

(1− 1

n
)(v−2τ−w−1)+ew =

u−2∑
w=1

ew

u−1∑
v=max(w+1,u−τ)

(1− 1

n
)(v−2τ−w−1)+ . (73)

Now there are at most τ terms for each ew. If w ≤ u − 3τ − 1, then the exponent is positive in
every term and it is always bigger than u − 3τ − 1 − w, which means we can bound the sum by
τ(1− 1

n)u−3τ−1−w. Otherwise we can simply bound the sum by τ . We get:

u−1∑
v=(u−τ)+

Hv ≤
u−2∑
w=1

[
1{u−3τ≤w≤u−2}τ + 1{w≤u−3τ−1}τ(1− 1

n
)u−3τ−1−w]ew . (74)

This means that for w at time t:

r5 ≤
4Lγ2C2

n

t∑
u=0

(1− ρ)t−u
[
1{u−3τ≤w≤u−2}τ + 1{w≤u−3τ−1}τ(1− 1

n
)u−3τ−1−w]

≤ 4Lγ2C2

n

[min(t,w+3τ)∑
u=w+2

τ(1− ρ)t−u +

t∑
u=w+3τ+1

τ(1− 1

n
)u−3τ−1−w(1− ρ)t−u

]
≤ 4Lγ2C2

n
τ
[
(1− ρ)t−w(1− ρ)−3τ3τ

+ (1− ρ)t−w(1− ρ)−1−3τ
t∑

u=w+3τ+1

(1− 1

n
)u−3τ−1−w(1− ρ)−u+3τ+1+w

]
≤ 4Lγ2C2

n
τ(1− ρ)t−w(1− ρ)−3τ−1

(
3τ +

1

(1− q)
)
. (75)

By combining the five terms together ((66), (67), (70), (72) and (75)), we get that ∀u s.t. 1 ≤ u ≤ t:

rtu ≤ (1− ρ)t−u
[
− 2γ + 4Lγ2C1 +

4Lγ2C1

n

(2τ

1− ρ
+ (1− ρ)−2τ−1 1

1− q
)

+ 4Lγ2C2
τ

1− ρ
+

4Lγ2C2

n
τ(1− ρ)−3τ−1

(
3τ +

1

1− q
)]
.

(76)

24

Computation of rt0. Recall that we treat the e0/ẽ0 term separately in Section C.5. The initial-
ization of Saga creates an initial synchronization, which means that the contribution of ẽ0 in our
bound on E‖gt‖2 (60) is roughly n times bigger than the contribution of any eu for 1 < u < t.17 In
order to safely handle this term in our Lyapunov inequality, we only need to prove that it is bounded
by a reasonable constant. Here again, we split rt0 in five contributions:

• r1, the part coming from the −2γeu terms;

• r2, coming from 4Lγ2C1eu;

• r3, coming from 4Lγ2C1(1− 1
n)(u−τ)+ ẽ0;

• r4, coming from 4Lγ2C2

∑u−1
v=(u−τ)+

ev;

• r5, coming from 4Lγ2C2

∑u−1
v=(u−τ)+

(1− 1
n)(v−τ)+ ẽ0.

Note that there is no ẽ0 in Ht, which is why we can safely ignore these terms here.

We have r1 = −2γ(1− ρ)t and r2 = 4Lγ2C1(1− ρ)t. Since we are only interested in an upper bound,
we can disregard the negative term r1.

Let us compute r3.
t∑

u=0

(1− ρ)t−u(1− 1

n
)(u−τ)+ =

min(t,τ)∑
u=0

(1− ρ)t−u +

t∑
u=τ+1

(1− ρ)t−u(1− 1

n
)u−τ

≤ (τ + 1)(1− ρ)t−τ + (1− ρ)t−τ
t∑

u=τ+1

(1− ρ)τ−u(1− 1

n
)u−τ

≤ (1− ρ)t(1− ρ)−τ
(
τ + 1 +

1

1− q
)
. (77)

This gives us:

r3 ≤ (1− ρ)t4Lγ2C1(1− ρ)−τ
(
τ + 1 +

1

1− q
)
. (78)

We have already computed r4 for u > 0 and the computation is exactly the same for u = 0.
r4 ≤ (1− ρ)t4Lγ2C2

τ
1−ρ .

