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Abstract—Crowdsourcing has gained popularity in a variety
of domains as an increasing number of jobs are “taskified” and
completed independently by a set of workers. A central process
in crowdsourcing is the mechanism through which workers
find tasks. On popular platforms such as Amazon Mechanical
Turk, tasks can be sorted by dimensions such as creation date
or reward amount. Research efforts on task assignment have
focused on adopting a requester-centric approach whereby tasks
are proposed to workers in order to maximize overall task
throughput, result quality and cost. In this paper, we advocate
the need to complement that with a worker-centric approach to
task assignment, and examine the problem of producing, for each
worker, a personalized summary of tasks that preserves overall
task throughput. We formalize task composition for workers as
an optimization problem that finds a representative set of k valid
and relevant Composite Tasks (CTs). Validity enforces that a
composite task complies with the task arrival rate and satisfies
the worker’s expected wage. Relevance imposes that tasks match
the worker’s qualifications. We show empirically that workers’
experience is greatly improved due to task homogeneity in each
CT and to the adequation of CTs with workers’ skills. As a result
task throughput is improved.

I. INTRODUCTION

Crowdsourcing has gained popularity in a variety of do-
mains as an increasing number of jobs are “taskified” and
completed independently by a set of workers. Tasks range
from simple requests such as transcribing a store receipt, to
ones requiring the participation of skilled workers, such as text
translation. A central process in crowdsourcing is task assign-
ment, the mechanism through which workers find tasks. In this
paper, we advocate the need to complement existing requester-
centric and platform-centric task assignment strategies, with
a worker-centric approach to task assignment. We examine
the problem of producing, for each worker, a personalized
summary of tasks that preserves overall task throughput. To
the best of our knowledge, this is the first work that addresses
worker-centric task assignment and shows the impact of such
an approach on the effectiveness of crowdsourcing.

Today, task assignment is achieved by letting workers self-
appoint themselves via an interface showing a list of tasks. For
example, on Amazon Mechanical Turk (AMT), workers can
rank tasks by creation date, reward amount, etc. In practice,
workers look for tasks they can easily complete, i.e., that
match their skills, and that provide a desired compensation.
Indeed, a thorough examination of crowdsourcing forums such
as TurkerNation,1 reveals that workers spend non-negligible

1http://turkernation.com/

amounts of time discussing how to best select tasks depending
on one’s goals, which requesters to ban, and which skills
are required for the latest tasks on AMT. That calls for re-
thinking task assignment and developing an approach to find
the tasks that best fit workers’ preferences. Recent research on
task assignment is wither requester-centric or platform-centric,
whereby tasks are proposed to workers in order to maximize
overall task throughput, result quality, and cost [1], [2]. These
approaches do not take into account workers’ preferences. To
combine the best of both worlds, we propose to help workers
find relevant tasks and enforce the selection of tasks according
to their arrival rate. Satisfying workers while keeping in mind
the need to optimize task throughput is the challenge we are
tackling in this work.

We conjecture that since not every worker is interested in
every task, we need to provide a personalized summary of
tasks to each worker. We propose to build for each worker, a
set of Composite Tasks (CTs) where each CT is valid, i.e.,
contains tasks that reflect their arrival time and offering a
total reward that satisfies the worker’s desired compensation
and is representative of the set of input tasks. Moreover, we
conjecture that workers who come to a crowdsourcing platform
with a target reward in mind, expect to see a set of tasks
for which they are proficient. Hence, each CT must also be
relevant, i.e., containing tasks that match the worker’s skills.

The problem of building CTs is inspired from the problem
of building composite items (CIs). CIs have been shown to
be effective in solving complex information needs such as
planning a city tour, selecting books for a reading club, and
organizing a movie rating contest [3]–[12]. CTs are a form
of personalized CIs due to the relevance component. The
formulation in [6] has recently been shown to outperform
previous work in building valid and representative CIs. We
propose to extend it with relevance and express a maximization
problem involving similarity between worker and task skills.
We find that it is most natural to produce possibly overlapping
CTs where each CT constitutes an option for the worker.
Therefore, similarly to [6], we rely on fuzzy clustering to
produce CTs. Each cluster of CTs is a CT and each task may
belong to more than one cluster. Our algorithm differs from
the one in [6] in that it solves a 3-way optimization problem
where one part aims at identifying task representatives (i.e.,
cluster centroids obtained through fuzzy clustering), another
ensures that the representatives chosen are close to valid CTs,



and a last part ensures that the returned CTs are relevant to
the worker.

Our user study involving tasks and workers from AMT,
demonstrates the superiority of CTs over ranking tasks by
creation date or by reward. We study the impact of the level
of relevance for workers. We show empirically that improving
workers’ experience in finding relevant and useful tasks also
improves task throughput.

In summary, this paper makes the following contributions:
• We introduce the problem of producing personalized

summaries of tasks for a given worker. Our problem is
based on building a set of k valid CTs that maximize task
representativity and task relevance to a worker.

