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Abstract

A phase field model is coupled to strain gradient crystal plasticity based on dislocation densities. The
resulting model includes anisotropic plasticity and the size-dependence of plastic activity, required when
plasticity is confined in region below few microns in size. These two features are important for handling
microstructure evolutions during diffusive phase transformations that involve plastic deformation occurring
in confined areas such as Ni-based superalloys undergoing rafting. The model also uses a storage-recovery
law for the evolution of the dislocation density of each glide system and a hardening matrix to account
for the short-range interactions between dislocations. First, it is shown that the unstable modes during
the morphological destabilization of a growing misfitting circular precipitate are selected by the anisotropy
of plasticity. Then, the rafting of γ′ precipitates in a Ni-based superalloy is investigated during [100]
creep loadings. Our model includes most of the important physical phenomena accounted for during the
microstructure evolution, such as the presence of different crystallographic γ′ variants, their misfit with the
γ matrix, the elastic inhomogeneity and anisotropy, the hardening, anisotropy and viscosity of plasticity. In
agreement with experiments, the model predicts that rafting proceeds perpendicularly to the tensile loading
axis and it is shown that plasticity slows down significantly the evolution of the rafts.

Keywords: phase transformation, crystal plasticity, phase field modeling, superalloys

1. Introduction

Materials properties, especially mechanical, are strongly dependent on the microstructures, most often
involving several phases. For these properties to remain permanent, the stability of the microstructures
must be ensured. This requirement is particularly challenging when the materials are exposed to severe
conditions, such as high temperatures, loading, or both in the worst cases. Indeed, under such conditions,
microstructures are likely to evolve driven by the diffusion of alloying species and by plasticity, most often
in a coupled manner.

This is the case of Ni-based superalloys used in components of engines or gas turbines submitted to high
temperature. The properties of these alloys are inherited from their particular microstructure which consists
of a high volume fraction of strengthening γ′ precipitates (L12 ordered structure) embedded in a face-centered
cubic (fcc) solid-solution γ matrix. They are optimized using thermal treatments promoting the formation of
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1 INTRODUCTION

an initial microstructure consisting of a high volume fraction of cuboidal γ′ precipitates aligned and defining γ
channels [1] (Figure 1 - a). During service, the directional coarsening (rafting) of γ′ precipitates occurs under
creep loading together with plastic deformation mainly localized within the γ channels. This microstructure
evolution is followed by a topological inversion, detrimental to the creep properties. Therefore, beside the
technological issue of improving the stability of their microstructures, Ni-based superalloys appear to be a
most relevant candidate for investigating strong couplings between diffusion-controlled phase transformations
and plasticity.

Despite some early attempts [2, 3, 4, 5], this coupling has not been investigated extensively from a theoretical
point of view, because it requires approaches with the ability to predict morphological evolutions accurately.
For more than 15 years, phase field models have proved to be the most suited method for that purpose.
Indeed, a number of puzzling microstructural features have been explained using this approach. Focusing on
Ni-based alloys, it has brought valuable insights into the roles of elastic anisotropy [6, 7, 8, 9, 10], and chemical
ordering [11, 12] in microstructure evolutions. In parallel, several works aimed at describing plasticity at the
scale of individual dislocations within the phase field approach [13, 14, 15], exploiting the analogy between
a dislocation loop and a platelet precipitate with a specific eigenstrain. Although these models incorporate
automatically the elastic interactions between dislocations and other microstructural features, they require
subnanometer grids or sophisticated technics [16] to describe properly the short-range interactions involving
the properties of the dislocation cores. Moreover, it must be stressed that they lack high temperature
mechanisms, such as cross-slip and climb, despite recent advances [17, 18]. To reach larger length scales,
plasticity in evolving microstructures has been addressed by relying on phenomenological models. Works
along this route have been only very recently proposed by several groups using mesoscale plasticity models
differing by their descriptions of hardening, viscosity and plastic anisotropy. The first attempts to couple
a diffuse interface model with an isotropic plasticity model have been proposed in the references [19, 20].
Similar approaches including isotropic plasticity models have been developed in [21, 22, 23, 24, 25]. In the
context of rafting in Ni-based superalloys, a few works have extended the PFM to include strain gradient
plasticity [26] and anisotropic plasticity, either approximately [27] or relying on a more complete and well
tested crystal plasticity framework [28]. Despite some valuable achievements, for calibrating their parameters
the phenomenological laws used in these models require experiments that are unfortunately more complex
than usual when considering evolving multi-phase materials. Hence, it is highly desirable to resort to
plasticity models with firmer physical grounds, i.e. relying on dislocation densities.

This is the aim of the present work to settle the coupling between a phase field model for diffusion-controlled
transformations with a dislocation density based crystal plasticity model, in view of improving the prediction
of microstructure evolutions during diffusive phase transformations, especially in Ni-based superalloys. A
particular emphasis is put on two ingredients that are generally neglected but which are essential for a reliable
prediction of the mechanical behavior, in particular hardening, and thus of the coupling. First, it is important
to account properly for the forest hardening due to the short-range interactions between dislocations, as
shown in [29]. Second, at the micrometer scale, the hardening associated with the confinement of the plastic
domains can be significant, and likely to change during microstructural evolutions [26]. Thus, it is also
mandatory to account for this effect in the same consistent framework, such as in [30].

The paper is structured as follows. First, the phase field model, the dislocation density based crystal
plasticity model, as well as their coupling will be described in §2. At the end of this section, data and input
parameters specific to Ni-based superalloys will be carefully defined and specified with respect to available
experiments. Then, in §3, we will discuss calculations illustrating the hardening as described by the plasticity
model associated with (i) short-range interactions of dislocations, and (ii) the back-stress introducing a size
effect. In Section §4, we will investigate the concomitant evolutions of misfitting precipitates and dislocation
densities in microstructures of increasing complexities: first, in the case of a single growing precipitate to
address the role of plastic anisotropy on the shape stability; second, during the creep loading of a typical
γ/γ′ microstructure in Ni-based superalloys, exhibiting rafting.
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2 MODEL

(a) (b)

Figure 1: AM1 alloy observed by Scanning Electron Microscopy: γ′ precipitates (dark) in γ matrix (light) after a standard
heat treatment: a - before and b - after creep loading under 150 MPa at 950◦C during 100 h.

2. Model

2.1. Phase Field Model

At equilibrium, Ni-based superalloys feature both the disordered γ and ordered γ′ phases. Following [28, 26,
10], the superalloy is modeled as an effective binary alloy. In that case, in addition to the local concentration
field c(r ,t), three non-conservative structural fields ηi=1,3(r , t) are introduced to account for the degeneracy
of the low temperature γ′ phase. The four translational variants of γ′ are described by the following long-
range order parameters: {η1, η2, η3} = η0{1, 1, 1}, η0{1̄, 1̄, 1}, η0{1̄, 1, 1̄}, η0{1, 1̄, 1̄}.
The main ingredient of phase field models is a mesoscopic free energy functional F decomposed into a
chemical Fch (§2.1.2) and an elastic Fel (§2.1.3) contributions.

