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Abstract—Understanding customer buying patterns is of great
interest to the retail industry. Association rule mining is a
common technique for extracting correlations such as people

in the South of France buy rosé wine or customers who buy

paté also buy salted butter and sour bread. Unfortunately, sifting
through a high number of buying patterns is not useful in
practice, because of the predominance of popular products in the
top rules. As a result, a number of “interestingness” measures
(over 30) have been proposed to rank rules. However, there
is no agreement on which measures are more appropriate for
retail data. Moreover, since pattern mining algorithms output
thousands of association rules for each product, the ability for
an analyst to rely on ranking measures to identify the most
interesting ones is crucial. In this paper, we develop CAPA
(Comparative Analysis of PAtterns), a framework that provides
analysts with the ability to compare different rule rankings. We
report on how we used CAPA to compare 34 interestingness
measures applied to patterns extracted from customer receipts
of more than 1,800 stores for a period of one year.

I. INTRODUCTION

Ever since databases have been able to store basket data,
many techniques have been proposed to extract useful insights
for analysts. One of the first, association rule mining [1], also
remains one of the most intuitive. Association rules are often
used to summarize consumer trends in a set of transactions
or as input to a classifier [2]. The problem is the very high
number of rules, typically in the order of millions. That is
exacerbated by the lack of thorough studies of which of
the many interestingness measures for ranking rules [3] is
most appropriate for which application domain. We present
CAPA, a framework to compare the rankings that result from
applying different interestingness measures to association rules
in the retail domain. CAPA relies on a flexible architecture
and on jLCM [4], our parallel and distributed pattern mining
algorithm that runs on MapReduce. The use of real datasets
and a close collaboration with experienced domain experts
from Intermarché, one of the largest retailers in France, has
led us to select the most relevant measures to rank association
rules in the food retail domain.

Our dataset contains 290 million receipts from 1,884 stores
in all of France, gathered over one year, 2013. Mining this
data results in a huge number of rules. For example, using a
minimum support of 1,000 jLCM mines 2,746,418 frequent
rules of the form customer segment ! product category. Out

of these, 15,063 have a confidence of 50% or higher. Table I
shows a ranking of the top-10 rules according to 3 different
interestingness measures proposed in [3]. If we denote rules
as A ! B, confidence is akin to precision and is defined as
the probability to observe B given that we observed A, i.e.,
P (B|A). Piatetsky-Shapiro [5] combines how A and B occur
together with how they would if they were independent, i.e.,
P (AB) � P (A)P (B). Pearson’s �

2, measures how unlikely
observations of A and B are independent. This example shows
that these measures result in different rule rankings.

The first question we ask ourselves is how different are
the rule rankings produced by existing interestingness
measures in the retail domain? We examine the rankings
produced by 34 measures [3], [6]. This effort was conducted
for 3 mining scenarios designed by experienced analysts from
the marketing studies department of Intermarché. In the first
scenario, demo_assoc, the analyst provides a target product
category and expects rules of the form customer segment !
category, i.e. customers who belong to the described segment
purchase products in the target category. In the other two sce-
narios, the analyst provides a target product p and expects rules
of the form set of products ! p. Such rules are either extracted
based on a receipt-centric view, where products are grouped
by receipt (prod_assoc_t), or based on a customer-centric
view, where products are grouped by customer across several
receipts (prod_assoc_c). Our first finding is that existing
interestingness measures can be automatically grouped into 6
families of similar measures, regardless of the mining scenario.

We then conducted a user study with two experienced
domain experts from Intermarché in order to address the
following question: out of the 6 families of interestingness
measures, which ones are meaningful? Our study lets
analysts choose one of 3 mining scenarios along with target
products or categories, as well as a (hidden) ranking measure.
Their interactions with the resulting list of association rules
were observed and their feedback recorded. Overall, ranking
rules by decreasing confidence was preferred because of its
intuitive nature. Moreover, analysts were willing to trade some
confidence (akin to precision) for a significant gain in support
(akin to recall). This is achieved by the Piatetsky-Shapiro’s
measure [5]. However, this measure promotes rules containing
very frequent products that are interpreted as noise by analysts.



TABLE I
TOP-5 DEMOGRAPHICS ASSOCIATION RULES, ACCORDING TO DIFFERENT INTERESTINGNESS MEASURES. RULES ARE DENOTED {AGE, GENDER,
DEPARTMENT} ! product category. PRODUCT CATEGORIES WERE TRANSLATED TO ENGLISH, FRENCH DEPARTMENTS WERE LEFT UNCHANGED.

by confidence by Piatetsky-Shapiro [5] by Pearson’s �

2

{> 65, F, Aube} ! Dairy {⇤, ⇤, Nord} ! Liquids {⇤, ⇤, Somme} ! Cut cheese
{> 65, F, Aveyron} ! Dairy {⇤, ⇤, Nord} ! Soft drinks {⇤, F, Somme} ! Cut cheese

{> 65, F, Val de Marne} ! Dairy {⇤, ⇤, Nord} ! Beers {> 65, ⇤,Morbihan} ! Fresh milk
{> 65, F, Seine St Denis} ! Dairy {⇤, ⇤, Nord} ! Spreads {> 65, ⇤, Somme} ! Cut cheese

{> 65, F, Haute Saone} ! Dairy {⇤, F,Nord} ! Soft drinks {⇤, ⇤, F inistere} ! Canned pork

This drawback is alleviated by providing the ability to filter
out rules containing uninteresting products.

CAPA is made possible with jLCM, our distributed pattern
mining algorithm that is able to mine millions of patterns
in a few minutes [4]. jLCM can be constrained to focus
on different customer demographics and product taxonomies.
Thus, in addition to typical associations between products, it
finds associations between customer segments and products
and between products and categories.

