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Abstract

The remotely sensed land surface temperature (LST) is a key parameter to monitor surface energy and water fluxes
but the strong impact of topography on LST has limited its use to mostly flat areas. To fill the gap, this study
proposes a physically-based method to correct LST data for topographic -namely illumination and elevation- effects
over mountainous areas. Both topographic effects are first quantified by inverting a dual-source soil/vegetation energy
balance (EB) model forced by 1) the solar radiation simulated by a 3D radiative transfer model named DART (Discrete
Anisotropic Radiative Transfer) that uses a Digital Elevation Model (DEM), 2) a satellite-derived vegetation index,
and 3) local meteorological (air temperature, air relative humidity and wind speed) data available at a given location.
The satellite LST is then corrected for topography by simulating the LST using both pixel- and image-scale DART
solar radiation and elevation data. The approach is tested on three ASTER (Advanced Spaceborne Thermal Emission
and Reflection Radiometer) overpass dates over a steep-sided 6 km by 6 km area in the Atlas Mountain in Morocco.
The mean correlation coefficient and root mean square difference (RMSD) between EB-simulated and ASTER LST
is 0.80 and 3◦C, respectively. Moreover, the EB-based method is found to be more accurate than a more classical
approach based on a multi-linear regression with DART solar radiation and elevation data. The EB-simulated LST is
also evaluated against an extensive ground dataset of 135 autonomous 1-cm depth temperature sensors deployed over
the study area. While the mean RMSD between 90 m resolution ASTER LST and localized ibutton measurements is
6.1◦C, the RMSD between EB-simulated LST and ibutton soil temperature is 5.4 and 5.3◦C for a DEM at 90 m and 8
m resolution, respectively. The proposed topographic correction is self-calibrated from (LST, DEM, vegetation index
and in situ meteorological data) data available over large extents. and could potentially be used in conjunction with
evapotranspiration retrieval methods based on LST.
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1. Introduction1

The radiative skin temperature over land or land surface temperature (LST) plays an important role in the physics2

of surface-atmosphere interactions. It is at the same time a driver and a signature of the energy and mass exchanges3

over land (Anderson et al., 2008; Brunsell and Gillies, 2003; Karnieli et al., 2010; Kustas and Anderson, 2009; Zhang4

et al., 2008). LST is highly variable in both space and time (Prata et al., 1995), mainly as a result of the heterogeneity of5

the meteorological forcing, land cover, soil water availability, surface radiative properties and topography. Therefore,6

satellite-derived LST is widely used in a variety of applications including evapotranspiration monitoring (Bastiaanssen7

et al., 1998; Boulet et al., 2007), climate change studies (Hansen et al., 2010), soil moisture estimation (Sandholt et al.,8

2002; Merlin et al., 2010a), vegetation monitoring (Kogan, 2001), urban climate studies (Voogt and Oke, 2003) and9

forest fire detection (Eckmann et al., 2008).10

Since LST and soil water availability are coupled under non energy-limited conditions, LST has been used as a11

proxy of the surface water status in combination with energy balance modeling (Norman et al., 1995; Anderson et al.,12

2008; Kustas and Anderson, 2009; Merlin et al., 2010a; Bastiaanssen et al., 1998; Allen et al., 2007; Boulet et al.,13

2007; Mattar et al., 2014; Cammalleri and Vogt, 2015). All those studies have focused on relatively flat regions to14

facilitate the interpretation of the LST variability associated with the surface parameters, fluxes or processes of interest.15

Over hilly areas, the application of such approaches is limited because the signature of the surface water status on16

LST is masked by topography effects, namely the pixel-scale impact of illumination (solar radiation) and elevation17

(air temperature) on LST. Especially, temperature differences between south-facing and north-facing slope can reach18

30◦C (Shreve, 1924; Raz-Yaseef et al., 2010) due to illumination effects. Globally, about 20% of continental surfaces19

consist of mountainous terrain (Meybeck et al., 2001) where LST is significantly impacted by topography. However,20

to our knowledge, there is no method to correct the remotely sensed LST for the topography-induced atmospheric21

forcing variability, that is to derive the LST that would be observed under uniform solar radiation and air temperature22

conditions.23

Note that the retrieval of LST from satellite observations over mountainous areas is subject to uncertainties associ-24

ated with viewing geometry i.e. GIFOV (ground instantaneous field of view) and the anisotropic nature of emissivity.25

Modeling, experimental, and case studies have reported an anisotropic effect on LST typically ranging from 1 to 2◦C26

depending on the pixel-scale radiometer viewing angle and up to 3◦C for extreme viewing angles (Lagouarde et al.,27

1995; Sobrino and Cuenca, 1999; Minnis and Khaiyer, 2000; Coret et al., 2004; Rasmussen et al., 2010; Proy et al.,28

1989; Liu et al., 2006, 2009). The LST retrieval errors due to viewing geometry are thus much smaller (<10%) than29

the potential impact of topography-induced atmospheric forcing variability on LST. At the subpixel scale, current LST30

retrieval methods overlook the (commonly unresolved) fine-scale surface roughness (Danilina et al., 2012, 2013).31

To assess the impact of topography on remotely sensed LST, previous studies have attempted to simulate LST32

over mountainous areas. For example, Hais and Kučera (2009) simulated LST using linear regressions with the33

hillshade computed by the spatial analyst toolbox of ArcGis based on a DEM (Digital Elevation Model). The surface34

energy balance (EB) equation has also been used over mountainous terrain to simulate LST (Dozier and Outcalt,35

1979). Originally, this approach was designed for bare soil or low grassy vegetation with a single source EB model36

using a topographic map and a set of ancillary (incoming solar radiation, albedo, wind speed, air temperature, surface37

roughness length and relative air humidity) measurements. The variability of albedo was estimated with soil wetness38

and illumination angle information, while the variation of air temperature with elevation was estimated using the39

standard environmental lapse rate of -6.5◦C.km−1. In Dozier and Outcalt (1979), wind speed and relative air humidity40

were assumed to be homogeneous over the study area. The incoming solar radiation was computed for each grid cell41

according to the local solar incidence angle and a diffuse radiation factor. However, the solar radiation in their model42

did not include the diffuse reflection from adjacent terrain.43

Later Rigon et al. (2006) developed a distributed hydrological model that accounts for complex topography. This44

model named GEOtop describes the energy and mass exchanges at the surface/atmosphere interface by taking into45

account 1) the impact of elevation on air temperature, 2) the effects of slope/exposure on solar radiation and 3) the46

spatial distribution of vegetation and soil water content. In that study, the EB model of GEOtop is single source. It47

is forced by temperature and wind speed measurements, which are regionalized over the study area. The incoming48

direct shortwave radiation is computed for each grid cell according to the local solar incidence angle, including the49

diffuse radiation due to atmospheric and cloud transmissivity. This model also includes shadowing effects of direct50

solar radiation by the surrounding mountains. In that paper, shadowing was basically expressed as a factor ranging51
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from 0 if the grid cell is completely in shadow (no direct radiation) to 1 if the sun radiation hits the surface. More52

recently Bertoldi et al. (2010) and Endrizzi et al. (2013) used the same (GEOtop) model to estimate the topographical53

effects on soil temperature simulations for different applications including ecohydrology, soil freezing and snow cover54

assessment.55

To simulate LST accurately using an EB model, the incoming solar radiation should be represented at the pixel56

scale (Allen et al., 2006). The solar radiation (noted Rg in W.m−2) reaching the surface at a given location is the sum of57

direct solar radiation, diffuse sky radiation, and the direct and diffuse radiations reflected by nearby terrains (Dubayah,58

