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Abstract. The paper proposes an RDF key ranking approach that at-
tempts to close the gap between automatic key discovery and data link-
ing approaches and thus reduce the user effort in linking configuration.
Indeed, data linking tool configuration is a laborious process, where the
user is often required to select manually the properties to compare, which
supposes an in-depth expert knowledge of the data. Key discovery tech-
niques attempt to facilitate this task, but in a number of cases do not
fully succeed, due to the large number of keys produced, lacking a con-
fidence indicator. Since keys are extracted from each dataset indepen-
dently, their effectiveness for the matching task, involving two datasets,
is undermined. The approach proposed in this work suggests to unlock
the potential of both key discovery techniques and data linking tools by
providing to the user a limited number of merged and ranked keys, well-
suited to a particular matching task. In addition, the complementarity
properties of a small number of top-ranked keys is explored, showing
that their combined use improves significantly the recall. We report our
experiments on data from the Ontology Alignment Evaluation Initiative,
as well as on real-world benchmark data about music.

1 Introduction

In recent years, the Web of Data has been constantly growing both in terms
of quantity of the RDF datasets published publicly on the web and in terms
of diversity of the domains that they cover. One of the most important chal-
lenges in this setting is creating semantic links among these data [1]. Among
all possible semantic links that could be declared between resources found in
different datasets, identity links, defined by the owl:sameAs statement, are of
great importance and the ones that most of the attention is given to. Indeed,
owl:sameAs links allow to see currently isolated datasets as one global dataset
of connected resources. Considering the small number of existing owl:sameAs

links on the Web today, this task remains a major challenge [1].
Due to the large amount of data already available on the Web, defining

manually owl:sameAs links would not be feasible. Therefore, many approaches
try to answer to this challenge by providing different strategies to automate
this process. Datasets conforming to different ontologies, data described using
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different vocabularies, datasets described in different languages are only several
of the examples that make this problem hard to solve.

Many of the existing link discovery approaches are semi-automatic and re-
quire manual configuration. Some of these approaches use keys, declared by a
domain expert, to link. A key represents a set of properties that uniquely identi-
fies every instance of a given class. Keys can be used as logical rules to link data
ensuring high precision results in the linking process. Additionally, they can be
exploited to construct more complex rules. Nevertheless, keys are rarely known
and are very hard to declare even for experts. Indeed, experts may not know all
the specificities of a dataset leading to overlook certain keys or even introduce
erroneous ones. For this reason, several automatic key discovery approaches have
been already proposed in the context of the Semantic Web [2,3,4,5,6].

In spite of that fact, applying the output of these approaches directly is, in
most of the cases, impossible due to the characteristics of the data. Ontology
and data heterogeneity are not the only issues that can arise while trying to
apply keys directly for data linking. Even if the datasets conform to the same
ontology and the vocabulary of the properties is uniform, this does not ensure
the success of the linking process. Very often, key discovery approaches discover
a very large number of keys. The question that arises is whether all the keys are
equally important among them, or there are some that are more significant than
others. So far, no approach provides a strategy to rank the discovered keys, by
taking in consideration their effectiveness for the matching task at hand.

Bridging the gap between key discovery and data linking approaches is critical
in order to obtain successful data linking results. Therefore, in this paper we
propose a new approach that, given two datasets to be linked, provides a set of
ranked keys, valid for both of them. We introduce the notion of “effectiveness”
of a discovered key. Intuitively, a key is considered as effective if it is able to
provide many correct owl:sameAs links. In order to measure the effectiveness of
keys, a support-based key quality criterion is provided. Unlike classic approaches
using support for the discovered keys, in this work we introduce a new global
support for keys valid for a set of (usually two) datasets.

The proposed approach can be summarized in the following main steps. (1)
Preprocessing: in this step, given two datasets to be linked, only properties that
are shared by both datasets are kept. This ensures that a key can be applied
on both the source and the target datasets, and not only on each of them in-
dependently. At this point it is important to state that we consider that the
datasets use either common vocabularies or that the explicit mapping between
the respective vocabularies is known. (2) Merge: the key candidates discovered
in each dataset are then merged by computing their cartesian product (recall
that a key is a set of properties). (3) Ranking: we introduce a ranking criterion
on the set of merged keys that is a function of the respective supports of each
merged key in each dataset, normalized by the dataset sizes. (4) Keys combina-
tion: finally, the combined use of several top-ranked merged keys is evaluated,
showing an improvement of the recall of a given link discovery tool.

