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Abstract—There is an increasing need to quickly understand
the contents log data. A wide range of patterns can be computed
and provide valuable information: for example existence of
repeated sequences of events or periodic behaviors. However
pattern mining techniques often produce many patterns that have
to be examined one by one, which is time consuming for experts.
On the other hand, visualization techniques are easier to under-
stand, but cannot provide the in-depth understanding provided
by pattern mining approaches. Our contribution is to propose a
novel visual analytics method that allows to immediately visualize
hidden structures such as repeated sets/sequences and periodicity,
allowing to quickly gain a deep understanding of the log.

I. INTRODUCTION

A large part of the huge volume of data available nowadays
are logs of some real world or computer processes. A log
is a sequence of timestamped events, where events are of
arbitrary complexity but often share a similar structure, usually
tuples of values or symbols. Such logs can hold valuable
knowledge: for example analyzing a network log can show
that an undesired intrusion took place and help to understand
the intrusion method.

Possible analysis of computer logs can discover a repeated
structure (main “regime”, disruptions of this main regime, or
changes between stable regimes. Understanding what consti-
tutes a regime is not trivial: it consists of some patterns of
repetition in the events, and these patterns can, depending on
the data and the use case, be of arbitrary complexity. They
can be as simple as a mere repetition of a fixed set of events,
or as complex as the respect of a complex sequencing of the
events combined with periodicity constraints in the repetition.

It would be of tremendous help to people analyzing logs to
have a way to view “at a glance” how such structures exist
over the trace, with the most prominent of those structures at
each period of the trace as well their evolution over the trace.

Existing methods for analyzing traces fall short to these
expectations. Many methods are based on data visualization.
They exploit various aggregation techniques to show the raw
data of the trace in an understandable way while trying to
minimize visual clutter. These methods do not explicitly show
the structures described above. Depending on the level of
abstraction chosen, some of these structure can be identified
by the user’s eye. On the other end of the spectrum are data
mining methods, more precisely pattern mining methods [1],
[2]. These methods are designed to find repeated structures
such as frequent itemsets, frequent sequences of various kinds,
or periodic patterns. However, their output is served as a

(long) list, where results have to be examined one by one.
Most visualization techniques for pattern mining results focus
on the problem offering a navigational interface over the set
of results, and we are not aware of any approach showing
different patterns in context withing the data, allowing an “at
a glance” understanding of complex structure evolution in the
data.

The contribution of this paper is to propose a novel vi-
sual analytics technique to understand at a glance the main
structures existing in the data, as well as their evolution over
time. This technique is designed for traces, and combines
a data visualization approach with techniques inspired from
pattern mining, but simplified for the purpose of making an
understandable visualization.

Our experiment demonstrates the interest of our approach
on a real use case: the execution trace of an embedded system
and shows how.

The paper is organized as follows: Section II starts by
exposing related work for visualizing the complex structures
discovered by pattern mining methods. Then, Section III
provides the main definitions necessary for the paper, and
Section IV describes our algorithm to compute the strutures.
Section V explains our structure visualization technique. The
interest of our approach is demonstrated experimentally in
Section VI, and Section VII concludes the paper and gives
some perspectives.

II. RELATED WORK

Many research have been done to propose visualization
techniques for traces. Most of them focus on providing an
overview of the whole trace using various aggregation tech-
niques to mitigate the aliasing when rendering a large volume
of data. Smart Traces uses multiple views that show different
aggregation level [3]. Viva aggregates separately the event
producers and the time axis and uses a treemap to visualize the
results [4]. Refer to the survey on performance visualization
tools for a complete review [5]. However, to our knowledge,
there exists no techniques to visualize the structures in a trace
to help the understanding of the main regime of the system
and the potential perturbations.

There has been a long interest to provide visualization
techniques helping to sift through the output of pattern mining
algorithms. These are the closer work to our approach, we give
below an overview of the existing work in this field.
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The initial approach was based on using parallel coor-
dinates [6], [7] to visualize association rules and frequent
itemsets. An itemset with k items (a k-itemset) is represented
with curves linking k vertical axis. The thickness of the links
encodes the support of the itemset. The items are placed
on vertical axis and ordered by groups. Items belonging to
the same group are ordered according their frequency in the
dataset. The number of vertical axis depends on the longest
itemset to represent. The different items are linked together
by lines that connect the vertical axis, thus, a line visually
presents an itemset. The pre-ordering done on the axis aims
to improve the readability of the representation by minimizing
intersections between the lines. The main limitation using
parallel coordinates is the lack of scalability. When many
patterns need to be visualized, the visualization becomes too
clutter with a large number of crossing lines making difficult
the reading of a pattern.