In summary, this paper presents CAPA, a joint effort between
researchers in Academia and business experts at Intermarché.
The context and goals of the work are provided in Section II.
The architecture of CAPA is overviewed in Section III. In Sec-
tion IV, CAPA is deployed to perform an automatic grouping
of measures into 6 groups based on similarities in the rakings
they produce. These groups are then evaluated by retail experts
in Section V leading to insightful findings. The related work
is summarized in Section VI. Planned and possible evolutions
are finally discussed in Section VII.

II. CONTEXT

A. Dataset

We represent a dataset D as a set of records of the form
ht, c, pi, where t is a unique receipt identifier, c is a customer,
and p is a product purchased by c. When a customer purchases
multiple products at the same time, several records with the
same receipt identifier t are generated. The set of receipt
identifiers is denoted as T . Each receipt identifier is associated
with a unique customer, and multiple receipt identifiers can
be associated with the same customer. We do not use product
price or product cardinality in this work. The complete dataset
contains over 290 million unique receipts, spanning 3.5 billion
records, generated at a retail chain consisting of 1,884 stores
over the whole year of 2013.

The set of customers, C, contains over 9 million customers.
Each customer has demographic attributes. In this study, we
focus on 3 attributes: age, gender and location. The attribute
age takes values in {<35, 35-49, 50-65, >65} and the attribute
location admits French departments as values. Each customer
segment is described by a set of user attribute values that are
interpreted in the usual conjunctive manner. For example, the
segment {< 35 ,Paris} refers to young Parisian customers.

We use demo(c) to refer to the set of attribute values
of a customer c. For example, {35-49, female, Calvados}
represents a 48 year old female from the Calvados department,
whom we will refer to as Mary.

The set of products P contains over 200,000 entries, out of
which 55,786 have been sold more than a thousand times.
Products are organized in a taxonomy with 19,557 nodes
over 4 levels. Products are leaf nodes, and belong to all their
ancestor categories. The set of categories a product p belongs
to is denoted as cat(p). For example, chocolate cream belongs
to the categories Fresh food, Dairy, Ultra fresh and Desserts.

B. Mining Customer Receipts

1) Dataset Preparation: Our analysts are interested in
studying two kinds of buying patterns: those representing as-
sociations between customer segments and a product category
(young people in the north of France consume sodas), and
those associating a set of products to a single product (people
who purchase pork sausage and mustard also buy Riesling).
In all cases the analyst specifies B, a set of rule targets.

In the first case, coined demo_assoc, B contains one
or more categories. The analyst expects rules of the form
customer segment ! category, i.e. customers who purchase
products in the target category. The second case comes in
two variants: prod_assoc_t, a receipt-centric view where
products are found in the same receipt, and prod_assoc_c,
a customer-centric view where products are purchased by the
same customer over time. In these variants, B only contains
products (as opposed to categories in the first scenario) and
the analyst expects rules of the form set of products ! target
product p 2 B. The dataset D is transformed into a collection
of transactions T that is given as input to the mining process,
as summarized in Table II. The set T is constructed differently
for each scenario.

In demo_assoc, a transaction is a tuple built for each
receipt ht, c, pi by associating demo(c) with cat(p). For Mary,
the record h234567,Mary , chocolate creami is mapped to
the transaction h 35-49, female, Calvados, chocolate cream,
Fresh food, Dairy, Ultra fresh, Dessertsi. The number of
transactions is equal to |D|, and each transaction contains
the segments a customer belongs to, and the categories of
the product purchased. In prod_assoc_t, T is built by
grouping the records in D by receipt identifier, t. For each
t, we generate a transaction as the set of products bought in
a single visit to the store {p|ht, c, pi 2 D}. If Mary has a
store receipt containing the products cream, yogurt, cola, a
transaction containing the 3 products is generated. This leads
to a total of |T | transactions, where each transaction is a subset
of P . In prod_assoc_c, we generate the set of transactions
T by grouping records in D by customer. For each customer



TABLE II
OUR MINING SCENARIOS AND EXAMPLE ASSOCIATION RULES.

Target Associations Input transactions T Desired association rules
demo_assoc: {demo(c) [ cat(p)|ht, c, pi 2 D} A segment tends to purchase products in a category.

segment ! category min support is 1,000 {< 35, F, ⇤}! Baby food
prod_assoc_t: {[ht,cj ,pii2Dp

i

|t 2 T} Products purchased simultaneously.
product(s) ! product min support is 1,000 {vanilla cream}! chocolate cream
prod_assoc_c: {[htj ,c,pii2Dp

i

|c 2 C} Customers’ product associations over time.
product(s) ! product min support is 10,000 {Pork sausage, mustard}! dry Riesling

c, we generate a single transaction containing all products ever
purchased by c {p|ht, c, pi 2 D}. We obtain |C| transactions,
each of which is a subset of P . This enables the discovery of
patterns occurring over several visits to a store. The number of
transactions in prod_assoc_c (9,267,961) is less important
than in prod_assoc_t (290,734,163), but each transaction
contains on average 214 products, against 12 for receipts.

2) Mining Scenarios: Given a frequency threshold " 2
[1, n], an itemset P is said to be frequent in a transactions set
T iff supportT (P ) � " where supportT (P ) is the number
of transactions in T that contain all items in P . As indicated
in Table II, we set the frequency threshold to different values
in different scenarios because they differ in the cardinalities
of their transactions. Moreover, because marketing actions are
decided and applied nation-wide, they are expected to concern
at least 1,000 customers, and preferably more than 10,000.