The rest of the paper is structured as follows. Section 2 overviews data linking
and automatic keys discovery and link specification approaches. Then, Section
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3 presents our key ranking technique, evaluated in Section 4. Conclusions and
future work are provided in Section 5.

2 Related Work

Let us look onto the process of data linking from a global perspective. The
majority of the existing linking tools implement a process that consists of three
steps: (1) configuration and pre-processing, (2) instance matching and (3) post-
processing. Step (1) aims on the one hand to reduce the search space by identi-
fying sets of linking candidates and key properties to compare, and on the other
hand – to model instances by using a suitable representation that renders them
comparable (one can think of indexing techniques, automatic translation, etc.).
Step (2) aims at deciding on a pair of instances whether they are equivalent or
not, mostly relying on similarity of property values, evaluated by similarity mea-
sures defined in step (1). The output of step (2) is a set of matched instances,
also known as a link set. Finally, step (3) allows to filter out erroneous matches
or infer new ones, based on the link set provided in step (2).

The configuration step of the linking workflow described above contains two
important sub-steps: (a) the choice of properties (or keys) across the two datasets
whose values need to be compared, and (b) the choice of similarity measures
to apply and their tuning. Our approach is tightly related to these sub-steps,
although it does not fit into either of these categories. Indeed, we are not aware
of the existence of other approaches that address the problem of key quality
evaluation with respect to data linking, therefore, the current section looks into
approaches relevant to both (a) and (b), as well as to the data linking process
as a whole.

2.1 Automatic Linking Tools Configuration

Key Discovery. In order to link, many data linking approaches require a set
of linking rules. Some data linking approaches use keys to build such rules. A
key is a set of properties that uniquely identifies every resource of a given class.
Nevertheless, keys are rarely known and also very hard to define even for expert.

In the context of Semantic Web, different key discovery approaches have
been already proposed. Both [5] and [2] propose a key discovery approach that
follows the semantics of a key as defined by OWL. This definition states that
two instances are referring to the same real world entity if at least one value per
property appearing in a key is equal. Unlike [5], [2] proposes a method that scales
on large datasets, taking also into account errors or duplicates in the data. In [6]
and [4], the authors propose an alternative definition for the keys that is valid
when the data are locally complete. In this case, to consider that two instances
are equal, all the set of values per property appearing in a key should be the
same. Finally, in [7], a key discovery approach for numerical data is proposed.

Atencia et al. [3] observe that key extraction is conducted by state-of-the-
art tools in an independent manner for two input datasets without taking into
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consideration the linking task ahead. The authors introduce the concept of a
linkkey – a set of properties that are a key for two classes simultaneously, implying
equivalence between resources that have identical values for the set of these
properties.

Automatic Link Specification Algorithms. We consider the work on au-
tomatic link specification as related in terms of motivation to our approach
and complementary in terms of application. Link specification is understood as
the process of automatically building a set of linking rules (restrictions on the
instances of the two datasets), choosing similarity measures to apply on corre-
sponding property values across datasets together with their respective thresh-
olds [8]. Several approaches have been introduced so far, mostly based on machine
learning techniques, such as FEBRL [9], an extension of SILK [10], RAVEN [11]
or, more recently, EAGLE [8]. Contrarily to key discovery methods, these ap-
proaches mainly focus on the automatic selection, combination and tuning of
similarity measures to apply on the values of comparable properties. The iden-
tification of properties to compare is done by matching algorithms and no key
computation is implied in this process. The efficiency of these algorithms can be
improved if the system knows on which properties and on what types of values
the similarity measures will be applied.

2.2 Data Linking

Data linking has evolved as a major research topic in the semantic web com-
munity over the past years, resulting in a number of approaches and tools ad-
dressing this problem. Here, instead of making an inventory of these techniques,
surveyed in [12] and [13], we scrutinize the main characteristics that unite or
differentiate the most common approaches.

The majority of the off-the-shelf linking tools [14,15,16,17,18,19] produce an
RDF linkset of owl:sameAs statements relating equivalent resources and the link-
ing process is commonly semi-automatic. As discussed above, the user has to con-
figure manually a number of input parameters, such as the types of the instances
to compare (with certain exceptions like [18] where ontology matching techniques
are applied to identify the equivalent classes automatically), the properties (or
property chains) to follow, since most linking tools adopt a property-based link
discovery philosophy, the similarity measure(s) and thresholds to apply on the
literals and possibly an aggregation function for several measures. The bigger
part of the existing approaches are conceived as general purpose linking methods
and are designed to handle monolingual RDF data.