CloseViz [8] adopts a different strategy. It visualizes only
closed patterns with a single line and represents the items
using a circle. It has the advantage of reducing significantly
the amount of patterns to visualize. It is based on previous
works FIsViz [9], WiFIsViz [10] and FpViz [11].

FIsViz [9] encodes the itemsets with polylines in a 2D
rendering. The horizontal axis has k nodes for a k-itemset. The
support of the items are encoded on the vertical axis. Similarly
than with parallel coordinates, this technique quickly becomes
tedious to read with many line crossing. WiFIsViz [10] and
FpViz [11] aims to solve this issue by grouping the patterns us-
ing common prefixes and horizontal lines instead of polylines.
While the visualization benefits from these improvements,
discovering relationships between the patterns and insightful
information about the dataset remains a difficult task.

Other visualization techniques use a radial layout. FP-
Viz [12] is a visualization tool for frequent itemsets. The items
are placed on concentric circles and are represented by circular
segments whose length encode its frequency. Therefore a k-
itemset is rendered with k circular segments. The support of an
itemset is encoded using a color-scale from green to red. When
working with a large amount of itemsets, the information
becomes tedious to read due to a high clutterness.

Bothorel et al. [13] proposed an other technique based on
a circular layout, placing the itemset on concentric circles
instead of items. The itemsets having the same cardinality
are located on the same circle. The 1-itemset are disposed
on the external cicle and the k-itemsets on the kth circle.
Then, the frequent itemsets of each two neighbor circles are
linked together. To improve the readability, an edge bundling
algorithm is applied to simplify the graph between all the
consecutive circles.

PowerSet viewer [14] is an other frequent itemset visu-
alization tool. The screen space is divided into horizontal
bands, one band contains the itemsets of a given cardinality,
the 1-itemset being on the top. An itemset is represented by
a rectangle and its frequency is encoded in the color. This
technique allows to have an overview of the frequent itemsets
in the data but lack representation of the support, and is limited

to a single type of pattern.
Note that there is a promising line of research in that field

is to provide interactive interfaces for navigating the space of
patterns, such as MIME from Goethals et al. [15]. Such work
are not directly related to ours as they are designed around
interactions with the user to explore a potentially huge space
of patterns, while we focus on a smaller space of patterns but
aim at an immediate understanding of the visualization.

All the previous work make the understanding of the
individual items of the itemset a priority. They also rely
on the complete set of frequent itemsets. Our approach is
different: we consider patterns that are short (only 2 or 3
items, fixed length) but we put the focus on the different
structures organizing these items: set, sequence, periodicity.
Our visualization is built around this idea: the structures are
the main information shown by the visualization, avoiding
combinatorial explosion while showing valuable and usually
unseen information.

III. DEFINITIONS AND NOTATIONS

When analyzing logs or more generally time-oriented data,
the goal is to understand the global and local trends inside
the data and to find the outliers. A large panel of knowl-
edge discovery and data mining (KDD) techniques focus on
searching frequent patterns for meaningful information with
no previous knowledge on the data. They return the results
under the form of frequent patterns. Such patterns can be
itemsets [16], periodic itemsets [1] or sequential patterns [17].

Depending on the nature of the pattern, the amount of in-
formation conveyed vary. For instance, knowing the frequency
of an itemset gives less information about the dataset than
knowing the frequency of a sequence which itself convey less
information than the frequency of a periodic sequence and so
on. The more complex is the nature of a pattern, the more
information is given to the analyst. Moreover, revealing how
an itemset specializes into a sequence with the same items can
also indicate relevant information or help filtering-out some
parts of the dataset. In this section, we give basic definition
in the context of mining logs and introduce the notion of
structure.

A. Basic Definitions

Logs store a sequence of events. Each event has different
properties depending on the nature of the logged system or
application but common characteristics remain stable. All the
events have a timestamp that corresponds to the moment when
it has occurred. We note ts(e) the timestamp of the event e.