1994). Rg mainly depends on the cloud cover, the turbidity of the clean air, the time of year, latitude, albedo of the59

surrounding terrain and surface geometry (Essery and Marks, 2007). Estimating the Rg variability over mountainous60

areas is challenging due to the irregular topographic geometry of the surface and to the multiple reflections that occur61

in such conditions. At high resolution, the variability in slope angles and slope orientations, as well as the shadows cast62

by topographic agents can lead to strong local gradients in Rg (Dozier, 1980; Dubayah, 1992). Moreover, since the63

in situ monitoring network ineffectively covers the complex heterogeneity of mountainous areas, simple geostatistical64

methods for spatial interpolation of solar radiation are not always representative enough. Consequently, algorithms65

that explicitly or implicitly account for the features creating strong local gradients in the incoming radiation must be66

applied (Susong et al., 1999; Garen and Marks, 2005). The most advanced method to compute the distributed Rg67

over a landscape is to use a 3D radiative transfer model, which explicitly simulates its three components: direct solar68

radiation, diffuse sky radiation and reflected radiations. Here we used DART model (Discrete Anisotropic Radiative69

Transfer, Gastellu-Etchegorry et al. (1996)) as one of the most comprehensive physically based 3D models simulating70

the Earth-atmosphere radiation interaction from visible to thermal infrared wavelengths.71

In this context, this study aims to develop an original method to correct the remotely sensed LST for topography-72

induced atmospheric forcing ( solar radiation and air temperature) variability. This method uses an EB model forced73

by the solar radiation derived from DART and the air temperature gradient derived from elevation data. The approach74

is tested at 90 m resolution using ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) data75

over a 6 km by 6 km steep-sided area in the Moroccan Atlas. The LST is corrected for topography by simulating the76

LST using DART solar radiation and elevation data. Moreover, the EB approach is implemented using a dual source77

formulation, allowing for a representation of topographic effects on both soil and vegetation components. Three78

different strategies are proposed to evaluate the correction approach. First, the EB model is compared in terms of79

simulated LST with two other simpler approaches based on the same input (DART solar radiation and elevation) data.80

Second, the LST simulated by the EB model is evaluated against a set of soil temperature measurements distributed at81

45 points within the study area. Third, the quality of corrected LST is analyzed both qualitatively and quantitatively.82

2. Study materials83

2.1. Study region84

The High Atlas is a Moroccan mountain chain of approximately 60 km in width and 800 km in length organized85

along a NE-SW axis. It culminates at 4167 m above sea level at the Jbel Toubkal, the highest summit of North Africa.86

The central part of the High-Atlas is the water tower for the northern semi-arid plains of the Tensift catchment,87

Marrakech region (Chehbouni et al., 2008). The experimental data set was collected over the Imlil valley (31.12◦N;88

7.93◦W) part of the Rheraya sub-catchment (Toubkal national park). This valley has an East-West orientation, thus89

maximizing the solar exposure effects on LST. It covers a surface area of about v9 km2 (Fig. 1) and is characterized90

by a semi-arid and mountainous climate. The annual precipitation is about 600 mm /year with intense events in winter91

and sparse localized thunderstorms during spring and summer. The vegetation cover is a function of elevation and92

human activity, so that dense vegetation is observed along the stream valley only. Others areas are characterized by93

bare or poorly vegetated loam gravelly brown soil. Terrain elevation varies between 1700 and 3150 m and hillslope94

range between 0 (stream valley) and 70 (highest elevation) degrees. Such conditions offer an interesting test site for95

developing and testing methods for LST topographic correction . The study region covers an area of 6 km x 6 km96

including the Rheraya sub-catchment (Fig. 1).97
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Figure 1: On the left, location of the Rheraya catchment, the Imlil subcatchment, and the study area. On the right, a 8 m resolution 3D DEM over
the study area indicating the sun-facing (red) and shaded (blue) slopes at 11:30 am local time (GMT).

2.2. Remote sensing data98

2.2.1. ASTER land surface temperature99

ASTER is one of the five scientific instruments onboard the satellite platform Terra, part of NASAs Earth Obser-100

vation System (EOS). ASTER is a high spatial resolution radiometer, which consists of three separate subsystems:101

the visible and near infrared, the shortwave infrared and the thermal infrared. The multispectral TIR (Thermal In-102

fraRed: 5 channels between 8 and 12 µm) allows the retrieval of LST and emissivity spectra at high spatial (90 m)103

resolution (Abrams, 2000). The LST data used in this study are extracted from the on-demand surface kinetic tem-104

perature AST 08 product (Gillespie et al., 1998). This product is derived using the same algorithm as the Surface105

Emissivity Product. Surface kinetic temperature is determined by applying Planck’s Law using the emissivity values106

from the Temperature-Emissivity Separation algorithm. ASTER surface radiance data are corrected from radiometric107

(sun spot, shading), atmospheric and geometric effects (Gillespie et al., 1998; Abrams, 2000). Absolute accuracy of108

LST product is about 2◦C (Gillespie et al., 1998; Abrams, 2000; Liu et al., 2006). Note that a major source of error109

is due to the use of a 1 km DEM for atmospheric correction (Gillespie et al., 1998). ASTER products were acquired110

specifically on the study area at 11:22 am UTC on 3 dates: April 14th and 30th and September 5th, 2014.111

2.2.2. Digital elevation models112

In this study two DEMs were used with an original spatial resolution of 30 and 4 m. NASA and the Ministry113

of economy, Trade and Industry of Japan (METI) produced the global 30 m grid size ASTER GDEM product. The114

GDEM v2 released in October 2011, it is an improved version of GDEM v1 released in June 2009 with an absolute115

vertical and horizontal accuracy of 17 and 30 m (Meyer, 2011), respectively. The 4 m resolution Pleiades DEM is also116

used. The Pleiades 1A and 2B twin satellites were launched 17 December 2011 and 2 December 2012, respectively.117

The DEM was derived from Pleiades-1A stereoscopic pairs acquired over the Rheraya catchment on the 18th of118

August 2015 at 11:19 am (within a few tens of seconds due to the agility of the platform). Images are delivered at119

a ground sampling distance of 0.5 m for the panchromatic channel. The DEM was generated through the Automatic120

Terrain Extraction algorithm in the ERDAS Imagine 2014 photogrammetry toolbox. Three accurate wide-spread121

control points were collected in the images area. One of them located near the Imlil valley was used as an absolute122

horizontal ground control point to improve the horizontal geolocation accuracy. Pixel size is of 4 m, which is a good123

compromise between processing time and DEM accuracy (Berthier et al., 2014; Marti et al., 2014). The accuracy of124

the DEM horizontal registration was evaluated based on two other check points obtained by geodesic GPS. The error125

was lower than 4 m in both cases. The vertical error was evaluated based on all three points and was between 1 m126

and 5 m. The hillshaded raster generated from the Pleiades DEM was also inspected in the Imlil valley region and we127

found no artifacts or aberrations due to the stereo-correlation. Note that the 4 m resolution DEM was resampled to128
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8 m using cubic interpolation due to computer memory limitation of DART model when simulating the 3D radiative129

budget of the whole study area at spatial resolution better than 8 m. This situation will be improved in next DART130

version with new data format and the possibility to work with pixels that can have different dimensions within the131

same scene.132

2.2.3. Remotely sensed vegetation index133

The vegetation cover is derived over the study area from the 30 m resolution Landsat data collected on dates134

closest to the three ASTER overpass dates. The Landsat reflectances Claverie et al. (2015)) were used to compute135

the Normalized Difference Vegetation Index (NDVI), defined as the ratio of the difference between near-infrared and136

red reflectances to their sum. Fractional vegetation cover (fv) is estimated as in Gutman and Ignatov (1998):137

f v =
NDVI − NDVIs

NDVIvg − NDVIs
(1)

with NDVIvg corresponding to fully-covering vegetation and NDVIs to bare soil. In this study, NDVIvg and NDVIs138

are set to the maximum and minimum value of the NDVI observed within the study domain, respectively. Several139

studies have investigated the spatial scale dependencies of NDVI and the relationship between NDVI and fv. As a140

first approximation, we consider that the first-order estimate, proposed by Gutman and Ignatov (1998), adequately141

describes the relationship.142

2.3. Ground Data143

2.3.1. Meteorological data144

Meteorological data including air temperature, relative air humidity and wind speed have been measured ev-145

ery minute and the averages have been acquired every half hour since May 2003 at Imlil station (31.124875◦N;146