An itemset P is closed iff there exists no itemset P 0 � P

such that supportT (P ) = supportT (P
0
) [7]. The number of

closed itemsets can be orders of magnitude less important than
the number of itemsets, while providing the same amount of
information on T . Several algorithms, including ours, focus
on extracting frequent closed itemsets, increasing performance
and avoiding redundancy in results [8], [9].

We consider our mining scenarios described in Sec-
tion II-B1. Each scenario leads to the construction of a collec-
tion of transactions T , where a transaction is a set of items.
Given T , a frequency threshold ", we find all closed frequent
itemsets, and use them to derive association rules [10]. Each
itemset P implies an association rule of the form A ! B

where A,B is a partition of P . A is the antecedent of
the rule, and B its consequent. In demo_assoc, A is a
customer segment and B is a single product category. In
prod_assoc_t and prod_assoc_c, A is a set of products
(A ✓ P) and B is a single product. Analysts generally focus
on particular products or product categories. This is why they
specify the list of targets B in each scenario. Table II contains
example association rules extracted from our dataset.

C. Interestingness Measures

Large datasets often contain millions of frequent closed
itemsets, and each of them may lead to several association
rules. The ability to identify valuable rules is therefore of
the utmost importance to avoid drowning analysts in useless
information. Association rules A ! B were originally se-
lected using thresholds for support (supportT (A [ B)) and
confidence ( supportT (A[B)

supportT (A)

) [1]. However using two separate

values, and guessing the right threshold is not natural. Fur-
thermore, support and confidence do not always coincide with
the interest of analysts. Hence, a number of interestingness
measures that serve different analyses were proposed in the
literature [3], [11], [12]. Table III summarizes the measures
we use in this work. The first column contains the name of
the measure, the second its expression. The last column will
be referred to later.

D. Goal

Our goal is to help analysts test and compare the
rankings produced by different interestingness measures on
rules extracted from D. An analyst can specify one of
3 mining scenarios, demo_assoc, prod_assoc_t, and
prod_assoc_c, and one or several targets (categories in the
case of demo_assoc, products in the case of the other two),
and CAPA generates as many rule rankings as the number of
interestingness measures.

III. ARCHITECTURE

Figure 1 contains the main components of CAPA and their
interactions. The first module is acquisition and storage.
Sales records are produced locally at each store, and are loaded
daily into a data center 1 . Records are stored in a sales
table, and are augmented with customer segments coming
from the customers table 2 . CAPA’s curation module is used
to build transactions. The analysts selects a mining scenario
and a set of input targets 3 , which are used to generate the
appropriate collection of transactions T 4 . CAPA’s mining
component relies on jLCM, an open-source pattern mining
library that we developed [4], to compute a set of association
rules matching the input targets 5 . CAPA’s exploitation
component computes the quality of produced rules according
to each interestingness measure 6 , and loads them into a
database. Results are presented to the analyst through a web
application 7 . We now describe the details of CAPA.

A. Acquisition and storage

Each of the 1,884 stores locally maintains a log of all
customer transactions completed during the day. Whenever
a customer checks out, a receipt is generated, indicating the
list of products purchased, their price, as well as potential
discounts. These receipts are logged under the form of hr, c, pi
triples and stored in a write-ahead log. Once a day, during the
store’s closing time, this log is transmitted to the main data
center that centralizes all sales records.



TABLE III
INTERESTINGNESS MEASURES OF A RULE A! B. ⇤, . INDICATE MEASURES PRODUCING IDENTICAL RULE RANKINGS WHEN B IS FIXED. ⌃, †,  , ⌦

INDICATE MEASURES THAT ALWAYS PRODUCE THE SAME RULE RANKING. |T | IS THE NUMBER OF TRANSACTIONS. P (A) = support(A)/|T |.

Measure Formula Group and description
One-Way Support P (B|A)⇥ log2

P (AB)
P (A)P (B)

Relative Risk P (B|A)/P (B|¬A)
Odd Multiplier (P (AB)P (¬B))/(P (B)P (A¬B))
Zhang P (AB)�P (A)P (B)

max(P (AB)P (¬B),P (B)P (A¬B))

Yule’s Q ⌃ P (AB)P (¬A¬B)�P (A¬B)P (B¬A)
P (AB)P (¬A¬B)+P (A¬B)P (B¬A)

Yule’s Y ⌃
p

P (AB)P (¬A¬B)�
p

P (A¬B)P (B¬A)p
P (AB)P (¬A¬B)+

p
P (A¬B)P (B¬A)

Odds Ratio ⌃ (P (AB)P (¬A¬B))/(P (A¬B)P (B¬A))
Information Gain ⇤ log(P (AB)/(P (A)P (B))) Highest confidence
Lift ⇤ P (AB)/(P (A)P (B)) G1 Very low recall
Added Value ⇤ P (B|A)� P (B) Favors frequent targets
Certainty Factor ⇤ (P (B|A)� P (B))/(1� P (B))
Confidence / Precision ⇤⌦ P (B|A)
Laplace Correction ⇤⌦ (support(AB) + 1)/(support(A) + 2)
Loevinger † 1� P (A)P (¬B)/P (A¬B)
Conviction † P (A)P (¬B)/P (A¬B)
Example and Counter-example Rate 1� P (A¬B)/P (AB)
Sebag-Schoenauer P (AB)/P (A¬B)
Leverage P (B|A)� P (A)P (B)
Least Contradiction (P (AB)� P (A¬B))/P (B) Very high confidence
Accuracy P (AB) + P (¬A¬B)

G2 Very low recall

Pearson’s �

2
. |T |⇥

⇣
(P (AB)�P (A)P (B))2

P (A)P (B) + (P (¬AB)�P (¬A)P (B))2

P (¬A)P (B)