What differentiates these tools in the first place is the techniques of auto-
matic preprocessing that are embedded in their architecture. Scalability and
computational efficiency are major issues when dealing with data linking prob-
lems on the web scale. To reduce the search space, [19] cluster data items, based
on their similarity with respect to their properties. Indexing techniques are used
to reduce the number of instance comparisons by Rong et al. [20] using similar-
ity of vectors as a proxy for instance relatedness. Similarly, Shao et al. [16] and
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Kejriwal et al. [21] apply a blocking technique, which consists in using inverted
indexing to generate candidate linking sets. SILK [14] relies on indexing all tar-
get resources by the values of one or more properties used as a search term.
LIMES [15] relies on the triangle inequality property of metric spaces to reduce
the number of comparisons and thus the time complexity of the task.

The linking tools vary with respect to their abilities to handle different de-
grees and types of data heterogeneity. Indeed, most of the tools are able to cope
with minor differences in spelling in the string literals by applying string match-
ing techniques, but only a few are able to deal with more complex heterogeneities
and just a couple of them try to resolve the problem of multilingualism (using
different natural languages in data description), as Lesnikova et al. do, although
in a very restricted scenario of only two languages [22].

2.3 Positioning

The approach that is proposed in this paper attempts to close the gap be-
tween automatic key discovery algorithms and the data linking process. As ob-
served above, the majority of key discovery techniques do not effectively facilitate
the task of selection of properties whose values to compare in the linking pro-
cess, due the large number of keys produced and the lack of confidence indicator
coupled with the keys. Our method suggests to unlock the potential of key-based
techniques by providing to the user of a data linking tool a limited number of
quality keys, well-suited to the particular matching task. The only key-based
approach that looks into the usefulness of keys for two datasets simultaneously,
and not independently from one another, is [3]. In contrast to our approach, the
set of linkkeys produced in [3] is unordered which does not allow to effectively
select a key or decide on the use of one key as opposed to another.

As compared to automatic link specification algorithms cited in Subsection
2.1, our approach can be seen as complementary: we focus on the identification
of a limited set of properties that can be used to effectively link datasets, while
leaving the choice of the similarity measures, their combination and tuning to the
user, or to the auto-configuring link specification methods given above. The au-
tomatic selection of keys can potentially improve the quality of link specification
methods by restricting considerably the similarity space.

3 Automatic Key Ranking Approach

Given two RDF datasets, candidates to be linked, our approach aims at rank-
ing the keys that are valid for both datasets. These keys can be used successfully
as link specifications by link discovery frameworks. Before introducing the ap-
proach, recall the OWL definition of a key. A key is a set of properties, such that
if two resources share at least one value for every property participating in this
key, these resources are considered as equal, or formally:

∀X,∀Y, ∀Z1, . . . , Zn,∧c(X) ∧ c(Y )

n∧
i=1

(pi(X,Zi) ∧ pi(Y,Zi))⇒ X = Y, (1)
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Fig. 1: The processing pipeline of Alg. 1.

where X and Y are instances of the class c and pi(X,Zi) ∧ pi(Y, Zi) expresses
that both X and Y share the same value Zi for every property pi in the key.

In next section, we describe how do we select keys that are valid for the two
datasets. Afterwards, we describe our ranking approach on the set of these keys.

3.1 Selecting Mutual Keys for Two Datasets and Merging

We start by giving one of our initial hypothesis. The number of available
vocabularies has been growing with the growth of the LOD cloud, resulting
in datasets described by a mixture of reused vocabulary terms. It is therefore
often the case that two different datasets to be linked are described by different
vocabularies. To answer to that, ontology alignment methods [23] are used in
order to create mappings between vocabulary terms. In this paper, we assume
that equivalence mappings between classes and properties across the two input
datasets are declared (either manually, or by the help of an ontology matching
tool). These mappings will be used to obtain keys that are valid for both datasets.

Algorithm 1 gives an overview of the main steps of our approach, also depicted
in Figure 1. Overall, given two datasets to be linked, this algorithm returns a
set of ranked keys valid for both datasets. In addition to that, every proposed
key is given a score, allowing to rank keys according to their impact on the data
linking process. This process is described step by step below.