• We define validity that glues together tasks with different
arrival rates into a single CT satisfying a worker’s de-
sired reward expressed using a summarization vector as
follows:

〈2(tdy), 2(tdy − 2), 1(tdy − 3), $2〉
This summarization vector specifies that each CT must
contain 2 tasks from today, 2 from 2 days ago and 1 task
from 3 days ago, and the total reward for those tasks
must be at least $2. Our clustering objective function
captures representativity and relevance. Representativity
aims at finding the k CTs that cover best the input set of
tasks. Relevance is ensured by selecting tasks that match
a worker’s set of skills.

• We design a constraint-based fuzzy clustering algorithm
that seamlessly integrates validity, representativity and
relevance.

• We run experiments with real workers on AMT and
explore the quality of CTs we produce. In particular, we
show that our CTs have high quality (validity), provide
a good coverage of input tasks (representativity), and
are appreciated by workers (relevance). Our experiments
validate the conjecture that workers who come to a
crowdsourcing platform with a reward in mind, are look-
ing for tasks they are proficient in. Indeed, since each
CT contains similar tasks, workers are more likely to
quickly complete them than to quickly complete a set
of heterogeneous tasks. We also run performance exper-
iments demonstrating that our algorithm scales linearly
with different parameters.

This paper is organized as follows. Section II introduces
our formalization and defines our task composition problem.
Section III describes our algorithm. Experiments are provided
in Section IV. Related work and conclusion are given in
Sections V and VI respectively.

II. MODEL AND PROBLEM

We first define our model and then we formally introduce
our problem statement.

A. Model
We are given a set of workers U and a set of micro-

tasks X = {x1, · · ·xn} posted by a set of requesters Q =
{q1, · · · qm}.

Skills. S = {s1, · · · , sp} is a set of p skills. A skill could
represent a domain/topic of interest or expertise and refers to
a required-by-task or acquired-by-worker skill. For example,
a translation task requires language skills, a task that gathers
school names in a city requires to be familiar with that city,
and a task that verifies the presence of some items in an image
does not require any particular skill.

Workers. Every worker u ∈ U is defined as:

u = 〈idu, Vu, o〉

where idu is a unique identifier, Vu = 〈su1 , · · · , sup〉 is a
vector of skill weights for u and each suj corresponds to u’s
proficiency in skill sj ∈ S, and ou is the opinion the worker
u has regarding requesters and tasks.

Opinion. We adopt the definition in [13] where an opin-
ion o of a worker u is a tuple containing entries of
the form (E,F ) where E is an entity and F is a vec-
tor of features. According to TurkerNation,2 workers of-
ten discuss the requesters they do not want to work with
and the skills they do not possess. Hence, we propose
to model the opinion o of a worker u as follows: o =
(BannedRequesters, 〈q1, · · · 〉), (UnSkilled, 〈s1, · · · 〉)).

Tasks. Every micro-task x ∈ X is defined as follows:

x = 〈idx, Vx, d, q, r〉

where idx is a unique identifier, Vx is defined in the same
manner as Vu, and represents a vector of minimum skill
weights required by task x, d is the timestamp representing
the creation date of task x, q ∈ Q is the requester who posted
task x, and r is the reward of task x.
For example, on AMT, a task that identifies a relation between
two named entities in a sentence pays $0.15 and a receipt
classification task pays $0.02.

Definition 1 (Summarization Vector): Given a set X of
micro-tasks, we define our summarization vector as follows:

~sv = 〈#t1, · · · ,#tl, R〉
where each #tj , 1 ≤ j ≤ l specifies the number of tasks in a
given time interval tj and R is a total reward.

A summarization vector indicates which tasks should be
made visible to a worker. It depends on the daily arrival rate
of tasks and specifies a total reward R.
For example, the summarization vector

~sv = 〈2(tdy), 1(tdy − 1), 1(tdy − 3), $2〉

represents 2 tasks with creation date of today, 1 task with a
creation date of yesterday, and 1 task from 3 days ago, with
a minimum total reward of $2.

The summarization vector is used to define valid Composite
Tasks (CT s).

Definition 2 (Validity): Given a set of tasks X and a
summarization vector ~sv = 〈#t1, · · · ,#tl, R〉, a valid CT =
{x1, · · · , xg ;xi ∈ X , 1 ≤ i ≤ g}, is a set of tasks such that

2http://turkernation.com/



their arrival date fits the time intervals (i) and the total reward
of tasks forming the CT is at least as high as R (ii):

(i) ∀#tj ∈ ~sv,

g∑
i=1

1(tj , xi.d) = #tj

(ii)

g∑
i=1

xi.r ≥ R

where 1 is an indicator function which is equal to 1 if the
arrival date of the task xi.d belongs to the summarization
vector time interval tj and 0 otherwise. g is the number of
tasks in the CT and g ≥ n, where n is the number of
timestamp values considered. We refer to the set of all valid
CTs as VCT .

As an example, assume that we have the summarization
vector ~sv = 〈2(tdy), 1((tdy − 3)&(tdy − 2)), $2〉 and three
tasks x1, x2 and x3 with arrival dates x1.d = 2015/06/09,
x2.d = 2015/06/05, and x3.d = 2015/06/09. If today’s date
is tdy = 2015/06/05 then, 1(tj , xi.d) will assign 1 to tasks
x1 an x3 and 0 to task x2.