⌘

+|T |⇥
⇣

(P (A¬B)�P (A)P (¬B))2

P (A)P (B) + (P (¬A¬B)�P (¬A)P (¬B))2

P (¬A)P (¬B)

⌘

Gini Index . P (A)⇥ (P (B|A)2 + P (¬B|A)2) + P (¬A)⇥ (P (B|¬A)2+
P (¬B|¬A)2)� P (B)2 � P (¬B)2

J-measure P (AB)log(P (B|A)
P (B) ) + P (A¬B)log(P (¬B|A)

P (¬B) )

� Linear Correlation Coefficient (P (AB)� P (A)P (B))/
p

P (A)P (B)P (¬A)P (¬B)
High confidence
Low recall
Low sensitivity (to
target frequency)

Two-Way Support Variation P (AB)⇥ log2
P (AB)

P (A)P (B) + P (A¬B)⇥ log2
P (A¬B)

P (A)P (¬B)+

P (¬AB)⇥ log2
P (¬AB)

P (¬A)P (B) + P (¬A¬B)⇥ log2
P (¬A¬B)

P (¬A)P (¬B)

Fisher’s exact test
� |T |⇥P (B)
|T |⇥P (AB)

�� |T |⇥P (¬B)
|T |⇥P (A¬B)

�
/

� |T |
|T |⇥P (A)

�

Jaccard P (AB)/(P (A) + P (B)� P (AB))

G3

Cosine P (AB)/
p

P (A)P (B) Average confidence
Average recall
Low sensitivity

Two-Way Support P (AB)⇥ log2
P (AB)

P (A)P (B)

G4

Piatetsky-Shapiro P (AB)� P (A)P (B)
Klosgen

p
P (AB)max (P (B|A)� P (B), P (A|B)� P (A)) Low confidence

Specificity P (¬B|¬A)
G5

High recall
Recall P (A|B) Lowest confidence

Collective Strength P (AB)+P (¬B|¬A)
P (A)P (B)+P (¬A)P (¬B) ⇥

1�P (A)P (B)�P (¬A)P (¬B)
1�P (AB)�P (¬B|¬A)

G6 Highest recall
Favors rare targets

We rely on YARN [13] to administer the cluster storing
sales records. Data is stored in an HBase database [14], and
processed using the MapReduce framework [15]. Sales records
are stored in the sales table. To avoid redundancy and ease
data processing, records are grouped by receipt before being
stored in sales. Thus, each receipt is a line in the table, and
the content of the receipt is stored in the meta column family.
We leverage HBase’s flexibility on columns by recording each
product identifier as a column qualifier, with information such
as the cardinality and the unit-price as a value. The row key
of each receipt is defined as storeId-day-customerId-receiptId.
The sales table is configured to be sorted by row key. This
allows operations such as selecting the sales records of a

given store to be efficiently performed in a single scan, while
selecting a specific time period can also be done by combining
1,884 ranges (one per store identifier). Given that customer
purchases may vary between geographical areas [16] and over
time, these operations are frequently used by analysts. This
data layout is optimized to perform these selections without
incurring unnecessary reads. That enables storage of large
amounts of data without increasing the cost of analyzing a
fixed number of records. Sales logs transferred from the stores
are first stored on the distributed file system HDFS, and then
loaded into HBase using MapReduce, as a daily batch job.

Each customer constitutes an entry in the customers table,
which records the segments she belongs to. After loading the
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Fig. 1. Overview of the architecture

sales records into the database, we enrich the sales table using
another MapReduce job. For each new record, the receipt is
augmented with the user segments by querying the customers
table and copying these segments to the meta column family
in sales. Hence, each sales record is assigned a snapshot of
the user information at the time the receipt was generated.

B. Curation

As described in Section II-B1, mining customer receipts
begins with the construction of a transactions dataset T
following the requirements of the analyst. This operation
is performed using MapReduce jobs executed on the sales
table. In the case of demo_assoc, a single map operation
is sufficient. The product taxonomy is loaded in memory
by all mappers through the distributed cache, and, given
a row, for each product registered in the products column
family, a transaction containing its categories is generated.
Customer segments are directly available in the meta column
family thanks to the enrichment phase and are added to the
transactions. As described in Section III-A, records are already
grouped by receipt when stored in sales, thus no further
processing is necessary for an analysis in prod_assoc_t.
Each line of sales generates one transaction containing the set
of products. In prod_assoc_c, the products bought by a
given customer are grouped using a reduce operation with the
customer identifier as a key to generate a transaction. In all
cases, at the end of this phase the dataset T is stored on HDFS
as a text file, with one line per transaction.

C. Mining

1) Extracting itemsets using jLCM: Generating association
rules, presented in Section II-B2, firstly requires the extraction
of frequent itemsets from T . We rely on jLCM, available as an
open-source library [4]. jLCM is integrated in a MapReduce
job. The itemset extraction job scans the input T once in
the map function, and builds for each target item b in B,
a filtered dataset limited to transactions containing b: T{b} =

{E 2 T , b 2 E}.This is done using the target items from
B as intermediate keys for the reduce function. For each
target, reduce executes jLCM on its filtered dataset. jLCM is

a recursive algorithm that enumerates itemsets and computes
their frequency. Closed itemsets are returned along with their
support, with the exception of singletons that cannot produce
association rules. In demo_assoc, itemsets should contain
a single category only, so all categories except the target one
are removed from transactions.

This technique allows us quickly obtain itemsets that satisfy
our constraint, i.e. all itemsets contain one of the targets from
B. The job’s run-time is dominated by the scan of T in the
map phase, which can be accelerated by the addition of worker
nodes. On average, each reduce task completes in 10 seconds.

