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Introduction

The radiative skin temperature over land or land surface temperature (LST) plays an important role in the physics of surface-atmosphere interactions. It is at the same time a driver and a signature of the energy and mass exchanges over land [START_REF] Anderson | A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales[END_REF][START_REF] Brunsell | Length Scale Analysis of Surface Energy Fluxes Derived from Remote Sensing[END_REF][START_REF] Karnieli | Use of NDVI and Land Surface Temperature for Drought Assessment: Merits and Limitations[END_REF][START_REF] Kustas | Advances in thermal infrared remote sensing for land surface modeling[END_REF][START_REF] Zhang | Two Improvements of an Operational Two-Layer Model for Terrestrial Surface Heat Flux Retrieval[END_REF]. LST is highly variable in both space and time [START_REF] Prata | Thermal remote sensing of land surface temperature from satellites: Current status and future prospects[END_REF], mainly as a result of the heterogeneity of the meteorological forcing, land cover, soil water availability, surface radiative properties and topography. Therefore, satellite-derived LST is widely used in a variety of applications including evapotranspiration monitoring [START_REF] Bastiaanssen | A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation[END_REF][START_REF] Boulet | Monitoring water stress using time series of observed to unstressed surface temperature difference[END_REF], climate change studies [START_REF] Hansen | Global surface temperature change[END_REF], soil moisture estimation [START_REF] Sandholt | A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[END_REF]Merlin et al., 2010a), vegetation monitoring [START_REF] Kogan | Operational space technology for global vegetation assessment[END_REF], urban climate studies [START_REF] Voogt | Thermal remote sensing of urban climates[END_REF] and forest fire detection [START_REF] Eckmann | Using multiple endmember spectral mixture analysis to retrieve subpixel fire properties from MODIS[END_REF].

Since LST and soil water availability are coupled under non energy-limited conditions, LST has been used as a proxy of the surface water status in combination with energy balance modeling [START_REF] Norman | Algorithms for extracting information from remote thermal-IR observations of the earth's surface[END_REF][START_REF] Anderson | A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales[END_REF][START_REF] Kustas | Advances in thermal infrared remote sensing for land surface modeling[END_REF]Merlin et al., 2010a;[START_REF] Bastiaanssen | A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation[END_REF][START_REF] Allen | Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (MET-RIC)Applications[END_REF][START_REF] Boulet | Monitoring water stress using time series of observed to unstressed surface temperature difference[END_REF][START_REF] Mattar | Impacts of the broadband albedo on actual evapotranspiration estimated by S-SEBI model over an agricultural area[END_REF][START_REF] Cammalleri | On the Role of Land Surface Temperature as Proxy of Soil Moisture Status for Drought Monitoring in Europe[END_REF]. All those studies have focused on relatively flat regions to facilitate the interpretation of the LST variability associated with the surface parameters, fluxes or processes of interest.

Over hilly areas, the application of such approaches is limited because the signature of the surface water status on LST is masked by topography effects, namely the pixel-scale impact of illumination (solar radiation) and elevation (air temperature) on LST. Especially, temperature differences between south-facing and north-facing slope can reach 30 • C [START_REF] Shreve | Soil Temperature as Influenced by Altitude and Slope Exposure[END_REF][START_REF] Raz-Yaseef | Effects of spatial variations in soil evaporation caused by tree shading on water flux partitioning in a semi-arid pine forest[END_REF] due to illumination effects. Globally, about 20% of continental surfaces consist of mountainous terrain [START_REF] Meybeck | A New Typology for Mountains and Other Relief Classes[END_REF] where LST is significantly impacted by topography. However, to our knowledge, there is no method to correct the remotely sensed LST for the topography-induced atmospheric forcing variability, that is to derive the LST that would be observed under uniform solar radiation and air temperature conditions.

Note that the retrieval of LST from satellite observations over mountainous areas is subject to uncertainties associated with viewing geometry i.e. GIFOV (ground instantaneous field of view) and the anisotropic nature of emissivity.

Modeling, experimental, and case studies have reported an anisotropic effect on LST typically ranging from 1 to 2 • C depending on the pixel-scale radiometer viewing angle and up to 3 • C for extreme viewing angles [START_REF] Lagouarde | An experimental study of angular effects on surface temperature for various plant canopies and bare soils[END_REF][START_REF] Sobrino | Angular variation of thermal infrared emissivity for some natural surfaces from experimental measurements[END_REF][START_REF] Minnis | Anisotropy of Land Surface Skin Temperature Derived from Satellite Data[END_REF][START_REF] Coret | Simulation Study of View Angle Effects on Thermal Infrared Measurements Over Heterogeneous Surfaces[END_REF][START_REF] Rasmussen | Modeling angular dependences in land surface temperatures from the SEVIRI instrument onboard the geostationary meteosat second generation satellites[END_REF][START_REF] Proy | Evaluation of topographic effects in remotely sensed data[END_REF][START_REF] Liu | Scaling of land surface temperature using satellite data: A case examination on ASTER and MODIS products over a heterogeneous terrain area[END_REF][START_REF] Liu | Discrepancy between ASTER-and MODIS-derived land surface temperatures: Terrain effects[END_REF]. The LST retrieval errors due to viewing geometry are thus much smaller (<10%) than the potential impact of topography-induced atmospheric forcing variability on LST. At the subpixel scale, current LST retrieval methods overlook the (commonly unresolved) fine-scale surface roughness [START_REF] Danilina | Performance of a thermal-infrared radiosity and heat-diffusion model for estimating sub-pixel radiant temperatures over the course of a day[END_REF][START_REF] Danilina | Compensation for subpixel roughness effects in thermal infrared images[END_REF].

To assess the impact of topography on remotely sensed LST, previous studies have attempted to simulate LST over mountainous areas. For example, [START_REF] Hais | The influence of topography on the forest surface temperature retrieved from Landsat TM, ETM + and ASTER thermal channels[END_REF] simulated LST using linear regressions with the hillshade computed by the spatial analyst toolbox of ArcGis based on a DEM (Digital Elevation Model). The surface energy balance (EB) equation has also been used over mountainous terrain to simulate LST [START_REF] Dozier | An Approach toward Energy Balance Simulation over Rugged Terrain[END_REF]. Originally, this approach was designed for bare soil or low grassy vegetation with a single source EB model using a topographic map and a set of ancillary (incoming solar radiation, albedo, wind speed, air temperature, surface roughness length and relative air humidity) measurements. The variability of albedo was estimated with soil wetness and illumination angle information, while the variation of air temperature with elevation was estimated using the standard environmental lapse rate of -6.5 • C.km -1 . In [START_REF] Dozier | An Approach toward Energy Balance Simulation over Rugged Terrain[END_REF], wind speed and relative air humidity were assumed to be homogeneous over the study area. The incoming solar radiation was computed for each grid cell according to the local solar incidence angle and a diffuse radiation factor. However, the solar radiation in their model did not include the diffuse reflection from adjacent terrain.