F = Fch(c, {ηi}) + Fel(c, {ηi}, ε
∼

el) (1)

where ε
∼

el is the elastic strain tensor.

2.1.1. Kinetic equations

The evolutions of the concentration and order parameters are governed by kinetic equations relating time
derivatives to the corresponding driving forces, defined as functional derivatives of F with respect to the
fields. Assuming linear constitutive relationships, a Cahn-Hilliard equation is used for the conserved con-
centration field and Allen-Cahn equations for the non-conserved order parameters:

∂c

∂t
(r , t) = M∇2

δF

δc(r , t)
(2)

∂ηi
∂t

(r , t) = − L
δF

δηi(r , t)
(3)

In the present work, the kinetic coefficients M and L, related to diffusion and structural relaxation respec-
tively, are assumed constant.
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2 MODEL 2.1 Phase Field Model

2.1.2. Ginzburg-Landau free energy

The chemical free energy accounts for the volume free energy associated with phase transformation and inter-
face energies. This free energy of any volume V is given by a standard Ginzburg-Landau functional:

Fch(c, {ηi}) =

∫

V

fhom(c, {ηi}) +
λ

2
|∇c|2 + β

2

∑

i

|∇ηi|2 dV (4)

fhom(c, {ηi}) is the free energy density of an homogeneous system characterized by the concentration c and
order parameters ηi.

The gradient terms are chosen isotropic to comply with isotropic interface energies as suggested by the
spherical shapes of small precipitates observed in AM1 superalloys. The coefficients λ and β of the gradient
terms, related to the energies of γ/γ′ interfaces and γ′/γ′ anti-phase boundaries, have been prescribed
constant values. As usual, the free energy density of an homogeneous system fhom(c, ηi) is approximated by
a Landau polynomial expansion with respect to the order parameters. Its form is dictated by the symmetry
loss associated to the γ → γ′ phase transformation. Following [10], we have chosen the lowest possible order
of the expansion, as well as a quadratic dependence on c(r ):

fhom(c, {ηi}) = ∆f





1

2
(c− c0γ)

2 +
B
6
(c2 − c)

∑

i=1,3

η2i −
C
3
η1η2η3 +

D
12

∑

i=1,3

η4i



 (5)

where ∆f is an energy density scale and c2 an arbitrary concentration chosen between the equilibrium
concentrations c0γ and c0γ′ of the coexisting phases. B, C and D are constants related to c2, c

0
γ , c

0

γ′ and to
the equilibrium long-range order parameter η0 (§2.3.1).

2.1.3. Elastic energy

In the framework of linear elasticity, the potential elastic energy reads:

Fel(ε
∼

el) = F a
el(ε̄∼) +

1

2

∫

V

ε
∼

el : λ
≈

: ε
∼

el dV (6)

where λ
≈

is the 4th order tensor of local elastic constants and where ε
∼

el is the second order tensor of

elastic strain. F a
el(ε̄∼) is an homogeneous term, function of the average value ε̄

∼
of the total strain ε

∼
(r ), and

depending on the loading conditions. In the present work where an applied stress σ
∼

a has been considered,
F a
el = −V σ

∼

a : ε̄
∼
. Assuming that the local concentration is the relevant field for discriminating the

elastic properties, λ
≈

is assumed to depend linearly on c(r ) and is thus space dependent [10]. In the small

deformation framework, ε
∼
(r ) can be split into three contributions as follows:

ε
∼
(r ) = ε

∼

el(r ) + ε
∼

0(r ) + ε
∼

p(r ). (7)

where ε
∼

0(~r) is the stress-free strain associated with the change in lattice parameter accompanying the γ → γ′

transformation, and ε
∼

p(r ) the plastic strain.

Assuming Vegard’s law, ε
∼

0(r ) = ε
∼

T ∆c(r )1
∼
where 1

∼
is the identity matrix and εT = δ/(c0γ′ − c0γ). The

misfit δ is related to the lattice parameters aγ and aγ′ of the stress-free γ and γ′ phases δ = 2(aγ′ −
aγ)/(aγ′ + aγ).

In diffusive phase transformations, static mechanical equilibrium can safely be assumed because the relax-
ation of the elastic waves is by orders of magnitude faster than the evolution of c and ηi. In the case of
homogeneous elasticity, this problem can be solved analytically in Fourier space [31]. Otherwise, a fixed-point
algorithm is used at each time step to numerically solve mechanical equilibrium [10].

4
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2 MODEL 2.2 Mesoscopic Dislocation Density-based Crystal Plasticity Model (MPM)

2.2. Mesoscopic Dislocation Density-based Crystal Plasticity Model (MPM)

2.2.1. Plastic strain

In crystalline materials, plastic deformation usually results from the motion of dislocations. In many crystals,
such as in fcc crystals, dislocations mainly glide in well-defined planes and are therefore conveniently divided
into several slip systems characterized by the normal of the glide plane n α and the slip direction m α. In
fcc crystals, the 12 favorable (octahedral) slip systems are defined by the 4 {111} slip planes, each one
containing 3 〈110〉 slip directions.

In the small deformation framework, the plastic strain ε
∼

p is the sum of the crystallographic slips γα in each
slip system α, such that:

ε
∼

p =
∑

α

γα P
∼

α (8)

where P
∼

α is the symmetric Schmid tensor defined by P
∼

α = 1

2
(m α ⊗ n α + n α ⊗m α).

2.2.2. Resolved shear stresses

Glide of dislocations belonging to the system α is driven by the resolved shear stress τα = σ
∼
: P

∼

α where
σ
∼

is the stress tensor. More precisely, dislocations will glide only if the resolved stress exceeds a certain
threshold, the critical stress ταc , which depends on the Peierls stress and on short-range interactions with
dislocations belonging to the same or other glide systems. In fcc crystals, the dissociation of the dislocation
core leads to a very low Peierls stress and this quantity is usually neglected.

The critical stress ταc is expressed using a generalized Taylor formula which accounts for the anisotropy of
the interactions between slip systems in fcc crystals [32]:

ταc = µb

√

∑

β

aαβρβ (9)

with b the norm of the Burgers vector, µ an average shear modulus and ρβ the total dislocation density on
the slip system β. aαβ is the hardening matrix:

√
aαβ is the average strength of the interaction between

the two slip systems α and β. In a fcc crystal, the matrix has 122 coefficients that can be reduced to 6
independent coefficients using symmetries. These coefficients are associated with six types of interaction [33]:

dislocations gliding on parallel slip systems, involve the self-interaction (a0) and coplanar (acopl
1

) interaction
coefficients. Three other coefficients account for the interactions between non-coplanar slip systems, forming
Hirth locks (aorth

1
), glissile junctions (aglis

2
) and Lomer-Cottrell locks (aLC

3
). The last coefficient, acol

1
, is

related to collinear interactions that generate a strong hardening effect due to the partial annihilation of
gliding collinear dislocation segments and the resulting generation of highly curved disloations that require
a higher stress to recover a flowing state. We have employed the values for fcc crystals inferred in [34] from
dislocation dynamics simulations and given in §2.3.2.