Finally we compute r5.
t∑

u=0

(1− ρ)t−u
u−1∑

v=(u−τ)+

(1− 1

n
)(v−τ)+

=

t−1∑
v=1

min(t,v+τ)∑
u=v+1

(1− ρ)t−u(1− 1

n
)(v−τ)+

≤
min(t−1,τ)∑

v=1

v+τ∑
u=v+1

(1− ρ)t−u +

t−1∑
v=τ+1

min(t,v+τ)∑
u=v+1

(1− ρ)t−u(1− 1

n
)v−τ

≤ τ2(1− ρ)t−2τ +

t−1∑
v=τ+1

(1− 1

n
)v−ττ(1− ρ)t−v−τ

≤ τ2(1− ρ)t−2τ + τ(1− ρ)t(1− ρ)−2τ
t−1∑

v=τ+1

(1− 1

n
)v−ττ(1− ρ)−v+τ

≤ (1− ρ)t(1− ρ)−2τ
(
τ2 + τ

1

1− q
)
. (79)

Which means:

r5 ≤ (1− ρ)t4Lγ2C2(1− ρ)−2τ
(
τ2 + τ

1

1− q
)
. (80)

17This is explained in details right before (59).

25

Putting it all together, we get that: ∀t ≥ 0

rt0 ≤ (1− ρ)t
[
4Lγ2C1 + 4Lγ2C1(1− ρ)−τ

(
τ + 1 +

1

1− q
)

+ 4Lγ2C2
τ

1− ρ
+ 4Lγ2C2τ(1− ρ)−2τ

(
τ +

1

1− q
)]
.

(81)

Sufficient condition for convergence. We need all rtu, u ≥ 1 to be negative so we can safely
drop them from (65). Note that for every u, this is the same condition. We will reduce that condition
to a second-order polynomial sign condition. We also remark that since γ ≥ 0, we can upper bound
our terms in γ and γ2 in this upcoming polynomial, which will give us sufficient conditions for
convergence.

Now, as γ is part of C2, we need to expand it once more to find our conditions. We have:

C1 = 1 +
√

∆τ ; C2 =
√

∆ + γµ
(
1 +
√

∆(τ − 1)+

)
≤
√

∆ + γµC1 .

Dividing the bracket in (76) by γ and rearranging as a second degree polynomial, we get the
condition:

4L

(
C1 +

C1

n

[2τ

1− ρ
+ (1− ρ)−2τ−1 1

1− q

]
+
[√∆τ

1− ρ
+

√
∆τ

n
(1− ρ)−3τ−1(3τ +

1

1− q
)
])
γ

+ 8µC1Lτ
[1

1− ρ
+

1

n
(1− ρ)−3τ−1(3τ +

1

1− q
)
]
γ2 + 2 ≤ 0 . (82)

The discriminant of this polynomial is always positive, so γ needs to be between its two roots. The
smallest is negative, so the condition is not relevant to our case (where γ > 0). By solving analytically
for the positive root φ, we get an upper bound condition on γ that can be used for any overlap τ
and guarantee convergence. Unfortunately, for large τ , the upper bound becomes exponentially
small because of the presence of τ in the exponent in (82). More specifically, by using the bound
1/(1− ρ) ≤ exp(2ρ)18 and thus (1− ρ)−τ ≤ exp(2τρ) in (82), we would obtain factors of the form
exp(τ/n) in the denominator for the root φ (recall that ρ < 1/n).

Our Lemma 3 is derived instead under the assumption that τ ≤ O(n), with the constants chosen in
order to make the condition (82) more interpretable and to relate our convergence result with the
standard SAGA convergence (see Theorem 1). As explained in Appendix E, the assumption that
τ ≤ O(n) appears reasonable in practice. First, by using Bernoulli’s inequality, we have:

(1− ρ)kτ ≥ 1− kτρ for integers kτ ≥ 0 . (83)

To get manageable constants, we make the following slightly more restrictive assumptions on the
target rate ρ19 and overlap τ :20

ρ ≤ 1

4n
(84)

τ ≤ n

10
. (85)

We then have:
1

1− q
≤ 4n

3
(86)

1

1− ρ
≤ 4

3
(87)

kτρ ≤ 3

40
for 1 ≤ k ≤ 3 (88)

(1− ρ)−kτ ≤ 1

1− kτρ
≤ 40

37
for 1 ≤ k ≤ 3 and by using (83). (89)

18This bound can be derived from the inequality (1− x/2) ≥ exp(−x) which is valid for 0 ≤ x ≤ 1.59.
19Note that we already expected ρ < 1/n.
20This bound on τ is reasonable in practice, see Appendix E.