7.920458◦W) located close to the center of the study area at an elevation of 1970 m (Fig. 1). Data have been collected147

and processed in the frame of the Joint International Laboratory TREMA, Marrakech-Morocco (Jarlan et al., 2015).148

2.3.2. Temperature sensors/loggers149

The ibutton sensor (model DS1921G) is a coin size that integrates a micro-controller, 2kB storage, a real-time150

clock, a temperature sensor, and a battery. The ibutton temperature sensors measure temperature in 0.5◦C increments151

from -30◦C to 70◦C with ± 1◦C accuracy (Hubbart et al., 2005).152

In 2014, a total of 135 ibuttons were deployed over the Imlil valley to cover a range of solar exposures and153

elevations (Fig. 2). 102 ibuttons were installed on the 3rd April 2014, set up across both sides of the valley to provide154

a spatial understanding of illumination effects on LST. To complete the spatial distribution, 33 additional ibuttons were155

set up on the 7th May 2014 across a third slope. All sensors were removed on the 2nd October 2014 (approximately156

6 months later) before the first snowfall events in the area. In practice, ibuttons were installed 3 by 3 on a 7 by 7 cm157

thin transparent plastic plate to prevent spreading down into the slope and variations in placement. They were pinned158

in a topographic environment that was relatively homogeneous at 90 m scale with different illumination and elevation159

(Fig. 2). The resulting 45 plates were buried very close (∼1 cm) to the soil surface by making sure that ibuttons160

were not directly exposed to solar radiation. We are aware that plates disturb, at least a little bit, surface moisture and161

latent heat, however it is difficult to estimate impact on the measures. The recording time resolution (135 minutes)162

for each sensor was chosen based on the maximum ibutton data storage for a 6 month recording. However, the three163

ibuttons of a given plate were recording temperature with a 45 minute delay between each acquisition, so that the164

recording time resolution of each plate (by combining all three ibuttons sensors) was 45 minutes. Each plate was165

installed along transects at a regular spacing of about 150 m (Fig. 2). The locations were recorded using handheld166

GPS measurements (accuracy ± 6 m) and were physically marked by a white cairn for easier recovery. Every retrieved167

ibutton (42/45 plates) recorded valid data; and one plate reappeared on the surface and was excluded from the analysis.168

In total, 91% of the ibuttons installed data could be used for the analysis.169
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Figure 2: Locations of the 45 ibutton plates, each of them containing 3 ibutton sensors. Red cross indicate plates not used for the study.

2.4. DART model170

DART is one of the most complete 3D models designed for simulating the radiative budget and the satellite171

observations of the land surface in the visible, near infrared and thermal infrared bands. It simulates the radiative172

transfer in heterogeneous 3D landscapes with the exact kernel and discrete ordinate methods (Gastellu-Etchegorry173

et al., 2004). Any landscape is simulated as a rectangular matrix of parallelepipedic cells, i.e. building blocks for174

simulating larger scenes. In this work, the DART model (version 5.5.3) is used to simulate the solar radiation or175

illumination (noted Rg in W.m−2) at the surface for any location in the study valley. One main advantage of DART176

is to compute the three components of incoming total solar radiation (W/m2/µm) of any rugged terrain surface: direct177

solar radiation, diffuse sky radiation and the (direct and diffuse) reflected radiations from the adjacent surfaces. The178

reflected radiation is modulated by the reflectance spectra of the surfaces. In practice, surface irradiance depends179

on the relative orientation of incident rays and the local slope, which explains why DART uses a DEM, time and180

geographic coordinates as input parameters. DART simulations were conducted for the visible and near infrared181

spectral domains (0.4 µm to 1.1 µm) that is representative images of Rg. In that spectral band, the irradiance varies182

between 100 and 1800 W.m−2 over the simulated scene (Fig. 3). The capability of the DART has been successfully183

tested in a number of works in the visible and near-infrared spectral domains (Widlowski et al., 2007, 2008). Then,184

the DART model has been evaluated in the thermal range, where works have addressed the usefulness of this model185

(Guillevic et al., 2003; Gastellu-Etchegorry, 2008; Sepulcre-Cantó et al., 2009; Sobrino et al., 2011). However the186

DART capability has not been evaluated to simulate solar radiation, particularly in mountainous area, due to the187

difficulty to get such data. Therefore, there is no way to estimate directly the accuracy of DART results.188

3. Topographic normalization methods189

The methodologies presented in this section aim to correct ASTER LST data for topographic including illumina-190

tion and elevation- effects. Elevation is derived from the 30 m resolution GDEM and is then aggregated at ASTER191

(90 m) resolution. The incoming solar radiation received at the surface is simulated by DART at the three ASTER192

overpass dates. Both elevation and DART-simulated illumination are used as input to topographic correction . The193

approach is based on the EB equations for soil and vegetation, and compared to two different approaches based on 1)194

a multi-linear regression between ASTER LST, elevation and DART irradiance map, and 2) the slope of the dry edge195

of both ASTER LST-E (elevation) and ASTER LST-Rg feature spaces.196

3.1. Topographic normalization based on the soil and vegetation Energy balance equations197

The proposed correction methodology was originally developed in Merlin et al. (2005) to improve the disaggre-198

gation of coarse-scale soil moisture data using LST data available at higher spatial resolution. The correction method199

was further applied to the disaggregation of kilometric LST data over flat irrigated areas (Merlin et al., 2010b). In200
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Figure 3: DART simulated irradiance over [0.4µm- 1.1µm] of the whole study area (white square in Fig. 1), with 8m resolution DEM at 11:22 am
(UTC) on September 5, 2014. Black lines represent the elevation contour lines between 1800 and 3600 m with a 200 m increment.

this paper, the technique is implemented to correct satellite (ASTER) LST data for topographic effects at the spatial201

resolution of available DEMs. The correction model is written as:202

Tcorr,EB = TAS T ER + TEB(E,Rg) − TEB(〈E〉, 〈Rg〉) (2)