Later [START_REF] Rigon | GEOtop: A Distributed Hydrological Model with Coupled Water and Energy Budgets[END_REF] developed a distributed hydrological model that accounts for complex topography. This model named GEOtop describes the energy and mass exchanges at the surface/atmosphere interface by taking into account 1) the impact of elevation on air temperature, 2) the effects of slope/exposure on solar radiation and 3) the spatial distribution of vegetation and soil water content. In that study, the EB model of GEOtop is single source. It is forced by temperature and wind speed measurements, which are regionalized over the study area. The incoming direct shortwave radiation is computed for each grid cell according to the local solar incidence angle, including the diffuse radiation due to atmospheric and cloud transmissivity. This model also includes shadowing effects of direct solar radiation by the surrounding mountains. In that paper, shadowing was basically expressed as a factor ranging from 0 if the grid cell is completely in shadow (no direct radiation) to 1 if the sun radiation hits the surface. More recently [START_REF] Bertoldi | Topographical and ecohydrological controls on land surface temperature in an alpine catchment[END_REF] and [START_REF] Endrizzi | GEOtop 2 . 0 : simulating the combined energy and water balance at and below the land surface accounting for soil freezing , snow cover and terrain e ff ects[END_REF] used the same (GEOtop) model to estimate the topographical effects on soil temperature simulations for different applications including ecohydrology, soil freezing and snow cover assessment.

To simulate LST accurately using an EB model, the incoming solar radiation should be represented at the pixel scale [START_REF] Allen | Analytical integrated functions for daily solar radiation on slopes[END_REF]. The solar radiation (noted Rg in W.m -2 ) reaching the surface at a given location is the sum of direct solar radiation, diffuse sky radiation, and the direct and diffuse radiations reflected by nearby terrains [START_REF] Dubayah | Modeling a solar radiation topoclimatology for the Rio Grande River Basin[END_REF]. Rg mainly depends on the cloud cover, the turbidity of the clean air, the time of year, latitude, albedo of the surrounding terrain and surface geometry [START_REF] Essery | Scaling and parametrization of clear-sky solar radiation over complex topography[END_REF]. Estimating the Rg variability over mountainous areas is challenging due to the irregular topographic geometry of the surface and to the multiple reflections that occur in such conditions. At high resolution, the variability in slope angles and slope orientations, as well as the shadows cast by topographic agents can lead to strong local gradients in Rg [START_REF] Dozier | A Clear-Sky Spectral Solar Radiation Model[END_REF][START_REF] Dubayah | Estimating net solar radiation using Landsat Thematic Mapper and digital elevation data[END_REF]. Moreover, since the in situ monitoring network ineffectively covers the complex heterogeneity of mountainous areas, simple geostatistical methods for spatial interpolation of solar radiation are not always representative enough. Consequently, algorithms that explicitly or implicitly account for the features creating strong local gradients in the incoming radiation must be applied [START_REF] Susong | Methods for developing time-series climate surfaces to drive topographically distributed energy-and water-balance models[END_REF][START_REF] Garen | Spatially distributed energy balance snowmelt modelling in a mountainous river basin: Estimation of meteorological inputs and verification of model results[END_REF]. The most advanced method to compute the distributed Rg over a landscape is to use a 3D radiative transfer model, which explicitly simulates its three components: direct solar radiation, diffuse sky radiation and reflected radiations. Here we used DART model (Discrete Anisotropic Radiative Transfer, Gastellu-Etchegorry et al. (1996)) as one of the most comprehensive physically based 3D models simulating the Earth-atmosphere radiation interaction from visible to thermal infrared wavelengths.

In this context, this study aims to develop an original method to correct the remotely sensed LST for topographyinduced atmospheric forcing ( solar radiation and air temperature) variability. This method uses an EB model forced by the solar radiation derived from DART and the air temperature gradient derived from elevation data. The approach is tested at 90 m resolution using ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) data over a 6 km by 6 km steep-sided area in the Moroccan Atlas. The LST is corrected for topography by simulating the LST using DART solar radiation and elevation data. Moreover, the EB approach is implemented using a dual source formulation, allowing for a representation of topographic effects on both soil and vegetation components. Three different strategies are proposed to evaluate the correction approach. First, the EB model is compared in terms of simulated LST with two other simpler approaches based on the same input (DART solar radiation and elevation) data.

Second, the LST simulated by the EB model is evaluated against a set of soil temperature measurements distributed at 45 points within the study area. Third, the quality of corrected LST is analyzed both qualitatively and quantitatively.

Study materials

Study region

The High Atlas is a Moroccan mountain chain of approximately 60 km in width and 800 km in length organized along a NE-SW axis. It culminates at 4167 m above sea level at the Jbel Toubkal, the highest summit of North Africa.

The central part of the High-Atlas is the water tower for the northern semi-arid plains of the Tensift catchment, Marrakech region [START_REF] Chehbouni | An integrated modelling and remote sensing approach for hydrological study in arid and semiarid regions: the SUDMED Programme[END_REF]. The experimental data set was collected over the Imlil valley (31.12 • N; 7.93 • W) part of the Rheraya sub-catchment (Toubkal national park). This valley has an East-West orientation, thus maximizing the solar exposure effects on LST. It covers a surface area of about 9 km 2 (Fig. 1) and is characterized by a semi-arid and mountainous climate. The annual precipitation is about 600 mm /year with intense events in winter and sparse localized thunderstorms during spring and summer. The vegetation cover is a function of elevation and human activity, so that dense vegetation is observed along the stream valley only. Others areas are characterized by bare or poorly vegetated loam gravelly brown soil. Terrain elevation varies between 1700 and 3150 m and hillslope range between 0 (stream valley) and 70 (highest elevation) degrees. Such conditions offer an interesting test site for developing and testing methods for LST topographic correction . The study region covers an area of 6 km x 6 km including the Rheraya sub-catchment (Fig. 1). 2.2. Remote sensing data 2.2.1. ASTER land surface temperature ASTER is one of the five scientific instruments onboard the satellite platform Terra, part of NASAs Earth Observation System (EOS). ASTER is a high spatial resolution radiometer, which consists of three separate subsystems: the visible and near infrared, the shortwave infrared and the thermal infrared. The multispectral TIR (Thermal In-fraRed: 5 channels between 8 and 12 µm) allows the retrieval of LST and emissivity spectra at high spatial (90 m) resolution [START_REF] Abrams | The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA's Terra platform[END_REF]. The LST data used in this study are extracted from the on-demand surface kinetic temperature AST 08 product [START_REF] Gillespie | A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images[END_REF]. This product is derived using the same algorithm as the Surface Emissivity Product. Surface kinetic temperature is determined by applying Planck's Law using the emissivity values from the Temperature-Emissivity Separation algorithm. ASTER surface radiance data are corrected from radiometric (sun spot, shading), atmospheric and geometric effects [START_REF] Gillespie | A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images[END_REF][START_REF] Abrams | The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA's Terra platform[END_REF]. Absolute accuracy of LST product is about 2 • C [START_REF] Gillespie | A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images[END_REF][START_REF] Abrams | The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA's Terra platform[END_REF][START_REF] Liu | Scaling of land surface temperature using satellite data: A case examination on ASTER and MODIS products over a heterogeneous terrain area[END_REF]. Note that a major source of error is due to the use of a 1 km DEM for atmospheric correction [START_REF] Gillespie | A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images[END_REF]. ASTER products were acquired specifically on the study area at 11:22 am UTC on 3 dates: April 14 th and 30 th and September 5 th , 2014.

Digital elevation models

In this study two DEMs were used with an original spatial resolution of 30 and 4 m. NASA and the Ministry of economy, Trade and Industry of Japan (METI) produced the global 30 m grid size ASTER GDEM product. The GDEM v2 released in October 2011, it is an improved version of GDEM v1 released in June 2009 with an absolute vertical and horizontal accuracy of 17 and 30 m [START_REF] Meyer | ASTER Global Digital Elevation Model Version 2 Summary of Validation Results[END_REF], respectively. The 4 m resolution Pleiades DEM is also used. The Pleiades 1A and 2B twin satellites were launched 17 December 2011 and 2 December 2012, respectively.