26

We can now upper bound loosely the three terms in brackets appearing in (82) as follows:

2τ

1− ρ
+ (1− ρ)−2τ−1 1

1− q
≤ 3n (90)

√
∆τ

1− ρ
+

√
∆τ

n
(1− ρ)−3τ−1(3τ +

1

1− q
) ≤ 4

√
∆τ ≤ 4C1 (91)

1

1− ρ
+

1

n
(1− ρ)−3τ−1(3τ +

1

1− q
) ≤ 4 . (92)

By plugging (90)–(92) into (82), we get the simpler sufficient condition on γ:

−1 + 16LC1γ + 16LC1µτγ
2 ≤ 0 . (93)

The positive root φ is:

φ =
16LC1(

√
1 + µτ

4LC1
− 1)

32LC1µτ
=

√
1 + µτ

4LC1
− 1

2µτ
. (94)

We simplify it further by using the inequality:21

√
x− 1 ≥ x− 1

2
√
x

∀x > 0 . (95)

Using (95) in (94), and recalling that κ := L/µ, we get:

φ ≥ 1

16LC1

√
1 + τ

4κC1

. (96)

Since τ
C1

= τ
1+
√

∆τ
≤ min(τ, 1√

∆
), we get that a sufficient condition on our stepsize is:

γ ≤ 1

16L(1 +
√

∆τ)
√

1 + 1
4κ min(τ, 1√

∆
)
. (97)

Subject to our conditions on γ, ρ and τ , we then have that: rtu ≤ 0 for all u s.t. 1 ≤ u ≤ t. This
means we can rewrite (65) as:

Lt+1 ≤ (1− ρ)t+1a0 + (1− γµ

2
)Lt + rt0ẽ0 . (98)

Now, we could finish the proof from this inequality, but it would only give us a convergence result in
terms of at = E‖xt − x∗‖2. A better result would be in terms of the suboptimality at x̂t (because x̂t
is a real quantity in the algorithm whereas xt is virtual). Fortunately, to get such a result, we can
easily adapt (98).

We make et appear on the left side of (98), by adding γ to rtt in (65):22

γet + Lt+1 ≤ (1− ρ)t+1a0 + (1− γµ

2
)Lt +

t−1∑
u=1

rtueu + rt0ẽ0 + (rtt + γ)et. (99)

We now require the stronger property that γ + rtt ≤ 0, which translates to replacing −2γ with −γ
in (76):

0 ≥
[
− γ + 4Lγ2C1 +

4Lγ2C1

n

(2τ

1− ρ
+ (1− ρ)−2τ 1

1− q
)

+ 4Lγ2C2
τ

1− ρ
+

4Lγ2C2

n
τ(1− ρ)−3τ

(
3τ +

1

1− q
)]
.

(100)

21This inequality can be derived by using the concavity property f(y) ≤ f(x) + (y − x)f ′(x) on the differentiable
concave function f(x) =

√
x with y = 1.

22We could use any multiplier from 0 to 2γ, but choose γ for simplicity. For this reason and because our analysis of
the rtt term was loose, we could derive a tighter bound, but it does not change the leading terms.

27

We can easily derive a new stronger condition on γ under which we can drop all the eu, u > 0 terms
in (99):

γ ≤ γ∗ =
1

32L(1 +
√

∆τ)
√

1 + 1
8κ min(τ, 1√

∆
)
, (101)

and thus under which we get:

γet + Lt+1 ≤ (1− ρ)t+1a0 + (1− γµ

2
)Lt + rt0ẽ0. (102)

This finishes the proof of Lemma 3.

C.9 Proof of Theorem 2

End of Lyapunov convergence. We continue with the assumptions of Lemma 3 which gave
us (102). Thanks to (81), we can also rewrite rt0 ≤ (1− ρ)t+1A where A is a constant which depends
on n, ∆, γ, µ and L but is finite and crucially does not depend on t. In fact, by reusing similar
arguments as in C.8, we can show the loose bound A ≤ n/L under the assumptions of Lemma 3
(including γ ≤ γ∗). We then have:

Lt+1 ≤ γet + Lt+1 ≤ (1− γµ

2
)Lt + (1− ρ)t+1(a0 +Aẽ0)

≤ (1− γµ

2
)t+1L0 + (a0 +Aẽ0)

t+1∑
k=0

(1− ρ)t+1−k(1− γµ

2
)k. (103)

We have two linearly contracting terms. The sum contracts linearly with the minimum geometric
rate factor between γµ/2 and ρ. If we define m := min(ρ, γµ/2), M := max(ρ, γµ/2) and ρ∗ := νm
with 0 < ν < 1,23 we then get:24

γet ≤ γet + Lt+1 ≤ (1− γµ

2
)t+1L0 + (a0 +Aẽ0)

t+1∑
k=0

(1−m)t+1−k(1−M)k

≤ (1− γµ

2
)t+1L0 + (a0 +Aẽ0)

t+1∑
k=0

(1− ρ∗)t+1−k(1−M)k

≤ (1− γµ

2
)t+1L0 + (a0 +Aẽ0)(1− ρ∗)t+1

t+1∑
k=0

(1− ρ∗)−k(1−M)k

≤ (1− γµ

2
)t+1L0 + (1− ρ∗)t+1 1

1− η
(a0 +Aẽ0)

≤ (1− ρ∗)t+1
(
a0 +

1

1− η
(a0 +Aẽ0)

)
, (104)

where η := 1−M
1−ρ∗ . We have 1

1−η = 1−ρ∗
M−ρ∗ .