With Tcorr,EB in ◦C being the ASTER LST corrected for topographic effects using the EB approach, TAS T ER in ◦C203

being the ASTER LST, TEB(E,Rg) in ◦C the LST simulated by the EB equations using pixel-scale elevation (E) in m204

and solar radiation (Rg) in W.m−2, and TEB(〈E〉, 〈Rg〉) in ◦C the LST simulated by the EB equations using the average205

of E (〈E〉) and Rg (〈Rg〉) at the image scale. LST is estimated as a linear function of component temperatures (Merlin206

and Chehbouni, 2004; Anderson et al., 2008; Long and Singh, 2012).207

TEB = f v × TvEB + (1 − f v) × T sEB (3)

with TvEB in ◦C being the vegetation temperature and T sEB in ◦C the soil temperature. The soil temperature is208

expressed as:209

T sEB = f ss × Ts,dryEB + (1 − f ss) × Ts,wetEB (4)

with Ts,dryEB in ◦C the soil temperature in dry condition, Ts,wetEB in ◦C the soil temperature in wet condition and f ss a210

dryness index of the soil surface. f ss equals to 1 when the soil is fully dry (surface soil moisture close to the residual211

value) and to 0 when the soil is fully wet (surface soil moisture close to the soil moisture at saturation). Similarly, the212

vegetation temperature is expressed as:213

TvEB = f sv × Tv,dryEB + (1 − f sv) × Tv,wetEB (5)

with Tv,dryEB in ◦C the temperature of fully stressed (non-transpiring) vegetation, Tv,wetEB in ◦C the temperature of a
vegetation that is unstressed (transpiring at the potential rate) and f sv a vegetation water stress index. f sv is equal
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to 1 when the root zone soil moisture is above field capacity and to 0 when the root zone soil moisture is below the
wilting point.
Dry bare soil, wet bare soil, fully stressed and unstressed vegetation extreme temperatures are then derived by solving
the EB equation for each case, as described below. The dry bare soil EB equation is written as:

Rns,dry −Gdry = Hs,dry (6)

with Rns,dry (W.m−2) being the net radiation from dry soil, Gdry (W.m−2) the ground heat in dry condition and Hs,dry

(W.m−2) the sensible heat of dry soil. Similarly the wet bare soil EB equation is written as:

Rns,wet −Gwet = Hs,wet + LEs,wet (7)

with Rns,wet (W.m−2) being the net radiation from wet soil, Gwet (W.m−2) the ground heat in wet condition, Hs,wet

(W.m−2) the sensible heat of wet soil and LEs,wet (W.m−2) the latent heat of wet soil. The fully-stressed vegetation EB
equation is written as:

Rnv,dry = Hv,dry (8)

with Rnv,dry (W.m−2) and Hv,dry (W.m−2) being the net radiation and the sensible heat of water-stressed vegetation,
respectively. Hence, the unstressed vegetation EB equation is written as:

Rnv,wet = Hv,wet + LEv,wet (9)

with Rnv,wet (W.m−2), Hv,wet (W.m−2) and LEv,wet (W.m−2) being the net radiation, sensible heat, and latent heat flux of
unstressed vegetation, respectively. The expressions of each flux component of the above EB equations are detailed
in the appendix A .
In EB equations 4 and 5, the air temperature (Ta) at the pixel scale is estimated as:

Ta = Tastation + LR × (E − Estation) (10)

with Tastation (◦C) is the air temperature measured at the Imlil meteorological station, E (m) the pixel elevation, Estation214

(m) the elevation of the station, and LR the environmental lapse rate (◦C. m−1). The latter is defined as the rate at215

which air temperature decreases with increasing elevation. LR is estimated at image-scale for each ASTER overpass216

date separately.217

218

The four temperatures (Ts,dry, Ts,wet, Tv,dry and Tv,wet) in eq. 4 and 5 are solved numerically using the219

Newton′s method (Bristow, 1987). The convergence of component temperature is assumed to be reached when the220

absolute temperature difference between two consecutive iterations is lower than a given threshold (set to 0.01 ◦C).221

Given that ASTER LST observations are available to calibrate the topographic correction model; three additional
constraints are applied to the LST model in eq. 3. The first step consists in removing any possible bias in TEB(E,Rg)
and TEB (〈E〉, 〈Rg〉):

TEB = 〈TAS T ER〉 + TEB − 〈TEB〉 (11)

with 〈TAS T ER〉 and 〈TEB〉 being the average of TAS T ER and TEB over the study area, respectively.222

The second step consists in adjusting f ss and f sv in equations 4 and 5 by minimizing the RMSD (Root Mean223

Square Difference) between ASTER LST and model-derived LST, for each ASTER overpass date separately. The third224

step consists in adjusting LR in eq. 10 by minimizing the RMSD between ASTER LST and model-derived LST. Note225

that the two latter steps require running the LST model at the observed LST resolution, which is the ASTER resolution226

in our case. Once the LST model has been calibrated in mean value and via the LR parameter, it can be applied to any227

spatial resolution, provided a DEM is available at the target resolution. The above calibration needs initializing LR228

with a LR first-guess of -6◦C.km−1, according to Glickman and Zenk (2000). The algorithm is summarized in Fig. 4.229

The above correction method is based on several assumptions. Air humidity and wind speed (from the Imlil station230

data) are assumed to be uniform within the study area. The surface parameters εs, εv, αs and αv are also assumed to231

be homogeneous within the study area. αs and αv are estimated as the mean of the 1 km resolution MODIS-derived232

albedo (MCD43B3 product) over the study area. εs, εv are set up to 0.96 and 0.98, respectively, according to look-up233

tables from Rubio et al. (2003).234
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Figure 4: Schematic diagram presenting an overview of the topographic correction approach based on EB equations. The EB model (originally
designed for solving mix-pixel problem in lowlands) is adapted to mountainous environment, and changes are highlighted by red boxes and
underlined variables.

3.2. Topographic normalization based on multi-linear regression235

The second proposed correction model is based on multilinear (ML) regression:

Tcorr,ML = TAS T ER − (TML − 〈TML〉) (12)

with Tcorr,ML being the ASTER LST corrected for topographic effects using the ML approach, and TML the LST
simulated by the ML regression using TAS T ER, DEM-derived E and DART-simulated Rg :

TML = 〈TAS T ER〉 + AE(E − 〈E〉) + ARg(Rg − 〈Rg〉) (13)

with AE and ARg being two linear regression coefficients associated to E and Rg, respectively. AE and ARg are computed236

for each image separately. The above correction method is based on several assumptions. Both variables Rg and E237

are assumed independent from each other because the ML regression can only fit observed data (LST ASTER) using238

a linear combination of independent variables (E and Rg). However, the latter assumption is considered valid only239

if the scene has the whole aspect range (between 0 to 360◦ slope orientation). The ML approach also assumes that240

each pixel of the scene has the same behavior in term of illumination and elevation. In other words, the ML approach241

represents identically the topographic effects on both soil and vegetation components.242
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3.3. Topographic normalization based on the slope of dry edges243

Originally proposed by Goward et al. (1985), the space-based approach, also known as the triangle/trapezoidal244

method, uses the contextual information contained in remotely sensed LST and a vegetation index to estimate evap-245

otranspiration. This method was subsequently utilized to monitor soil water content (Sandholt et al., 2002; Merlin246

et al., 2008; Kim and Hogue, 2012; Sobrino et al., 2012), surface resistance (Nemani and Running, 1989), land use247

and land cover change (Julien and Sobrino, 2009) and drought (Wan et al., 2004). Recently, Merlin (2013) combined248

the LST-albedo space and the LST-NDVI spaces, by taking advantage of the complementarity of NDVI and albedo249

data for evapotranspiration estimation. (Merlin, 2013).250

Following this study, both LST-E and LST-Rg spaces provide complementary information on the spatial variation251

of LST in mountainous areas. The space-based approach thus potentially offers an interesting alternative method to252

correct LST for topographic effects. In space-based methods, usually implemented over flat areas, the lower edge253

corresponds to mostly wet pixels, while the upper edge is associated with dry pixels. In mountainous areas, it is254

often observed that vegetation occupies specific locations, such as the valley bottom and/or the lowest elevations.255