The DEM was derived from Pleiades-1A stereoscopic pairs acquired over the Rheraya catchment on the 18 th of August 2015 at 11:19 am (within a few tens of seconds due to the agility of the platform). Images are delivered at a ground sampling distance of 0.5 m for the panchromatic channel. The DEM was generated through the Automatic Terrain Extraction algorithm in the ERDAS Imagine 2014 photogrammetry toolbox. Three accurate wide-spread control points were collected in the images area. One of them located near the Imlil valley was used as an absolute horizontal ground control point to improve the horizontal geolocation accuracy. Pixel size is of 4 m, which is a good compromise between processing time and DEM accuracy [START_REF] Berthier | Glacier topography and elevation changes derived from Pléiades sub-meter stereo images[END_REF][START_REF] Marti | Evaluation du modèle numérique d'élévation d'une petit glacier de montagne généré à partir d'images stéréoscopiques Pléiades. cas du glacier d'Ossoue, Pyrénées franc ¸aises[END_REF]. The accuracy of the DEM horizontal registration was evaluated based on two other check points obtained by geodesic GPS. The error was lower than 4 m in both cases. The vertical error was evaluated based on all three points and was between 1 m and 5 m. The hillshaded raster generated from the Pleiades DEM was also inspected in the Imlil valley region and we found no artifacts or aberrations due to the stereo-correlation. Note that the 4 m resolution DEM was resampled to 8 m using cubic interpolation due to computer memory limitation of DART model when simulating the 3D radiative budget of the whole study area at spatial resolution better than 8 m. This situation will be improved in next DART version with new data format and the possibility to work with pixels that can have different dimensions within the same scene.

Remotely sensed vegetation index

The vegetation cover is derived over the study area from the 30 m resolution Landsat data collected on dates closest to the three ASTER overpass dates. The Landsat reflectances [START_REF] Claverie | Evaluation of the Landsat-5 TM and Landsat-7 ETM+ surface reflectance products[END_REF]) were used to compute the Normalized Difference Vegetation Index (NDVI), defined as the ratio of the difference between near-infrared and red reflectances to their sum. Fractional vegetation cover (fv) is estimated as in [START_REF] Gutman | The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models[END_REF]:

f v = NDV I -NDV I s NDV I vg -NDV I s (1)
with NDV I vg corresponding to fully-covering vegetation and NDV I s to bare soil. In this study, NDV I vg and NDV I s are set to the maximum and minimum value of the NDVI observed within the study domain, respectively. Several studies have investigated the spatial scale dependencies of NDVI and the relationship between NDVI and fv. As a first approximation, we consider that the first-order estimate, proposed by [START_REF] Gutman | The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models[END_REF], adequately describes the relationship. and processed in the frame of the Joint International Laboratory TREMA, Marrakech-Morocco [START_REF] Jarlan | Remote Sensing of Water Resources in Semi-Arid Mediterranean Areas: the joint international laboratory TREMA[END_REF].

Temperature sensors/loggers

The ibutton sensor (model DS1921G) is a coin size that integrates a micro-controller, 2kB storage, a real-time clock, a temperature sensor, and a battery. The ibutton temperature sensors measure temperature in 0.5 • C increments from -30 • C to 70 • C with ± 1 • C accuracy [START_REF] Hubbart | Evaluation of a low-cost temperature measurement system for environmental applications[END_REF].

In 2014, a total of 135 ibuttons were deployed over the Imlil valley to cover a range of solar exposures and elevations (Fig. 2). 102 ibuttons were installed on the 3 rd April 2014, set up across both sides of the valley to provide a spatial understanding of illumination effects on LST. To complete the spatial distribution, 33 additional ibuttons were set up on the 7 th May 2014 across a third slope. All sensors were removed on the 2 nd October 2014 (approximately 6 months later) before the first snowfall events in the area. In practice, ibuttons were installed 3 by 3 on a 7 by 7 cm thin transparent plastic plate to prevent spreading down into the slope and variations in placement. They were pinned in a topographic environment that was relatively homogeneous at 90 m scale with different illumination and elevation (Fig. 2). The resulting 45 plates were buried very close (∼1 cm) to the soil surface by making sure that ibuttons were not directly exposed to solar radiation. We are aware that plates disturb, at least a little bit, surface moisture and latent heat, however it is difficult to estimate impact on the measures. The recording time resolution (135 minutes)

for each sensor was chosen based on the maximum ibutton data storage for a 6 month recording. However, the three ibuttons of a given plate were recording temperature with a 45 minute delay between each acquisition, so that the recording time resolution of each plate (by combining all three ibuttons sensors) was 45 minutes. Each plate was installed along transects at a regular spacing of about 150 m (Fig. 2). The locations were recorded using handheld GPS measurements (accuracy ± 6 m) and were physically marked by a white cairn for easier recovery. Every retrieved ibutton (42/45 plates) recorded valid data; and one plate reappeared on the surface and was excluded from the analysis.

In total, 91% of the ibuttons installed data could be used for the analysis. In that spectral band, the irradiance varies between 100 and 1800 W.m -2 over the simulated scene (Fig. 3). The capability of the DART has been successfully tested in a number of works in the visible and near-infrared spectral domains [START_REF] Widlowski | Third Radiation Transfer Model Intercomparison (RAMI) exercise: Documenting progress in canopy reflectance models[END_REF][START_REF] Widlowski | The RAMI On-line Model Checker (ROMC): A web-based benchmarking facility for canopy reflectance models[END_REF]. Then, the DART model has been evaluated in the thermal range, where works have addressed the usefulness of this model [START_REF] Guillevic | Thermal infrared radiative transfer within three-dimensional vegetation covers[END_REF][START_REF] Gastellu-Etchegorry | 3D modeling of satellite spectral images, radiation budget and energy budget of urban landscapes[END_REF][START_REF] Sepulcre-Cantó | Discriminating irrigated and rainfed olive orchards with thermal ASTER imagery and DART 3D simulation[END_REF][START_REF] Sobrino | Evaluation of the DART 3D model in the thermal domain using satellite/airborne imagery and ground-based measurements[END_REF]. However the DART capability has not been evaluated to simulate solar radiation, particularly in mountainous area, due to the difficulty to get such data. Therefore, there is no way to estimate directly the accuracy of DART results.
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Topographic normalization methods

The methodologies presented in this section aim to correct ASTER LST data for topographic including illumination and elevation-effects. Elevation is derived from the 30 m resolution GDEM and is then aggregated at ASTER (90 m) resolution. The incoming solar radiation received at the surface is simulated by DART at the three ASTER overpass dates. Both elevation and DART-simulated illumination are used as input to topographic correction . The approach is based on the EB equations for soil and vegetation, and compared to two different approaches based on 1) a multi-linear regression between ASTER LST, elevation and DART irradiance map, and 2) the slope of the dry edge of both ASTER LST-E (elevation) and ASTER LST-Rg feature spaces.