2.2.3. Stockage and recovery law

The evolution of the dislocation density is given by a standard storage-recovery balance equation [35, 36].
Following Teodosiu et al. [37], the time derivative of the dislocation density is expressed as a function of the
plastic slip rates γ̇α using Orowan’s relation as follows:

ρ̇α =
1

b

(

1

Lα
− 2 yc ρ

α

)

|γ̇α| (10)

where Lα is the dislocation mean free path on slip system α and yc is a characteristic length associated
with the annihilation process. Lα depends on the density of obstacles encountered by dislocations, i.e. on

5
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2 MODEL 2.2 Mesoscopic Dislocation Density-based Crystal Plasticity Model (MPM)

the density of dislocations belonging to other slip systems. Following Kubin et al. [38], Lα is assumed to be
inversely proportional to the critical stress on the system:

Lα = K/
√

∑

βa
αβρβ (11)

where K is a material parameter.

2.2.4. Plastic flow rule

Following a standard approach, the single crystal kinematics is related to the underlying dislocation density
evolution with a phenomenological viscoplastic power law relating the plastic slip rates γ̇α to the resolved
shear stress τα, the backstress ταb and the slip hardening ταc given by [39]:

γ̇α = γ̇0

( | τα − ταb |
ταc

)
1

m

exp

(

−∆Gα

kB T

)

sign ( τα − ταb ) (12)

where γ̇0 and m are the reference plastic shear rate and rate sensitivity exponent, respectively. T is the
absolute temperature and kB Boltzmann’s constant. The resistance to slip in system α is reproduced by
the critical resolved shear stress ταc discusses above, as well as by some back stress ταb to account for a size
dependency of plastic flow as discussed below. The exponential term corresponds to the thermally-activated
dislocation motions where the activation energy ∆Gα is defined by:

∆Gα = G0

(

1− | τα − ταb |
ταc

)

(13)

G0 is the free energy, usually assumed constant, that is required for a dislocation to overcome a short-range
barrier without any external work.

2.2.5. Back-stress

Back-stress terms are usually involved in continuous formulation of plasticity. These terms, as well as
the local critical stress, are reminiscent of the short-range dislocation-dislocation correlations that are not
resolved at the scale at which the continuous model is elaborated [40, 41, 42]. In other words, the back
and critical stresses ταb and ταc should emerge from the coarse graining procedure that is needed to make
a link between the microscopic and mesoscopic scales. Such a procedure has already been elaborated in
the simplest situation where a single two-dimensional glide system is considered [42]. However, this coarse
graining procedure has still not been performed in the general situation where multiple three dimensional
glide systems are simultaneously active. Therefore, following Ref. [30], we use for the present work the
following back-stress expression :

ταb =
µ bR2

8





1

(1− ν)
∇ ραG,e.m

α − 2
∑

β

δαβs

(

∇ρβG,s.p
α
)



 (14)

with

δαis =







1 for (α i) = (4,13), (6,18), (8,17), (9,15), (10,16), (11,14)
(1,16), (2,17), (3,18), (5,14), (7,13), (12,15)

0 otherwise
(15)

where µ and ν are the shear modulus and Poisson ratio, respectively, for isotropic materials, and where
p α = m α × n α (edge dislocations are then parallel to p and screw to m = b /b. ραG,s/e corresponds to

the GND density with a screw/edge character on slip system α.

6
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2 MODEL 2.2 Mesoscopic Dislocation Density-based Crystal Plasticity Model (MPM)

Glide system α Dislocation i Type
√

2 m

√

3 n Schmidt & Boas

1 1 edge [01̄1] [1̄11] A2

2 2 edge [101] [1̄11] A3

3 3 edge [110] [1̄11] A6

4 4 edge [01̄1] [111] B2

5 5 edge [1̄01] [111] B4

6 6 edge [1̄10] [111] B5

7 7 edge [011] [1̄1̄1] C1

8 8 edge [101] [1̄1̄1] C3

9 9 edge [1̄10] [1̄1̄1] C5

10 10 edge [011] [11̄1] D1

11 11 edge [1̄01] [11̄1] D4

12 12 edge [110] [11̄1] D6

4 or 7 13 screw [110] [1̄11] or [11̄1] A6 or D6

5 or 11 14 screw [101] [1̄11] or [1̄1̄1] A3 or C3

9 or 12 15 screw [011] [1̄1̄1] or [11̄1] C1 or D1

1 or 10 16 screw [1̄10] [111] or [1̄1̄1] B5 or C5

2 or 8 17 screw [1̄01] [111] or [11̄1] B4 or D4

3 or 6 18 screw [01̄1] [1̄11] or [111] A2 or B2

Table 1: Description of glide systems in fcc crystals.

In the spirit of Ref. [30], the length scale R should be of the same order as the discretisation scale d used in
the implementation of the model. Consequently we have chosen R = 1.5d

The GND density is evaluated from the plastic slip gradients assuming that all dislocations are screw or edge
(no mixed dislocations). The 18 types of GND are listed in Table 1. Concerning screw or edge dislocations,
the GND densities are related to the plastic slip gradients throughout:

ραG,e b = − ∇γα.m α

ραG,s b = ∇γα.p α (16)

Finally, using equations (14) and (16), the calculation of the back-stress involves the gradients of the crys-
tallographic plastic slip:

ταb = − µR2

8

[

1

1− ν
(m α ⊗m α ) : (∇⊗∇γα )

+ 2
∑

β

(

∑

i

δαis δβis p β ⊗ p α

)

:
(

∇⊗∇γβ
)



 (17)

2.2.6. Coupling PFM & MPM

The MPM is coupled to the PFM presented in §2.1 through the total strain field:

ε
∼
(r ) = ε

∼

el(r ) + ε
∼

0(r ) + ε
∼

p(r ) (18)

7
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2 MODEL 2.3 Input parameters

D (m2.s−1) σexp (mJ.m−2) δ C11 (GPa) C12 (GPa) C44 (GPa)

3 10−19 4 [43, 9] -0.1% [44, 45] γ 197 144 90

γ′ 193 118 124

Table 2: Physical parameters for AM1 superalloys at T = 950◦C.

where ε
∼

p(r ) is the plastic strain field evolving according to Eqs. (8) and (12).