First, given the datasets DS and DT containing instances of a class C, a set
of property mappings M between the two datasets is computed. As described in
[5], property mappings allow the identification of properties that belong to both
datasets simultaneously.

A key discovery step is applied to both datasets independently allowing the
discovery of valid keys in each dataset. Only mapped properties, appearing in
M , will be contained in the discovered keys. For this step, existing key discovery
tools such as SAKey [2] or ROCKER [4] can be used to obtain keys for a given
class C.

However, even if keys consist of properties that belong to both datasets,
nothing ensures that the discovered keys found in each dataset independently
will be the same. Indeed, there can be cases where something found as a key
in one dataset it is not true in the other. Since key discovery approaches learn
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keys from the data, the generality of each dataset affects the generality of the
discovered keys. For example, if a dataset contains people working in a specific
university, it is possible to discover that the last name is a key. Thus, to deal
with this challenge a merging step is performed. Indeed, merging keys coming
from different datasets allows to verify the validity of discovered keys and to
obtain more meaningful keys since they are applicable to more than one datasets.
Different strategies for key merging could be applied. In this work, we apply a
merging strategy proposed in [5] providing minimal keys valid in both datasets.

The result is a set of merged keys considered as valid for both datasets. How-
ever, the number of merged keys produced by the algorithm can be significantly
high, which makes manual selection difficult, particularly in the lack information
of the keys suitability for the data linking task. Therefore, we introduce a novel
ranking method for merged keys to identify the most suitable keys to be used in
the link specification, introduced in next section.

Algorithm 1: The merged keys ranking algorithm.

Input: DS and DT , a pair of datasets candidates to be linked.
Output: A set of merged and ranked keys: rankedMergedKeys

1 M ← Mapping(DS , DT );
2 KeysDS ← keysDiscovery(DS , M);
3 KeysDT ← keysDiscovery(DT , M);
4 MergedKeys ← keysMerging(KeysDS , KeysDT );
5 rankedMergedKeys ← mergedKeysRanking(DS , DT , MergedKeys);
6 return rankedMergedKeys;

3.2 Merged Keys Ranking

As described before, the merged keys are valid for both datasets. However,
these keys may vary in terms of “effectiveness” in the linking process. Therefore,
we propose to first to assign a score reflecting the “effectiveness” of a discovered
key and second use this score to rank the discovered keys among them.

In general, it is very common that not all the properties are used to describe
every instance of a given class. This happens often due to the nature of the
property or the incompleteness of the data and may have significant impact on
the quality of the discovered keys with respect to the linking task. While many
properties apply to every instance of a class, there exist cases of properties
that have values only for certain instances (the property “spouse” for a person
applies only to people that are married). In addition, in the case when data
are incomplete, an instance may not have a value for a specific property even
if a value exists in reality. This can lead to the discovery of wrong keys since
not all the possible scenarios are visible in the data. Since it is very hard to
differentiate these two cases automatically and a manual identification would not
be feasible due to the size of the existing datasets, we use the notion of support
to measure the completeness of a key. The support measures the presence of a



8 M. Achichi, M. Ben Ellefi, D. Symeonidou, K. Todorov

set of properties in a dataset. Intuitively, we tend to trust more keys that are
valid for many instances in the data, i.e., keys with high support.

Basing ourselves on the support definition initially given by Atencia et al. in
[6], we redefine this measure in order to provide a ranking score for properties
with respect to a given dataset.

Let D be an RDF dataset described by an ontology O. For a given class
C ∈ O, let IC be the set of instances of type C and P the set of properties
having an element of IC as a subject and let GC be the subgraph defined by the
set of triples of IC and P , GC= {< i, p, . >: i ∈ IC , p ∈ P}.

Definition 1 (Property Support Score).
The support of a property p ∈ P with respect to the pair (D, C) is defined by:

supportProp(p,D,C) =

∣∣∣∣∣ ⋃
i∈IC

< i, p, . >

∣∣∣∣∣ 1

|IC |
.

In other words, supportProp(p,D,C) = N 1
|IC | means that N instances of type C

in the dataset D have a value for the property p (supportProp(p,D,C) ∈ [0, 1]).
As keys for a given class can be composed of one or several properties, we

introduce a ranking score for keys based on the supports of their properties,
again with respect to their dataset.