The Imlil valley includes contrasted conditions between the irrigated crops at the relatively flat valley bottom, and256

the surrounding dry bare soil slopes. Therefore, it is expected that vegetated areas do not cover a large range of257

illumination and elevation conditions. For this reason, the third proposed topographic correction model is based on258

the dry edge (upper limit) of the LST-E and LST-Rg spaces (Fig. 5). In the same way as for the EB and ML method,259

the correction model is written as:260

Tcorr,DE = TAS T ER − (TDE − 〈TDE〉) (14)

with Tcorr,DE being the ASTER LST corrected for topographic effects based on the slope of dry edges (DE), and TDE

the LST simulated by the DE approach using TAS T ER, DEM-derived E and DART-simulated Rg :

TDE = 〈TAS T ER〉 + BE(E − 〈E〉) + BRg(Rg − 〈Rg〉) (15)

with BE being the slope of the DE in the LST-E space, and BRg the slope of the DE in the LST-Rg space. BE and BRg261

are computed for each image separately.262

The approach proposed by Menenti et al. (1989) is used to determine the slope of the DE in the LST-E space. It is263

computed as the slope of the linear regression of the maximum LST determined for each E class and by excluding the264

E values below a threshold which does not take into account the LST variation due to the Rg effects. The threshold265

of E is constrained as the maximum LST simulated by the third order polynomial, estimated by using the maximum266

LST value of each E class (Fig. 5). Similarly, the slope of the DE in the LST-Rg space is computed as the slope of the267

linear regression of the maximum LST determined for each Rg class and by excluding Rg above a threshold which268

does not take into account the LST variation due to elevation effects (Fig. 5). The threshold of Rg is constrained as269

the maximum LST simulated by the third order polynomial, estimated by using the maximum LST value of each Rg270

class. Note that the number of class is estimated as 1% of the number of pixels.271

4. Results and discussion272

The three (EB, ML and DE) correction approaches are applied to ASTER LST data. As a first assessment of273

the performance of correction methods, the LST simulated by each model is compared to the ASTER LST and to274

the 1-cm depth soil temperature measurements. Then, the LST corrected by the EB method is qualitatively and275

quantitatively evaluated by visual inspection of the corrected images, statistical analyses of the spatial correlation276

between (uncorrected and corrected ) LST and topography indicators, and the physical interpretation of the LST-fv277

feature space before and after correction .278

4.1. Intercomparison and validation of LST models279

4.1.1. Comparison between modeled and ASTER LST280

The model-derived LST from the three methods are compared to the remotely sensed ASTER LST. The objective281

of this comparison is to examine the potential of EB method, compare to both ML and DE methods, to simulate LST282
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Figure 5: Example of the DE estimation (red lines) in a) LST-Rg space and b) LST-E space for September 5th, 2014. Blue points correspond to
the maximum temperature of each class. Red dashed curves are the 3rd order polynomial curves of the maximum temperatures of each class. Red
diamonds are the maximum temperatures of the 3rd order polynomials that correspond to the thresholds for estimating DE

in a range of surface and topographic conditions by using pixel scale E and Rg. As LST is greatly controlled by283

topography effects over the study area, a high R value and a low RMSD value would indicate satisfactory results.284

Fig. 6 plots simulated LST versus ASTER LST and Table 1 lists the correlation coefficient (R), bias, slope of285

linear regression (S) and RMSD between model-derived and ASTER LST for each of the three ASTER overpass286

dates separately. All biases are equal to zero due to the calibration procedure of the correction models using ASTER287

LST observations. Regarding the ML regression approach, Fig. 6 a,d,g and Table 1 shows satisfying results with an288

R of 0.76 and a RMSD of about 3.6◦C. The statistical regularity obtained between the three dates reflects a certain289

robustness of the ML regression technique. Its performance can be explained by the relatively simple context of the290

study area including mostly wet vegetation at the valley bottom and mostly dry bare soil everywhere else. A poorer291

efficiency of the ML regression method would be expected in more heterogeneous conditions including the presence292

of vegetation on the slopes. Regarding the DE approach, Fig. 6 b,e,h indicate significant underestimation of LST293

estimates in the lower range of ASTER LST values and an overestimation in the higher range. Although the slope294

between model-derived LST and ASTER LST is generally close to 1, the RMSD (5.8◦C) is significantly larger than295

for the ML case (see statistical results in Table 1) due to an overestimation of topographic effects by the DE correction296

method. In fact, the DE approach assumes that all pixels have the same sensitivity to topography as dry bare soil,297

although dry bare soil is much more affected by Rg than wet bare soil or vegetated surfaces. This is the reason why298

the LST simulated by the DE approach covers a larger range of values than ASTER LST (see Fig. 6). In fact, the299

main issue with this approach is the non representation of other conditions than dry bare soil, thus the need for taking300

into account the different behaviors of soil and vegetation components.301

The statistics presented in Table 1 and the scatterplots in Fig. 6 c,f,i indicate that the dual-source EB model302

performs relatively better than the simpler ML and DE methods. The mean R and RMSD between model-derived303

and ASTER LST is 0.82 and 3◦C, respectively. The consistency of the results obtained between the three dates304

reveals the robustness of the EB equations, as for the ML method. Moreover, the EB approach is able to retrieve305

a physically consistent temperature lapse rate based on ASTER and simulated LST (Table 2). The LR obtained306

through the minimization of the cost function in eq. 10, is close to the values found in the literature. Under standard307

atmospheric conditions the mean atmospheric LR is -6.4◦C.km−1 (Glickman and Zenk, 2000). However it is affected308

by the moisture content of air: in dry condition, a LR of -10◦C.km−1 is often used to calculate temperature changes309

(Glickman and Zenk, 2000) while in wet condition, the LR is close -5◦C.km−1 in a saturated air. Regarding the310

values obtained here (Table 2), the 5th September image has a LR of -8.9◦C.km−1 near the LR in dry condition found311

in literature. This result is consistent with the fact that this date has the drier air condition (air humidity of 17%).312

Likewise, the image with the higher air humidity (30th of April) has the lower LR estimated as -5.3◦C.km−1.313

Regarding the dryness index of the surface soil (Table 2, f ss) estimated by inversion of the soil EB, results314

illustrate a relatively dry soil ( f ss larger than 0.5) for the three dates as expected given the semi-arid climate of the315
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area . For example the retrieved f ss is 0.95 on the 14th April. Regarding the inverted vegetation water stress index316

(Table 2, f sv), dryness indices are generally close to 1. For example, the retrieved f sv is equal to 0.85 on the 30th
317

April. Although the vegetation in the stream valley is expected to be well-watered (i.e. not undergoing water stress)318

such results can be explained by the presence of sparse vegetation over the whole area. Such (potentially stressed)319

vegetation has a strong impact on the f sv inversion.320

When analyzing the results obtained for each model, the EB approach gives generally the best statistical results321

in terms of R and RMSD between simulated and ASTER LST. In particular, the EB model is able to reproduce the322

spatial patterns of the LST estimated from ASTER with an R of 0.85 on the 5th of September. The soil/vegetation323

partitioning and the physical representation of the nonlinear relationship between LST and Rg (as expressed by the324

net radiation of EB equations) both explain the superiority of the EB approach. (Table 1).325

Table 1: Statistical results of the spatial comparison between simulated and ASTER LST for each model and each ASTER overpass date separately.
The correlation coefficient (R), bias, slope of linear regression (S) and root mean square difference (RMSD) are listed. LR, f ss and f sv are the
environmental lapse rate, dryness index and vegetation water stress index, respectively.

date ML DE EB

14/04/2014

R (-) 0.74 0.52 0.79
bias (◦C) 0 0 0

S (-) 0.85 0.61 0.62
RMSD (◦C) 3.94 5.49 3.14

30/04/2014

R (-) 0.76 0.68 0.82
bias (◦C) 0 0 0

S (-) 0.73 0.99 0.65
RMSD (◦C) 3.26 5.22 2.79

05/09/2014

R (-) 0.79 0.82 0.85
bias (◦C) 0 0 0

S (-) 0.77 1.34 0.74
RMSD (◦C) 3.8 5.95 3.18

Table 2: LR, f ss and f sv are the environmental lapse rate, dryness index and vegetation water stress index, respectively.