In heterogeneous materials, the viscoplastic parameters aαβ , G0, m, γ̇0 and R are space dependent. In the
ranges of temperature and stress considered, only γ undergoes plastic strain while γ′ behaves elastically. To
reproduce this behavior, all viscoplastic parameters have been set at their values in the γ phase and the
governing equations ρα and γα are only activated inside γ. This is achieved by ponderating the rates ρ̇α

and γ̇α in Eqs. (9) and (12) by a sigmoid function j(φ) of the order parameters:

j(φ) =
1

2

(

1− tanh

[

θ

(

φ− 1

2

)])

(19)

with φ = 1

3 η2

0

∑

i=1,3 η
2

i and θ a parameter controlling plasticity in the interface.

2.3. Input parameters

2.3.1. Physical properties and phase field parameters

The physical properties and elastic constants used in the subsequent calculations are reported in Table 2.
The inhomogeneous and anisotropic elastic constants have been retrieved from [46], where it has been shown
that a large inhomogeneity of the shear modulus C ′ = (C11 − C12)/2 is required to generate well-aligned
cuboidal precipitates with aspect ratios close to the experimental observations of AM1

Following [28], M is such as to recover the interdiffusion coefficient in γ: D = D0 exp(−∆U/kBT) with
D0 = 1.45 10−4 m2s−1 and ∆U = 2.8 eV [47]. We have used L = 100 Md−2, where d is the grid spacing, to
ensure that kinetics is much faster for the order parameters than for the concentration field. We have used
the equilibrium concentrations c0γ = 0.15 and c0γ′ = 0.231 identified on the Ni-Al phase diagram at 950◦Cand
set c2 = 0.18. Following [10], an equilibrium order parameter η0 set to 1 gives B = 0.162, C = 0.01458 and
D = 0.022842 in Eq. (5). The non-dimensional gradient coefficients λ̃ = λ/(∆fd2) and β̃ = β/(∆fd2) are
chosen as λ̃ = 0.21 and β̃ = 9.75 10−4. This choice ensures that: (i) the interface width is equal to 6d, i.e.
large enough to avoid pinning on the numerical grid, (ii) antiphase boundaries in the γ′ phase are wetted
by the γ matrix, and (iii) the interface energy contributions due to the gradients of order parameter and
concentration fields are equal. Then, using 1D stress-free simulations, we compute the numerical interface
energy σ̃ = 0.66 10−3 from the non-dimensional profile fhom/∆f , λ̃ and β̃. σ̃ is related to the experimental
interface energy through:

σexp = σ̃ d∆f (20)

For a given d, ∆f can be deduced from Eq. (20).

2.3.2. Viscoplastic parameters

The coefficients of the hardening matrix aαβ for superalloys are given in reference [34]. The values have
been determined from dislocation dynamic simulations in a fcc crystal [33]. In Eq. (14), the shear modulus
µ has been taken equal to

√
C ′C44 where C44 and C ′ are the two shear moduli of the γ phase.

The viscoplastic parameters are identified on the macroscopic mechanical behavior of the bulk γ phase using
the experimental data of Espié et al. [48]. For that purpose, we have considered [100] tensile tests performed

8
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3 MECHANICAL BEHAVIOR OF FROZEN TWO-PHASE MICROSTRUCTURES

at 950◦C and two strain rates ˙̄ε11 = 9 10−4 and 9 10−3 s−1 on bulk γ phase with a composition close to the
γ phase in AM1. The values of yc, γ̇0 and m reported in Table 3 result from the best fit with the calculations
considering the activation energy G0 = 4.54 10−20 J proposed in [30] and the same initial dislocation density
on all slip systems ρ̄0 = 2.5 1012 m−2 consistent with experimental assessments [49, 50].

Finally, to confine viscoplasticity in the γ phase only, we have set θ = 100. With this value, the viscoplastic
parameters vary over one grid spacing d, a distance smaller than the interface width.

b (nm) yc (nm) K a0 a
copl
1

aorth
1

acoll
1

a
glis
2

aLC
3

µ (GPa) ν γ̇0 (s−1) m G0 (J)

0.256 1.6 80 0.12 0.12 0.06 0.62 0.11 0.12 48 0.31 0.001 0.04 4.54 10−20

Table 3: Viscoplastic parameters of the γ phase in the AM1 superalloys.

3. Mechanical behavior of frozen two-phase microstructures

Before analyzing the consequences of the full coupling between PFM and MPM on diffusion-controlled
microstructure evolutions, it is important to have a clear idea of the effect of the two ingredients usually
neglected in existing PFM-MPM couplings, i.e. the hardening matrix and back stress. For that purpose,
we illustrate sequentially their roles in situations simple enough to highlight the main features likely to be
encountered in the more complex situations of §4.

3.1. Hardening matrix

We consider the simple case of a homogeneous γ crystal under tensile loading with a deformation rate
˙̄ε11 = 9 10−3. First, all glide systems are attributed the same initial homogeneous dislocation density
ρα = ρ̄0 = 3.8 1010 m−2. Under a [100] load, 8 glide systems are activated with the same Schmid factor
(A3, A6, B4, B5, C3, C5, D4, D6).

Figure 2: Left: dislocation densities vs. plastic strain ε
p
11

during tensile [100] loading for homogeneous (continuous lines without
symbol) and random (dashed lines + continuous lines with symbols) initial distributions of dislocation densities on the different
glide systems (Tab. 1). Right: corresponding stress-strain curves σ11 vs. ε11.

In this particular configuration, the dislocation densities evolve identically on the activated slip systems:
their value increases from the average ρ̄0 up to 2.4 1011 m−2 during 0.7 s (Fig. 2 - left, full black line). In
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3 MECHANICAL BEHAVIOR OF FROZEN TWO-PHASE MICROSTRUCTURES3.2 Role of the back-stress

a real material, it is unlikely that all slip systems feature the same initial dislocation density. Thus, the
different slip systems are attributed initial dislocation densities randomly picked in a normal distribution
with mean value ρ̄0 = 3.8 1010 m−2 and a relative standard deviation of 0.2. The evolutions of the dislocation
densities in all glide systems are shown in Figure 2 (left) during the tensile loading.

As mentioned previously, 4 glide systems are not activated (horizontal dashed lines, C1 and D1 are su-
perposed), but the evolution of the densities in the 8 activated glide systems are not equivalent anymore.
The densities in C3, A6, D4 and B5 (bullets) increase more rapidly than in their corresponding collinear
systems A3, D6, B4 and C5 (squares). Moreover, the more active a system is, the less its collinear system is.
This behavior is in agreement with [51], where fcc single crystals have been investigated by both dislocation
dynamics simulations and continuum modelling. It is due to the strong short range interactions between
dislocations on collinear systems, as mentionned above. In fcc crystals, this interaction has been shown to
be the strongest of all interactions between slip systems [29]. In our model, these interactions are accounted
for with acoll

1
in the hardening matrix appearing in Eq. (9). Finally, the impact of the initial dislocation

densities on the mechanical behavior can clearly be observed on the tensile stress-strain curves displayed in
Figure 2 (right): the case with random initial dislocation densities features a yield stress by a few percents
higher than the one with identical densities, as well as a larger hardening that increases the stress difference
between both cases during the tensile loading.

