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Abstract
Robust detection of the smallest circulating cerebral micro-emboli is an efficient way of

preventing strokes, which is second cause of mortality worldwide. Transcranial Doppler ultra-
sound is widely considered the most convenient system for the detection of micro-emboli. The
most common standard detection is achieved through the Doppler energy signal and depends
on an empirically set constant threshold. On the other hand, in the past few years, higher order
statistics have been an extensive field of research as they represent descriptive statistics that
can be used to detect signal outliers. In this study, we propose new types of micro-embolic
detectors based on the windowed calculation of the third moment skewness and fourth mo-
ment kurtosis of the energy signal. During energy embolus-free periods the distribution of the
energy is not altered and the skewness and kurtosis signals do not exhibit any peak values.
In the presence of emboli, the energy distribution is distorted and the skewness and kurtosis
signals exhibit peaks, corresponding to the latter emboli. Applied on real signals, the detection
of micro-emboli through the skewness and kurtosis signals outperformed the detection through
standard methods. The sensitivities and specificities reached 78% and 91%, and 80% and 90%
for the skewness and kurtosis detectors respectively.

Index Terms – Signal processing, micro-embolic detection, standard detection, skewness,
kurtosis.1

1 Introduction
Sudden intensity increases in the Transcranial Doppler (TCD) signal are majorly interpreted as
signatures resulting from cerebral emboli. The passage of cerebral emboli through blood ves-
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sels feeding the brain could result in blockage of these vessels and consequently lead to Stroke;
the second cause of mortality worldwide. Embolic strokes constitute up to 14% of all strokes
[1]. Therefore, embolic strokes represent a major death threat and thus the early detection of the
smallest micro-emboli is an important issue for which robust solutions must be found. This early
detection would be a basis for early stroke diagnosis and thus avoiding its occurrence. Nowadays,
TCD is considered the most effective embolic stroke diagnosis system.

Although the characteristics and physical nature of embolic signals, in the TCD signal, have
been well defined, the task of detecting embolic and particularly small micro-embolic signals still
poses a tough challenge. The gold standard method of detecting the passage of emboli is the aud-
ible detection of the sudden ’chirp’ or ’moan’ produced by emboli as well as the visual detection of
the time-frequency representation (spectrogram) generated on the TCD screen. A main limitation
of the gold standard is the inability to audibly detect micro-embolic signals located at the systolic
phase due to temporal and frequency masking effects in audio files.

The standard signal processing method of detecting embolic signals, is based on calculating
the energy from the spectrogram and applying constant thresholds to pick up the emboli which,
according to Rayleigh theory [2] , backscatter ultrasound energy higher than that backscattered
by the surrounding blood. The major limitations in standard techniques reside in the inability of
detecting small micro-embolic signals having lower intensities than the surrounding background
blood mainly at the systolic peak.

As a purpose to detect the smallest micro-emboli, many research works have been carried out.
We list some of the most punctual methods. Frequency filtering methods were introduced in [3]
and [4]. The study reported high detection sensitivity and specificity rates. Subsequently, an online
automated embolic signal detection algorithm based on frequency filtering was developed in [5]
and [6]. The latter system showed high performances in terms of sensitivity and specificity for
particular cases (post carotid endarterectomy). However, in other conditions (Arterial Fibrilation)
the system’s sensitivity and specificity severly decreased. Moreover, the system’s performance in
the detection of low energy micro-embolic signals was arguably less efficient with much lower
sensitivity and specificity. Methods based on detection of sudden changes were introduced in [7].
Non-parametric detection methods mainly the Fourier, WignerVille and wavelet approaches were
compared to parametric auto-regressive methods. The new parametric methods were proven to
be highly performant and efficient in the detection of small micro-emboli. However, the methods
were tested on synthetic simulated Doppler signals and never on a set of real signals. Another
highly productive wavelet-based system was established in [8]. The system achieved a high com-
bination of sensitivity and specificity. However, the system’s rates decreased in the case of low
energy micro-embolic signals. A remarkable offline detection was proposed in [9]. The system
had excellent performance for emboli having high intensities relative to background blood clutter.
However, to be noticed that the study did not take into consideration the detection of weak embolic
signals. The authors in [10] introduced another highly achieving detection procedure based on
the discrete wavelet transform (DWT). DWT allowed major increases in specificity and sensitivity.
Nonetheless, a major deficiency of the DWT implementation was the reduced frequency resolution
at low frequency scales, in which embolic signals are mostly found. In [11], the authors proposed
embolic detection using the adaptive wavelet packet basis and neurofuzzy classification. The ad-
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aptive wavelet packet basis was used to make a sparse representation of Doppler ultrasound blood
flow signals. The method produced highly accurate and robust performances. However when com-
pared to other methods only the sensitivity was taken into account and the correlated specificity
was not calculated. The study submitted in [12] requested the use of Fractional Fourier Transform
rather than the Short Time Fourier Transform; the standard method of detection in TCD systems.
The results showed that discriminating parameters based on the Fractional Fourier Transform help
easier analysis and detection of embolic signals. Despite of its simplicity and acceptable results,
this method was not proven reliably decent for the detection of the smallest micro-emboli. The
method proposed in [13], achieved very high sensitivity and specificity but large detection errors
occurred due to small gaseous emboli exhibiting small reflected signals.