Topographic normalization based on the soil and vegetation Energy balance equations

The proposed correction methodology was originally developed in [START_REF] Merlin | A combined modeling and multispectral/multiresolution remote sensing approach for disaggregation of surface soil moisture: application to SMOS configuration[END_REF] to improve the disaggregation of coarse-scale soil moisture data using LST data available at higher spatial resolution. The correction method was further applied to the disaggregation of kilometric LST data over flat irrigated areas [START_REF] Merlin | Disaggregation of MODIS surface temperature over an agricultural area using a time series of Formosat-2 images[END_REF]. In this paper, the technique is implemented to correct satellite (ASTER) LST data for topographic effects at the spatial resolution of available DEMs. The correction model is written as:

T corr,EB = T AS T ER + T EB (E, Rg) -T EB ( E , Rg ) (2) 
With T corr,EB in • C being the ASTER LST corrected for topographic effects using the EB approach, T AS T ER in • C being the ASTER LST, T EB (E, Rg) in • C the LST simulated by the EB equations using pixel-scale elevation (E) in m and solar radiation (Rg) in W.m -2 , and T EB ( E , Rg ) in • C the LST simulated by the EB equations using the average of E ( E ) and Rg ( Rg ) at the image scale. LST is estimated as a linear function of component temperatures [START_REF] Merlin | Different approaches in estimating heat flux using dual angle observations of radiative surface temperature[END_REF][START_REF] Anderson | A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales[END_REF][START_REF] Long | A Two-source Trapezoid Model for Evapotranspiration (TTME) from satellite imagery[END_REF].

T EB = f v × T v EB + (1 -f v) × T s EB (3) 
with T v EB in • C being the vegetation temperature and T s EB in • C the soil temperature. The soil temperature is expressed as:

T s EB = f ss × T s,dry EB + (1 -f ss) × T s,wet EB (4) 
with T s,dry EB in • C the soil temperature in dry condition, T s,wet EB in • C the soil temperature in wet condition and f ss a dryness index of the soil surface. f ss equals to 1 when the soil is fully dry (surface soil moisture close to the residual value) and to 0 when the soil is fully wet (surface soil moisture close to the soil moisture at saturation). Similarly, the vegetation temperature is expressed as:

T v EB = f sv × T v,dry EB + (1 -f sv) × T v,wet EB (5) 
with T v,dry EB in • C the temperature of fully stressed (non-transpiring) vegetation, T v,wet EB in • C the temperature of a vegetation that is unstressed (transpiring at the potential rate) and f sv a vegetation water stress index. f sv is equal to 1 when the root zone soil moisture is above field capacity and to 0 when the root zone soil moisture is below the wilting point. Dry bare soil, wet bare soil, fully stressed and unstressed vegetation extreme temperatures are then derived by solving the EB equation for each case, as described below. The dry bare soil EB equation is written as:

Rn s,dry -Gdry = H s,dry (6) 
with Rn s,dry (W.m -2 ) being the net radiation from dry soil, Gdry (W.m -2 ) the ground heat in dry condition and H s,dry (W.m -2 ) the sensible heat of dry soil. Similarly the wet bare soil EB equation is written as:

Rn s,wet -Gwet = H s,wet + LE s,wet (7) 
with Rn s,wet (W.m -2 ) being the net radiation from wet soil, Gwet (W.m -2 ) the ground heat in wet condition, H s,wet (W.m -2 ) the sensible heat of wet soil and LE s,wet (W.m -2 ) the latent heat of wet soil. The fully-stressed vegetation EB equation is written as:

Rn v,dry = H v,dry (8) 
with Rn v,dry (W.m -2 ) and H v,dry (W.m -2 ) being the net radiation and the sensible heat of water-stressed vegetation, respectively. Hence, the unstressed vegetation EB equation is written as:

Rn v,wet = H v,wet + LE v,wet (9) 
with Rn v,wet (W.m -2 ), H v,wet (W.m -2 ) and LE v,wet (W.m -2 ) being the net radiation, sensible heat, and latent heat flux of unstressed vegetation, respectively. The expressions of each flux component of the above EB equations are detailed in the appendix A .

In EB equations 4 and 5, the air temperature (T a) at the pixel scale is estimated as:

T a = T a station + LR × (E -E station ) (10) 
with T a station ( • C) is the air temperature measured at the Imlil meteorological station, E (m) the pixel elevation, E station (m) the elevation of the station, and LR the environmental lapse rate ( • C. m -1 ). The latter is defined as the rate at which air temperature decreases with increasing elevation. LR is estimated at image-scale for each ASTER overpass date separately.

The four temperatures (Ts,dry, Ts,wet, Tv,dry and Tv,wet) in eq. 4 and 5 are solved numerically using the Newton s method [START_REF] Bristow | On solving the surface energy balance equation for surface temperature[END_REF]. The convergence of component temperature is assumed to be reached when the absolute temperature difference between two consecutive iterations is lower than a given threshold (set to 0.01 • C).

Given that ASTER LST observations are available to calibrate the topographic correction model; three additional constraints are applied to the LST model in eq. 3. The first step consists in removing any possible bias in T EB (E, Rg) and T EB ( E , Rg ):

T EB = T AS T ER + T EB -T EB (11) 
with T AS T ER and T EB being the average of T AS T ER and T EB over the study area, respectively.

The second step consists in adjusting f ss and f sv in equations 4 and 5 by minimizing the RMSD (Root Mean Square Difference) between ASTER LST and model-derived LST, for each ASTER overpass date separately. The third step consists in adjusting LR in eq. 10 by minimizing the RMSD between ASTER LST and model-derived LST. Note that the two latter steps require running the LST model at the observed LST resolution, which is the ASTER resolution in our case. Once the LST model has been calibrated in mean value and via the LR parameter, it can be applied to any spatial resolution, provided a DEM is available at the target resolution. The above calibration needs initializing LR with a LR first-guess of -6 • C.km -1 , according to [START_REF] Glickman | Glossary of Meteorology[END_REF]. The algorithm is summarized in Fig. 4.

The above correction method is based on several assumptions. Air humidity and wind speed (from the Imlil station data) are assumed to be uniform within the study area. The surface parameters εs, εv, αs and αv are also assumed to be homogeneous within the study area. αs and αv are estimated as the mean of the 1 km resolution MODIS-derived albedo (MCD43B3 product) over the study area. εs, εv are set up to 0.96 and 0.98, respectively, according to look-up tables from [START_REF] Rubio | Thermalinfrared emissivities of natural surfaces: improvements on the experimental set-up and new measurements[END_REF].

Rg, E 

Topographic normalization based on multi-linear regression

The second proposed correction model is based on multilinear (ML) regression:

T corr,ML = T AS T ER -(T ML -T ML ) (12) 
with T corr,ML being the ASTER LST corrected for topographic effects using the ML approach, and T ML the LST simulated by the ML regression using T AS T ER , DEM-derived E and DART-simulated Rg :

T ML = T AS T ER + A E (E -E ) + A Rg (Rg -Rg ) ( 13 
)
with A E and A Rg being two linear regression coefficients associated to E and Rg, respectively. A E and A Rg are computed for each image separately. The above correction method is based on several assumptions. Both variables Rg and E are assumed independent from each other because the ML regression can only fit observed data (LST ASTER) using a linear combination of independent variables (E and Rg). However, the latter assumption is considered valid only if the scene has the whole aspect range (between 0 to 360 • slope orientation). The ML approach also assumes that each pixel of the scene has the same behavior in term of illumination and elevation. In other words, the ML approach represents identically the topographic effects on both soil and vegetation components.