Skill Similarity. Skill similarity is measured either between
tasks or between tasks and workers. We use an abstract
function termed sim() on on Vx and Vu, the vectors of skills
describing tasks and workers, to represent either similarities.
Several vector and set similarity functions could be used in
practice. In our study, we propose to use Cosine Similarity
that returns a value between 0 and 1.

B. Applicability of fuzzy clustering

Our goal is to produce a summary of tasks for each
worker. A summary is formed by valid and relevant CTs, and
is representative of the set of available tasks. The validity
of a CT is expressed in terms of a summarization vector
~sv = 〈#t1, . . . ,#tn, R〉 as presented in Definition 2. Its
relevance is the adequation between the opinion of the worker
and the tasks forming the CT, and is evaluated using sim().

This objective bears a resemblance to the problem of gener-
ating representative composite items to summarize heteroge-
neous item collections [6]. KFC, the algorithm that solves that
problem, relies on fuzzy clustering to position k centroids that
“cover” the whole dataset. Composite items are then formed in
the vicinity of these centroids, which ensures that they provide
a good summary of the dataset. In the context of this work,
we may want to see a given task in different CTs. Contrary
to hard clustering, fuzzy clustering allows each data point to
participate to each cluster [14]. Thus, KFC also allows this
flexibility.

With KFC, the summaries are valid, representative, and
cohesive (e.g., items forming a cluster are geographically
close). Our work builds on that and adds the notion of
relevance to a worker. Hence, instead of simply providing a
summary of the dataset, our goal is to account for the profile of
the user to personalize the results. We now state our problem
more precisely.

C. Our Problem

Given a worker u, a set of n micro-tasks X , and a sum-
marization vector ~sv, we define a set of k composite tasks
Su = {CT1, CT2, · · · , CTk} where each CTi ⊆ X is a valid
composite task and Su optimizes the following objective:

argmax
C,W

α

k∑
j=1

|X |∑
i=1

wmij sim(xi, cj)+

k∑
j=1

max
CTj∈VCT

(
β
∑
x∈CTj

sim(x, cj)+

γ
∑
x∈CTj

sim(x, u)

)

s.t. ∀i ∈ [1, |X |],
k∑
j=1

wij = 1

where C is a set of k centroids, W is a weight matrix of
size |X |× k which contains the wij weights indicating which
task belongs to which cluster. α, β, γ are worker-dependent
parameters controlling the weight of the optimization
objectives, and m ≤ 1 is the weighting exponent used in
fuzzy clustering.

The first two components of the objective function are
inherited from KFC [6] and capture representativity by choos-
ing tasks xi that are close to the centroid cj of each of
the k clusters. Those components serve to identify cluster
centroids cj that are representative of the complete dataset,
while ensuring that the centroids obtained are close to some
valid CT (CTj). Maximizing the sum of the similarities of all
tasks in a CT to its centroid additionally ensures the cohesion
of the valid CT considered. It is the compromise between
these two components that allows the identification of valid
and representative CTs.

The last component, weighted with γ, captures relevance to
the worker by comparing similarity between the skill vectors
of a task x and the worker u, and provides personalization.
Relevance is also enforced by taking into account the opinion
of a worker u regarding requesters and skills as follows:

∀CTj ∈ VCT and ∀x ∈ CTj :
1) x.q /∈ u.o(BannedRequesters)
2) x.Vu /∈ u.o(UnSkilled)

We ensure this property by initially filtering X to remove any
task that violates this definition. This allows the algorithm to
focus on producing CTs that are representative of tasks that
matter to this specific worker, rather than all tasks.

We will see in Section IV, how varying α, β, γ, affects the
resulting CTs.



III. ALGORITHMIC SOLUTION

Our approach to generating CTs builds on a fuzzy clustering
algorithm similar to k-means. We first present the main loop
of the algorithm, that iteratively updates centroid positions
and CTs until convergence. Then we focus on the function
that builds a CT around a centroid, and present our greedy
approach to solving this problem.

A. Convergence loop
The problem of building composite tasks has similarities

with building representative composite items. Thus, our al-
gorithm for building CTs extends the KFC algorithm [6]
and adopts the structure of fuzzy clustering, as described in
Algorithm 1. Fuzzy clustering starts by initializing C, the
set of k centroids to random positions (line 2). W is the
weights’ matrix representing the participation of each task
from X to each cluster. Fuzzy clustering iteratively updates
weights (line 6) and centroid positions (line 8) until conver-
gence (line 9) [14]. Similarly to KFC, whenever centroids are
updated, a CT is build around each centroid (line 7) in order
to update Su, the set of k composite tasks built for the worker
u. To select the tasks added to each CT, we rely on a selection
function f , which is detailed in Section III-B. Parameter α, β
and γ are gradually adjusted to their target values over η cycles
(lines 4 and 10). Hence, the algorithm starts by executing
a standard fuzzy clustering (α = 1, β = γ = 0), which
ensures that centroids are well positioned, before gradually
increasing the importance of cohesiveness and personalization
in subsequent iterations (line 5).