Date fss fsv LR (◦C.km−1)

14/04/2014 0.95 1 -5.9
30/04/2014 1 0.85 -5.3
05/09/2014 0.93 0.89 -8.9

4.1.2. Comparison between modeled LST and in situ soil temperature326

The performance of the EB model is also assessed by comparing both the ASTER and simulated LST to the327

measured surface soil temperature (ibutton sensors). The EB model is implemented at both 8 m and 90 m resolution328

using the corresponding DEMs. The 90 m resolution LST is simulated as previously. The 8 m resolution LST is329

simulated by running the EB model using the LR, fss and fsv parameters retrieved from 90 m resolution ASTER data.330

Comparisons are made by extracting the LST pixels where temperature sensors are located.331

The error statistics between LST and ground measurement are presented in Table 3 and scatterplots are displayed332

at Fig. 7. Note that the 14th April has fewer points due to snow and clouds cover. When comparing the set of results, it333

is clear that the model-derived LST and ASTER LST give similar results in terms of both R and RMSD. For example,334

regarding the 30th April, the simulated LST compares slightly better with ibutton measurements than with the ASTER335

LST. At the same (90 m) resolution, the EB simulation reduces the RMSD between LST and ibutton temperature by336

approximately 0.57◦C. Regarding the bias, the obtained results are contrasted between the two first dates (bias is about337

2.5◦C) and the 5th of September (bias is approaching the accuracy limit of the ibutton sensors; this is a limitation of338

using low cost temperature sensors). This could be due to the soil thermal inertia capacity since ibutton measurements339
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Figure 6: Scatterplots of simulated LST versus ASTER LST for the three dates and for the ML (left), DE (middle) and EB (right column) models
separately. Red lines represent the slope of linear regression. Dashed lines represent the 1:1 line.
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are made at a 1 cm depth whereas the simulated LST is the skin surface temperature. For example, the two first dates340

(14th and 30th April) have a positive bias, which means that the mean ibutton temperature is about 3◦C colder than the341

remotely sensed LST. This phenomenon could be explained by the rapid morning heating of the immediate surface342

after a cold night. The air temperature before sunrise was 10◦C and 8◦C for the 14th and 30th of April, respectively.343

This characteristic is less noticeable for the 5th of September because on that date, the air temperature is less variable344

between day and night . Higher temperatures (22.3◦C before sunrise) were indeed recorded during the night before345

with a diurnal temperature variation of ∼5◦C.346

Fig. 7 plots ASTER and simulated LST versus ibutton measurements and Table 3 lists the R, bias and RMSD347

between model-derived and ASTER LST versus ibutton measurements for each of the three ASTER overpass dates348

separately. Results indicate that the LST simulated for the warmer pixels are systematically lower than remotely349

sensed LST. This could be explained by the static (instantaneous) nature of the EB model, as the LST is simulated at350

a specific instant and, thus neglecting the heat storage. By contrast, ASTER provides information about the real state351

of the surface skin, which is potentially affected by the heat accumulation over the slopes that have been exposed to352

the sun for a period of time prior to the ASTER overpass.353

The improvement between the LST simulated at 90 m and 8 m resolution are not as great as expected due to the354

topography variability around ibutton sensors. Actually, the ibuttons were set up in a topographic environment that355

was relatively homogeneous at the 90 m scale, given that the primary objective of the study was to correct topographic356

effects at the ASTER resolution. In consequence, the LSTs simulated at 90 m and 8 m resolution compare similarly357

with the 1-cm depth soil temperature measurements.358

Table 3: Statistics of the comparison between ASTER or simulated LST and the 1-cm depth soil temperature measurements by the ibutton sensors.
The correlation coefficient (R), bias, root mean square difference (RMSD) and standard deviation (σ) are listed. (-) means dimensionless unit.

date ASTER Model 90 m Model 8 m

14/04/2014

σ (◦C) 7.31 4.20 3.57
R (-) 0.64 0.75 0.68

bias (◦C) 3.04 1.48 3.41
RMSD (◦C) 6.28 3.41 3.53

30/04/2014

σ (◦C) 6.05 4.11 3.90
R (-) 0.68 0.68 0.70

bias (◦C) 3.38 2.74 2.74
RMSD (◦C) 5.98 5.41 5.32

05/09/2014

σ (◦C) 6.22 4.74 5.06
R (-) 0.67 0.64 0.65

bias (◦C) 0.78 -0.43 -0.91
RMSD (◦C) 5.31 5.19 5.22
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4.2. Assessment of LST topographic correction359

In order to evaluate the performance of the topographic correction method based on the dual-source EB equations,360

the LST data before and after correction are analyzed. The visual inspection of LST images and the interpretation of361

the LST-fv feature space before and after correction can help assess the goodness of the correction . If the correction362

is efficient, temperature difference between sun and shadow exposed slopes should be reduced. Temperature at high363

elevation should also be reduced. Nevertheless, vegetation and soil moisture should be still apparent.364

Visual comparisons of the images before and after topographic correction shown in Fig. 8 suggest that the topo-365

graphic effects are much reduced after correction . The black patches in the images for April 14th and 30th correspond366

to snow cover and clouds. The remaining temperature differences after correction for elevation effects are expected to367

be small. Indeed, these differences should be related to vegetation and soil moisture conditions only and those condi-368

tions are quite homogeneous in the study area apart from some localized spots in the valley. Interestingly enough, the369

ridgeline (located at the top left of the scene) is still conspicuous after correction . This under-correction of ridgelines370

is probably attributed to a problem with the or ASTER data geo-referencing, as a pixel shift could affect results.371

(Nuth and Kääb, 2011).372

In Fig. 8, the sun facing slope on the top left of the scene is still noticeable certainly as a result of the underes-373

timation of LST simulated over this area. As mentioned in the previous section, this effect could be due to the soil374

thermal inertia capacity, which is not taken into account by the instantaneous EB model.375
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Figure 8: Images of the LST observed by ASTER before (up) and after (down) correction for topographic effects on the three ASTER overpass
dates separately. Black lines represent the elevation contour lines between 1800 and 3600 m with a 200 m increment.