In most articles previously introduced, the main limitation lies in the fact that the information
on which the detection takes place is time-varying while the threshold used is constant. To match
between the time-varying information and the threshold, two solutions can be proposed. The first
is proposing a time-varying threshold as in [14, 15] that matches with the time-varying trend of
the decision information. Second is proposing a constant threshold that matches with the decision
information for which the time-varying trend is removed.

In this work, the methods we proposed of matching between a constant threshold and an energy
free of its time varying trend are based on the use of high order statistic (HOS) of windowed
Doppler energy signal. We tend to prove the skewness and kurtosis as two solid means to detect
micro-embolic signals when asymptomatic caroid artery patients are monitored with a Holter TCD.

2 The Offline Micro-Embolic Detection Unit
As previously mentioned, our objective is to perceive a micro-emboli detector more sensitive and
robust regarding most standard detectors.

In this study, the typical off-line signal processing unit is decomposed into 3 units:

• Unit A, allocated for loading the wave file, 10-second signal segmentation, Short Time Four-
ier Transform (STFT) calculation and instantaneous energy calculation from the STFT;

• Unit B, allocated for standard energy detection on the energy signal obtained in Unit A;

• Unit C, allocated for the new energy detection techniques based on skewness and kurtosis
calculation of the energy signal obtained in Unit A ;
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2.1 Unit A: Doppler signal extraction, STFT and instantaneous energy cal-
culation

The different systems that we want to test, depicted in Figure ??, share a common structure. From
the SD card plugged out from the Holter system and plugged into the personal computer, the Dop-
pler signal is picked up and put in memory. From this Doppler digital signal, the short time Fourier
transform is calculated, first to display the spectrogram and second to estimate instantaneously the
Doppler energy. Calculations of the STFT and the instantaneous energy are carried out repetitively
on 10 second segments extracted from the Doppler signal.

Most commercial TCD ultrasound systems are based on the Short Time Fourier Transform.
The Short Time Fourier Transform is an adapted form of the Fourier transform that analyzes only
a small segment of the signal at a time; a technique called windowing of the signal or also Win-
dowed Fourier Transform (WFT). Short Time Fourier Transform is used when the Doppler signal
within the analyzing window is stationary. In reality, transforming data into the frequency domain
results in loss of time information. By applying the Fourier transform of a signal, it is impossible
to identify when a particular event takes place. The STFT was thus proposed to correct this de-
ficiency. The STFT maps a signal into a two-dimensional function of time and frequency. This
representation is known as the spectrogram.
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The STFT frequency estimator with a sliding window can be formally written as:

S(t, f ) =
∣∣∣∣∫ x(τ)w∗(t− τ)exp− j2π f t dτ

∣∣∣∣2 , (1)

where x(t) is the analyzed Doppler signal, w(t) is a sliding window and * stands for complex
conjugation.

When using the STFT to process embolic signals, it is of great importance that the STFT
parameters are optimized. The three processing parameters are the window size, the window type
and the overlap ratio. Despite the fact that setting the parameters significantly affects the embolus
detection system based on STFT calculations, little work on the effect of the different parameters
has been reported. A fundamental work was reported in [16]. The authors evaluated the effect
of varying the three parameters on embolic signal temporal and frequency resolutions, time of
embolic signal onset and on the power of the embolus at the frequency with maximum power
relative to the average power of the background intensity. Based on [16] and after a preliminary
stage of experimental optimization of the STFT parameters, the STFT in this study is performed
using a 14.6 milliseconds Hamming window with an overlap of 65%.