The update rules for weights and centroids when using
cosine similarity are given in [6] (Equations 6 and 7). While
our problem definition differs from the one of KFC, the
worker personalization term does not involve the position of
the centroids, so the update rules are the same. However,
the function that builds the CT corresponding to a centroid,
represented in Algorithm 1 by f , needs to be adapted to
account for the specificities of our problem. We describe that
adaptation next.

B. CT selection
We describe in detail the function f that builds the CT cor-

responding to a centroid position. Because the summarization
vector ~sv considered here has two parts, related respectively
to the daily rate and reward (see Definition 1), we rely on two
scenarios associated to two different choices for f .

In the first scenario, we restrict ourselves to the
daily rate constraint: ~sv = 〈#t1, . . . ,#tn〉, without
any minimum reward constraint. In that particular
case, it is possible to efficiently compute, for any cj ,
the CT CTj that maximizes the objective function
max

CTj∈VCT

(
β
∑
x∈CTj

sim(x, cj) + γ
∑
x∈CTj

sim(x, u)
)

through the following process:
1) Start with an empty CT: CTj ← ∅
2) For each time interval i = 1 to l, add to CTj the

#ti tasks of day type ti that maximize β sim(x, cj) +
γ sim(x, u)

Algorithm 1 Algorithm for building CTs
Input: set of tasks X , summarization vector ~sv, α, β, γ,

number of iterations η, CT selection procedure f , worker
u

Output: Set Su of k CTs generated for worker u
1: Su ← ∅; α′ = 1; β′ = 0; γ′ = 0
2: Initialize (e.g. through random assignment) C
3: repeat
4: α′ = α′ − 1−λ

η ; β′ = β′ + β
η ; γ′ = γ′ + γ

η
5: repeat
6: Update cluster membership weights W
7: Update Su by generating CT for each centroid in
C using f (Algorithm 2)

8: Update centroid positions C
9: until convergence

10: until α′ = α ∧ β′ = β ∧ γ′ = γ
11: Su ← f(C, ~sv, u) (with the final f and C obtained)
12: return Su

3) Return CTj
The function f defined by the above algorithm has a
complexity of O(|X |g) in the worst case, where g is the
cardinality of the CT. Indeed, without a reward constraint,
maximizing the objective function is akin to a top-g query
in which the score of each task is pre-computed. Given
a centroid cj , it returns the optimal CT according to the
objective function.

In the second scenario, we consider the reward constraint
in addition to the daily rate constraint, leading to the general
summarization vector: ~sv = 〈#t1, . . . ,#tn, R〉. In that case,
one cannot directly use the above approach, as it does not
always respect the minimum reward constraint. In fact, finding
the optimal CT is NP-hard. The existence of a valid solution
however can be easily computed in O(|X |g), by selecting for
each time interval the most rewarding task without considering
the objective function. We developed an approximate algo-
rithm, described in Algorithm 2, with a O(|X |g2) worst-case
complexity for building the CT corresponding to a centroid.
Our approach, described in Algorithm 2, always returns a valid
CT if it exists. It may not lead to an optimal solution in the
sense of our objective function; it will nevertheless yield a
valid CT (close to the centroid considered and similar to the
worker’s skill vector).

C. Our algorithm

Our greedy solution is detailed in Algorithm 2. We assume
there exists a solution and that X only contains valid can-
didates, i.e. candidates from a time interval with a non-zero
cardinality constraint. The CT is iteratively built as the set
of tasks CT , initially empty (line 1 in Algorithm 2). The
main loop of lines 4–15 is executed as long the cardinality
constraints are not met. Each of its executions greedily adds a
task x to CT . The set X contains the candidate tasks, and
the algorithm selects the task x ∈ X that maximizes the



expression of line 6, i.e. the task that contributes the most to
the objective function. Once CT contains the desired number
of tasks for a given time interval, all candidates from the same
interval tx are eliminated (line 13), so CT cannot exceed
the cardinality constraints. Combined with the termination
condition of the loop (line 4), that ensures that CT does not
violate the first validity property (Definition 2 (i)). The second
validity property, i.e. the reward requirement, is enforced by
the auxiliary function FILTER (lines 17–32). The goal of this
function is to eliminate candidate tasks that, if added to CT ,
would make it impossible to reach the minimum reward due
to the greedy approach. FILTER iterates over all time intervals
in the loop of lines 18–30 in order to compute a minimum
reward threshold mi for the tasks of this interval. Given a task
of interval ti FILTER computes, in a second loop (lines 20–
28), the highest reward that could be obtained by selecting
the most rewarding tasks for all unallocated task slots in CT .
This is done in line 26 by selecting Xj , the top-#tj tasks of
interval tj in terms of reward. If FILTER is currently evaluating
tj (i = j), then only #tj − 1 other tasks can be selected. In
line 29, all tasks of ti that do not meet the minimum reward
threshold mi are eliminated from the set of candidates X .
The algorithm uses the FILTER function to update X in line 5
before each addition to CT . This ensures that, despite the
greedy approach, CTs generated by this algorithm always meet
the reward constraint (Definition 2 (ii)), in addition to the
cardinality constraints discussed previously.