2) Evaluating relevant association rules: Analysts aim at
uncovering interesting association rules expressed as A ! B.
Evaluating the interestingness of an association rule requires
computing the support of itemsets A, B and A [ B in T .
The standard method for mining association rules consists in
finding all frequent itemsets in the dataset, and then generating
the rules. Given that our analysts have specified a restricted set
of targets B, this approach would be wasteful. This motivates
our distribution of the itemsets extraction, presented in the
previous sub-section. Our itemsets extraction job gives the
support of B and A [ B for all association rules we are
interested in (i.e. all B satisfy B = {e}, e 2 B). This job also
materializes, as a prefix tree in a side-output file, the set A of
all antecedent itemsets, whose support needs to be evaluated.

A second MapReduce job completes the evaluation of
association rules. Each map operation reads a transaction of
T and counts the support all association rules’ antecedents.
The reduce phase uses itemsets in A as intermediate keys and
sums partial counts to obtain the total support. This two-step
approach avoids the computation of many itemsets that never
appear as a rule antecedent.

D. Exploitation

The quality measures selected require at most P (A), P (B)

and P (A [ B) to be computed, because, given |T |, other
probabilities like P (B|A) or P (A¬B) can be derived from
them. Therefore, we denormalize the results of the mining
phase in order to store those 3 probabilities with each A and
B. The supports of all rules’ antecedents (providing P (A))



are centralized and joined to the results of jLCM (which
provides P (AB) and P (B)). After this denormalization, each
row represents an association rule and has enough information
to compute its score. This table is then augmented with
34 columns, one for each measure implemented in CAPA,
and listed in Table III. Because large numbers are involved,
for Fisher’s exact test we actually use the logarithm of the
binomial coefficients, which are computed as logarithms of
the gamma function. This makes the calculation feasible, but
requires long iterations so we do it in parallel again (this
is easy to implement thanks to the denormalization). The
complete table is stored in a relational database.

The final component of CAPA is a web application allowing
the analyst to explore this augmented table. In any scenario,
the analyst picks a measure and selects a target product or
category, or a set of target products or categories. Association
rules are then returned in a table and sorted according to the
selected measure. A rule like yogurt ! cheese is displayed
with 3 values: support (number of customers who bought both
cheese and yogurt), confidence (fraction of yogurt buyers who
also bought cheese), recall (fraction of cheese buyers who
also bought yogurt). During the user study these figures help
analysts quickly judge the volume of sales for each rule.

IV. EMPIRICAL EVALUATION

We present an empirical evaluation of the 34 measures
for association rules introduced in Section II-C. Recall that
our goal, stated in Section II-D, is to assist the analyst
in selecting measures. Our evaluation consists in comparing
rankings produced by these measures on retail data to discover
which measures differ significantly in practice. We then use
that similarity to classify ranking measures into groups. We
annotate these groups based on the properties common to the
group. We discuss key insights obtained from experimentation
on each group. The goal of this evaluation is to automatically
detect similarities between interestingness measures and re-
duce the number of candidate measures to present to analysts
in the user study (Section V).

We first present in Section IV-A methods used to compare
ranked list. Then, we compare the resulting rankings in Sec-
tion IV-B). We conclude the empirical evaluation with the
selection of representative measures in Section IV-C.

A. Ranking similarity measures

In this section, we discuss some methods for comparison
of ranked lists. The first three methods are taken from the
literature. We then introduce NDCC, a new parameter-free
ranking similarity designed to emphasize differences at the
top of the ranking.

We are given of a set of association rules R to rank. We
interpret each measure, m, as a function that receives a rule
and generates a score, m : R ! R. We use L

m
R to denote

an ordered list composed of rules in R, sorted by decreasing
score. Thus, Lm

R =< r

1

, r

2

, . . . > s.t. 8i > i

0
m(ri) < m(ri0).

We generate multiple lists, one for each measure m, from the
same set R. L

m
R denotes a ranked list of association rules

according to measure m where the rank of rule r is given as
rank(r, L

m
R) = |{r0|r0 2 R, m(r

0
) � m(r)}|. To assess the

dissimilarity between two measures, m and m

0, we compute
the dissimilarity between their ranked lists, Lm

R and L

m0

R . We
use r

m as a shorthand notation for rank(r, Lm
R).

1) Spearman’s rank correlation coefficient: Given two
ranked lists L

m
R and L

m0

R , Spearman’s rank correlation [17]
computes a linear correlation coefficient that varies between 1

(identical lists) and �1 (opposite rankings) as shown below.

Spearman(Lm

R ,Lm

0

R ) = 1�
6

P
r2R

(r

m � r

m0
)

2

|R|(|R|2 � 1)

This coefficient depends only on the difference in ranks of the
element (rule) in the two lists, and not on the ranks themselves.
Hence, the penalization is the same for differences occurring
at the beginning or at the end of the lists.

2) Kendall’s ⌧ rank correlation coefficient: Kendall’s ⌧

rank correlation coefficient [18] is based on the idea of
agreement among element (rule) pairs. A rule pair is said to
be concordant if their order is the same in L

m
R and L

m0

R , and
discordant otherwise. ⌧ computes the difference between the
number of concordant and discordant pairs and divides by the
total number of pairs as shown below.

⌧(L

m
R, L

m0

R ) =

|C|� |D|
1

2

|R|(|R|� 1)

C = {(ri, rj)|ri, rj 2 R ^ i < j^
sgn(r

m
i � r

m
j ) = sgn(r

m0

i � r

m0

j )}

D = {(ri, rj)|ri, rj 2 R ^ i < j^
sgn(r

m
i � r

m
j ) 6= sgn(r

m0

i � r

m0

j )}

Similar to Spearman’s, ⌧ varies between 1 and �1, and
penalizes uniformly across all positions.