3.2. Role of the back-stress

-s/2 s/2

Figure 3: Simple 1D configuration.

Following [26, 52], the role of the back-stress is illustrated in a simple 1D static laminate made of layers of
γ and γ′ (Fig. 3). To comply with Ni-based superalloys during low-stress high temperature creep [53], it is
assumed that only γ phase can deform plastically γ′ responding only elastically.

Figure 4: Left: Stress-strain curve σ11 vs. ε11. Right: profiles of εp
11

at ε̄p
11

= 0.2% for laminates with different γ′

channel widths s.

We have investigated the mechanical behavior of a 1D laminate constituted of γ (channels) and γ′ (precip-
itates) with interfaces normal to some cubic directions of the crystal lattices (Fig. 3). We have considered
several laminates with different width s ranging from 10 to 200 nm for the γ channels, keeping constant
the volume fraction of γ′ τγ′ = 0.7. They all have been discretized with 128 nodes, and initialized with an
homogeneous dislocation density ρ̄0 = 2.5 1012 m−2 on all slip systems. Moreover, they have been submitted
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4 EVOLVING TWO-PHASE MICROSTRUCTURES

to tensile strain normal to the layers with rate ˙̄ε11 = 10−3 s−1. For each channel size s, calculations without
and with back-stress have been carried out. The corresponding tensile stress-strain curves are plotted in
Figure 4 (left), together with the purely elastic cases (black dashed line). As expected, whatever the size of
the γ channel, the elastic response is the same because the volume fraction is kept constant.

When neglecting back-stress (black line), the behavior is the same for a constant τγ′ : the yield stress and
hardening do not depend on s. On the contrary, when considering back-stress, the plastic regime depends
on s, and the two-phase materials is strengthened as the channel width decreases: the yield stress as well as
the hardening increase when s decreases. The 0.2% offset yield stress increases from 480 MPa for an infinite
width (or no backstress), to 530 MPa for s = 200 nm and 620 MPa for s = 20 nm.

The differences in mechanical behavior originate from the distribution of plastic deformation confined in the
γ channel. Typical profiles of εp

11
are shown in Figure 4 (right) for different values of s at the same average

plastic strain ε̄p
11

= 0.2%. When τb = 0, εp
11

is homogeneous in the whole γ channel for every values of
s. When τb 6= 0, εp

11
is inhomogeneous and increases from 0 at the γ/γ′ interface to a maximum value at

the center of the channel over a plastic length ξP . When the channel width is much larger than ξP (e.g.
s = 100 nm), the plastic deformation remains almost constant over most of the γ channel. When these
two lengths are of the same order of magnitude (e.g. s = 10 nm), εp

11
exhibits profiles nearly parabolic.

According to Eq. (17), this kind of inhomogeneous distribution increases the back-stress and contributes
to the strengthening of two-phase materials. It is worth stressing that although the present model delivers
outcomes similar to the isotropic strain gradient plasticity model used in [26] in the present symmetrical
configuration, more complex configurations (e.g. loadings) would induce different behaviors. As a conclu-
sion, our model correctly reproduces the strengthening of the material when the size of the plastic regions
decreases. When studying evolving microstructures coupled with plasticity, this effect has to be included
because the size of the plastic regions may evolve with time. This is in particular the case when studying
microstructure evolutions in single crystal nickel based superalloys.

4. Evolving two-phase microstructures

4.1. Growth of a single misfitting precipitate in a plastic matrix

First, we investigate in what respect anisotropic plasticity may influence morphological evolutions. Indeed, it
has been shown recently that the influence of isotropic plasticity on phase transformations is very dependent
on the eigenstrain [54], morphology [25], loading [55] and whether plastic strain is inherited by the growing
phase or not [56]. Hence, it is of valuable interest to examine how the anisotropic plasticity model introduced
above relaxes stresses generated by the transformation itself in a simple case, before handling the case of
rafting involving complex initial microstructures and an external loading.

For that purpose, we consider a misfitting γ′ precipitate growing in a supersaturated γ matrix. To emphasize
the role of the anisotropy of plastic deformation, we have changed the following parameters with respect to
Tab. 2 such that (i) the elastic energy is isotropic when plasticity is discarded and such that (ii) the misfit
stress promotes significant plastic flow: homogeneous isotropic elastic constants with Young’s modulus
E = 93 GPa and Poisson’s ratio ν = 0.37 ; and an isotropic eigenstrain εT = 0.2%.

A 3.2 × 3.2 µm2 stress-free periodic box aligned with the [100] and [010] cubic axes of the fcc lattice and
corresponding to a 3D system invariant along [001] is discretized into 5122 nodes (d = 6 nm). A circular
precipitate with radius r0 = 30d, and with the equilibrium concentration of the phase diagram c0γ′ = 0.231,

is included in a matrix with 18.5% of supersaturation (c∞ = 0.165 > c0γ). To start with smooth relaxed
interfaces, we let the microstructure evolve without any plasticity during 0.1 h. Then, dislocation densities
are homogeneously distributed on all glide systems with ρ̄0 = 2.0 1012 m−2.

The evolutions in three cases are compared in Fig. 5 where the concentration fields are plotted at 4 successive
times. The first row displays the evolution when both phases are purely elastic. The evolution of the second
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4 EVOLVING TWO-PHASE MICROSTRUCTURES4.1 Growth of a single misfitting precipitate in a plastic matrix

Figure 5: Concentration field c at t = 0.1, 0.75, 1.5 and 3 h obtained with the elastic (top) and elasto-viscoplastic
model with: K = 80 (middle) and K = 150 (bottom).

row ensues from the viscoplastic model with the viscoplastic parameters in Tab. 3, in particular K = 80.
In the third row, the plastic parameter K is increased up to 150 (rather than 80 in Tab. 3) in order to
increase the dislocation mean free path (Eq. 11) and therefore favor plastic flow. In all cases, the chemical
driving force induced by the supersaturation leads to the growth of the precipitate. In the elastic case (top
row), the precipitate remains circular as it grows (r = 102 d after 3 h), consistently with the isotropy of
interface energy, elasticity and diffusion. In the viscoplastic case with K = 80 (middle row), the growth is
slightly enhanced along the axes and diagonals of the box to form approximately an octagon with facets
close to {120} planes. In the viscoplastic case with K = 150 (bottom row), the anisotropic growth is more
pronounced. The shape adopts rapidly an octagonal shape (after 0.75 h rather than 3 h in the previous
case), before evolving towards a nearly square shape with sides aligned along the {110} planes. These
simulations clearly demonstrate that plastic anisotropy is able to induce a shape change during the growth
of a precipitate. They also show that the anisotropy of plasticity influences significantly the anisotropy of
the resulting shape in a non trivial manner as we will discuss now.