Each event has also a type, noted as et(e). We note the
set of event types as T = {et0, et1, . . . , etn} and |T | is the
total number of event types in the data. For instance, in the
case of web server logs, the event type can be the HTTP
request whether it is a GET, POST, etc. When working with
execution traces, the event type is the operation executed such
as a context switch, an entry or exit of an interrupt or a system
call.
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We also consider that events are generated by “event pro-
ducers” that we call actors. An actor is an entity that produces
at least one event of the dataset. We noteA = {a0, a1, . . . , an}
the set of actors producing at least one event in the dataset.
When working with network logs, an actor can be an IP
address. In the context of debugging embedded systems using
execution traces, an actor is an interrupt, a process, a kernel
module, etc. We note actor(e) the actor of the event e.

Our dataset D is a set of events contained in the log chrono-
logically ordered {e0, e1, . . . , en}. Given an event e ∈ D,
its identifier id(e) is its position in the dataset. We have
∀ ei, ej ∈ D, ts(ei) < ts(ej) if and only if id(ei) < id(ej).

The set of items I = T ×A = {i0, i1, . . . , in} is the set of
all the event types in the data tagged by an actor. This ensures
a finer-grained detailed patterns: it enables to differentiate an
event type et produced by the actor ai from an event type
et produced by the actor aj (i.e a system call performed
by two different processes will be differentiated in the set
of items). An item x occurs in the dataset D if and only if
∃ e ⊆ D, actor(e) ⊆ A, et(e) ⊆ T , et(e)× actor(e) = x.

An itemset, noted X = {x0, x1, . . . , xn} where xi is an
item i.e. xi ∈ I is an unordered set of items. A sequence,
noted S = 〈x0, x1, . . . , xn〉, where xi is an item i.e. xi ∈ I,
is an ordered set of items. A sequence S is a specialization of
the itemset X if and only if ∀xi ∈ S, xi ∈ X .

A sequence S ⊆ X occurs in the dataset D if and only
if ∀ xi, xj ∈ S, j − i = 1, ∃ em, en ∈ D, ts(em) <
ts(en), id(en) − id(em) = 1, et(em) × actor(em) =
xi, et(en) × actor(en) = xj . An itemset X occurs in the
dataset D if and only if there is at least one sequence S that
occurs in D so that S is a specialization of X .

B. Structure

The most basic information computable for an itemset X is
its frequency i.e. its number of occurrences in D. The support
of an itemset X , noted supp(X), is the total number of occur-
rences of its specialized sequences: supp(X) =

∑
i supp(Si),

with Si ⊆ X and supp(Si) the number of occurrences of the
sequence Si in D.

A more sophisticated information about an itemset is the
repartition of its specialized sequences. An itemset having k
items, a k-itemset, contains k × k sequences of k items.

As an example, the sequences 〈A,A〉, 〈A,B〉, 〈B,A〉 and
〈B,B〉 are all specializations of the 2-itemset {A,B}.

We define as dominant the sequence S that has the highest
support supp(S) among the specialized sequences of the
itemset X . We note the dominant sequence of an itemset X as
SX . This information is important to understand time-oriented
data: when considering a couple of events ei and ej , it is
insightful to know whether ei occurs before ej in most cases
or not. If not, none of these sequences brings more information
about the data than the itemset {ei, ej}.

Knowing whether a sequence is periodic or not also brings
meaningful insights about the log. Given a sequence S and a
period p, we define (S, p) the set of consecutive occurrences of
S separated by p items in the dataset. A sequence is periodic

if |(S, p)| is superior to a minimum threshold ρ. The coverage
of a periodic sequence is defined as supp(S)

|(S,p)| .
This provides information about whether S is very periodic

or occurs mostly at irregular time intervals. Thus, for a given
itemset X , we can compute the periodicity of each of its
specialized sequences and determine what is the maximal
periodicity among all the sequences of an itemsets, noted as
pX .

With the combination of the support of an itemset, the
repartition of its sequences with their periodicity, it becomes
possible to find the sub-parts of the dataset that are mostly pe-
riodic as well as whether the dataset contains mainly itemsets
(no dominant sequences) or sequences.

We formalize this intuition with the concept of structure for
an itemset. We define a structure as follows:

Definition 1. A structure is a quadruple
(X, supp(X), SX , supp(SX), pX) with X ∈ X , SX the
dominant sequence of the itemset, supp(SX) the support of
SX and pX the maximal periodicity among the specialized
sequence of the itemset.

