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Abstract – The Andreev bound states and charge transport in a Josephson junction between two
superconductors with intrinsic exchange fields are studied. We find that for a parallel configuration
of the exchange fields in the superconductors the discrete spectrum consists of two pairs of spin-
split states. The Josephson current in this case is mainly carried by bound states. In contrast,
for the antiparallel configuration we find that there is no spin-splitting of the bound states and
that for phase differences smaller than a certain critical value there are no bound states at all.
Hence the supercurrent is only carried by states in the continuous part of the spectrum. Our
predictions can be tested by performing a tunneling spectroscopy of a weak link between two
spin-split superconductors.

Introduction. – Superconductors with spin-split den-
sity of states have attracted particular interest since the pi-
oneering works of Tedrow and Merservey, in which Zeeman
splitting in superconductors was used to determine the
spin-polarization of ferromagnetic metals [1,2]. Such spin-
splitting can be achieved either by applying an external
magnetic field or in thin superconducting films in con-
tact with ferromagnetic insulators (FI) at zero field [3,4].
The spin-split density of states found in superconducting
films originates from the exchange interaction between the
conduction electrons of the superconductor and the large
localised magnetic moments of the FI [5]. In order to ob-
tain large spin-splittings, the use of FIs has the advantage
of avoiding the application of high magnetic fields. The
spectrum of a conventional superconductor in this case
shows two BCS-like densities of states shifted by the en-
ergy 2h, where h is the effective exchange field induced in
the superconductor film. Here we denote them as spin-
split superconductors (SSs).

There has been a resurgence of interest in SS be-
cause of several theoretical studies proposing them as
absolute spin-valves [6], heat-valves [7] and thermoelec-
tric elements [8–10]. Moreover, superconducting het-
erostructures with spin-splitting fields have attracted the

interest of theorists and experimentalists in the last years,
mainly motivated by the possible detection of Majorana
fermions [11–14] and elaboration of complex S-FI het-
erostructures [15–17], where S denotes a BCS supercon-
ducting lead.

One striking effect in such structures is the enhance-
ment of the critical Josephson current in a FI-S/I/FI-S
junction by increasing the amplitude of the spin-splitting
field [18–20]. Here I denotes an insulating tunneling bar-
rier. This phenomenon has been demonstrated experimen-
tally in ref. [21].

In order to understand the supercurrent in ballistic
Josephson junctions it is important to analyze the spec-
tral properties of these weak links [22,23]. In a short ballis-
tic superconductor-normal metal-superconductor (S/N/S)
junction with equal gaps and at low temperatures, tun-
neling through Andreev bound states (ABSs) is the
dominant contribution to the Josephson current [24].
The dependence of the ABSs on the phase difference be-
tween the superconducting banks in SS/I/SS junctions re-
mains unexplored so far.

In this letter we investigate in detail a single-channel
Josephson weak link connecting two spin-split (SS)
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Fig. 1: (Colour online) (a) Schematic diagram of the junction.
Two SS electrodes with intrinsic exchange fields hL, hR sepa-
rated by a ballistic weak link. A tunneling probe is situated at
x = 0. (b) Sketch of the effective gaps for spin-up/down elec-
tron when the left/right exchange fields hL/hR are configured
so that −hR > hL > 0.

superconducting leads. We focus on the dependence of
sub-gap states on the superconducting phase difference
across a ballistic SS/I/SS junction with a tunneling bar-
rier of arbitrary strength. We extend the results [18–20] by
demonstrating that any deviation from the case of equal
exchange fields leads to the complete disappearance of the
ABSs in a finite range of the superconducting phase bias
φ defined by a critical phase φC such that |φ| < φC. This
phenomenon originates in the spin-dependent asymmetry
of the gaps in the left and right SS electrodes. As a conse-
quence, within this interval the Josephson current is car-
ried exclusively by states in the continuous part of the
spectrum. The value of φC does not depend on the trans-
missivity of the junction and hence it is robust against
imperfections.

Theory. – We consider a Josephson junction consist-
ing of two bulk SSs connected by a ballistic weak link
(see fig. 1(a)). We model the weak link as a δ-function
scattering potential with strength U . The correspond-
ing Bogoliubov-de Gennes equation for quasiparticle states
with energy E reads(

Ĥ0(r) Δ̂(r)

Δ̂†(r) −ĤT
0 (r)

)
Ψ(r) = EΨ(r), (1)

where

Ĥ0(r) = − �
2

2m
∇2

r − μ+ Uδ(x)

− [Θ(−x)hL + Θ(x)hR] σ̂z , (2)

and

Δ̂(r) = iσ̂yΔ[e−iφ/2Θ(−x) + Θ(x)eiφ/2]. (3)

Here, σ̂i are the Pauli matrices describing the spin de-
gree of freedom. The temperature-dependent gap is

modeled by the interpolation formula Δ = Δ(T ) ∼=
Δ0 tanh(1.74

√
(TC/T ) − 1), where TC is the critical tem-

perature for superconductivity. In eq. (3), φ is the phase
difference between the order parameters of the supercon-
ductors, Θ(x) is the Heaviside step function, and δ(x) is
the Dirac delta function. We assume weak exchange fields
so that the Clogston-Chandrasekhar criterion, |hL,R| <
Δ0/

√
2, is fulfilled, where Δ0 is the BCS gap at zero

temperature and zero exchange field [25,26]. We restrict
ourselves to symmetric electrodes (in the absence of ex-
change fields) with equal gap magnitudes, chemical po-
tentials and effective masses on both sides of the junction.
The only asymmetry originates from the exchange fields
in the left (L), right (R) superconducting leads, which are
assumed to be collinear, though with arbitrary values hL
and hR. In this case the bound-state spectra can be ob-
tained analytically.