3) Overlap@k: Overlap@k is another method for ranked
lists comparison widely used in Information Retrieval. It is
based on the premise that in long ranked lists, the analyst is
only expected to look at the top few results that are highly
ranked. While Spearman and ⌧ account for all elements
uniformly, Overlap@k compares two rankings by computing
the overlap between their top-k elements only.

Overlap@k(Lm

R ,Lm

0

R ) =

|{r 2 R | rm  k ^ rm
0  k}|

k

4) Normalized Discounted Correlation Coefficient:
Overlap@k, Spearman’s and ⌧ sit at two different extremes.
The former is conservative in that it takes into consideration
only the top k elements of the list whereas the latter two take
too liberal an approach by penalizing all parts of the lists
uniformly. In practice, we aim for a good tradeoff between
these extremes.

To bridge this gap, we propose a new ranking correlation
measure coined Normalized Discounted Correlation Coeffi-
cient or NDCC. NDCC draws inspiration from NDCG, Nor-
malized Discounted Cumulative Gain [19], a ranking measure
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Fig. 2. Hierarchical clustering of interestingness measures for a single target

commonly used in Information Retrieval. The core idea in
NDCG is to reward a ranked list Lm

R for placing an element
r of relevance rel

r

by rel

r

log rm .
The logarithmic part acts as a smoothing discount rate

representing the fact that as the rank increases, the analyst is
less likely to observe r. In our setting, there is no ground truth
to properly assess rel

r

. Instead, we use the ranking assigned by
m

0 as a relevance measure for r, with an identical logarithmic
discount. When summing over all of R, we obtain DCC ,
which presents the advantage of being a symmetric correlation
measure between two rankings L

m
R and L

m0

R .

DCC (Lm

R ,Lm

0

R ) =

X

r2R

1

log (1 + r

m0
) log (1 + r

m
)

We compute NDCC by normalizing DCC between 1 (iden-
tical rankings) and �1 (reversed rankings).

NDCC (Lm

R ,Lm

0

R ) =

dcc� avg

max� avg

where dcc = DCC (Lm

R ,Lm

0

R ), max = DCC (Lm

0

R ,Lm

0

R )

min = DCC (L⇤,Lm

0

R ), L⇤ = rev(Lm

0

R )

avg = (max+min)/2

5) Ranking comparison by example: We illustrate the dif-
ference between all ranking correlation measures with an
example in Table IV. This shows correlation of a ranking L

1

with 3 others, according to each measure. NDCC does indeed
penalize differences at higher ranks, and is more tolerant at
lower ranks.

B. Rankings comparison

We perform a comparative analysis of ranking measures, on
our 3 mining scenarios summarized in Table II. We generate
association rules A ! B where B is a single product
among a set of 64 previously studied by analysts. Overall we
obtain 1,651,024 association rules, and we compute one rule
ranking per product and per interestingness measure. Our first
observation is that the results we obtain for all scenarios lead
to the same conclusions. Therefore, we only report numbers
for prod_assoc_c.

TABLE IV
EXAMPLE RANKINGS AND CORRELATIONS

Ranking Content
L

1
r1, r2, r3, r4

L

2
r2, r1, r3, r4

L

3
r1, r2, r4, r3

L

4
r2, r3, r1, r4

Spearman ⌧ Overlap@2 NDCC
L

2 0.80 0.67 1 0.20
L

3 0.80 0.67 1 0.97
L

4 0.40 0.33 0.5 �0.18

While all measures are computed differently, we notice that
some of them always return the same ranking for association
rules of a given target. We identify them in Table III using
symbols. Other notable similarities include Sebag-Schoenauer
and lift (89% of rankings are equal), as well as Loevinger and
lift (87%). This difference between the number of interesting-
ness measures considered (34) and the number of different
rankings obtained (25) can easily be explained analytically
in the case of a fixed target. Indeed, for a given ranking,
P (B) is constant, which eliminates some of the differences
between interestingness measures. In addition, some measures
only have subtle differences which only appear when selecting
extreme values for P (A), P (B) and P (AB), which do not
occur in practice in our retail dataset.

1) Comparative analysis: We now evaluate similarity be-
tween interestingness measures that do not return the same
rankings. We compute a 34 ⇥ 34 correlation matrix of all
rankings according to each correlation measure described in
Section IV-A, and average them over the 64 target prod-
ucts. This gives us a ranking similarity between all pairs
of measures. We then rely on hierarchical clustering with
average linkage [20] to obtain a dendrogram of interestingness
measures and analyze their similarities. The dendrograms for
NDCC and ⌧ are presented in Figure 2. For better readability,
we merge sub-trees when correlation is above 0.9. To describe
the results more easily, we partition interestingness measures
into 6 groups, as indicated in the third column in Table III.
G

1

is by far the largest group: in addition to 4 measures that
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always generate the same rankings, 14 other measures output
similar results. A second group, G

2

, comprising 2 measures,
is quite similar to G

1

according to NDCC . ⌧ also discovers
this similarity, but considers it lower, which shows that it is
mostly caused by high ranks. Jaccard is as a slight outlier in
G

3

according to NDCC . Indeed, when focusing on the first 20
elements (Overlap@20), only an average of 71% are shared
between Jaccard and the rest of G

3

. This situation also occurs
between Klosgen and the rest of G

5

. Interestingly, we observe
that, according to NDCC , G

5

is closest to G

6

and is negatively
correlated with the other groups. However, according to ⌧ , G

5

is very similar to G

4

and is negatively correlated with G

6

. This
difference between ranking measures illustrates the importance
of accounting for rank positions. When the top of the ranking
is considered more important, some similarities emerge.