Topographic normalization based on the slope of dry edges

Originally proposed by [START_REF] Goward | Observed relation between thermal emission and reflected spectral radiance of a complex vegetated landscape[END_REF], the space-based approach, also known as the triangle/trapezoidal method, uses the contextual information contained in remotely sensed LST and a vegetation index to estimate evapotranspiration. This method was subsequently utilized to monitor soil water content [START_REF] Sandholt | A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[END_REF][START_REF] Merlin | Towards deterministic downscaling of SMOS soil moisture using MODIS derived soil evaporative efficiency[END_REF][START_REF] Kim | Improving Spatial Soil Moisture Representation Through Integration of AMSR-E and MODIS Products[END_REF][START_REF] Sobrino | A method to estimate soil moisture from Airborne Hyperspectral Scanner (AHS) and ASTER data: Application to SEN2FLEX and SEN3EXP campaigns[END_REF], surface resistance [START_REF] Nemani | Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. [Normalized Difference Vegetation Index[END_REF], land use and land cover change [START_REF] Julien | The Yearly Land Cover Dynamics (YLCD) method: An analysis of global vegetation from NDVI and LST parameters[END_REF] and drought [START_REF] Wan | Using MODIS Land Surface Temperature and Normalized Difference Vegetation Index products for monitoring drought in the southern Great Plains, USA[END_REF]. Recently, Merlin (2013) combined the LST-albedo space and the LST-NDVI spaces, by taking advantage of the complementarity of NDVI and albedo data for evapotranspiration estimation. [START_REF] Merlin | An original interpretation of the wet edge of the surface temperaturealbedo space to estimate crop evapotranspiration (SEB-1S), and its validation over an irrigated area in northwestern Mexico[END_REF].

Following this study, both LST-E and LST-Rg spaces provide complementary information on the spatial variation of LST in mountainous areas. The space-based approach thus potentially offers an interesting alternative method to correct LST for topographic effects. In space-based methods, usually implemented over flat areas, the lower edge corresponds to mostly wet pixels, while the upper edge is associated with dry pixels. In mountainous areas, it is often observed that vegetation occupies specific locations, such as the valley bottom and/or the lowest elevations.

The Imlil valley includes contrasted conditions between the irrigated crops at the relatively flat valley bottom, and the surrounding dry bare soil slopes. Therefore, it is expected that vegetated areas do not cover a large range of illumination and elevation conditions. For this reason, the third proposed topographic correction model is based on the dry edge (upper limit) of the LST-E and LST-Rg spaces (Fig. 5). In the same way as for the EB and ML method, the correction model is written as:

T corr,DE = T AS T ER -(T DE -T DE ) (14) 
with T corr,DE being the ASTER LST corrected for topographic effects based on the slope of dry edges (DE), and T DE the LST simulated by the DE approach using T AS T ER , DEM-derived E and DART-simulated Rg :

T DE = T AS T ER + B E (E -E ) + B Rg (Rg -Rg ) (15) 
with B E being the slope of the DE in the LST-E space, and B Rg the slope of the DE in the LST-Rg space. B E and B Rg are computed for each image separately.

The approach proposed by [START_REF] Menenti | Linear relationships between surface reflectance and temperature and their application to map actual evaporation of groundwater[END_REF] is used to determine the slope of the DE in the LST-E space. It is computed as the slope of the linear regression of the maximum LST determined for each E class and by excluding the E values below a threshold which does not take into account the LST variation due to the Rg effects. The threshold of E is constrained as the maximum LST simulated by the third order polynomial, estimated by using the maximum LST value of each E class (Fig. 5). Similarly, the slope of the DE in the LST-Rg space is computed as the slope of the linear regression of the maximum LST determined for each Rg class and by excluding Rg above a threshold which does not take into account the LST variation due to elevation effects (Fig. 5). The threshold of Rg is constrained as the maximum LST simulated by the third order polynomial, estimated by using the maximum LST value of each Rg class. Note that the number of class is estimated as 1% of the number of pixels.

Results and discussion

The three (EB, ML and DE) correction approaches are applied to ASTER LST data. As a first assessment of the performance of correction methods, the LST simulated by each model is compared to the ASTER LST and to the 1-cm depth soil temperature measurements. Then, the LST corrected by the EB method is qualitatively and quantitatively evaluated by visual inspection of the corrected images, statistical analyses of the spatial correlation between (uncorrected and corrected ) LST and topography indicators, and the physical interpretation of the LST-fv feature space before and after correction . for the ML case (see statistical results in Table 1) due to an overestimation of topographic effects by the DE correction method. In fact, the DE approach assumes that all pixels have the same sensitivity to topography as dry bare soil, although dry bare soil is much more affected by Rg than wet bare soil or vegetated surfaces. This is the reason why the LST simulated by the DE approach covers a larger range of values than ASTER LST (see Fig. 6). In fact, the main issue with this approach is the non representation of other conditions than dry bare soil, thus the need for taking into account the different behaviors of soil and vegetation components.

The statistics presented in Table 1 and the scatterplots in Fig. 6 c,f,i indicate that the dual-source EB model performs relatively better than the simpler ML and DE methods. The mean R and RMSD between model-derived and ASTER LST is 0.82 and 3 • C, respectively. The consistency of the results obtained between the three dates reveals the robustness of the EB equations, as for the ML method. Moreover, the EB approach is able to retrieve a physically consistent temperature lapse rate based on ASTER and simulated LST (Table 2). The LR obtained through the minimization of the cost function in eq. 10, is close to the values found in the literature. Under standard atmospheric conditions the mean atmospheric LR is -6.4 • C.km -1 [START_REF] Glickman | Glossary of Meteorology[END_REF]. However it is affected by the moisture content of air: in dry condition, a LR of -10 • C.km -1 is often used to calculate temperature changes [START_REF] Glickman | Glossary of Meteorology[END_REF] while in wet condition, the LR is close -5 • C.km -1 in a saturated air. Regarding the values obtained here (Table 2), the 5 th September image has a LR of -8.9 • C.km -1 near the LR in dry condition found in literature. This result is consistent with the fact that this date has the drier air condition (air humidity of 17%).

Likewise, the image with the higher air humidity (30 th of April) has the lower LR estimated as -5.

3 • C.km -1 .
Regarding the dryness index of the surface soil (Table 2, f ss) estimated by inversion of the soil EB, results illustrate a relatively dry soil ( f ss larger than 0.5) for the three dates as expected given the semi-arid climate of the area . For example the retrieved f ss is 0.95 on the 14 th April. Regarding the inverted vegetation water stress index (Table 2, f sv), dryness indices are generally close to 1. For example, the retrieved f sv is equal to 0.85 on the 30 th April. Although the vegetation in the stream valley is expected to be well-watered (i.e. not undergoing water stress) such results can be explained by the presence of sparse vegetation over the whole area. Such (potentially stressed)

vegetation has a strong impact on the f sv inversion.

When analyzing the results obtained for each model, the EB approach gives generally the best statistical results in terms of R and RMSD between simulated and ASTER LST. In particular, the EB model is able to reproduce the spatial patterns of the LST estimated from ASTER with an R of 0.85 on the 5 th of September. The soil/vegetation partitioning and the physical representation of the nonlinear relationship between LST and Rg (as expressed by the net radiation of EB equations) both explain the superiority of the EB approach. (Table 1). The performance of the EB model is also assessed by comparing both the ASTER and simulated LST to the measured surface soil temperature (ibutton sensors). The EB model is implemented at both 8 m and 90 m resolution using the corresponding DEMs. The 90 m resolution LST is simulated as previously. The 8 m resolution LST is simulated by running the EB model using the LR, fss and fsv parameters retrieved from 90 m resolution ASTER data.

Comparisons are made by extracting the LST pixels where temperature sensors are located.