Note that in this paper we focus on the properties of itemset,
sequence and periodicity, but other properties could easily be
integrated in our tuple notation.

Let consider the following example:

〈A,B〉 〈A,B〉

{A,B}

〈B,A〉 〈B,A〉

25%

20%

80%

75%

In this example, the itemset X = {A,B} containing the
items A and B is present in the dataset D respectively 20%
and 80% of the time under the sequences 〈A,B〉 and 〈B,A〉.
The dominant sequence is SX = 〈B,A〉 and its support is
supp(SX) = 0.8. The period p of each sequence as well
as a coverage of the sequences respecting this period has
been computed. There is respectively 25% and 75% of the
sequences 〈A,B〉 and 〈B,A〉 that are covered by the periods.
The maximal periodicity of X is pX = 0.75. It gives a
structure noted ({A,B}, 〈B,A〉, 0.8, 0.75).

In this paper, we propose a novel interactive technique to
visualize these structure, normally hidden to the users and
show how it make apparent the underlying structures in the
data such as periodic behaviors and perturbations.

IV. STRUCTURE COMPUTATION

In this section, we explain our algorithm to compute effi-
ciently all the parameters of the structures. The goal of our
tool is to show information usually hidden with the support of
the structures. Therefore, it is important to keep the patterns
as simple as possible and being able to quickly compute all
the information necessary for the structures. Moreover, the
computed results do not need to have an exact precision
since they will serve as the input of a visualization. To fulfill
these constraints, we designed an algorithm that computes the
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patterns in a naive way but in a time short enough to be used
in an interactive visualization.

Algorithm 1 Build structures
Input: Dataset D, itemset I, minimum sequence supportρ,
number of time windows W
Output: all the structures that occur in the time windows of
D

function BUILDSTRUCTURES(D, I, ρ, W )
structs← [ ]
TW ← SLICEDATASET(D, W )
for all w ∈ TW do . in parallel for each w

freqItems← BUILDFREQITEMS(w)
S ← BUILDSEQUENCES(freqItems)
seqOccs← FINDSEQOCC(W, S)
P ← FINDPERIOD(seqOccs)
structsw ← BUILDSTRUCT(seqOccs, P, ρ)
ADD(structs, structsw)

return structs

The function SLICEDATASET splits the dataset D into W
time windows. Slicing the dataset is an important parameter to
set the precision of the results. It greatly influences the nature
of the patterns discovered by the algorithms. When working
with time-oriented data, the analysis becomes more local as the
number of time windows to slice the time dimension increases.
The task of the analyst may be to analyze globally the dataset
to study the high-level properties of the structures. In this case,
the dataset will be sliced in a few number of time windows. In
contrary, comparing local behaviors can support the discovery
of perturbations by detecting a different sets of structures in
a time window. For each time slice, all the parameters of
a structure described in section III are computed for all the
possible itemsets. Doing this produces local results detailed for
each time slice and makes possible to detect regular behavior
across of the windows as well as perturbations that happened
in a time slice. The structures are computed for each time
window in parallel.

The function BUILDFREQITEMS compute the number of
occurrences for each item xi ∈ I. It returns a set of items
freqItems so that the occurrences of all the items x ∈
freqItems covers 80% of the total number of the occurrences.
By doing so, we are able to discard a large number of items
that occur a few times and mitigates the computational time
of the algorithm. Also, as the visualization aims to show the
tendency inside the data, the sequences having a very low
support are unlikely to be visible on the final rendering. Thus,
discarding the least items that occur the least in the dataset
prevent the sequences whose support supp(S) is very low.

The function BUILDSEQUENCES generates exhaustively
all the possible sequences from the items contained in
freqItems. It returns a set S.

FINDSEQOCC find all the occurrences for the sequences in
freqItems. This function is the most time consuming task of
the algorithm so an efficient algorithm has to be used. We
have implemented the SOG algorithm [18]. It is based on

bit parallelism and q-Grams to perform exact multiple pattern
matching in linear time. In our case, the alphabet Σ is the set
of items I, whose size |Σ| = |I| = |T × A|, can potentially
be very large. The pattern to search in the dataset are the
sequences for which we limit their size to be small. We have
selected the SOG algorithm since it is the best performing
algorithm for multiple pattern matching with a large alphabet
size and a small pattern length [19]. We use 2-gram in our
implementation: benchmark shows that using 3-gram is much
slower and memory consuming than using 2-gram for up to
105 patterns.