The instantaneous energy at a fixed time t can be obtained from STFT frequency estimators in
equation (1) by:

e(t) =
∫

S(t, f )d f , (2)

Note that the energy returned by a microembolus would be greater than that returned by bil-
lions of red blood cells (RBCs), since a microembolus is often larger than RBCs. Hence, the
backscattered energy would function as a solid indicator from which the presence of embolic and
micro-embolic signatures could be detected. This justifies why most detectors are chosen to be
mainly based on energy criteria.

2.2 Unit B: Standard micro-embolic detection
The standard detection methods, to which we compare the new proposed methods, are based on
a direct detection of the embolic signatures in the energy signal. An empirical threshold is com-
monly used. This constant threshold can be fixed empirically by the trained user for the entire
examination. It is patient-, operator-, and device-dependent. This threshold is set above the max-
imal background energy of the Doppler signal when no embolus is present [17] ; i.e. the systolic
peak. The micro-embolic standard detection based on a constant threshold is represented in Figure
1 a).

The main limitation of using such method resides in comparing the energy which is time-
varying, to a constant threshold. To match between the time-varying trend of the energy and
the threshold, two solutions can be proposed: either a time-varying threshold as in [15, 18, 14]
that matches with the time-varying trend of the decision information or a constant threshold that
matches with the energy while removing the time-varying trend.
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2.3 Unit C: Skewness and kurtosis-based micro-embolic detection
As previously mentioned, it is a threshold-oriented detection. As shown in Fig. 1 weak embolic
events are impossible to detect with a constant threshold. One way to overcome this issue is
to remove the time-varying trend in the instantaneous Doppler energy. To prove that high order
statistic such as the skewness and the kurtosis are suitable candidates to overcome this limitation,
consider a Doppler signal free of micro-embolic events and assume that the statistical distribution
remains unchanged whatever the time position is even if the mean µi(t) and the variance σi

2(t)
vary with time. Suppose there exists two Gaussian random variables X(t2) = N(µ1(t2),σ1(t2)) and
X(t3) = N(µ2(t3),σ2(t3)). It can be shown for the skewness S that S(t2) = S(X(t2)) = S(X(t3)) = 0
and for the kurtosis K that K(t2) = K(X(t2)) = K(X(t3)) = 3. In this example the skewness and the
kurtosis are stationary since S(t) = 0 and K(t) = 3 for all t. This outcome can be verified whatever
the distribution form while it remains unchanged over all time values. The only change occurs
in the value of the skewness and the kurtosis but not in their stationarity. Consequently, when a
micro-embolic event occurs at a time position t1, the distribution changes. The direct consequence
is S(t1) 6= S(t2) and K(t1) 6= K(t2).

Therefore, we can propose a new detector based on calculating the skewness and kurtosis from
the energy signal. The calculations are performed using a sliding window g(t) where the optimal
window length and overlap ratio are set during a training phase (see Results section).

The skewness is the third order standardized moment. When calculated instantaneously (by the
sliding window) on the energy it is given by the following equation:

S(t) =
E[e(t)−µe(t)]

3

σe(t)3 . (3)

The kurtosis is the fourth order standardized moment. When calculated instantaneously on the
energy it is given by the following equation:

K(t) =
E[e(t)−µe(t)]

4

σe(t)4 , (4)

where µe(t) and σe(t) are the instantaneous mean and standard deviation of the energy while E[]
denotes the expected value.

The micro-embolic detection based on the skewness and kurtosis signals is represented in Fig-
ure 1 b) and c).

In order to complete the detection on the skewness and kurtosis signals, a threshold has to
be set in order to pick up the peak signals. We decided to establish a data-based threshold for
the skewness and kurtosis signals from their respective means µs and µk and respective standard
deviations σs and σk. This threshold is defined as λs = µs +mσs for skewness and λk = µk +mσk
for kurtosis, where m is a parameter whose value is adjusted using an optimization training phase
in a manner that increases the system’s sensitivity and specificity (refer to Results section). The
thresholds are represented in Figure 1 b) and c).
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Figure 1: a) The Doppler energy signal. An empirical threshold is applied to obtain the micro-
embolic standard detection. b) Skewness signal calculated from the windowed energy signal. A
data-based threshold is applied to complete the micro-embolic detection. The mean value of the
skewness signal is 0.7 c) Kurtosis signal calculated from the windowed energy signal. A data-
based threshold is applied to complete the micro-embolic detection. The mean value of the kurtosis
signal is 3.2. Moreover, we choose in b) and c) three time positions: t1 = 0.72s during which an
embolus is present, and t2 = 4.7s and t3 = 8.8s when no embolus is present. We detect in the
case of absence of embolus: S(t2)≈ S(t3)≈ 0.7 and K(t2)≈ K(t3)≈ 3.2 while in the presence of
embolus: S(t1) = 2.8 6= S(t3)≈ 0.7 and K(t1) = 11 6= K(t3)≈ 3.2