The error statistics between LST and ground measurement are presented in Table 3 and scatterplots are displayed at Fig. 7. Note that the 14 th April has fewer points due to snow and clouds cover. When comparing the set of results, it is clear that the model-derived LST and ASTER LST give similar results in terms of both R and RMSD. For example, regarding the 30 th April, the simulated LST compares slightly better with ibutton measurements than with the ASTER LST. At the same (90 m) resolution, the EB simulation reduces the RMSD between LST and ibutton temperature by approximately 0.57 • C. Regarding the bias, the obtained results are contrasted between the two first dates (bias is about 2.5 • C) and the 5 th of September (bias is approaching the accuracy limit of the ibutton sensors; this is a limitation of using low cost temperature sensors). This could be due to the soil thermal inertia capacity since ibutton measurements are made at a 1 cm depth whereas the simulated LST is the skin surface temperature. For example, the two first dates (14 th and 30 th April) have a positive bias, which means that the mean ibutton temperature is about 3 • C colder than the remotely sensed LST. This phenomenon could be explained by the rapid morning heating of the immediate surface after a cold night. The air temperature before sunrise was 10 • C and 8 • C for the 14 th and 30 th of April, respectively. This characteristic is less noticeable for the 5 th of September because on that date, the air temperature is less variable between day and night . Higher temperatures (22.3 • C before sunrise) were indeed recorded during the night before with a diurnal temperature variation of ∼5 • C. Fig. 7 plots ASTER and simulated LST versus ibutton measurements and Table 3 lists the R, bias and RMSD between model-derived and ASTER LST versus ibutton measurements for each of the three ASTER overpass dates separately. Results indicate that the LST simulated for the warmer pixels are systematically lower than remotely sensed LST. This could be explained by the static (instantaneous) nature of the EB model, as the LST is simulated at a specific instant and, thus neglecting the heat storage. By contrast, ASTER provides information about the real state of the surface skin, which is potentially affected by the heat accumulation over the slopes that have been exposed to the sun for a period of time prior to the ASTER overpass.

The improvement between the LST simulated at 90 m and 8 m resolution are not as great as expected due to the topography variability around ibutton sensors. Actually, the ibuttons were set up in a topographic environment that was relatively homogeneous at the 90 m scale, given that the primary objective of the study was to correct topographic effects at the ASTER resolution. In consequence, the LSTs simulated at 90 m and 8 m resolution compare similarly with the 1-cm depth soil temperature measurements. 

Assessment of LST topographic correction

In order to evaluate the performance of the topographic correction method based on the dual-source EB equations, the LST data before and after correction are analyzed. The visual inspection of LST images and the interpretation of the LST-fv feature space before and after correction can help assess the goodness of the correction . If the correction is efficient, temperature difference between sun and shadow exposed slopes should be reduced. Temperature at high elevation should also be reduced. Nevertheless, vegetation and soil moisture should be still apparent.

Visual comparisons of the images before and after topographic correction shown in Fig. 8 suggest that the topographic effects are much reduced after correction . The black patches in the images for April 14 th and 30 th correspond to snow cover and clouds. The remaining temperature differences after correction for elevation effects are expected to be small. Indeed, these differences should be related to vegetation and soil moisture conditions only and those conditions are quite homogeneous in the study area apart from some localized spots in the valley. Interestingly enough, the ridgeline (located at the top left of the scene) is still conspicuous after correction . This under-correction of ridgelines is probably attributed to a problem with the or ASTER data geo-referencing, as a pixel shift could affect results. [START_REF] Nuth | Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change[END_REF].

In Fig. 8, the sun facing slope on the top left of the scene is still noticeable certainly as a result of the underestimation of LST simulated over this area. As mentioned in the previous section, this effect could be due to the soil thermal inertia capacity, which is not taken into account by the instantaneous EB model. According to [START_REF] Reeder | Topographic Correction of Satellite Images: Theory and Application[END_REF], a successful topographic correction should remove or greatly reduce the correlation between LST and the topographic variables, especially the solar radiation [START_REF] Zhang | Topographic correction algorithm for remotely sensed data accounting for indirect irradiance[END_REF]. As shown in Table 4, strong correlations are found between LST and Rg over rugged terrain before correction . The correlation coefficients after topographic correction are greatly reduced (from 0.76 to 0.11 for the April 30 th , for example) consistent with the study in [START_REF] Reeder | Topographic Correction of Satellite Images: Theory and Application[END_REF]. Negative correlations are obtained on the 14 th of April and the 05 th of September.

This could be due to the artifact observed over the ridge line, which is particularly visible on those dates (see Fig. 8)

or a coregistration error between DEM and the LST images.

As an additional assessment of the correction performance, we compare the LST-fv space patterns before and after correction. As topographic correction aims at removing the topographic influence by deriving the LST that would be observed in a flat terrain, the LST-fv feature space after correction should be similar to the LST-fv feature spaces classically observed in flat conditions. In flat terrain all LST pixels are contained in the polygon defined by the temperature endmembers corresponding to fully dry and wet conditions for both soil/vegetation components (Fig. 9).

The four temperature endmembers (T s , dry, T v , dry, T s , wet and T v , wet) were simulated by the EB equations using the average of E( E ) and Rg( Rg ) at the image scale. In practice, the LST-fv space was defined in a two step procedure.

First, the temperature endmembers were estimated from EB equations and were located within the space defined by LST and fv [START_REF] Long | A Two-source Trapezoid Model for Evapotranspiration (TTME) from satellite imagery[END_REF][START_REF] Merlin | An original interpretation of the wet edge of the surface temperaturealbedo space to estimate crop evapotranspiration (SEB-1S), and its validation over an irrigated area in northwestern Mexico[END_REF]. Then, the vertices of the obtained polygons were connected by straight lines [START_REF] Moran | Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index[END_REF] to interpolate the dry and wet boundaries over the full range of vegetation cover.

The analysis of the LST-fv space after correction (Fig. 9) exhibits a distribution similar to that typically obtained in flat region (e.g. [START_REF] Stefan | Consistency between In Situ, Model-Derived and High-Resolution-Image-Based Soil Temperature Endmembers: Towards a Robust Data-Based Model for Multi-Resolution Monitoring of Crop Evapotranspiration[END_REF]). Specifically the topographic correction method has removed or greatly reduced the number of pixels outside the LST-fv space meaning above or below the dry and wet edges. An interesting feature is that the pixels that remain outside the polygon (above the dry edge) after correction systematically correspond to pixels located near the ridge lines. Such results are fully consistent with the previous comparison between the simulated LST and 1 cm depth soil temperature measurements. 

Summary and conclusion

This paper develops a physically-based method to correct the satellite-derived land surface temperature (LST)

for topography-induced variations of solar radiation and air temperature over mountainous areas. Both topographic effects on LST are first quantified by inverting a dual-source soil/vegetation energy balance (EB) model forced by 1) the solar radiation (Rg) simulated by DART model that uses a DEM as input, 2) a satellite-derived vegetation index fv, and 3) meteorological data available at a given location. The topographic correction model is calibrated in two main steps using ASTER LST observations. The first step removes any possible bias in modeled LST. The second step adjusts environmental lapse rate (LR), surface soil dryness index (fss) and vegetation water stress index (fsv) by minimizing the RMSD between ASTER LST and model-derived LST, for each ASTER overpass date separately.

Once the LST model has been calibrated, it can be applied to any spatial resolution, provided a DEM is available at the target resolution. Satellite LST is then corrected for topography by subtracting the simulated illumination (DARTsimulated solar radiation) and elevation (LR-derived air temperature) effects. The approach is tested on three ASTER overpass dates over a 6 km by 6 km area in the Atlas Mountain (Morocco): April 14 th , April 30 th and September 05 th , 2014.