Definition 2 (Key Support Score).
Let K = {p1, ..., pn} be a key corresponding to the pair (D,C), where pj ∈

P, j ∈ [1, n]. We define the support of K with respect to (D,C) as

supportKey(K,D,C) =

∣∣∣∣∣ ⋃
i∈IC

< i,K, . >

∣∣∣∣∣ 1

|IC |
,

where < i,K, . > means that ∀pj ∈ K, ∃ < i, pj , . >∈ GC .

In other words, supportKey(K,D,C) can be seen as a measure of the co-
occurrence of {p1, ..., pn} in GC .

To illustrate, let us consider a source dataset DS having 300 instances of
type CS . Respectively, let DT be a target dataset having 100 instances of type
CT , where CS and CT are two mapped (equivalent) classes, potentially sharing
instances. Let Ki and Kj be two merged keys, obtained as described in Algo-
rithm 1, with the following supports for (DS , CS) and (DT , CT ), respectively:

supportKey(Ki, DS , CS) =
160

300
; supportKey(Ki, DT , CT ) =

40

100
;

supportKey(Kj , DS , CS) =
110

300
; supportKey(Kj , DT , CT ) =

90

100
.

Obviously, the challenge that arises here is how to rank the merged keys in
order to ensure a maximum instance representativeness.

We note that key support score expresses the importance of a merged key
with respect to each dataset, however, it is still necessary to provide a ranking
function allowing to measure the importance of the merged keys for both datasets
simultaneously.
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An intuitive strategy to compute the final support of a merged key, given
the supports computed locally in each dataset, would be to compute the average
score of these supports. Nevertheless, this strategy would fail to capture all the
different scenarios that could lead to a support value. For example, a key having
supports 1 and 0.4 in datasets 1 and 2, would have the same merged support than
a key having supports of 0.7 and 0.7 in datasets 1 and 2 respectively. Thus, we
propose a multiplication function between already computed key supports which
ensures better results in the context of data linking evaluation. Consequently,
we adopt this ranking function as defined below.

Definition 3 (Merged Keys Rank Function). We define the rank of a
merged key K with respect to two datasets DS and DT and two classes CS

and CT as:

mergedKeysRank(K) = supportKey(K,DS , CS) × supportKey(K,DT , CT ).

Applying the ranking to our example, we obtain the following scores:

globalRank(Kj) = 0.33; globalRank(Kk) = 0.22; globalRank(Ki) = 0.21;

Therefore, in this example, the key Kj is more important than Ki which
means that intuitively should lead to better data linking results.

4 Evaluation

In order to confirm the effectiveness of the proposed approach, we have con-
ducted an experimental evaluation applying two state-of-the-art key discovery
tools: SAKey and ROCKER. We have used two different datasets, a real-world
dataset coming from the DOREMUS project1 and a synthetic benchmark pro-
vided by the Instance Matching Track of the Ontology Alignment Evaluation
Initiative (OAEI) 20102. The current experiments were applied on links gen-
erated semi-automatically using the linking tool SILK. In this evaluation, we
highlight a set of issues raised during these experiments. But first, let us define
the criteria and the measures used for this evaluation. Two aspects are taken into
account through the keys ranking performed using our approach, first the cor-
rectness that determines whether the discovered links are correct and second, the
completeness that determines whether all the correct links are discovered. These
criteria are evaluated by the help of three commonly used evaluation metrics:

- Precision : expresses the ratio between the cardinalities of the set of valid
matchings and all matching pairs identified by the system.

- Recall : expresses the ratio between the cardinalities of the set of valid
matchings and the all matching pairs that belong in the reference alignment.

- F-Measure : is computed by the following formula :

F-Measure = 2 ∗ Precision ∗Recall

Precision + Recall

1 http://www.doremus.org
2 http://oaei.ontologymatching.org/2010/

http://www.doremus.org
http://oaei.ontologymatching.org/2010/
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We note that all considered pairs of datasets are using the same ontology
model, hence, the ontology mapping process is not considered in our experi-
ments. We first execute SAKey or ROCKER on each dataset in order to identify
the set of keys. However, we emphasize the fact that advanced key exceptions
like pseudo-keys or almost keys are not the focus of this paper, therefore, only
traditional keys are discovered. These keys are then merged and ranked accord-
ing to their support score. We launch SILK iteratively as many times as the
number of the retrieved keys and produce an F-measure at each run by the help
of the reference alignment of our benchmark data. We expect to find a mono-
tonic relation between the ranks of keys and the F-measure values produced by
SILK by using these keys. Note that the purpose of these experiments is not to
evaluate the performance of the linking tools, but to evaluate the quality of the
automatically computed ranks of keys. In other words, we assess whether the
generated links are increasingly correct in an ascending order of the ranked keys.