IV. EXPERIMENTS

We evaluate the benefits of building Composite Tasks
through a study on Amazon Mechanical Turk. We first describe
in Section IV-A the options evaluated in this study, with two
ranked-lists and two CTs configurations. Then, we present
the setup of this experiment in Section IV-B. We evaluate
the impact of using CTs on workers in Section IV-C by
measuring their likelihood to select tasks presented to them.
Finally, we evaluate the impact of CTs on the crowdsourcing
platform (Section IV-D) in terms of task throughput and
overall execution time.

Summary of results. Overall, we find that building CTs
significantly improves the experience of workers, at is gives
them direct access to a set of tasks that allows them to meet
their reward objective. Personalizing the CTs with respect
to the skills of the workers further improves the likelihood
that they select one of the tasks returned. This contributes to
reducing the time workers spend looking for relevant tasks
and allows them to complete more tasks overall. We also find
that the use of a summarization vector that reflects arrival
rate improves task throughput and reduces starvation problems.
We demonstrate that the time required to build CTs increases
linearly with the size of the dataset, but that the benefits for
workers significantly outweigh the extra computational cost.

A. Task display options evaluated

Table I summarizes the different task display options con-
sidered in our evaluation. In all cases, we eliminate tasks

Algorithm 2 Composite Task selection
Input: X , centroid c, worker u, summarization vector ~sv =
〈#t1, . . . ,#tn, R〉 , β, γ

Output: Set CT , the CT matching centroid c
1: CT ← ∅
2: totalReward ← 0
3: X ← X
4: while ∃#ti ∈ ~sv,#ti > 0 do
5: X ← FILTER(X,R− totalReward , ~sv)
6: argmax

x∈X
β sim(x, c) + γ sim(x, u)

7: totalReward ← totalReward + x.r
8: tx ← ti ∈ ~sv|1(ti, x.d)
9: CT ← CT ∪ {x}

10: X ← X \ {x}
11: #tx ← #tx − 1
12: if #tx = 0 then
13: X ← X \ {xi ∈ X,1(tx, xi.d)}
14: end if
15: end while
16: return CT

17: procedure FILTER(X,minReward , ~sv)
18: for all #ti ∈ ~sv do
19: mi ← minReward
20: for all #tj ∈ ~sv do
21: if i = j then
22: nb ← #tj − 1
23: else
24: nb ← #tj
25: end if
26: argmax

Xj⊆X,|Xj |=nb,∀x∈Xj ,1(tj ,x.d)

∑
x∈Xj

x.r

27: mi ← mi −
∑
x ∈ Xjx.r

28: end for
29: X ← X \ {xi ∈ X,1(tx, xi.d), x.r < mi}
30: end for
31: return X
32: end procedure

for which the workers do not have qualifications (unSkilled),
and tasks from unwanted requesters (BannedRequesters). The
default interface of AMT allows workers to browse tasks as
a ranked list. Tasks can typically be sorted by creation date,
to find the tasks most recently submitted, or by reward, to
access the highest-paying tasks. We refer to those possibilities
as CRL and RRL respectively. The ranked-list paradigm con-
stitutes the baseline in our experiments, as it is representative
of the system used in a standard crowdsourcing platform.
This paper advocates for presenting tasks using CTs built
specifically for workers. Tasks are no longer displayed as a flat
list, but rather as groups of tasks meeting objectives defined in
the summarization vector. These include both constraints on
the creation dates of the tasks (platform objective), and on the
total reward of tasks within a given CT (worker objective).
Options SCT and PCT both build k composite tasks for



Task Display
Options

Description

CRL A list of tasks relevant to a worker and
ranked by creation date

RRL A list of tasks relevant to a worker and
ranked by reward

SCT A set of k CTs, non-personalized wrt. work-
ers’ skills

PCT A set of k CTs personalized wrt. workers’
skills

TABLE I
TASKS DISPLAY OPTIONS

workers using Algorithms 1 and 2. The difference between
them lies in the choice of parameters α, β and γ used in
our problem definition. For SCT, we assume that worker
skill vectors are unavailable (e.g. a new worker joining the
platform). Hence, CTs are valid, coherent and representative,
but not personalized to match the skills of the worker receiving
them (α = 1

2 , β = 1
2 , γ = 0). In the case of PCT however,

we rely on the worker’s skill vector to personalize the CTs
and make them more appealing (α = 1

3 , β = 1
3 , γ = 1

3 ).
Throughout our experiments, we set the number of CTs k to
6, and the fuzziness parameter m to 0.8. This corresponds to
moderate fuzziness and significant differences between CTs.