According to Reeder (2002), a successful topographic correction should remove or greatly reduce the correlation376

between LST and the topographic variables, especially the solar radiation (Zhang and Gao, 2011). As shown in Table377

4, strong correlations are found between LST and Rg over rugged terrain before correction . The correlation coeffi-378

cients after topographic correction are greatly reduced (from 0.76 to 0.11 for the April 30th, for example) consistent379

with the study in Reeder (2002). Negative correlations are obtained on the 14th of April and the 05th of September.380

This could be due to the artifact observed over the ridge line, which is particularly visible on those dates (see Fig. 8)381

or a coregistration error between DEM and the LST images.382

As an additional assessment of the correction performance, we compare the LST-fv space patterns before and383

after correction. As topographic correction aims at removing the topographic influence by deriving the LST that384

would be observed in a flat terrain, the LST-fv feature space after correction should be similar to the LST-fv feature385

spaces classically observed in flat conditions. In flat terrain all LST pixels are contained in the polygon defined by the386

temperature endmembers corresponding to fully dry and wet conditions for both soil/vegetation components (Fig. 9).387

The four temperature endmembers (Ts, dry, Tv, dry, Ts,wet and Tv,wet) were simulated by the EB equations using the388

average of E(〈E〉) and Rg(〈Rg〉) at the image scale. In practice, the LST-fv space was defined in a two step procedure.389

First, the temperature endmembers were estimated from EB equations and were located within the space defined by390
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Table 4: Correlation coefficient (R) between Rg and LST before and after topographic normalization on the three ASTER overpass dates separately.

R between Rg and LST

14/04/2014 30/04/2014 05/09/2014

before normalization 0.75 0.76 0.67

after normalization -0.05 0.11 -0.11

LST and fv (Long and Singh, 2012; Merlin, 2013). Then, the vertices of the obtained polygons were connected by391

straight lines (Moran et al., 1994) to interpolate the dry and wet boundaries over the full range of vegetation cover.392

The analysis of the LST-fv space after correction (Fig. 9) exhibits a distribution similar to that typically obtained in393

flat region (e.g. Stefan et al. (2015)). Specifically the topographic correction method has removed or greatly reduced394

the number of pixels outside the LST-fv space meaning above or below the dry and wet edges. An interesting feature395

is that the pixels that remain outside the polygon (above the dry edge) after correction systematically correspond396

to pixels located near the ridge lines. Such results are fully consistent with the previous comparison between the397

simulated LST and 1 cm depth soil temperature measurements.398
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Figure 9: The LST-fv feature space is plotted on September the 5th before (a) and after (b) topographic correction .

5. Summary and conclusion399

This paper develops a physically-based method to correct the satellite-derived land surface temperature (LST)400

for topography-induced variations of solar radiation and air temperature over mountainous areas. Both topographic401

effects on LST are first quantified by inverting a dual-source soil/vegetation energy balance (EB) model forced by 1)402

the solar radiation (Rg) simulated by DART model that uses a DEM as input, 2) a satellite-derived vegetation index403

fv, and 3) meteorological data available at a given location. The topographic correction model is calibrated in two404

main steps using ASTER LST observations. The first step removes any possible bias in modeled LST. The second405

step adjusts environmental lapse rate (LR), surface soil dryness index (fss) and vegetation water stress index (fsv)406

by minimizing the RMSD between ASTER LST and model-derived LST, for each ASTER overpass date separately.407

Once the LST model has been calibrated, it can be applied to any spatial resolution, provided a DEM is available at408

the target resolution. Satellite LST is then corrected for topography by subtracting the simulated illumination (DART-409

simulated solar radiation) and elevation (LR-derived air temperature) effects. The approach is tested on three ASTER410

overpass dates over a 6 km by 6 km area in the Atlas Mountain (Morocco): April 14th, April 30th and September 05th,411

2014.412

For this rugged test site, the mean correlation coefficient and RMSD between EB-simulated and ASTER LST are413

estimated as 0.80 and 3◦C , respectively. The EB-based approach is more accurate in terms of LST estimates than414
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the multi-linear (ML) regression based on DART solar radiation and elevation data. It is also more accurate than a415

semi-empirical model built from the dry edge of the LST-illumination and LST-elevation feature spaces. Such results416

are explained by the fact that the EB model explicitly represents both soil and vegetation components, whose surface417

fluxes are very differently affected by topography. Moreover, the EB approach is able to physically represent the418

nonlinearity between LST and Rg via the net radiation component. As a further advantage of the physically-based419

method, the EB equation can be used to retrieve the LR at the time of ASTER overpass. It is important to note that420

the obtained LR is close to the values found in the literature, with a LR of -8.9◦C.km−1 (5th of September) in dry air421

condition; while a LR of -5.3◦C.km−1 has been estimated for the 30th of April corresponding to the highest observed422

relative air humidity.423

The LST simulated by the EB approach is also evaluated against an extensive ground dataset of 135 autonomous424

1-cm depth temperature sensors deployed over the steep-sided study area. The EB model is applied to both 8 m and425

90 m resolution DEMs. While the mean RMSD between 90 m resolution ASTER LST and ibutton measurements426

is 6.1◦C, the RMSD between EB LST and localized ibutton measurements is 5.4 and 5.3 ◦C for a DEM at 90 m427

and 8 m resolution, respectively. Last, the topography-corrected ASTER LST is analyzed both qualitatively and428

quantitatively. The visual comparison before and after correction suggests that the topography-induced variations of429

solar radiation and air temperature are a much reduced impact on LST after correction. Especially, the LST spatial430

distribution is similar to that typically observed over a flat area where the solar radiation reaching the surface can431

be considered uniform. Moreover, the LST-fv feature space after correction is similar to the LST-fv feature space432

classically observed in flat conditions. Quantitatively, the strong correlations found between LST and Rg over rugged433

terrain before correction are greatly reduced after topographic correction (from 0.76 to 0.11 for the April 30th).434

For the first time, a correction method for topography-induced variations of solar radiation and air temperature has435

been applied to satellite LST. While LST data are widely used over relatively flat areas, this new approach offers the436

opportunity for new applications over mountainous areas. such a correction method could potentially be used in con-437

junction with LST-based evapotranspiration methods over agricultural (Merlin et al., 2010b; Mattar et al., 2014) and438

complex terrain (Olivera-Guerra et al., 2014), soil moisture disaggregation methods (Merlin et al., 2012; Malbéteau439

et al., 2016) and forest fire prediction models (Leblon, 2005), among others. Note that the operational utility of the440

EB correction method over wide areas relies on the availability of ancillary data composed of meteorological forcing.441

Moreover, Integrating heat storage variation in a dynamic version of the EB model (Danilina et al., 2012) would442

improve the simulation of LST over the slopes exposed to the sun prior to the satellite overpass. Such developments443

could be fostered by the future availability of LST data at high spatial and temporal resolution (Wu et al., 2015).444

Acknowledgements445

This study was carried out within the frame of the Joint International Laboratory TREMA http://trema.ucam.446

ac.ma and was supported by the MIXMOD-E project (ANR-13-JS06-0003-01) funded by the French agency ANR447

(Agence Nationale de la Recherche) and the REC project (RISE-2014-645642- REC) funded by the European H2020448

program. The acquisition of the Pliades images was supported by the CNES through the ISIS program. Mohamed449

Kasbani,participant of the experiment, is gratefully acknowledged.450

References451

Abrams, M., 2000. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution452

imager on NASA’s Terra platform. International Journal of Remote Sensing 21 (5), 847–859.453

Allen, R. G., Pereira, L. S., Raes, D., Smith, M., 1998. Crop evapotranspiration- guidelines fo computing crop water requirements. FAO Irrigation454

and Drainage Paper 56, 1–15.455

Allen, R. G., Tasumi, M., Morse, A., Trezza, R., Wright, J. L., Bastiaanssen, W., Kramber, W., Lorite, I., Robison, C. W., Morse, A., Trezza,456