Plasticity of the fcc matrix results from the anisotropic activity of the twelve slip systems. As shown in
Figure 6, the primary slip systems are A6, D6, B5, C5, and the associated dislocation densities increase
along the cubic axes to give a cross-like pattern. The eight secondary slip systems are mainly active along
two opposite directions, at angles θ with respect to [100] direction: θ is close to π/8 for B4 and C3, 3π/8
for B2 and C1, 5π/8 for A2 and D1 and 7π/8 for A3 and D4. In addition, these systems are weakly active
at θ + π/2.

The very first moments of the activation of the fcc slip systems can be predicted from the analysis of the
stress fields generated by a cylindrical precipitate of radius ri in a cylindrical matrix of external radius
re with finite boundaries. Assuming isotropic elastic constants, the matrix features the following non-zero
stress components in the cylindrical frame (r, θ, z):

σrr =
(

a2 − b2
)

pe

σθθ =
(

a2 + b2
)

pe (21)

σzz = 2 a2 pe
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4 EVOLVING TWO-PHASE MICROSTRUCTURES4.1 Growth of a single misfitting precipitate in a plastic matrix

where a = ri/re, b = ri/r and pe = E εT /(2(1 − ν)). It appears that the maximum reduced shear stress
2 pe/

√
6 is obtained for the primary slip systems A6, D6, B5, C5 along the cubic directions (θ = 0 mod π/2).

At the interface, the reduced stresses in all secondary slip systems feature two local maxima equal to either
(
√
2+ a2) pe/

√
6 or (

√
2− a2) pe/

√
6. A careful analysis reveals that the angle θ corresponding to the global

maximum is π/8 for B4 and C3, 3π/8 for B2 and C1, 5π/8 for A2 and D1 and 7π/8 for A3 and D4. These
directions sketched in Figure 6 (bottom right) and are fully consistent with the patterns of the corresponding
dislocation densities.

As shown in Figure 5, the influence of viscoplasticity on the phase fraction is small. However, a significant
increase of the growth velocity in the cubic directions is observed when viscoplasticity is included. As shown
in Figure 6, this rapid growth is related to the activation of the four primary slip systems A6, D6, B5 and
C5. Along θ = 0 mod π/2, the strain field generated by a single circular precipitate in the matrix has only
two non-zero components ǫ11 = −ǫ22. Thus full plastic relaxation cannot be achieved by a single primary
slip system because the associated plastic strain ǫpij = (binj + bjni)/2 contains non diagonal components.
For example, the plastic strain generated by the slip systems A6 and D6 are respectively:

ε
∼

p(A6) =
2√
6





−1 1/2 1/2
1/2 1 0
1/2 0 0



 ; ε
∼

p(D6) =
2√
6





1 1/2 1/2
1/2 −1 0
1/2 0 0



 (22)

However, if the systems A6 and D6 are activated with the same intensity but different signs, the resulting
total plastic strain is diagonal with only two non-zero components ǫp

11
= −ǫp

22
to achieve full plastic relax-

ation. This explains the equivalent activation of the collinear systems A6 and D6 despite the strong short
range interactions between them. A similar conclusion can be drawn for the systems B5 and C5.

Figure 6: Dislocation densities ρ − ρ̄0 in slip systems A2, A3, B2, B4 (secondary) and A6 (primary) at t = 3 h
with K = 150. The dashed white lines correspond to the interface position indicated by the isovalue ηi=1,3 = 0.5.
Bottom right: orientations of the slip systems (Tab. 1) featuring maximum reduced shear stresses (primary in black,
secondary in blue and red).

The activation of the primary slip systems induces plastic strain whose major components are ǫp
11

= −ǫp
22
.

The components of the plastic strain display the same cross pattern as the primary dislocations densities
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4 EVOLVING TWO-PHASE MICROSTRUCTURES4.1 Growth of a single misfitting precipitate in a plastic matrix

(Fig. 7 - a). Within the cross pattern, three zones can be distinguished as shown in Fig. 7 - b where the
profile of εp

22
along the [100] axis (dashed dotted line in Fig. 7 - a) is plotted in blue. Zone 1 corresponds to

the circular precipitate which has grown before plasticity has been activated (delimited by the inner dashed
line in Fig. 7 - a, and the light grey slab in Fig. 7 - b). Zone 2 spans over the branches of the cross in Fig. 7 - a
inside the precipitate and features an increase of plastic strain along the radius to achieve a maximum at
the interface (outer dashed line in Fig. 7 - a, and darker grey slab in Fig. 7 - b). Zone 3 lies in the matrix
and displays a decrease of plastic strain on a short distance (∼ 20 d), with longer tails observed in Fig. 7 - a
at about 45◦ from the cubic directions. The profile at a time equal to 1.5 h is added in Fig. 7 - b (dashed
line) to illustrate the process responsible for the increase of plastic strain in zone 2, although the precipitate
does not undergo any plastic flow. As soon as plasticity is activated, plastic flow is the most pronounced
at the interface in the matrix because the resolved shear stress is the higher there. During growth, the
interface sweeps the border of zone 3 and the plastic strain is included in the precipitate. Once included, the
plastic strain does not evolve any longer but its progressive build-up along the precipitate radius generates
increasing shear stresses in the matrix at the interface which promote more plastic flow.

Even if the precipitate does not deform plastically, inhomogeneous plastic strain fields are present within the
precipitate because of the inheritance of plasticity in the present model. This also leads to inhomogeneous
distribution of stresses within the precipitate. Finally, the amount of plastic strain inherited by the γ′ phase
from the matrix can be seen to increase when the particle size increases.

This is in line with the calculations of Ammar et al. [56] when isotropic plasticity is inherited by the growing
phase. However, we clearly put into evidence that the anisotropic pattern of the plastic strain and dislocation
densities can play a significant role in the morphological evolution of the precipitates. It is worth stressing
that this role strongly relies on the spatial pattern of plastic strain and dislocation densities, and as such
depends significantly on their inheritance through the moving interface.

(a) (b)

Figure 7: Viscoplastic case with K = 150. (a) Plastic strain ε
p
22

at 3 h. Dashed lines are the level sets ϕ = 0.5 at 0.1 and 3 h ;
(b) Profiles of εp

22
along the light-blue line in (a) at 1.5 h (dashed line) and at 3 h (thick blue line). Grey slabs indicate the

positions of the diffuse interface at 0.1 and 3 h from left to right respectively.