By taking ν = 4
5 and setting ρ = 1

4n – its maximal value allowed by the assumptions of Lemma 3 –
we get M ≥ 1

4n and ρ∗ ≤ 1
5n , which means 1

1−η ≤ 20n.

All told:
et ≤ (1− ρ∗)t+1C̃0, (105)

where
C̃0 =

20n

γ

(
‖x0 − x∗‖2 +

n

L

(1

2L
E‖α0

i − f ′i(x∗)‖2 + f(x0)− f(x∗)
))
. (106)

Since we set ρ = 1
4n , ν = 4

5 , we have νρ = 1
5n . Using a stepsize γ = a

L as in Theorem 2, we
get ν γµ2 = 2a

5κ . We thus obtain a geometric rate of ρ∗ = min{ 1
5n , a

2
5κ}, which we simplified to

1
5 min{ 1

n , a
1
κ} in Theorem 2, finishing the proof.

23ν is introduced to circumvent the problematic case where ρ and γµ/2 are too close together, which does not
prevent the geometric convergence, but makes the constant 1

1−η potentially very big (in the case both terms are equal,
the sum even becomes an annoying linear term in t).

24Note that if m 6= ρ, we can perform the index change t+ 1− k → k to get the sum.

28

C.10 Proof of Corollary 3 (speedup regimes)

Referring to [6] and our own Theorem 1, the geometric rate factor of Saga is 1
5 min{ 1

n ,
a
κ} for a

stepsize of γ = a
5L . We start by proving the first part of the corollary which considers the step-size

a = a∗(τ). We distinguish between two regimes to study the parallel speedup our algorithm obtains
and to derive a condition on τ for which we have a linear speedup.

Big Data. In this regime, n > κ and the geometric rate factor of sequential Saga is 1
5n . To

get a linear speedup (up to a constant factor), we need to enforce ρ∗ = Ω(1
n). We recall that

ρ∗ = min{ 1
5n , a

1
5κ}.

We already have 1
5n = Ω(1

n). This means that we need τ to verify a∗(τ)
5κ = Ω(1

n), where a∗(τ) =
1

32(1+τ
√

∆)ξ(κ,∆,τ)
according to Theorem 2. Recall that ξ(κ,∆, τ) :=

√
1 + 1

8κ min{ 1√
∆
, τ}. Up to a

constant factor, this means we can give the following sufficient condition:

1

κ
(

1 + τ
√

∆
)
ξ(κ,∆, τ)

= Ω
(1

n

)
(107)

i.e. (
1 + τ

√
∆
)
ξ(κ,∆, τ) = O

(n
κ

)
. (108)

We now consider two alternatives, depending on whether κ is bigger than 1√
∆

or not. If κ ≥ 1√
∆
,

then ξ(κ,∆, τ) < 2 and we can rewrite the sufficient condition (108) as:

τ = O(1)
n

κ
√

∆
. (109)

In the alternative case, κ ≤ 1√
∆
. Since a∗(τ) is decreasing in τ , we can suppose τ ≥ 1√

∆
without loss

of generality and thus ξ(κ,∆, τ) =
√

1 + 1
8κ
√

∆
. We can then rewrite the sufficient condition (108)

as:

τ
√

∆
√
κ 4
√

∆
= O(

n

κ
)

τ = O(1)
n

√
κ 4
√

∆
. (110)

We observe that since we have supposed that κ ≤ 1√
∆
, we have

√
κ
√

∆ ≤ κ
√

∆ ≤ 1, which means
that our initial assumption that τ < n

10 is stronger than condition (110).

We can now combine both cases to get the following sufficient condition for the geometric rate factor
of Asaga to be the same order as sequential Saga when n > κ:

τ = O(1)
n

κ
√

∆
; τ = O(n) . (111)

Ill-conditioned regime. In this regime, κ > n and the geometric rate factor of sequential Saga
is a 1

κ . Here, to obtain a linear speedup, we need ρ∗ = O(1
κ). Since 1

n >
1
κ , all we require is that

a∗(τ)
κ = Ω(1

κ) where a∗(τ) = 1

32(1+τ
√

∆)ξ(κ,∆,τ)
, which reduces to a∗(τ) = Ω(1).

We can give the following sufficient condition:

1(
1 + τ

√
∆
)
ξ(κ,∆, τ)

= Ω(1) (112)

29

0 5 10 15 20
Time (in seconds)

10-5

10-4

10-3

10-2

10-1

O
b
je

ct
iv

e
 m

in
u
s

o
p
ti

m
u
m

Covtype dataset

0 5 10 15 20 25
Number of cores

0

5

10

15

20

25 Covtype dataset

SAGA

ASAGA (10 cores)

Hogwild! (1 core)

Hogwild! (10 cores)

SVRG

Kromagnon (10 cores)

Figure 2: Comparison on the Covtype dataset. Left: suboptimality. Right: speedup. The number of cores in
the legend only refers to the left plot.