For this rugged test site, the mean correlation coefficient and RMSD between EB-simulated and ASTER LST are estimated as 0.80 and 3 • C , respectively. The EB-based approach is more accurate in terms of LST estimates than the multi-linear (ML) regression based on DART solar radiation and elevation data. It is also more accurate than a semi-empirical model built from the dry edge of the LST-illumination and LST-elevation feature spaces. Such results are explained by the fact that the EB model explicitly represents both soil and vegetation components, whose surface fluxes are very differently affected by topography. Moreover, the EB approach is able to physically represent the nonlinearity between LST and Rg via the net radiation component. As a further advantage of the physically-based method, the EB equation can be used to retrieve the LR at the time of ASTER overpass. It is important to note that the obtained LR is close to the values found in the literature, with a LR of -8.9 • C.km -1 (5 th of September) in dry air condition; while a LR of -5.3 • C.km -1 has been estimated for the 30 th of April corresponding to the highest observed relative air humidity.

The LST simulated by the EB approach is also evaluated against an extensive ground dataset of 135 autonomous 1-cm depth temperature sensors deployed over the steep-sided study area. The EB model is applied to both 8 m and 90 m resolution DEMs. While the mean RMSD between 90 m resolution ASTER LST and ibutton measurements is 6.1 • C, the RMSD between EB LST and localized ibutton measurements is 5.4 and 5.3 • C for a DEM at 90 m and 8 m resolution, respectively. Last, the topography-corrected ASTER LST is analyzed both qualitatively and quantitatively. The visual comparison before and after correction suggests that the topography-induced variations of solar radiation and air temperature are a much reduced impact on LST after correction. Especially, the LST spatial distribution is similar to that typically observed over a flat area where the solar radiation reaching the surface can be considered uniform. Moreover, the LST-fv feature space after correction is similar to the LST-fv feature space classically observed in flat conditions. Quantitatively, the strong correlations found between LST and Rg over rugged terrain before correction are greatly reduced after topographic correction (from 0.76 to 0.11 for the April 30 th ).

For the first time, a correction method for topography-induced variations of solar radiation and air temperature has been applied to satellite LST. While LST data are widely used over relatively flat areas, this new approach offers the opportunity for new applications over mountainous areas. such a correction method could potentially be used in conjunction with LST-based evapotranspiration methods over agricultural [START_REF] Merlin | Disaggregation of MODIS surface temperature over an agricultural area using a time series of Formosat-2 images[END_REF][START_REF] Mattar | Impacts of the broadband albedo on actual evapotranspiration estimated by S-SEBI model over an agricultural area[END_REF] and complex terrain [START_REF] Olivera-Guerra | Estimation of real evapotranspiration and its variation in Mediterranean landscapes of central-southern Chile[END_REF], soil moisture disaggregation methods [START_REF] Merlin | Disaggregation of SMOS Soil Moisture in Southeastern Australia[END_REF][START_REF] Malbéteau | DisPATCh as a tool to evaluate coarse-scale remotely sensed soil moisture using localized in situ measurements: Application to SMOS and AMSR-E data in Southeastern Australia[END_REF] and forest fire prediction models [START_REF] Leblon | Monitoring forest fire danger with remote sensing[END_REF], among others. Note that the operational utility of the EB correction method over wide areas relies on the availability of ancillary data composed of meteorological forcing.

Moreover, Integrating heat storage variation in a dynamic version of the EB model [START_REF] Danilina | Performance of a thermal-infrared radiosity and heat-diffusion model for estimating sub-pixel radiant temperatures over the course of a day[END_REF] would improve the simulation of LST over the slopes exposed to the sun prior to the satellite overpass. Such developments could be fostered by the future availability of LST data at high spatial and temporal resolution [START_REF] Wu | Integrated fusion of multi-scale polar-orbiting and geostationary satellite observations for the mapping of high spatial and temporal resolution land surface temperature[END_REF].

Figure 1 :

 1 Figure 1: On the left, location of the Rheraya catchment, the Imlil subcatchment, and the study area. On the right, a 8 m resolution 3D DEM over the study area indicating the sun-facing (red) and shaded (blue) slopes at 11:30 am local time (GMT).

  Meteorological data including air temperature, relative air humidity and wind speed have been measured every minute and the averages have been acquired every half hour since May 2003 at Imlil station (31.124875 • N; 7.920458 • W) located close to the center of the study area at an elevation of 1970 m (Fig. 1). Data have been collected

Figure 2 :

 2 Figure 2: Locations of the 45 ibutton plates, each of them containing 3 ibutton sensors. Red cross indicate plates not used for the study.

Figure 3 :

 3 Figure 3: DART simulated irradiance over [0.4µm-1.1µm] of the whole study area (white square in Fig. 1), with 8m resolution DEM at 11:22 am (UTC) on September 5, 2014. Black lines represent the elevation contour lines between 1800 and 3600 m with a 200 m increment.

Figure 4 :

 4 Figure 4: Schematic diagram presenting an overview of the topographic correction approach based on EB equations. The EB model (originally designed for solving mix-pixel problem in lowlands) is adapted to mountainous environment, and changes are highlighted by red boxes and underlined variables.

4. 1 .Figure 5 :

 15 Figure 5: Example of the DE estimation (red lines) in a) LST-Rg space and b) LST-E space for September 5 th , 2014. Blue points correspond to the maximum temperature of each class. Red dashed curves are the 3 rd order polynomial curves of the maximum temperatures of each class. Red diamonds are the maximum temperatures of the 3 rd order polynomials that correspond to the thresholds for estimating DE

Figure 6 :

 6 Figure 6: Scatterplots of simulated LST versus ASTER LST for the three dates and for the ML (left), DE (middle) and EB (right column) models separately. Red lines represent the slope of linear regression. Dashed lines represent the 1:1 line.

Figure 7 :

 7 Figure 7: Scatterplots of ASTER and simulated LST at 90m resolution versus ibutton measurements for each ASTER overpass date, separately. Red squares are simulated LST and black dots are ASTER LST. Red lines represent the slope of linear regression for simulated LST and black lines represent the slope of linear regression for ASTER LST. Dashed lines represent the 1:1 line.

Figure 8 :

 8 Figure 8: Images of the LST observed by ASTER before (up) and after (down) correction for topographic effects on the three ASTER overpass dates separately. Black lines represent the elevation contour lines between 1800 and 3600 m with a 200 m increment.