In summary, we have analyzed the influence of the anisotropic viscoplastic driving force accounting for the
back stress on the diffusive growth of a precipitate in the presence of coherency stresses. The generated plastic
deformation alters the microstructural evolution compared to the elastic case. A morphological transition is
observed e.g. from circular to square in the presence of plasticity. When compared to the purely elastic case,
this shape change results from an increase of the growth rate along the cubic direction and a decrease along
the 〈110〉 directions. This result extends the previous results based on isotropic plasticity models stating
that, depending on the precipitate geometry, the diffusive growth may either be increased (planar interface
[57]) or decreased (sphere [25, 56]).
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4 EVOLVING TWO-PHASE MICROSTRUCTURES 4.2 Rafting of Ni-based superalloys during creep

4.2. Rafting of Ni-based superalloys during creep

Next, we consider another situation exhibiting a strong coupling between phase transformation and plasticity,
where an external load drives the plastic flow in the matrix as well as the evolution of the two-phase
microstructure: the rafting (directional coarsening) of γ′ precipitates in Ni-based superalloys under creep
loading (Fig. 1), where the anisotropic plastic flow is likely to interfere with the anisotropic microstructure
evolution. It is worth stressing that using the present model constitutes a significant improvement over
previous works on this phenomenon [26, 58] by accounting simultaneously for all together the ingredients
illustrated in the previous sections and based on a better physical description of plasticity.

Figure 8: Snapshots of the microstructure (colors indicate γ′ variants) in a 2.3 × 2.3 µm2 periodic box at t = 0, 1, 5, 15 and
45 h (from left to right) in the elastic (top) and elasto-viscoplastic (bottom) cases. The arrows point out different types of
coarsening mechanisms (see text for details).

First, the cuboidal microstructure is computed considering only elasticity with stress-free conditions, using
the parameters in Table 2. The 2.3×2.3 µm2 periodic box is discretized with 10242 nodes. It has been shown
that such discretisation is sufficient to correctly describe the microstructure evolution [59, 46]. Starting from
an initial disordered γ phase, the alloy is aged during 16 h at 950◦C. The resulting microstructure (Fig. 8
- left) consists of γ′ cuboidal precipitates, aligned along the cubic directions, separated by well-defined
γ channels (dark regions). The colors of the precipitates identify the four translational variants of the γ′

structure. The volume fraction of the γ′ precipitates is 0.63 and their average size is 160 nm. The γ channels
are 78 nm wide on average. This microstructure is in good qualitative agreement with microstructures
observed in AM1 (Fig. 1), even if the precipitate size is smaller than in the standard heating procedure.
In the second step, a constant uniaxial stress σa=150 MPa is applied along the [100] direction while holding
the temperature at 950◦C (Fig. 8). In these conditions, plasticity is only active inside the γ channels (using
the data in Tab. 3), whereas the γ′ phase behaves elastically. In order to highlight the influence of the
anisotropic plastic driving force on the microstructure evolution, two different creep simulations have been
performed: a purely elastic case (Fig. 8 - top) and an elasto-viscoplastic case (Fig. 8 - bottom).

In both cases, the precipitates self-organize into rafts that are aligned along the direction perpendicular to
the tensile axis. This is in agreement with previous studies of creep showing that, for a [100] loading axis,
the elastic and plastic driving forces lead to the same raft orientation [10, 60, 26]. The comparison of elastic
and plastic simulations reveals that viscoplasticity has consequences at different scales. First, it changes
the kinetics of rafting and the final shape of the rafts. Indeed, although the rafts are already formed after
4h with similar wavy shapes in both simulations, the microstructure continues to evolve towards straight
rafts at 45 h in the elastic case, whereas the wavy rafts are almost frozen after 5h when viscoplasticity is
activated in the γ phase. This last observation is in agreement with the very slow evolution of the rafts
observed in this alloy during the secondary creep regime [61]. It is also consistent with previous works based
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4 EVOLVING TWO-PHASE MICROSTRUCTURES 4.2 Rafting of Ni-based superalloys during creep

on simplified plasticity models [28, 26]. Second, viscoplasticity changes the shape of the precipitates which
become more curvy. This indicates that the anisotropic coherency stresses at the origin of the cuboidal
shapes are partially relaxed. Inside a raft, at the junctions between two variants, the γ/γ′ interfaces are
almost aligned with [110] directions (Fig. 8 bottom right, zoom). Moreover, it can be observed that plasticity
may induce different behaviors depending on the local configuration. Most of the time, viscoplasticity in
the channel slows down the coagulation process of neighboring identical variants (red arrows in Fig. 8).
This increases the number of small precipitates when compared to the elastic simulation. However, in a few
local configurations, coagulation events are observed to be either accelerated (yellow arrows) or qualitatively
modified with the formation of large domains (white arrows).

As expected, the dislocation densities are only positive inside the γ channels with typical spatial distribu-
tions illustrated in Figure 9. It appears that the slip systems A6, D6, B5 and C5 are active only in the γ
channels perpendicular to the loading axis, whereas A3, C3, D4 and B4 are active in all γ channels. On the
contrary, A2, B2, C1 and D1 are not activated during the simulation. To understand these observations, the
activation of the glide systems can be analyzed by assessing the elastic stresses in the cuböıdal microstruc-
ture. Indeed, when the γ channels are very thin because of the high volume fraction of precipitates, the
stress tensors σ⊥ and σ‖ inside the channels, respectively perpendicular and parallel to the loading axis, can
be assumed constant and expressed as:

σ
∼

⊥ =





σ1 + σa 0 0
0 σ2 0
0 0 σ2



 ; σ
∼

‖ =





σ2 + σa 0 0
0 σ1 0
0 0 σ2



 (23)

A rough estimate from the calculations gives σ1 ≈ 0 and σ2 ≈ −50 MPa. In the channels perpendicular to
the loading axis, the primary slip systems are B4, A3, D4 and C3 as well as A6, D6, B5, and C5. They are
associated with the resolved shear stress (σa + σ1 − σ2)/

√
6. It can be reminded that these glide systems

are also those activated during a uniaxial loading of an homogeneous system (§ 3.1). On the contrary, the
resolved shear stress in B2, D1, A2 and C1 is zero, explaining why the corresponding dislocation densities
remain null inside the channels. In the channels parallel to the loading axis, the primary slip systems B4,
A3, D4 and C3 are associated with the resolved shear stress σa/

√
6. The resolved shear stress in the other

slip systems are lower: (σa − σ1 + σ2)/
√
6 and (σ2 − σ1)/

√
6 for A6, D6, B5 and C5, as well as B2, D1, A2

and C1, respectively. Based on this simple analysis, the slip systems expected to be activated in the two
kinds of γ channel are sketched on the right hand side of Figure 9. This analysis qualitatively provides a
simple explanation for the distributions featured by the different dislocation densities.