B. Setup

a) Tasks dataset: We gather a list of tasks available on
AMT using a Web crawler. Every hour, we retrieve the 300
most recent tasks and add them to a database. In practice,
this means that we obtain almost all tasks submitted during
the crawling period. Over a period of 18 weeks, between July
24 and August 12 in 2015, we obtain a dataset of 25,644
hits from 11,563 distinct hit groups. This dataset is then
used to generate different task displays for workers using the
4 different approaches described in Table I. For each task,
we record its ID, creation date, title, description, keywords,
requester name, reward, time allotted and qualifications. We
use LDA [15] on the keywords of tasks in order to discover
15 different topics of tasks. We describe each topic as a bag of
words, keeping the 5 most characterizing words. These topics
are listed in Figure 1 (keywords selection part). We notice the
presence in our datasets of tasks illustrating the typical variety
of micro-tasks, with a prevalence of demographic surveys,
image tagging tasks, and audio transcription for instance.

b) Worker recruitment: We submit on AMT a first task
aimed at recruiting workers. For this user study, we recruited
a total of 70 workers. Figure 1 presents a screenshot of this
task as seen by the workers. The goal of this task is to build,
for each worker participating to the user study, a profile as
described in Section II. Each worker selects qualifications from
a checkbox list containing 15 options, and indicates her desired
reward, banned requesters and banned skills. Here are the 5
topics that are the most popular among workers recruited for
this study:
• survey, demographics, psychology, research, study (95%)
• easy, picture, cooler, ocmp, image (70%)

Fig. 1. Recruiting workers

• easy, text, qualification, data, extract (63%)
• tag, image, keyword, label, videos (61%)
• photographs, tagging, verbs, easy, tag (56%)

Thus, social studies are very popular, and so is annotat-
ing videos and images. Conversely, topics related to audio
transcription had a low selection rate (15%). This is likely
because such tasks require a quiet environment and dedicated
equipment to listen to audio files. On average, each worker
selected 6.2 topics, with a median at 5.

On average, workers indicated that they expected to earn
$1.23 each time they completed tasks on AMT. The standard
deviation however is quite high, at $1.24. 50% of the workers
indicated a value of $1, with a minimum of $0.10 and a
maximum of $10. These very different values confirm that
it is important to take each worker’s personal objective into
account when selecting sets of tasks to display.

After this recruitment phase, each worker is paid $0.10 and
is given a unique token in order to move on to the next phase
of the study. The reward for this first task is low in order to
encourage workers to perform the full study.

c) Task display options evaluation: For each worker, we
build different task selections and displays according to the
options described in Section IV-A. We first eliminate tasks the
worker does not qualify for, and requesters the worker bans.



Fig. 2. Independent evaluation task

Then, we rank tasks according to creation date and reward
to produce CRL and RRL. In the case of CTs, we take into
account the worker’s target reward and skills are taken from
the worker’s profile gathered in the recruitment phase. The
platform objective is the same for all workers, and is set to
2 tasks created in August 2015, and 6 tasks from September
and November 2015. Hence, all CTs contain 8 tasks matching
this interval distribution. Once these results are ready, we
make them available on AMT through an evaluation task. The
worker is identified by her unique token, and is presented the
options generated from her profile.

We perform an independent evaluation of the task display
options, in order to assess the relevance of the tasks they
contain (Figure 2). We then compare pairs of display options
to better understand the preferences of workers (Figure 3). We
discuss the results of this user study in Section IV-C.

At the end of the evaluation, the worker is given a reward of
$6.90, which makes the overall compensation for participating
to the full study $7.

C. Worker impact

1) Independent evaluation: We first evaluate the 4 task
display options independently. Workers are presented with
tasks, either as lists (CRL and RRL), or as a set of k = 6
CTs (SCT and PCT) for each option. We ask them to select
individual tasks that they would be interested in performing
(Figure 2). The average and median task acceptance rates for
each option are given in Table II.

CRL performs the worst, as listing tasks by creation date
does not seem to bring any benefit to workers. They are willing
to perform an average of 30% of tasks, but we note a very high
variance. Indeed, some workers accept most tasks, and select
many of them no matter the way they are displayed. However,
selective workers, who constitute the majority of the workforce
in this study, find few relevant tasks (median at 20%). Sorting

Fig. 3. Comparative evaluation task

tasks by reward RRL is an improvement, as it allows workers
to reach their reward objective more easily by selecting tasks
granting a high reward. With the SCT option, task acceptance
rate is 38% on average, with low variance. Despite not
being personalized, the CTs generated by SCT have multiple
advantages. Each CT is homogeneous as it contains tasks that
are similar to each other. This allows workers to quickly assess
if they are interested in a whole set of tasks (i.e. the CT),
rather than having to independently evaluate individual tasks.
Workers also generally prefer performing several tasks of the
same type in a row in order to be more efficient. Each CT
is representative of a different types of tasks, which allows
them to quickly get an overview the different type of tasks
currently available on AMT. Workers are presented with sets
of similar tasks that, taken simultaneously, let them achieve
their reward objective. Hence, workers do not have to skim
through long lists of tasks in order to find suitable ones.
This finding validates our conjecture that workers who come
to the platform with a reward in mind, do indeed look for
similar tasks to be efficient. PCT outperforms SCT by 12% on
average. This confirms that accounting for worker skills when
building composite tasks further improves the relevance of the
results presented to the workers, and thus their satisfaction.