Using that 1
n ≤ ∆ ≤ 1 and that κ > n, we get that ξ(κ,∆, τ) ≤ 2, which means our sufficient

condition becomes:

τ
√

∆ = O(1)

τ =
O(1)√

∆
. (113)

This finishes the proof for the first part of Corollary 3.

Universal stepsize. If τ = O(1√
∆

), then ξ(κ,∆, τ) = O(1) and (1 + τ
√

∆) = O(1), and thus
a∗(τ) = Ω(1) (for any n and κ). This means that the universal stepsize γ = Θ(1/L) satisfies γ ≤ a∗(τ)
for any κ, giving the same rate factor Ω(min{ 1

n ,
1
κ}) that sequential Saga has, completing the proof

for the second part of Corollary 3.

D Additional experimental results

D.1 Effect of sparsity

Sparsity plays an important role in our theoretical results, where we find that while it is necessary in
the “ill-conditioned” regime to get linear speedups, it is not in the “big data” regime. We confront
this to real-life experiments by comparing the convergence and speedup performance of our three
asynchronous algorithms on the Covtype dataset, which is fully dense after standardization. The
results appear in Figure 2.

While we still see a significant improvement in speed when increasing the number of cores, this
improvement is smaller than the one we observe for sparser datasets. The speedups we observe
are consequently smaller, and taper off earlier than on our other datasets. However, since the
observed “theoretical” speedup is linear (see Section D.2), we can attribute this worse performance to
higher hardware overhead. This is expected because each update is fully dense and thus the shared
parameters are much more heavily contended for than in our sparse datasets.

One thing we notice when computing the ∆ variable for our datasets is that it often fails to capture
the full sparsity distribution, being essentially a maximum. This means that ∆ can be quite big even
for very sparse datasets. Deriving a less coarse bound remains an open problem.

30

0 5 10 15 20
Passes through the data

10-5

10-4

10-3

10-2

10-1

100

O
b
je

ct
iv

e
 m

in
u
s

o
p
ti

m
u
m RCV1-full dataset

0 20 40 60 80 100
Passes through the data

10-5

10-4

10-3

10-2

10-1

100 URL dataset

0 1 2 3 4 5
Passes through the data

10-5

10-4

10-3

10-2

10-1 Covtype dataset

SAGA

AsyncSAGA (10 cores)

Hogwild! (1 core)

Hogwild! (10 cores)

SVRG

AsyncSVRG (10 cores)

Figure 3: Theoretical speedups. Suboptimality with respect to number of iterations for Asaga Svrg
and Hogwild with 1 and 10 cores. Curves almost coincide, which means the theoretical speedup is almost
the number of cores p, hence linear.

D.2 Theoretical speedups

In the main text of this paper, we show experimental speedup results where suboptimality is a
function of the running time. This measure encompasses both theoretical algorithmic properties and
hardware overheads (such as contention of shared memory) which are not taken into account in our
analysis.

In order to isolate these two effects, we plot our convergence experiments where suboptimality is a
function of the number of iterations; thus, we abstract away any potential hardware overhead.25 The
experimental results can be seen in Figure 3.

For all three algorithms and all three datasets, the curves for 1 and 10 cores almost coincide, which
means that we are indeed in the “theoretical linear speedup” regime. Indeed, when we plotted the
amount of iterations required to converge to a given accuracy as a function of the number of cores,
we obtained straight horizontal lines for our three algorithms.

The fact that the speedups we observe in running time are less than linear can thus be attributed to
various hardware overheads, including shared variable contention – the compare-and-swap operations
are more and more expensive as the number of competing requests increases – and cache effects as
mentioned in Section 4.3.

E A closer look at the τ constant

E.1 Theory

In the parallel optimization literature, τ is often referred to as a proxy for the number of cores.
However, intuitively as well as in practice, it appears that there are a number of other factors that
can influence this quantity. We will now attempt to give a few qualitative arguments as to what
these other factors might be and how they relate to τ .

Number of cores. The first of these factors is indeed the number of cores.

If we have p cores, τ ≥ p− 1. Indeed, in the best-case scenario where all cores have exactly the same
execution speed for a single iteration, τ = p− 1.

To get more insight into what τ really encompasses, let us now try to define the worst-case scenario
in the preceding example. Consider 2 cores. In the worst case scenario, one core runs while the other

25 To do so, we implement a global counter which is sparsely updated (every 100 iterations for example) in order not
to modify the asynchrony of the system. This counter is used only for plotting purposes and is not needed otherwise.