The analysis can be pursued further by comparing the spatial distributions of the dislocation densities in
the activated collinear slip systems. The spatial distributions in A3 and C3 systems differ strongly for two
reasons. First, near the precipitate corners the resolved shear stresses differ because of the non zero value
of the σ12 component. Second, the collinear interactions in the hardening matrix hinder the activity in a
given system where the dislocation density in its collinear system is high. As a consequence, the spatial
distributions in A3 and C3 are almost mutually exclusive. On the contrary, the collinear systems A6 and
D6 are similarly populated inside the γ channels perpendicular to the loading axis. Indeed, their reduced
shear stresses are equal because σ13 and σ23 are null due to the 2D geometry of the simulation.
Our predictions concerning the distribution of the activated slip systems among the different channels are
in agreement with recent calculations using dislocation dynamics [62], although a few small scale features
have not been captured, such as the formation of dislocations networks at the interfaces. However, the
present model offers two major advantages over dislocation dynamics. First, the microstructure is not static
but evolving as a response to the applied stress and plastic deformation. Second, we are able to address
realistic strain rates, a crucial point when considering a microstructure evolution resulting from the coupling
between diffusion and plasticity. Hence, the present model will be used to address issues still pending such
as creep loadings along [111] or [110] directions for which small misorientations can change the raft direction
[58, 63].
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5 CONCLUSION

Figure 9: Left: dislocation densities in the slip systems A3, C3, A6 and D6 at 5 h. Right: sketch of the predicted active slip
systems in the γ channels (see text for details).

5. Conclusion

We have proposed a Phase Field model coupled to a dislocation density based crystal plasticity model. The
continuous anisotropic viscoplastic model accounts for several important aspects of plasticity in heteroge-
neous materials. First, the plastic behavior depends locally on the phase. Second, the forest hardening
resulting from the short-range interactions between dislocations is included through a hardening matrix in
the Taylor relation whose components are identified on dislocation dynamics calculations taken from the
literature. Third, the size effect of the plastic behavior, i.e. the hardening (resp. softening) induced by the
decrease (resp. increase) of the size of the plastic regions is also included in the model. This effect results
from a back-stress generated by gradients of GND densities. This effect may be rather important in evolving
heterogeneous materials at the mesoscale because the sizes and shapes of the coexisting plastic regions may
differ and, in addition, evolve during thermo-mechanical treatments.

Static configurations have been considered to emphasize that the model accounts for the forest hardening
and plastic size effect. Then, two dimensional simulations have been performed to investigate the influence
of plastic deformation on the microstructural evolution. It has been clearly shown that, during its diffusion
controlled growth, a misfitting precipitate may undergo a morphological transition induced by the crystal
viscoplasticity, as already noted in previous works [56, 55], resulting in an anisotropic shape related to the
anisotropy of plastic slip.

Finally, the model has been used to address the microstructural evolution in Ni-based superalloys in creep
conditions during which plasticity only proceeds inside the γ phase. The parameters of the model have been
carefully selected to mimic the behavior of the AM1 monocrystalline superalloy. Most of the important
physical phenomena, such as the presence of different crystallographic γ′ variants, their misfit with the γ
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matrix, the elastic inhomogeneity and anisotropy, the hardening, anisotropy and viscosity of plasticity are
included in the model. In agreement with experiments, the model predicts that rafting proceeds perpendicu-
larly to the [100] tensile loading axis and it is shown that plasticity slows down significantly the evolution of
the rafts. It is also shown that, depending on the local precipitate behavior, viscoplasticity may either speed
up, slow down, or even qualitatively change the coagulation processes that contribute to rafting.

Concerning Ni-based superalloys, the present model could be used to analyse the microstructure evolution
during creep loadings along complex axis such as [111] or [110], in particular the origin of the sensitivity of
the microstructure evolution to small misorientations of the loading axis [63, 58]. More generally, the work
presented in this paper provides a general framework to analyse microstructure evolutions in other alloys in
which microstructure evolution and plasticity are strongly coupled.

6. Acknowledgments

The authors acknowledge the financial support of the French Agence Nationale de la Recherche (ANR)
under reference ANR-BLAN08-1 321567 (project Couphin). The authors would like to thank E. Berthier,
A. Gaubert and D. Boivin (ONERA) for providing the SEM images.

7. Annex: fcc slip systems

The reduced stress as well as the associated plastic strain are detailed in Table 4 for each glide system of
the fcc lattice using the Schmidt and Boas notations [64].
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System
√

2 m

√

3 n

√

6σr

√

6 ǫp

A2 [01̄1] [1̄11] σ33 − σ22 + σ12 − σ13





0 1/2 1̄/2
1/2 1̄ 0
1̄/2 0 1





A3 [101] [1̄11] σ33 − σ11 + σ12 + σ23





1̄ 1/2 0
1/2 0 1/2
0 1/2 1





A6 [110] [1̄11] σ22 − σ11 + σ13 + σ23





1̄ 0 1/2
0 1 1/2

1/2 1/2 0





B2 [01̄1] [111] σ33 − σ22 − σ12 + σ13





0 1̄/2 1/2
1̄/2 1̄ 0
1/2 0 1





B4 [1̄01] [111] σ33 − σ11 − σ12 + σ23





1̄ 1̄/2 0
1̄/2 0 1/2
0 1/2 1





B5 [1̄10] [111] σ22 − σ11 − σ13 + σ23





1̄ 0 1̄/2
0 1 1/2

1̄/2 1/2 0





C1 [011] [1̄1̄1] σ33 − σ22 − σ12 − σ13





0 1̄/2 1̄/2
1̄/2 1̄ 0
1̄/2 0 1





C3 [101] [1̄1̄1] σ33 − σ11 − σ12 − σ23





1̄ 1̄/2 0
1̄/2 0 1̄/2
0 1̄/2 1





C5 [1̄10] [1̄1̄1] σ11 − σ22 − σ13 + σ23





1 0 1̄/2
0 1̄ 1/2

1̄/2 1/2 0





D1 [011] [11̄1] σ33 − σ22 + σ12 + σ13





0 1/2 1/2
1/2 1̄ 0
1/2 0 1





D4 [1̄01] [11̄1] σ33 − σ11 + σ12 − σ23





1̄ 1/2 0
1/2 0 1̄/2
0 1̄/2 1





D6 [110] [11̄1] σ11 − σ22 + σ13 + σ23





1 0 1/2
0 1̄ 1/2

1/2 1/2 0





Table 4: Reduced stress σr and plastic strain ǫp associated to the glide of the fcc slip systems. m and n are the slip direction
and the normal to the glide plane, respectively.
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