The method FINDPERIOD takes as parameter all the posi-
tions of the occurrences for each sequence. For each sequence,
it performs a Fast Fourier Transform (FFT) and select the
period p which allows to maximize |(S, p)|.

The final step, implemented in the function BUILDSTRUCT
is to construct the structures from the results previously
computed. It returns all the structures sorted according to
support of the itemsets.

V. STRUCTURE VISUALIZATION

Visualizing the structures as defined in the previous section
can reveal meaningful information about the underlying be-
havior hidden in the data. According to Shneiderman [20],
a good visualization technique has to provide a pipeline
as Overview first, zoom and filter, then details-on-demand.
When designing our technique, we followed this guideline and
integrated an overview to visualize all the structures with a
detailed representation of a single structure.

We begin by explaining which tasks the visualization tool
has to support and what are the benefits it brings to leverage
the difficulty of analyzing the structures. We continue with
the description of the design of the visualization to render
in a clear way a huge amount of structures, providing an
overview of the dataset to understand the global trends and
perturbations. The structure overview is coupled with a log
overview, a stacked graph of the actors. Finally, we explain
how a structure selected by the user is rendered in a detailed
visualization. Figure 2 shows the whole interface with the
different views described below.

A. Goals

In this work, we propose a visualization technique to enable
the user to quickly understand the hidden structures in the data
and designed to address the following goals:

1) Quickly understand the underlying structures contained
in the dataset. Data mining algorithms provide a very
large number of patterns in most cases. These results
contain meaningful insights to support the understanding
of the dataset. However, it is a very complex and time
consuming task to take advantage of them and this task
requires an expert. Providing an intuitive visualization
technique is mandatory to harness the patterns and to
shorten the time needed for the analysis.

2) Simplified parameters settings. Data mining techniques
have different parameters to tune their output. The
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visualization has to provide user interactions to simplify
the exploration of the parameter space.

To better support the understanding of the structures, the
visualization has to show the nature of the patterns whether
it is an itemset, a sequential pattern and if it is periodic.
For a given itemset, the information about the sequences
repartition has also to be conveyed by the visual representation
as well as if the sequences are periodic or not. Therefore, the
visualization takes as input the support of the itemsets, the
repartition of its sequences and the percentage of sequences
covered by its period if any.

B. Log Overview

When analyzing logs, it is important to understand the
repartition of the events across time. We chose to integrate
a stacked graph, located at the top of the visualization, to
represent the event density for the whole dataset (Figure 2a).
The layers correspond to the actors of the log. To build the
graph, we slice the trace into p time windows where p is the
horizontal resolution in pixels of the screen space available.
For each time window, we compute the event density of each
actor and stack the values.

We chose a stacked graph [21] for its readability and for
its capacity to convey two bits of information at any time
of the trace: (1) the global number of events is visualized
on the overall shape of the graph and (2) the thickness of a
layer encodes the number of events an actor has produced at
a specific time.

C. Structures Overview

The algorithm to compute the structures takes as parameter
a number of time windows. Since the task cannot be pre-
determined, this parameter is controlled interactively by the
user at the moment of the analysis. By enabling this interac-
tions, our tool supports the study of the evolution of behavioral
patterns from a global to a local point of view.

1) Many Structures Visualization: To provide a clear vi-
sualization that does not overwhelm the user by the amount
of information, a structure has to be represented in a
compact yet clear way. Let consider a structure S =
(X, supp(X), SX , supp(SX), pX). The different components
of the structure are mapped on visual parameters. Figure 2a
shows the structures visualized below the log overview.

A structure S is represented with a rectangle whose support
supp(X) is encoded in the height of the rectangle. The vertical
space is completely filled with all the itemset. Its width is
constrained by the size of the time slice. In each time window,
the structures are ranked according to the support supp(X):
the greater its support, the higher its position. By doing so,
more visual space is given for the most frequent itemsets
which are concentrated at the top of the rendering. It ensures
that the most active actors are quickly detected by the eye.