2) Comparative evaluation: We then perform a compara-
tive evaluation in which workers are shown simultaneously

Task Display Option Median Average
CRL 20% 30%
RRL 27% 35%
SCT 35% 38%
PCT 48% 50%

TABLE II
INDEPENDENT EVALUATION: ACCEPTANCE RATE OF TASKS PROPOSED



CRL RRL SCT PCT
CRL 45% 19% 21%
RRL 55% 14% 13%
SCT 81% 86% 44%
PCT 79% 87% 56%

TABLE III
COMPARATIVE EVALUATION: PAIRWISE PREFERENCE OF TASK DISPLAY

OPTIONS

two task display options, and are asked which one they prefer
(Figure 3). In this context, a display option is either the top-
8 results of a ranked list (RRL and CRL), or one of the 6
CTs chosen at random (PCT and SCT). Hence, each display
option presents 8 tasks to the worker. The pairwise comparison
results are given in Table III.

We first compare the two list-based task display options.
We notice that workers favor RRL over CRL 55% of the
time. This result is consistent with the independent evaluation,
which shows that workers are more likely to perform tasks
displayed by RRL, as their reward is higher. CT-based display
options (SCT and PCT) always significantly outperform list-
based options (RRL and CRL). The ratio goes from 79% for
PCT against CRL to 87% for PCT against RRL. While the
independent evaluation placed SCT relatively close to RRL,
that was not the case in the comparative evaluation, as SCT
is selected 81% of the time. This experiment shows a clear
preference of workers for CT-based display options. Indeed,
CTs allow workers to browse coherent sets of similar tasks,
grouped together to allow workers to achieve their personal
reward goal. This facilitates the tedious operation of browsing
and selecting tasks to perform. This experiment also confirms
that accounting for the worker’s skills when generating CTs
is preferable, as PCT is selected over SCT 56% of the time.

D. Platform impact

1) Task throughput: Presenting tasks as ranked list has the
drawback of limiting the exposure of some of the tasks to
workers. For instance, with CRL, a task can easily be hidden
by a batch of more recent tasks submitted by a requester. This
causes starvation problems, as these tasks are increasingly
less likely to be selected by workers as they become older.

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 1  2  3  4  5  6  7  8

S
e

le
c
ti
o

n
 p

ro
b

a
b

ili
ty

Task creation date rank (oldest to most recent)

SCT
PCT

Fig. 4. Task throughput wrt. its creation time rank

Consequently, requesters tend to cancel those tasks and submit
identical ones to obtain more recent creation timestamps and
increase their visibility. We propose to solve this problem
using CTs by letting the platform target specific types of tasks
using the CT summarization vector (Section II). In the context
of this experiment, the platforms ensures that each CT contains
2 tasks created in August 2015 and 6 tasks from September
and November 2015. This solves the problem of starvation
by promoting older tasks in the options presented to workers,
and can be leveraged by the platform to adapt to varying tasks
arrival rate.

We rely on the independent evaluation experiment presented
in Section IV-C to measure the throughput of tasks depending
on their creation time. Each CT contains 8 tasks that are ranked
from the oldest to the most recent. We present in Figure 4
the likelihood of a task of a CT to be selected by a worker
with respect to its creation time rank. We observe that this
likelihood is quite stable for SCT, and completely even in
the case of PCT. This demonstrates that the incorporation of
creation time interval constraints in the creation of CTs does
not negatively affect the results, as old tasks are as likely to
be selected as recent ones. This also indicates that promoting
older tasks can be a solution to increasing their visibility and
helping reduce the variation in the latency of a task execution.
Due to limited information from AMT, we were not able
to evaluate extreme cases in which workers are purposely
avoiding some very old tasks, because of their low reward
for instance. We conjecture that, as long as the pool of tasks
in each time interval remains sufficient, these results are valid.
To deal with extreme cases, the most unattractive tasks could
be discarded from the CT creation step when they have been
presented many times but not selected by workers.

2) Execution time: Currently, crowdsourcing platforms dis-
play the same ranked list of tasks to all workers. Hence,
very few resources are used to maintain this list of tasks. In
this paper, we propose to personalize the tasks displayed for
each worker. The first step (CRL and RRL) is to eliminate
some tasks that do not match worker constraints in terms of
skills and requesters. This filtering is relatively low cost, as
it only requires reading the top of the global list of tasks
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until the number of tasks matching the filtering criteria is
sufficient. Maintaining CTs however is more costly. In this
work, we present an algorithm derived from fuzzy clustering
that builds CTs from scratch in a new dataset. In practice, the
position of centroids can be used to speed up the execution
when adding and removing a few tasks from the dataset. In
this experiment, we show that even when building CTs from
scratch for each user, the benefits of using CTs outweigh the
extra computational cost for the crowdsourcing platform.