Figure 9 :

 9 Figure 9: The LST-fv feature space is plotted on September the 5th before (a) and after (b) topographic correction .

T ASTER T EB (E,Rg) T EB (<E>,<Rg>) Tcorr, EB Normalization model

  

	Meteo
	(Ta, Ua, RH)
	LR first-guess
	fss variable
	fsv variable BE model
	fss, fsv retrieval
	LR variable
	fss retrieved
	fsv retrieved BE model
	LR retrieval
	LR retrieved
	fss retrieved
	fsv retrieved BE model

Table 1 :

 1 Statistical results of the spatial comparison between simulated and ASTER LST for each model and each ASTER overpass date separately. The correlation coefficient (R), bias, slope of linear regression (S) and root mean square difference (RMSD) are listed. LR, f ss and f sv are the environmental lapse rate, dryness index and vegetation water stress index, respectively.

	date		ML	DE	EB
		R (-)	0.74	0.52	0.79
	14/04/2014	bias ( • C) S (-)	0 0.85	0 0.61	0 0.62
		RMSD ( • C)	3.94	5.49	3.14
		R (-)	0.76	0.68	0.82
	30/04/2014	bias ( • C) S (-)	0 0.73	0 0.99	0 0.65
		RMSD ( • C)	3.26	5.22	2.79
		R (-)	0.79	0.82	0.85
	05/09/2014	bias ( • C) S (-)	0 0.77	0 1.34	0 0.74
		RMSD ( • C)	3.8	5.95	3.18

Table 2 :

 2 LR, f ss and f sv are the environmental lapse rate, dryness index and vegetation water stress index, respectively.

	Date	fss	fsv	LR ( • C.km -1 )
	14/04/2014	0.95	1	-5.9
	30/04/2014	1	0.85	-5.3
	05/09/2014	0.93	0.89	-8.9
	4.1.2. Comparison between modeled LST and in situ soil temperature	

Table 3 :

 3 Statistics of the comparison between ASTER or simulated LST and the 1-cm depth soil temperature measurements by the ibutton sensors. The correlation coefficient (R), bias, root mean square difference (RMSD) and standard deviation (σ) are listed. (-) means dimensionless unit.

	date		ASTER	Model 90 m	Model 8 m
		σ ( • C)	7.31	4.20	3.57
	14/04/2014	R (-) bias ( • C)	0.64 3.04	0.75 1.48	0.68 3.41
		RMSD ( • C)	6.28	3.41	3.53
		σ ( • C)	6.05	4.11	3.90
	30/04/2014	R (-) bias ( • C)	0.68 3.38	0.68 2.74	0.70 2.74
		RMSD ( • C)	5.98	5.41	5.32
		σ ( • C)	6.22	4.74	5.06
	05/09/2014	R (-) bias ( • C)	0.67 0.78	0.64 -0.43	0.65 -0.91
		RMSD ( • C)	5.31	5.19	5.22

Table 4 :

 4 Correlation coefficient (R) between Rg and LST before and after topographic normalization on the three ASTER overpass dates separately.

			R between Rg and LST	
		14/04/2014 30/04/2014 05/09/2014
	before normalization	0.75	0.76	0.67
	after normalization	-0.05	0.11	-0.11
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Appendix

Dry bare soil EB equation:

In eq. 6, the dry soil ( s,dry ) net radiation is Generally, net radiation is expressed as:

where K ↓ being the surface downward shortwave radiative flux, K ↑ the surface upward shortwave flux, L ↓ the downward longwave flux and L ↑ the upward longwave flux. K ↑ is defined as the fraction of K ↓ at the surface that is reflected (albedo: α). L ↓ is results from whole atmosphere and clouds irradiance absorbed by the surface (εR a ).

L ↑ is defined by the surface temperature from Stephan-Boltzmann law (εσT 4 ). Generally, Rn is calculated as:

with α (-, dimensionless) being the albedo, ε (-) the emissivity, R a (W.m -2 ) the downward atmospheric radiation, and

Then, Rn s,dry can be expressed as:

with α s (-, dimensionless) being the soil albedo and ε s (-) the soil emissivity. The ground heat is commonly set to a fraction of soil net radiation:

with C G (-) being set to 0.32 [START_REF] Kustas | Estimation of the soil heat flux/net radiation ratio from spectral data[END_REF]. The dry soil sensible heat in eq. 6 is expressed as:

H s,dry = ρC p T s,dry -T a rah s,dry (A.5) with ρ (Kg m -3 ) being the air density, Cp (J Kg -1 K -1 ) the air specific heat, T a the air temperature (eq. 10) and rah s,dry (s.m -1 ) the aerodynamic resistance over dry bare soil.

Wet bare soil EB equation: In eq. 7, the wet soil ( s,wet ) net radiation is

with the ground heat expressed as:

The wet soil sensible heat in eq. 7 is expressed as:

with rah s,wet (s.m -1 ) being the aerodynamic resistance over wet bare soil. In eq. 7,LE s,wet (W.m -2 ) the wet soil latent heat is expressed as: Stressed vegetation EB equation:

In eq. 8, the stressed vegetation ( v,dry ) net radiation is:

with α v (-) being the vegetation albedo, and ε v (-) the vegetation emissivity. The vegetation sensible heat in eq. 8 is expressed as: .11) with H v,dry (s.m -1 ) the aerodynamic resistance over full-cover vegetation.

Well-watered vegetation EB equation:

In eq. 9, the well-watered vegetation ( v,wet ) net radiation is:

(A.12)

The vegetation sensible heat in eq. 9 is expressed as:

with rah v,wet (s.m -1 ) the aerodynamic resistance over full-cover vegetation. In eq. 9, LE v,wet (W.m -2 ) the vegetation latent heat is expressed as:

with e sat (T v, wet)(Pa) the saturated vapor pressure at vegetation temperature. and rv,min the minimum stomatal resistance (set to 25 s.m -1 [START_REF] Moran | Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index[END_REF]).

The expressions of R a , rah s , rah v , e sat (T a), e sat (T s) and e sat (T v) are expressed as following:

In eq. A.3, A.6, A.10 and A.12 the downward atmospheric radiation is expressed as:

with ε a (-) being the effective atmospheric emissivity. The emissivity of clear skies is estimated as in [START_REF] Brutsaert | On a derivable formula for long-wave radiation from clear skies[END_REF] based on [START_REF] Kustas | A simple energy budget algorithm for the snowmelt runoff model[END_REF]; [START_REF] Iziomon | Downward atmospheric longwave irradiance under clear and cloudy skies: Measurement and parameterization[END_REF]; [START_REF] Herrero | Parameterization of atmospheric longwave emissivity in a mountainous site for all sky conditions[END_REF]:
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with e a the air vapor pressure computed as:

e a = e sat (T a)(h a /100) (A.17)

In eq. A.9 and A.14 the saturated vapor pressure at temperature T is expressed as: In eq. A. 5, A.8, A.9, A.11, A.13 and A.14 the component aerodynamic resistance rah for the soil or vegetation is estimated as in [START_REF] Choudhury | An analysis of infrared temperature observations over wheat and calculation of latent heat flux[END_REF]:

with rah 0 (s.m -1 ) being the neutral aerodynamic resistance, Ri (-) the Richardson number which represents the importance of free versus forced convection, and η (-) a coefficient set to 0.75 in unstable conditions (component temperature larger than Ta) and 2 in stable conditions (component temperature lower than Ta). The Richardson number is computed as:

with T being the component temperature (Ts for rah s and Tv for rah v ). The neutral rah 0 is computed as: .21) with k (-) being the von karman constant, U a (m.s -1 ) the wind speed measured at the height Z (m) and Z0m (m) the momentum roughness. Z0m is set to 0.003 m for rah s [START_REF] Yang | Turbulent Flux Transfer over Bare-Soil Surfaces: Characteristics and Parameterization[END_REF][START_REF] Stefan | Consistency between In Situ, Model-Derived and High-Resolution-Image-Based Soil Temperature Endmembers: Towards a Robust Data-Based Model for Multi-Resolution Monitoring of Crop Evapotranspiration[END_REF] and 0.1 m for rah v [START_REF] Allen | Crop evapotranspiration-guidelines fo computing crop water requirements[END_REF]. Z0h is expressed as Z0m divided by 10 ( [START_REF] Allen | Crop evapotranspiration-guidelines fo computing crop water requirements[END_REF].