Next, the color encodes the information indicating whether
an itemset has a dominant sequence or not. We define a thresh-
old ρ to determine if the itemset has a dominant sequence. If
ρ ≤ supp(SX), the itemset X has a dominant sequence. In this

Dominant sequence Periodic sequence Rendering
7 0%
7 40%
7 90%
3 0%
3 40%
3 90%

TABLE I: Visual representations of a structure

Fig. 1: Visualization of a structure. Each branch corresponds
to one of its specialized sequence SX that occurs at least once
in the dataset. The thickness of the first and second segments
respectively encode supp(SX) and pX . The branch colored in
red represents the sequence currently highlighted by the user
while exploring the data. On the top left are rendered all the
items belonging to the itemset of the structure.

case, the rectangle is rendered in blue otherwise, the rectangle
of the itemset is filled with black. Areas of the logs where the
data are more structured can be quickly spotted.

Lastly, we encode in the channel alpha (i.e. in the opacity)
of the rectangle the periodicity of the sequence SX , pX .
The more a sequence is periodic, the more transparent is
the rectangle representing the structure. When working with
dataset where the structures are mostly periodic, it is important
to fade out the periodic data since it corresponds to the correct
behavior. Table I shows different rendering of an itemset
depending on the value of the parameters.

When hovering a structure, all the rectangles representing
SX become red (Figures 2b, 3) as well as the layer of the
actors present in the sequence. This shows the distribution of
a single sequence over the whole dataset. A visualization of
the structure also appears next to the cursor to show a detailed
representation of the itemset, its sequences and periodicity.

D. Visualizing Structure Details

Following the Shneiderman’s guidelines, more details can
shown when requested by the user. When hovering a structure,
a tooltip appears representing all the values of the structures.

On the overview, to better make apparent the regular
behavioral patterns, partial information about the itemsets
and their specialized sequences are shown, hiding important
information: how an itemset specializes into its sequences and
what are precisely the items.

The tooltip shows these information using a Sankey
diagram (Figure 1). Traditionally used to represent flow
of energy and resources, it encodes here the differ-
ent parameters of a structure. The figure represents the
structure (X = {C@2401, E@2401, C@Idle}, SX =
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〈C@Idle, C@2401, E@2401〉, supp(SX) = 0.53, pX =
0.46).

On the top left of the tooltip, the items of X are listed next
to a square filled with the color of the actor used in the log
overview. The root of the diagram (on the left) is the itemset X
of the structure, in black to be consistent within the different
views as an itemset with no dominant sequence is rendered
in black. The itemset split into different branches, one branch
per specialized sequence of the itemset that has at least one
occurrence in the dataset. The branch are colored according to
the user defined threshold ρ that set the minimum coverage of
a periodic sequence and their thickness encodes the support
of the sequence. The branch corresponding to the highlighted
structure is colored in red. At the end of each branch, the
sequence is represented using one square per item. Each square
is filled with the actor’s color of the item and the event type
is written on the square.

On Figure 1, the highlighted branch is half the height of the
itemset since supp(SX) = 0.5.

The last segment of the branches corresponds to pX . The
wider the last segment, the higher pX . It shows intuitively to
the user how periodic the sequences are. In our example, we
have pX = 0.46, thus the last segment is 0.46× as wide as
the previous segment.

VI. EXPERIMENT

In this section, we present a use case with execution traces
for embedded systems. We begin by describing the input
data, what are the events, the event producers, the actors
and how we built the dataset D. The experiment shows that
visualizing structures can efficiently reveal structural behavior
and perturbations quickly.

The data are traces recorded during the execution of a
streaming multimedia applications used to play music and
video.

Multimedia applications receive the video and/or the music
as an encoded stream. They have to decode it in real-time and
send it to one or several output such as a television or speakers.
In order to provide a smooth playback to the end user (i.e. no
video artifacts or audio glitches), the decoding process has
to respect some QoS properties [22]. Typically, when playing
a movie, the decoding application has to output 25 frames
per second. Under these conditions, traditional debuggers are
irrelevant since using breakpoints pauses the execution and
breaks the real-time constraints. Instead, the typical debugging
method in this context is to record a trace during the execution
of the application and analyze it post-mortem. There exists
different tools to record execution traces such as KProbes
that comes natively with the Linux kernel [23] or commercial
solutions like KPTrace developed by STMicroelectronics [24].