In Figure 5, we present the time required to build CTs
for different configurations. The first configuration considers
the case of 6 CTs of 8 tasks each built using PCT. Then,
we double the number of tasks in each CT by altering the
summarization vector to obtain 6 CTs of 16 tasks. Finally, we
double the number of CTs to obtain 12 CTs of 8 tasks. This
experiment is executed on an Intel i7-4870HQ CPU single
threaded, and we vary the number of tasks selected initially in
order to evaluate the scalability of the algorithm. We observe
that the execution time increases linearly with the size of the
dataset, which is consistent with the behavior of algorithms
derived from k-means. We also observe a linear increase in
the execution time with respect to the number of CTs. While
the CT selection algorithm presented in Section III-C has
a complexity that is quadratic in the number of tasks in a
CT, the total execution time is dominated by the main loop
of fuzzy clustering, so CT construction overall is not very
sensitive to the number of tasks per CT. This execution time
is negligible compared to the time it takes workers to perform
tasks. This is particularly true as workers are more likely to
select tasks contained in CTs. Hence, the platform CPU usage
is acceptable.

V. RELATED WORK

To the best of our knowledge, this work is the first to study
personalized summaries of micro-tasks for workers. This work
is related to building composite items, task decomposition and
task assignment in crowdsourcing. We hence summarize the
related work in all three areas.

a) Composite Items: Composite retrieval was studied
with different semantics in recent work [3]–[9], [12]. Most
existing algorithms rely on a two-stage process that decouples
constraint satisfaction (e.g., a CI must contain one museum
and 2 restaurants) from the optimization goal (e.g., each CI
is a set of close landmarks in a city). In [6], it was shown
that an integrated approach produces better representative CIs
than a two-stage approach. We hence build on the approach
presented in [6] and extend it to consider our goal, namely,
building valid, representative and relevant CTs.

Personalized CIs were proposed in [16] to build customized
city tours. Tailored itineraries are extracted from Flickr using
an objective function that combines POIs popularity with the
actual user preferences over POI categories. This approach
is not directly applicable to ours since the personalization is
merely a filtering of extracted trajectories while in our case,
it is the task composition itself that is personalized (using the

expected reward). That makes our problem computationally
more challenging.

b) Task Decomposition: Crowdsourcing marketplaces
such as AMT3 are primarily designed for micro-tasks. Hence,
complex tasks must be decomposed into easier sub-tasks [17]–
[22]. For instance, in [19], each video annotation task is
decomposed into a sequence of sub-tasks, based on a 3-
stage workflow. To improve the quality of crowd work, the
decomposition may also return collections of redundant sub-
tasks [19]–[21], [23] and use voting to aggregate workers’
responses. Previous work such as CrowdForge [24] and Turko-
matic [25], proposed frameworks to design crowdsourcing
workflows. Task composition is hence not the reverse operation
of task decomposition. The micro-tasks that form a composite
task remain small, independent and simple, thus preserving
the benefits of task decomposition.

c) Task Assignment: While on AMT workers self-
appoint themselves to tasks, some recent work studied the task
assignment problem whereby tasks are assigned to workers so
as to optimize some objective. Examples include the optimiza-
tion of group design in collaborative crowdsourcing [26] or
quality optimization in online settings [27]–[29]. Other studies
assign several tasks to each worker [30]–[34]. For example,
Roy et al. [33] assign to each worker a number of tasks in a
range [Xmin, Xmax] while maximizing the expected quality of
crowd work. Zheng et al. [34] assign to each worker a task
featuring k questions picked among n questions posted by a
requester. Goel et al. [31] assign each worker a set of tasks
in an online context where the objective is to maximize the
utility of crowd work under budget constraints. None of the
previous studies that assign tasks to a worker focus on defining
valid, representative and relevant tasks. Only the optimization
of some objective function measuring the quality of crowd
work is considered.

VI. CONCLUSION

We presented and validated the first solution that combines
requester and platform-centric crowdsourcing with worker-
centric crowdsourcing. Indeed, to the best of our knowledge,
existing work in task assignment is focused on optimizing
requester goals such as budget, or platform goals such as task
throughput. A thorough examination of TurkerNation4 reveals
that workers spend non-negligible amounts of time discussing
how to best select tasks depending on one’s goals, which
requesters to ban, and which skills are required for the latest
tasks on AMT. Therefore, we proposed to provide to workers
homogeneous sets of tasks, termed Composite Tasks (CTs),
that match their profiles and comply with their desired reward.
Each CT also complies with task arrival rate as it contains a
proportional number of tasks per time period.

We conducted a user study with AMT workers that com-
pared four task display options: two ranked lists of worker-
relevant tasks sorted by creation date or by reward, and two

3https://www.mturk.com/
4http://turkernation.com/



sets of CTs, one personalized using the worker’s skills and
one not. Our findings confirmed the superiority of personalized
CTs in satisfying workers and improving task throughput.

We are currently exploring several avenues based on this
work. The two short-term goals worth mentioning are: a clas-
sification of workers based on their reward and the time they
spend completing tasks, and the use of that information to in-
dicate whether CTs should be homogeneous or heterogeneous;
the use of workers’ feedback during task completion in order
to refine their summarization vector. While existing work has
focused on incentivizing workers for long-lasting tasks [35]
[36] or entertaining workers during task completion [37], we
would like to focus on learning workers’ preferences as they
evolve during task completion, and adapt each worker’s sum-
marization vector accordingly. This approach would account
for the diversity of workers on a crowdsourcing platform
and also for the evolution of their expectations during task
completion.
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