4.1 Experiments on the DOREMUS Benchmark

The data in our first experiment come from the DOREMUS project and con-
sists of bibliographical records found in the music catalogs of two major French
institutions – La Bibliothque Nationale de France (BnF) and La Philharmonie
de Paris (PP). These data describe music works and contain properties such as
work titles (“Moonlight Sonata”), composer (Beethoven), genre (sonata), opus
number, etc.. The benchmark datasets were built based on these data with the
help of music librarian experts of both institutions, providing at each time sets
of works that exist in both of their catalogs, together with a reference alignment.
The data were converted from their original MARC format to RDF using the
marc2rdf prototype3 [24]. We consider two benchmark datasets4, each manifest-
ing a number data heterogeneities:

1) DS1 is a small benchmark dataset, consisting of a source and a target
dataset form the BnF and the PP, respectively, each containing 17 music works.
These data show recurrent heterogeneity problems such as letters and numbers
in the property values, orthographic differences, missing catalog numbers and/or
opus numbers, multilingualism in titles, presence of diacritical characters, differ-
ent value distances, different properties describing the same information, missing
properties (lack of description) and missing titles. SAKey produced eight keys
in this scenario. The three top-ranked merged keys using our approach are:

1. K1: {P3 has note}
2. K2: {P102 has title}
3. K3: {P131 is identified by, P3 has note},

where P3 has note, P102 has title, P131 is identified by and P3 has note cor-
respond to a comment, title, composer and creation date of a musical work,
respectively.

3 https://github.com/DOREMUS-ANR/marc2rdf
4 Doremus datasets, together with their reference alignments, are available at http:

//lirmm.fr/benellefi/doremus-bench

https://github.com/DOREMUS-ANR/marc2rdf
http://lirmm.fr/benellefi/doremus-bench
http://lirmm.fr/benellefi/doremus-bench
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As we can see in Figure 2(a), our ranking function ensures a decrease of
the F-measure with the decrease of the key-rank, in the prominent exception
of the top-ranked key, which obtains a very low value of F-Measure. This is
explained by the nature of the property P3 has note. This property describes a
comment in a free format text written by a cataloguer providing information on
the works, creations or authors of such works. The values for this property for
the same work are highly heterogeneous (most commonly they are completely
different) across the two institutions, which introduces noise and considerably
increases the alignment complexity between these resources. Thus, we decided

(a) (b)

Fig. 2: Results by using SAKey on DS1: (a) by considering all properties, (b)
without the property has note.
to conduct a second experiment on the same data by removing the property
has note in order to confirm our observation. Figure 2 (b) reports the results of
this experiment and shows a net decrease of the curve. Overall, the experiment
showed that our ranking approach is efficient and the misplaced key is due to
the heterogeneous nature of data.

The same experiment has been conducted using this time the key discovery
approach ROCKER. The results are reported in Figure 3 showing that the keys
were well ranked. Note that, due to the different keys identification definition
used by ROCKER, the problematic property has note did not appear in the
keys produced by the system.

Fig. 3: Results on DS1 by using ROCKER.
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2) DS2 is a benchmark dataset consisting of a source and a target dataset
from the BnF and the PP, respectively, each composed of 32 music works. Con-
trarily to DS2, these datasets consist of blocks that are highly similar in their
description works (i.e., works of the same composer and with same titles).

The results on this dataset by using SAKey are reported in Figure 4(a). The
three top-ranked merged keys are:

1. K1: {P3 has note, P102 has title, P131 is identified by}
2. K2: {P3 has note, P102 has title, U35 had function of type}
3. K3: {P3 has note, P131 is identified by, P3 has note}

As their names suggest the properties P3 has note (in K1 and the first property
in K2 ), P102 has title,
P131 is identified by, U35 had function of type and P3 has note (the third
property in K3 ) correspond to a creation date, title, composer, function of the
composer and comment on a musical work, respectively.

(a) (b)

Fig. 4: Results by using SAKey on DS2: (a) by considering all properties, (b)
without the property has note.