31

is stuck. Then the overlap is t for all t and eventually grows to +∞. If we assume that one core runs
twice as fast as the other, then τ = 2. If both run at the same speed, τ = 1.

It appears then that a relevant quantity is R, the ratio between the fastest execution time to the
slowest execution time for a single iteration. τ ≤ (p − 1)R, which can be arbitrarily bigger than
p.

Length of an iteration. There are several factors at play in r itself.

• The first is the speed of execution of the cores themselves (i.e. clock time). The dependency
here is quite clear.

• The second is the data matrix itself. If one fi has support of size n while all the others have
support of size 1, r may eventually become very big.

• The third is the length of the computation itself. The longer our algorithm runs, the more
likely it is to explore the potential corner cases of the data matrix.

The overlap is upper bounded by the number of cores times the maximum iteration time over the
minimum iteration time (which is linked to the sparsity distribution of the data matrix). This is an
upper bound, which means that in some cases it will not really be useful. For example, in the case
where one factor has support size 1 and all others have support size d, the probability of the event
which corresponds to the upper bound is exponentially small in d. We conjecture that a more useful
indicator could be the maximum iteration time over the expected iteration time.

To sum up this preliminary theoretical exploration, the τ term encompasses a lot more complexity
than is usually implied in the literature. This is reflected in the experiments we ran, where the
constant was orders of magnitude bigger than the number of cores.

E.2 Experimental results

In order to verify our intuition about the τ variable, we ran several experiments on all three datasets,
whose characteristics are reminded in Table 1. δil is the support size of fi.

n d density max(δil) min(δil) δ̄l max(δil)/δ̄l

RCV1 697,641 47,236 0.15% 1,224 4 73.2 16.7
URL 2,396,130 3,231,961 0.003% 414 16 115.6 3.58
Covtype 581,012 54 100% 12 8 11.88 1.01

Table 1: Density measures for RCV1, URL and Covtype, including minimum, average and maximum support
size δil of the factors.

To estimate τ , we compute the average overlap over 100 iterations, which is a lower bound on the
actual overlap (which is a maximum, not an average). We then take the maximum observed quantity.
We use an average because computing the overlap requires using a global counter, which we do not
want to update every iteration since it would make it a heavily contentious quantity susceptible of
artificially changing the asynchrony of our algorithm.

The results we observe are order of magnitude bigger than p, indicating that τ can indeed not be
dismissed as a mere proxy for the number of cores, but has to be more carefully analyzed.

First, we plot the maximum observed τ as a function of the number of cores (see Figure 4). We
observe that the relationship does indeed seem to be roughly linear with respect to the number of
cores until 30 cores. After 30 cores, we observe what may be a phase transition where the slope
increases significantly.

Second, we measured the maximum observed τ as a function of the number of epochs. We omit the
figure since we did not observe any dependency; that is, τ does not seem to depend on the number of
epochs. We know that it must depend on the number of iterations (since it cannot be bigger, and is

32

0 5 10 15 20 25 30 35 40
Number of cores

0

5000

10000

15000

20000

25000

O
v
e
rl

a
p
 (
τ)

RCV1-full dataset

0 5 10 15 20 25 30 35 40
Number of cores

0

5000

10000

15000

20000

25000 URL dataset

0 5 10 15 20 25 30 35 40
Number of cores

0

5000

10000

15000

20000

25000 Covtype dataset

SAGA Hogwild!

Figure 4: Overlap. Overlap as a function of the number of cores for both Asaga and Hogwild on all three
datasets.

an increasing function with respect to that number for example), but it appears that a stable value
is reached quite quickly (before one full epoch is done).

If we allowed the computations to run forever, we would eventually observe an event such that τ
would reach the upper bound mentioned in the last section, so it may be that τ is actually a very
slowly increasing function of the number of iterations.

F Lagged updates and Sparsity

F.1 Comparison with Lagged Updates in the sequential case

The lagged updates technique in Saga is based on the observation that the updates for component
[x]v need not be applied until this coefficient needs to be accessed, that is, until the next iteration t
such that v ∈ Sit . We refer the reader to Schmidt et al. [17] for more details.

Interestingly, the expected number of iterations between two steps where a given dimension v is
involved in the partial gradient is p−1

v , where pv is the probability that v is involved in a given step.
p−1
v is precisely the term which we use to multiply the update to [x]v in Sparse Saga. Therefore one

may see the updates in Sparse Saga as anticipated updates, whereas those in the Schmidt et al. [17]
implementation are lagged. The two algorithms appear to be very close, even though Sparse Saga
uses an expectation to multiply a given update whereas the lazy implementation uses a random
variable (with the same expectation). Sparse Saga therefore uses a slightly more aggressive strategy,
which gave faster run-time in our experiments below.

Although Sparse Saga requires the computation of the pv probabilities, this can be done during a
first pass throughout the data (during which constant step-size Sgd may be used) at a negligible
cost.