Execution traces basically store all the events that occurred
during the execution of an application on a system. It stores
low-level events such as entry and exit of interrupts, events
that occurred at the operating system level such as the system
calls and the context switches and the entry and exit of the
user applications. The dataset D contains all the events that

occurred during the execution. The set of actors A are the
processes and interrupts that produced at least one event during
the execution, noted with their process id (PID) in the tool.
The event types T are the instructions executed. It can be a
context switch (C), an entry (E) or exit (X) of a system call,
an entry or exit of an interrupt respectively noted as I and i
in the visualization. Examples of items contained in the set of
items I = A × T are C@1234 (a context switch on process
1234), E@4321 (a system call performed by the process
4321) and i@Interrupt 567 (exit of the interrupt 567).
In this usecase, we show how understanding the structures in
the data supports the developers to debug their application.

The stacked graph at the top represents the event density
for each of these producers, hence a peak on the graph shows
a local increase of the number of events on the system. In
this use case, the execution trace has been recorded on an
embedded system that decodes a multimedia stream for the
television. The stream is received through the network on the
Ethernet port.

During the execution, the user has changed three times the
channel to decode (channel zap). These moments correspond
to the three peaks of activity that appear on the stacked graph
(see the log overview on Figure 2).

On the structure overview (Figure 2), three horizontal areas
appear: a gray area on the top, a clear middle section and a
mostly blue area at the bottom. The top grey bar shows that
the most frequent structure on the whole trace is a structure
that has no dominant sequence and limited periodicity. It
involves a single process (the process 2400) that performs
a huge amount of system calls (Figure 2b). The itemset has
no dominant sequence due to its small size (2 items) and a
high frequency. Its behavior is disturbed when a zap occurs:
there is a much higher number of frequent itemset involving
different processes. The structures show that during a zap, a
single process mostly works, performing many system calls
(Figure 2c). No periodic sequence appears: this reflects the
perturbation of periodic decoding behavior when switching the
stream to decode.

A very periodic sequence occurs regularly among the most
frequent structures and appear as white bands on Figure 2,
highlighted on Figure 3a. It shows a behavioral pattern at a
lower frequency involving an interrupt named GIC, namely
General Interrupt Controller (Figure 3). It consists in a general
hardware resource to manage the interrupts.

The visualization shows a periodic sequence: it consists in
the entry and the exit of the interrupt and shows a periodicity
breaking by a blue bar (noted as (?) on Figure 2a). It shows
the developer that an abnormal behavior happened in this time
window.

The middle section contains a large amount of periodic
structures. This is induced by the nature of the application:
decoding a multimedia stream is a very periodic task: frames
are decoded at a constrained rate (typically 25 frames per
second) to ensure a smooth video playback. On the bottom
we have many sequences. This is a normal behavior since the
functions are called sporadically, generating many entry/exit
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Zap Zap Zap(?)

(a) Global visualization interface with the log overview on the top and the structure overview on the bottom.

(b) Dominant structure in the trace. It involves a single process whose PID is
2400 that performs a huge number of system calls.

(c) Dominant structure during a zap channel. The process
1561 performs many system calls.

Fig. 2: Structures of an execution trace. The orange rectangle on Figure 2a corresponds to the area for Figure 2b and Figure 2c.

events in the trace.

VII. CONCLUSION

We have presented a novel visual analytic technique that
shows the hidden structures in logs. It enables the analysts of
such logs to understand “at a glance” the repetitive behaviors
that can be complex patterns involving sequences of events
and periodicity, depending on the nature of the data. The
regular behavior that implies repetitive structures are easily
detected as well as the perturbations over the trace. Through
an experiment, we have shown the relevance of our technique
for the analysis of execution traces, proving our approach can
be applied with a broader type of data than computer logs.

Our work opens several perspectives. A direct perspective
is to improve the performances of the computation algorithm
for the structures to achieve an interactive response time
(up to 10ms). The core of our algorithm is the multiple
pattern matching SOG algorithm. Existing work has described

a solution to implement it on GPU to reduce significantly the
computation time [25].

Other perspectives consist in investigating visualization
techniques of more complex structures. In this work, we
have used the itemsets, sequences and periodic sequences as
patterns. An other type of data structure can include a graph for
the study of structures in logs of dynamic graphs. For instance,
this could be used to visualize the evolution of structures in
social graphs such as Twitter or Facebook. The main challenge
relies in the mapping of a larger number of parameters of a
structure onto visual attributes while having an uncluttered
rendering to keep visualizing such structure “at a glance”.
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