3 The Holter system and the Protocol
TCD is a non-invasive, non-ionizing, inexpensive, portable and safe technique, which renders it
as a convenient tool for the detection of cerebral micro-emboli. Long time probe positioning and
the short effective examination duration are the main limitations of traditional TCD systems. The
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Transcranial Holter (TCD-X, Atys Medical, Soucieu en Jarrest, France) shown in Figure 2 allows
prolonged patient monitoring (higher than 5 hours) with the patient no longer attached to a TCD
and does not need to be laying on a bed, but rather can be monitored under naturalistic conditions.
The Holter is equipped with a robotized automatic probe that helps find the best TCD signal and
tracks it automatically during the whole recording.

A database obtained from the Centre Hospitalier Régionale Universitaire (CHRU) de Lille (2
Avenue Oscar Lambret, 59000 Lille, France) is used. Informed consent for Holter monitoring
was obtained from all monitored patients. The recordings were acquired from the middle cerebral
artery of the patients. The ultrasonic wave frequency was 1.5 MHz, the pulse repetition frequency
(PRF) was 6.4 kHz and the ultrasound power was 50 mW/cm2.

After the clinical examination, an analogous conversion is performed on the Doppler digital
signal and then the Doppler signal is sent to a loudspeaker. From the audible Doppler signal
and from the spectrogram displayed on a screen, we detect and count manually the number of
micro-embolic events in order to constitute our gold standard of detection. The gold standard is
subject to inter agreement between three experts of our laboratory. Then, the positions in time
of audibly and visually agreed-on micro-embolic events are noted. This gold standard is used to
assess the results of the different detectors used and validate their performances. Although, the
gold standard detections obtained from experts and non-experts might be the same as stated in
[19], the experience of the latter experts was useful to distinguish between micro-embolic signals
and artifact signals discussed next. We should also point out that listening to the audio files is made
at the normal playing speed and another time at half the normal speed which allows us to detect
micro-emboli previously inaudible due to the well-known temporal and frequency masking effects
in audio files.

4 Results
The different detectors are tested through algorithms we developed using the numerical calcu-

lation software Matlab (Mathworks, Natick, MA, USA). Our database is composed of 18 recorded
signals divided into two categories. The first is the training phase (8 signals) dedicated to determ-
ine the best settings of the detectors used. The second is the testing phase (10 signals) dedicated to
assess the performances of the detectors used under the optimal settings determined in the training
phase.

Two parameters are used to evaluate the detectors:

• Sensitivity or (Detection Rate) calculated as the number of true positive detections / the
number of gold standard detections. True positive detection refers to the detection of an
embolus recorded in the gold standard.

• Specificity calculated as 1 - False Alarm Rate (FAR) the latter FAR being the number of
false positive detections / the total number of detections. False positive detection refers to
the detection of an embolus not recorded in the gold standard or in other words an embolus
which has not crossed the sample volume.
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Figure 2: a) Robot probe and b) Holter Transcranial Doppler System (TCD-X, Atys Medical,
Soucieu en Jarrest, France)

4.1 Training phase results
Since the threshold applied on the energy signal to achieve the standard detection, is empirically set
through the choice of the user, different micro-embolic detections could be obtained. To overcome
this we initialize a training phase to pre-set the best empirical threshold to be used in the testing
phase. 3 to 9 dB values are used. Table 1 shows the empirical threshold that best maximizes the
sensitivity and specificity.

Moreover, since the skewness and kurtosis calculations are performed using a sliding window
g(t) on the energy signal, an experimental test on the training phase signals is initialized to de-
termine the optimal length of the window g(t) and the optimal overlap ratio. The optimal temporal
window length is 7.3 milliseconds and the optimal overlap used is 95%. Also, using these settings
we test in the training phase the best data-based threshold λs = µs +mσs and λk = µk +mσk for
the skewness and kurtosis signals respectively. Values of m ranging between 3 and 7 are tested.
Table 1 shows the data-based threshold for the skewness and kurtosis signals that best maximizes
the sensitivity and specificity.
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Table 1: Training phase results of the optimal thresholds that best maximize the sensitivity and
specificity for the standard energy detector, and skewness and kurtosis based detectors.