In our experiments, we compare the Sparse Saga variant proposed in Section 2 to two other
approaches: the naive (i.e. dense) update scheme and the lagged updates implementation described
in Defazio et al. [4]. Note that we use different datasets from the parallel experiments, including a
subset of the RCV1 dataset and the realsim dataset. Figure 5 reveals that sparse and lagged updates
have a lower cost per iteration, resulting in faster convergence for sparse datasets. Furthermore,
while the two approaches had similar convergence in terms of number of iterations, the Sparse Saga
scheme is slightly faster in terms of runtime (and as previously pointed out, sparse updates are better
adapted for the asynchronous setting). For the dense dataset (Covtype), the three approaches exhibit
a similar performance.

33

0 10 20 30
Time (in seconds)

10-5

10-4

10-3

10-2

10-1

100

O
b
je

ct
iv

e
 m

in
u
s

o
p
ti

m
u
m RCV1-train dataset

0 10 20 30
Time (in seconds)

10-5

10-4

10-3

10-2

10-1

100 Real-sim dataset

0 2 4 6 8 10
Time (in seconds)

10-5

10-4

10-3

10-2

10-1 Covtype dataset

Full updates Lagged updates Sparse updates

0 10 20 30
Number of passes

10-5

10-4

10-3

10-2

10-1

100

O
b
je

ct
iv

e
 m

in
u
s

o
p
ti

m
u
m RCV1 dataset

0 10 20 30
Number of passes

10-5

10-4

10-3

10-2

10-1

100 Real-sim dataset

0 1 2 3 4 5 6
Number of passes

10-5

10-4

10-3

10-2

10-1 Covtype dataset

Full updates Lagged updates Sparse updates

Figure 5: Lagged vs sparse Saga updates. Suboptimality with respect to time for different Saga update
schemes on various datasets. First row: suboptimality as a function of time. Second row: suboptimality as a
the number of passes over the dataset. For sparse datasets (RCV1 and Real-sim), lagged and sparse updates
have a lower cost per iteration which result in faster convergence.

F.2 On the difficulty of parallel lagged updates

In the implementation presented in Schmidt et al. [17], the dense part (ᾱ) of the updates is deferred.
Instead of writing dense updates, counters cd are kept for each coordinate of the parameter vector –
which represent the last time these variables were updated – as well as the average gradient ᾱ for
each coordinate. Then, whenever a component [x̂]d is needed (in order to compute a new gradient),
we subtract γ(t− cd)[ᾱ]d from it and cd is set to t. The reason we can do this without modifying the
algorithm is that [ᾱ]d only changes when [x̂]d also does.

In the sequential setting, this is strictly the same as doing the updates in a dense way, since the
coordinates are only stale when they’re not used. Note that at the end of an execution all counters
have to be subtracted at once to get the true final parameter vector (and to bring every cd counter
to the final t).

In the parallel setting, several issues arise:

• two cores might be attempting to correct the lag at the same time. In which case since updates
are done as additions and not replacements (which is necessary to ensure that there are no
overwrites), the lag might be corrected multiple times, i.e. overly corrected.

• we would have to read and write atomically to each [x̂d], cd, [ᾱ]d triplet, which is highly
impractical.

• we would need to have an explicit global counter, which we do not in Asaga (our global
counter t being used solely for the proof).

• in the dense setting, updates happen coordinate by coordinate. So at time t the number of ᾱ
updates a coordinate has received from a fixed past time cd is a random variable, which may
differs from coordinate to coordinate. Whereas in the lagged implementation, the multiplier is
always (t− cd) which is a constant (conditional to cd), which means a potentially different x̂t.

All these points mean both that the implementation of such a scheme in the parallel setting would
be impractical, and that it would actually yields a different algorithm than the dense version, which
would be even harder to analyze.

34

G Additional empirical details

G.1 Detailed description of datasets

We run our experiments on four datasets. In every case, we run logistic regression for the purpose of
binary classification.

RCV1 (n = 697, 641, d = 47, 236). The first is the Reuters Corpus Volume I (RCV1) dataset [10],
an archive of over 800,000 manually categorized newswire stories made available by Reuters, Ltd. for
research purposes. The associated task is a binary text categorization.

URL (n = 2, 396, 130, d = 3, 231, 961). Our second dataset was first introduced in Ma et al.
[13]. Its associated task is a binary malicious url detection. This dataset contains more than 2
million URLs obtained at random from Yahoo’s directory listing (for the “benign” URLs) and from a
large Web mail provider (for the “malicious” URLs). The benign to malicious ratio is 2. Features
include lexical information as well as metadata. This dataset was obtained from the libsvmtools
project.26

Covertype (n = 581, 012, d = 54). On our third dataset, the associated task is a binary classifica-
tion problem (down from 7 classes originally, following the pre-treatment of Collobert et al. [2]). The
features are cartographic variables. Contrarily to the first two, this is a dense dataset.