The results of this experiment are similar to the first one. Not considering
the property P3 has note improves considerably (see Figure 4 (a) and (b)) the
keys ranking. Indeed, as shown in Figure 4 (a), the key K5 which is composed
by the properties P102 has title, U35 had function of type and P3 has note
has significantly lowered the f-measure value; which is not the case of the keys
in Figure 4 (b).

4.2 Experiments on the OAEI Benchmark Data

In the second series of experiments, we apply our ranking approach on keys
identified in datasets proposed in the instance matching track of OAEI 2010. In
this work, we report the obtained results on the dataset Person1. The results by
using SAKey and ROCKER are shown in Figure 5(a) and (b), respectivey, where
one can notice that there is an overall decrease in the F-Measure values in the two
cases. Note that in Figure 5(a), there are some problematic key-ranks, showing
increase in F-measure while the ranks descend. We observed that SILK achieves
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better results comparing string characters than numeric characters. Indeed, this
explains why we have had an increasing curve between the keys K7 and K8,
knowing that they are composed of street and house number properties (street
and surname properties), respectively.

(a) (b)

Fig. 5: Results on the dataset Person1: (a) by using SAKey, (b) by using
ROCKER.

The three top ranked merged keys (in Figure 5(a)) on the dataset Person1
using SAKey are:

1. K1: {soc sec id},
2. K2: {given name, postcode}
3. K3: {surname, postcode},

where the properties soc sec id, given name, surname and postcode correspond
to the social security number, given name, surname and postal code address of
a person, respectively. In the same manner, we reiterated the experiment using
ROCKER which gives better results as shown in Figure 5(b).

4.3 Top Ranked Keys Complementarity

In this evaluation, we want to examine whether using the k (we have taken
k = 3) top-ranked keys in combination can improve the linking scores as com-
pared to using only one of the top-ranked keys (e.g., the first one) for linking. As
discussed above, even if a key is discovered as a first-rank key, nothing ensures
that the vocabulary used in both datasets to describe that key is homogeneous.
To answer to that, combining a set of top ranked keys would lead to better
linking results.

SAKey ROCKER
Dataset 1 Dataset 2 Dataset 1 Dataset 2

F P R F P R F P R
No merged key

has been
identified.

K1 0.12 0.12 0.11 0.5 0.75 0.37 0.59 0.8 0.47

K2 0.71 0.9 0.58 0.48 0.7 0.37 0.2 0.66 0.11

K3 0.52 1 0.35 0.37 0.56 0.28 0.2 0.66 0.11

K1+K2+K3 0.54 0.44 0.7 0.51 0.63 0.43 0.62 0.75 0.52

Table 1: Results of the combination of the three top-ranked keys on the DORE-
MUS datasets.
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Notice that by doing so, the recall value remains the same or increases as
compared to the single key approach, while the precision may increase (if the pro-
portion of the positive matching pairs becomes larger than the negative matching
pairs) as it may as well decrease.
As shown in Table 1, the experiments on DOREMUS datasets using the three
top ranked keys increased relatively (in bold in the table) the F-Measure with
respect to the first-rank key (where the improved values are in italics) and signif-
icantly the recall scores (more positive matching pairs were recovered). Thus, it
seems reasonable to conclude that merging the matching results retrieved from
the top ranked keys allows to improve significantly the results in terms of recall,
while this cannot guarantee an improvement in precision.

5 Conclusion and Future Work

This paper presents an approach that allows to select automatically a num-
ber of merged keys, relevant for a given pair of input datasets, and rank them
with respect to their “effectiveness” for the task of discovering owl:sameAs links
between them. The effectiveness of a merged key is defined as a function of the
combination of its respective supports on each of the two input datasets. The
proposed method allows to reduce significantly the user effort in the selection of
keys used as a parameter of a data linking tool, such as SILK or LIMES. In this
way, we attempt to bridge the gap between configuration-oriented approaches,
such as automatic key discovery and automatic link specification, and the actual
process of data linking. We also look into the complementarity properties of a
small set of top-ranked keys and show that their combined use improves signif-
icantly the recall. To demonstrate our concepts, we have conducted a series of
experiments on data coming from the OAEI campaign, as well as on real-world
data from the field of classical music cataloguing.

In near future, we plan to improve our ranking criterion by defining it as a
function of the estimated intersection of the sets of instances covered by a given
key across two datasets.
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