Optimal Threshold that max-
imizes the sensitivity and spe-
cificity

Sensitivity
(%)

Specificity
(%)

Standard Energy Detector 5 dB 67% 58%

Skewness Detector λs = µs +4σs 76% 91%

Kurtosis Detector λk = µk +5σk 77% 91%

4.2 Testing phase results
Table 2 represents the testing phase results for the three different energy detectors. For the standard
energy detector with empirical threshold, the sensitivity is 65% and the specificity is 60%. For the
energy detector based on skewness calculation the sensitivity is 78% and the specificity is 91%.
For the energy detector based on kurtosis calculation the sensitivity is 80% and the specificity is
90%.

The results presented, show that the new detectors are able to significantly increase the spe-
cificity compared to standard detection (more than 30%). Moreover, the sensitivity achieved by
the new detectors is increased by 13 % for the skewness detector and 15% for the kurtosis detector
compared to that achieved by standard detectors. These results assert the accuracy and superiority
of the detection based on skewness and kurtosis calculation of the Doppler energy signal over the
standard detection applied directly on the Doppler energy signal.

5 Discussion
The results obtained were clear. The methods based on HOS over-passed by far the standard
method based on the second order statitics. The reason explaining such superiority lies in the
HOS sensitivity in modifying the distribution form. Knowing, that the occurrence of a micro-
embolus superimposed on the Doppler energy signal imposes changes in the distribution of this
signal, we propose to use the skewness and kurtosis as new tools for micro-embolus detection.
During embolus-free periods the Doppler energy signals’ distribution is fixed and its skewness and
kurtosis are never altered. They do not show any variations. However, in the presence of a micro-
embolus superimposed on the energy signal, the skewness and kurtosis signals are altered and the
embolus is attributed with a peak whose peakedness level is higher than all the other points of the
signal. This detection can outperform standard methods. After being tested on a set of real signals,
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Table 2: Results (Sensitivity and Specificity) for the standard energy detector and the new detectors
based on skewness and kurtosis calculations of the Doppler energy signal.

Detector Type True Positive False Positive Sensitivity
(%)

Specificity
(%)

Gold Standard Detections=136

Standard Detection 88 58 65 60

Skewness Detection 106 10 78 91

Kurtosis Detection 109 12 80 90

the skewness and kurtosis-based detection offered significant improvements including very high
specificity reaching up to 91% and 90% respectively compared to 60% achieved by the standard
method. In addition, the sensitivity is increased from 65% for standard methods to 78% and 80%
for skewness and kurtosis-based detectors respectively.

Consequently, we can affirm that skewness and kurtosis can offer a robust and more reliable
detection than standard detection methods and thus can be considered as new techniques for en-
hancing micro-embolic detection systems.

In view of the fact that we have proposed 2 detectors, one based on skewness detection and
the other on kurtosis detection, it is convenient to give note that the two detectors perform very
similarly and yield very close results. The only difference that could be observed is that the kurtosis
signal displays small fluctuations around the embolic peak detected while the skewness signal
fluctuates more strongly around the embolic peaks. This provides the kurtosis detection with a
small advantage in terms of the detection threshold which can be more easily and robustly set.

6 Conclusion
In this research study, we propose two detectors based on the calculation of the skewness and
kurtosis of the Doppler energy signal, as a tool for an enhanced cerebral micro-embolus detection.
Compared to the standard detector where the detection is performed directly on the energy signal,
the skewness and kurtosis-based detectors allow increasing both the sensitivity and the specificity.
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This study emphasizes that standard micro-embolic energy detectors with empirical threshold
still pose serious difficulties for the robust detection of micro-emboli. It also shows that detectors
incorporating detection based on skewness and kurtosis calculation from the energy allow a much
advanced detection of micro-emboli, precursors of coming large emboli with strong stroke risks.
Thus using these simple and straightforward detectors would be an additional facility boosting the
efforts to reduce the occurrence of strokes.

The upcoming step would be attempting to increase the overall performance of the techniques
particularly in terms of sensitivity and validating the developed algorithms on a larger database.
Moreover, we are on course of including in the whole detection system, automatic artifact rejection
techniques rather than using manual techniques.
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