Realsim (n = 73, 218, d = 20, 958). We only use our fourth dataset for non-parallel experiments
and a specific compare-and-swap test. It constitutes of UseNet articles taken from four discussion
groups (simulated auto racing, simulated aviation, real autos, real aviation).

G.2 Implementation details

Hardware. All experiments were run on a Dell PowerEdge 920 machine with 4 Intel Xeon E7-4830v2
processors with 10 2.2GHz cores each and 384GB 1600 Mhz RAM.

Software. All algorithms were implemented in the Scala language and the software stack consisted
of a Linux operating system running Scala 2.11.7 and Java 1.6.

For compare-and-swap instructions we used the AtomicDoubleArray class from the Google library
Guava. This class uses an AtomicLongArray under the hood (from package java.util.concurrent.atomic
in the standard Java library), which does indeed benefit from lower-level CPU-optimized instruc-
tions.

The code we used to run all the experiments is available at http://www.di.ens.fr/sierra/
research/asaga/.

Necessity of compare-and-swap operations. Interestingly, we have found necessary to use
compare-and-swap instructions in the implementation of Asaga. In Figure 6, we display suboptimality
plots using non-thread safe operations and compare-and-swap (CAS) operations. The non-thread
safe version starts faster but then fails to converge beyond a specific level of suboptimality, while the
compare-and-swap version does converges linearly up to machine precision.

Efficient storage of the αi. Storing n gradient may seem like an expensive proposition, but for
linear predictor models, one can actually store a single scalar per gradient (as proposed in Schmidt
et al. [17]), which is what we do in our implementation of Asaga.

26http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

35

http://www.di.ens.fr/sierra/research/asaga/
http://www.di.ens.fr/sierra/research/asaga/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

0 5 10 15 20 25

10-1

10-5

10-10

Dataset: realsim
Sequential SAGA

ASAGA (2 cores)

ASAGA (4 cores)

ASAGA CAS (2 cores)

ASAGA CAS (4 cores)

Figure 6: Compare and swap in the implementation of Asaga. Suboptimality as a function of time
for Asaga, both using compare-and-swap (CAS) operations and using standard operations. The graph
reveals that CAS is indeed needed in a practical implementation to ensure convergence to a high precision.

G.3 Biased update in the implementation

In the implementation detailed in Algorithm 2, ᾱ is maintained in memory instead of being recomputed
for every iteration. This saves both the cost of reading every data point for each iteration and of
computing ᾱ for each iteration.

However, this removes the unbiasedness guarantee. The problem here is the definition of the
expectation of α̂i. Since we are sampling uniformly at random, the average of the α̂i is taken at
the precise moment when we read the αti components. Without synchronization, between two reads
to a single coordinate in αi and in ᾱ, new updates might arrive in ᾱ that are not yet taken into
account in αi. Conversely, writes to a component of αi might precede the corresponding write in ᾱ
and induce another source of bias.

In order to alleviate this issue, we can use coordinate-level locks on αi and ᾱ to make sure they are
always synchronized. Such low-level locks are quite inexpensive when d is large, especially when
compared to vector-wide locks.

However, as previously noted, experimental results indicate that this fix is not necessary.

36

	1 Introduction
	2 Sparse Saga
	3 Asynchronous Parallel Sparse Saga
	3.1 Perturbed Iterate Framework
	3.2 On the Difficulty of Labeling the Iterates
	3.3 Analysis setup
	3.4 Convergence and speedup results
	3.5 Proof outline

	4 Empirical results
	4.1 Experimental setup
	4.2 Implementation details
	4.3 Results

	5 Conclusions and future work
	A Problematic Example for the ``After Write'' Approach
	B Proof of Theorem ??
	C Proof of Theorem ?? and Corollary ??
	C.1 Detailed outline
	C.2 Extension to Svrg
	C.3 Initial recursive inequality derivation
	C.4 Proof of Lemma ??
	C.5 Proof of Lemma ??
	C.6 Master inequality derivation
	C.7 Lyapunov function and associated recursive inequality
	C.8 Proof of Lemma ??
	C.9 Proof of Theorem ??
	C.10 Proof of Corollary ?? (speedup regimes)

	D Additional experimental results
	D.1 Effect of sparsity
	D.2 Theoretical speedups

	E A closer look at the constant
	E.1 Theory
	E.2 Experimental results

	F Lagged updates and Sparsity
	F.1 Comparison with Lagged Updates in the sequential case
	F.2 On the difficulty of parallel lagged updates

	G Additional empirical details
	G.1 Detailed description of datasets
	G.2 Implementation details
	G.3 Biased update in the implementation