R., Wright, J. L., Bastiaanssen, W., Kramber, W., Lorite, I., Robison, C. W., Morse, A., Trezza, R., Wright, J. L., Bastiaanssen, W., Kramber,457

W., Lorite, I., Robison, C. W., 2007. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (MET-458

RIC)Applications. Journal of Irrigation and Drainage Engineering 133 (4), 395–406.459

Allen, R. G., Trezza, R., Tasumi, M., 2006. Analytical integrated functions for daily solar radiation on slopes. Agricultural and Forest Meteorology460

139 (1-2), 55–73.461

Anderson, M. C., Norman, J. M., Kustas, W., Houborg, R., Starks, P., Agam, N., dec 2008. A thermal-based remote sensing technique for routine462

mapping of land-surface carbon, water and energy fluxes from field to regional scales. Remote Sensing of Environment 112 (12), 4227–4241.463

17

http://trema.ucam.ac.ma
http://trema.ucam.ac.ma
http://trema.ucam.ac.ma


Bastiaanssen, W., Menenti, M., Feddes, R., Holtslag, A., 1998. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formula-464

tion. Journal of Hydrology 212-213, 198–212.465
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Appendix691

Dry bare soil EB equation:692

In eq. 6, the dry soil (s,dry) net radiation is693

Generally, net radiation is expressed as:

Rn = K ↓ −K ↑ +L ↓ −L ↑ (A.1)

where K ↓ being the surface downward shortwave radiative flux, K ↑ the surface upward shortwave flux, L ↓ the694

downward longwave flux and L ↑ the upward longwave flux. K ↑ is defined as the fraction of K ↓ at the surface that695

is reflected (albedo: α). L ↓ is results from whole atmosphere and clouds irradiance absorbed by the surface (εRa).696

L ↑ is defined by the surface temperature from Stephan-Boltzmann law (εσT 4). Generally, Rn is calculated as:697

Rn = (1 − α)Rg + εRa − εσT 4 (A.2)

with α (-, dimensionless) being the albedo, ε (-) the emissivity, Ra (W.m−2) the downward atmospheric radiation, and698

σ (W.m−2 K−4) the Stefan-Boltzmann constant.699

Then, Rns,dry can be expressed as:

Rns,dry = (1 − αs)Rg + εsRa − εsσT 4
s,dry (A.3)

with αs (-, dimensionless) being the soil albedo and εs (-) the soil emissivity. The ground heat is commonly set to700

a fraction of soil net radiation:701

Gd = CG × Rns,dry (A.4)

with CG (-) being set to 0.32 (Kustas and Daughtry, 1990). The dry soil sensible heat in eq. 6 is expressed as:

Hs,dry = ρCp
Ts,dry − Ta

rahs,dry
(A.5)

with ρ (Kg m−3) being the air density, Cp (J Kg−1 K−1) the air specific heat, Ta the air temperature (eq. 10) and702

rahs,dry(s.m−1) the aerodynamic resistance over dry bare soil.703

704

Wet bare soil EB equation:
In eq. 7, the wet soil (s,wet) net radiation is

Rns,wet = (1 − αs)Rg + εsRa − εsσT 4
s,wet (A.6)

with the ground heat expressed as:
Gw = CG × Rns,wet (A.7)

The wet soil sensible heat in eq. 7 is expressed as:

Hs,wet = ρCp
Ts,wet − Ta

rahs,wet
(A.8)

with rahs,wet (s.m−1) being the aerodynamic resistance over wet bare soil. In eq. 7,LEs,wet (W.m−2) the wet soil latent
heat is expressed as:

LEs,wet =
ρCp
γ

esat(Ts,wet) − (esat(Ta) × Ha
100 )

rahs,wet + rv,min
(A.9)

with γ the psychrometric constant (Pa.K−1) that relates the partial pressure of water in air to the air temperature,705

esat(Ta) (Pa) the saturated vapor pressure at air temperature, esat(T s,wet) (Pa) the saturated vapor pressure at wet soil706

temperature, Ha (%) the air relative humidity (set to 25 s.m−1 (Moran et al., 1994)).707

708

22



Stressed vegetation EB equation:709

In eq. 8, the stressed vegetation (v,dry) net radiation is:710

Rnv,dry = (1 − αv)Rg + εvRa − εvσT 4
v,dry (A.10)

with αv (-) being the vegetation albedo, and εv (-) the vegetation emissivity. The vegetation sensible heat in eq. 8 is711

expressed as:712

Hv,dry = ρCp
Tv,dry − Ta

rahv,dry
(A.11)

with Hv,dry (s.m−1) the aerodynamic resistance over full-cover vegetation.713

714

Well-watered vegetation EB equation:715

In eq. 9, the well-watered vegetation (v,wet) net radiation is:716

Rnv,wet = (1 − αv)Rg + εvRa − εvσT 4
v,wet (A.12)

The vegetation sensible heat in eq. 9 is expressed as:

Hv,wet = ρCp
Tv,wet − Ta

rahv,wet
(A.13)

with rahv,wet (s.m−1) the aerodynamic resistance over full-cover vegetation. In eq. 9, LEv,wet (W.m−2) the vegetation
latent heat is expressed as:

LEv,wet =
ρCp
γ

esat(Tv,wet) − (esat(Ta) × Ha
100 )

rahv,wet + rv,min
(A.14)

with esat(Tv,wet)(Pa) the saturated vapor pressure at vegetation temperature. and rv,min the minimum stomatal resis-717

tance (set to 25 s.m−1 (Moran et al., 1994)).718

The expressions of Ra, rahs, rahv, esat(Ta), esat(T s) and esat(Tv) are expressed as following:719

In eq. A.3, A.6, A.10 and A.12 the downward atmospheric radiation is expressed as:

Ra = εaσTa4 (A.15)

with εa (-) being the effective atmospheric emissivity. The emissivity of clear skies is estimated as in Brutsaert (1975)
based on Kustas et al. (1994); Iziomon et al. (2003); Herrero and Polo (2012):

εa = 0.553(ea/100)1/7 (A.16)

with ea the air vapor pressure computed as:

ea = esat(Ta)(ha/100) (A.17)

In eq. A.9 and A.14 the saturated vapor pressure at temperature T is expressed as:

esat(T ) = 611 exp[17.27(T − 273.15)/(T − 35.9)] (A.18)

In eq. A.5, A.8, A.9, A.11, A.13 and A.14 the component aerodynamic resistance rah for the soil or vegetation is
estimated as in Choudhury et al. (1986):

rah =
rah0

(1 + Ri)η
(A.19)

with rah0(s.m−1) being the neutral aerodynamic resistance, Ri (-) the Richardson number which represents the impor-
tance of free versus forced convection, and η (-) a coefficient set to 0.75 in unstable conditions (component temperature
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larger than Ta) and 2 in stable conditions (component temperature lower than Ta). The Richardson number is com-
puted as:

Ri =
5gZ(T − Ta)

TaU2
a

(A.20)

with T being the component temperature (Ts for rahs and Tv for rahv). The neutral rah0 is computed as:

rah0 =
1

k2Ua

[
ln

(
Z − d
Z0h

)] [
ln

(
Z − d
Z0m

)]
(A.21)

with k (-) being the von karman constant, Ua (m.s−1) the wind speed measured at the height Z (m) and Z0m (m) the720

momentum roughness. Z0m is set to 0.003 m for rahs (Yang et al., 2008; Stefan et al., 2015) and 0.1 m for rahv (Allen721

et al., 1998). Z0h is expressed as Z0m divided by 10 (Allen et al., 1998).722
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