We illustrate this behavior in Figure 3 by displaying corre-
lation between rankings obtained with different interestingness
measures. This experiment clearly shows that overall, cosine
(G

4

) is closer to specificity (G
5

) than Gini (G
3

), as the rank
difference observed in the results is overall smaller. However,
when focusing on the top-10 results of cosine, Gini assigns
closer ranks than specificity. This explains the difference in
clustering between NDCC /overlap and ⌧ /Spearman .

2) Annotating groups: While using hierarchical clustering
on interestingness measures allows the discovery of families of
measures, and their relative similarity, it does not fully explain
which types of results are favored by each of them. We propose
to compare their outputs according to the two most basic and
intuitive interestingness measures employed in data mining:
recall and confidence. recall represents the proportion of target
items that can be retrieved by a rule, that is, P (A|B). Its
counterpart, confidence, represents how often the consequent
is present when the antecedent is, that is, P (B|A). We present,
in Figure 4, the average recall and confidence of the top-20

rules ranked according to each interestingness measure. G

1

contains confidence, so it is expected to score the highest
on this dimension. G

2

is extremely close to G

1

, but obtains
slightly lower confidence and recall. We then have, in order of
increasing recall and decreasing confidence G

3

, G
4

and G

5

.
Finally, G

6

, which contains recall, obtains the highest recall
but the lowest confidence. Figure 4 also shows that executing
a Euclidean distance-based clustering, such as k-means, with
recall/confidence coordinates would lead to groups similar to
the ones obtained with hierarchical clustering. Hence, this
analysis is consistent with the hierarchical grouping and the
correlation with NDCC .

While we believe that NDCC better reflects the interpre-
tation of analysts browsing rules, it is important to note that
the grouping of interestingness measures created through this
evaluation is stable across all 4 correlation measures and for all
3 scenarios. Correlation between different families of measures
may vary, but measures within a single family always have a
high similarity. Thus, we conjecture that the obtained results
are true in the general case of food retailers and we can rely
on these groups to reduce the number of options presented to
analysts.

C. Selecting representative measures

We summarize the findings of the comparative evaluation in
the last column of Table III. We identify 6 families of measures
that behave similarly. Each family offers a different trade-off
in terms of confidence and recall, and thus ranks association
rules differently. We select the quality measure that most
represents each family of measures (i.e. with highest average
similarity) in order to confront the results of this analysis with
the opinion of domain experts in our user study. Taking a
general data mining perspective leads us to considering G

3

and G

4

as the most promising families for finding interesting
association rules. Indeed, it is important to achieve a good
trade-off between recall and confidence in order to find reliable
association rules that can be applied in a significant number of
cases. Hence, F1 score, that combines recall and confidence,
would prefer G

3

and G

4

to others.

V. USER STUDY

We now report the results of a user study with domain
experts from Intermarché. The goal of this study is to assess
the ability of interestingness measures to rank association
rules according to the needs of an analyst. As explained in
Section IV, we identified 6 families of measures, and selected a
representative of each group for the user study (their names are
in bold in Table III). We rely on the expertise of our industrial
partner to determine, for each analysis scenario, which family
produces the most interesting results. This experiment involved
2 experienced analysts from the marketing department of
Intermarché. We setup CAPA and let analysts select targets
multiple times in order to populate the web application’s
database with association rules (Section III-D). We let our
analysts interact with CAPA without any time restriction, and
collect their feedback in a free text form.



Each analyst firstly has to pick a mining scenario among
demo_assoc, prod_assoc_t, or prod_assoc_c. Then
she picks a target category or a target product in the taxonomy.
In prod_assoc_t and prod_assoc_c, she also has the
option to filter out rules whose antecedent products are not
from the same category as the target. Finally, she chooses one
of our 6 ranking measures to sort association rules. Neither the
name of the measure nor its computed values for association
rules are revealed, because we wanted analysts to evaluate
rankings without knowing how they were produced.

Resulting association rules are ranked according to a se-
lected measure. Each rule is displayed with its support, confi-
dence and recall, such that analysts can evaluate it at a glance.
For each scenario, our analysts are asked which representative
measure highlights the most interesting results (as detailed
below, in all cases a few of them were chosen).

A. Scrolling behavior

Once the analyst selects a target, all matching rules are
returned. The initial motivation of this choice was to determine
how many results are worth displaying and are actually ex-
amined by the analysts. According to the follow-up interview
with the analysts, they carefully considered the first ten results,
and screened up to a hundred more. Interestingly, analysts
mentioned that they also scrolled down to the bottom of the
list in order to see which customer segments are not akin
to buying the selected category. For example, when browsing
demographic association rules, they expected to find {50-64}
! pet food among top results, but also expected {<35, Paris}
! pet food among bottom results. This confirms that all
rules should remain accessible. This also indicates that while
interestingness measures favor strong associations, it could
also be useful to highlight anti-rules.

B. Feedback on ranking measures

We let marketing experts explore all 3 scenarios and express
their preference towards groups of measures.

In the demo_assoc case, G

1

and G

3

were both highly
appreciated. G

1

favors rules such as {< 35,M, Oise} !
Flat and Carbonated drinks. These rules are very specific and
thus have a very high confidence (31,58 % in this particular
case). However, this comes at the cost of recall (0,08 %).
Experts involved in this study value confidence much more
than recall, as their priority is finding rules that they consider
reliable. A low support is not necessarily an issue, and can
lead to the discovery of surprising niche rules that can be
exploited nonetheless. As discussed in Section IV-B2, G

3

offers a more balanced trade-off between confidence and
recall, and prioritizes rules such as {< 35, *, *} ! Baby food
(confidence 8,57 %, recall 37,61%). These rules are interesting
because they capture a large fraction of the sales of a given
category, but are less reliable and generally less surprising.
G

2

and G

4

were considered as less interesting than G

1

and
G

3

respectively. Their results offer similar trade-offs, but with
lower confidence each time. G

5

and G

6

were considered
unusable because of their very low confidence.

When experimenting with prod_assoc, we observed a
slightly different behavior. By default, the analysts favored G

1

and G

2

because of the confidence of their results. Then, we
offered the analysts the possibility of filtering the rules to only
keep the ones in which the antecedent contains products from
the same category as the target. This led to analysts favoring
G

3

and G

5

. This difference is caused by an important criterion:
the ability of a measure to filter out very popular products.
For example, the rule {van. cream, emmental}! choc. cream
usually appears just above its shorter version {van. cream}!
choc. cream, because the first one has a confidence of 32%

and the second 31%. However, experts prefer the second one,
because emmental (cheese) is among the heavy hitters in
stores. Its addition to the rule is hence considered insignificant.
This “noise” generally increases with recall. Hence, when no
filtering is available, G

1

is selected, but analysts prefer the
recall and confidence trade-off provided by G

3

and G

5

. Again,
G

4

suffered from its proximity to G

3

with lower confidence,
while G

6

’s confidence was too low.
In all cases, analysts mentioned G

6

as uninteresting because
it selects rules of low confidence. In general, sorting by
decreasing lift (which is close to sorting by decreasing confi-
dence) is the preferred choice. Combined with the minimum
support threshold used in the mining phase, this ranking pro-
motes rules that are considered reliable. However, in the case
where analysts are given the ability to filter out noisy products
(very frequent ones), they prefer the ranking produced by
Piatetsky-Shapiro’s measure [5]. That could be explained by
the fact this measure provides a good compromise between
confidence and support. The noisy products that this measure
may introduce can be filtered out by analysts.

VI. RELATED WORK

To the best of our knowledge, CAPA targets datasets which
are orders of magnitude bigger (and sparser) than those tested
in existing work on ranking association rules. This paper
is also the first to complement an algorithmic comparative
analysis with a user study involving domain experts.

The definition of quality of association rules is a well-
studied topic in statistics and data mining. In their survey [3],
Geng et al. review 38 measures for association and clas-
sification rules. They also discuss 4 sets of properties like
symmetry or monotony, and how each of them highlights
different meanings of “rule quality”, such as novelty and
generality. However, we observe no correlation between these
properties and the groups of measures discovered using CAPA.

These 38 measures are compared in [21]. Authors consider
the case of extracting and ranking temporal rules (event
A!event B) from the execution traces of programs. Each
measure is evaluated in its ability to rank highly rules known
from a ground truth (library specification). We observe that
the measures scoring the highest are all from the groups
identified in this work as G

1

and G

3

, which are also favored
by our analysts. There are however some counterexamples,
with measures from G

1

scoring poorly. The main difference
between CAPA and [21] is the absence of a ground truth



of interesting rules for our dataset. Thus, our evaluation of
measures is first comparative, with 4 correlations measures
covering both the top of the ranking and the entire ranked list.
The differences in the results obtained also highlight the im-
portance of performing domain-specific studies, as properties
of data and expectations of analysts vary significantly.

The closest work to ours is HERBS [6]. HERBS relies on a
different and smaller set of measures to cluster rule rankings.
Authors perform an analysis of the properties of measures, in
addition to an experimental study. The datasets used are from
the health and astronomy domains. Each of them contains at
most 1,728 transactions and leads to the extraction of 49 to
6,312 rules. Rankings are then compared between all pairs
of measures using Kendall’s ⌧ correlation measure averaged
over all datasets. The largest group of measures identified,
which includes confidence, is quite similar to G

1

. However,
there are also significant differences. For instance, we find
G

2

and G

6

to be very different, while [6] considers the
measures of this group similar. The authors observe a weak
resemblance between the theoretical and experimental analysis
of the measures. CAPA is entirely focused on retail data, which
has different properties and contains millions of transactions
and rules. We also consider more interestingness measures,
and 4 different ranking correlation measures instead of 1.

Our use of the p-value (via Pearson’s �

2 test) in the
evaluation of rule interestingness is borrowed from [12]. A
low p-value shows a correlation between a rule’s antecedent
and consequent. The use of Fisher’s exact test on association
rules is inspired by [11]. Both of these works aim at finding
highly-correlated itemsets, which requires the analyst to set a
threshold on the p-value. This is common practice in biology,
but less meaningful in the retail industry. In [12], Liu et al. also
propose an exploration framework where rules are grouped by
consequent, then traversed by progressively adding items to
the antecedent. The framework provides hints to help guess
how each additional item would make a difference. Such a
framework is suitable to some of the scenarios we consider
and could be integrated in a future version of CAPA.

VII. SUMMARY AND EVOLUTIONS

In this paper, we present CAPA, a framework for mining
association rules from large-scale retail data. We defined 3
mining scenarios allowing analysts to extract associations
between user segments and product categories, or products
themselves. Given a scenario, CAPA builds a dataset of trans-
actions and mines in parallel association rules containing target
products chosen by analysts. Our main contribution is the
study of 34 interestingness measures for ranking rules. We first
performed an analytical and an empirical comparison between
different rule rankings and grouped measures into 6 families.
Resulting groups were then evaluated in a user study involving
retail experts. We concluded that lift and Piatetsky-Shapiro
best fit the needs of analysts, as they ensure high confidence.
Our user study also led us to thinking about the extraction of
negative results (anti-rules). We are currently studying how to
add and rank negative rules.

ACKNOWLEDGMENT

This work was partially funded by the Datalyse PIA project.

REFERENCES
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