We solve eq. (1) separately in the L and R region. In the
bulk SS we obtain plane-wave solutions with ψν

k,e(h),σ(r) =

φν
e(h),σeike,(h)

σ r for electron-like (hole-like) quasiparticles
with spin σ. The spinors are

φν
e,↑ = (uν

↑eiφν , 0, 0, vν
↑ )T, (4a)

φν
h,↑ = (vν

↑eiφν , 0, 0, uν
↑)T, (4b)

φν
e,↓ = (0,−uν

↓eiφν , vν
↓ , 0)T, (4c)

φν
h,↓ = (0,−vν

↓eiφν , uν
↓ , 0)T. (4d)

Here we have introduced the coherence factors uν
σ =√

(Eν
σ + Ων

σ)/2Eν
σ, vν

σ =
√

(Eν
σ − Ων

σ)/2Eν
σ , where Ων

σ =√
Eν

σ
2 − Δ2 and Eν

σ = E + σhν (ν = L,R).
We use these piecewise solutions to construct the wave

function ansatz for a spin-σ electron-like quasiparticle in-
cident from the left SS with wave vector ke

σ. In the fol-
lowing we consider a narrow wire constriction, and provide
the corresponding single-channel calculations. Therefore,
the wave function ansatz reads

Ψe,σ(r) =

Θ(−x)
⎧⎨
⎩ψL

k,e,σ +
∑

σ′=↑↓

[
ae

σσ′ψL
k,h,σ′ + beσσ′ψL

−k,e,σ′
]⎫⎬⎭

+ Θ(x)

⎧⎨
⎩
∑

σ′=↑↓
[ceσσ′ψR

k,e,σ′ + de
σσ′ψR

−k,h,σ′ ]

⎫⎬
⎭ . (5)

For x < 0, eq. (5) describes the superposition of an inci-
dent electron-like quasiparticle with an Andreev-reflected
hole-like quasiparticle (with amplitude ae

σσ′) and a re-
flected electron-like quasiparticle (with amplitude beσσ′).
For x > 0, electron-like and hole-like quasiparticles are
transmitted with probability amplitudes ceσσ′ and de

σσ′ ,
respectively. The ansatz for an incident hole-like spin σ
quasiparticle Ψh,σ(r) is analogous. The probability ampli-
tudes for this case are distinguished by the superscript h,
e.g., ah

σσ′ , bhσσ′ etc. We work within the so-called Andreev
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approximation by assuming that μ � max (E,Δ, |hν |),
so that the electron and hole quasiparticle wave vectors
can be regarded as approximately equal in magnitude,
ke

σ ≈ kh
σ ≈ kF, where kF is the Fermi momentum in the

normal state.
The probability amplitudes in eq. (5) for the various

processes are calculated requiring the continuity of the
wave function and a finite jump of the derivative at the
interface. In particular the Andreev reflection ampli-
tudes [27] read

ae
σσ =

Δ
(
EL

σ cosφ− ER
σ

)
+ iΔ sinφΩL

σ

EL
σE

R
σ − Δ2 cosφ+ (1 + 2Z2)ΩL

σΩR
σ

, (6)

and ah
σσ(φ) = ae

σσ(−φ), where we introduced the
dimensionless strength of the scattering potential Z =
2mU/kF�

2 [28]. The parameter Z is related to the
transmission τ of the barrier as τ = 1/(1 + Z2).

The complete Green’s function of the junction is built
from the scattering solutions, eq. (5) [29]. The retarded
Green’s function reads

Gr(x, x′, E) =
∑

σ

Aν
σ

{[
ae

σσeikF(x−x′)+ah
σσe−ikF(x−x′)

]

×
(

uν
σvν

σ vν
σ

2eiφν

uν
σ

2e−iφν uν
σvν

σ

)
+
[
eikF|x−x′| + beσσe−ikF(x+x′)

] (
uν

σ
2 uν

σvν
σeiφν

uν
σvν

σe−iφν vν
σ

2

)
+
[
e−ikF|x−x′| + bhσσeikF(x+x′)

] (
vν

σ
2 uν

σvν
σeiφν

uν
σvν

σe−iφν uν
σ

2

)}
,

(7)

where Aν
σ = − imEν

σ

�2kFΩν
σ
. This Green’s function carries the

complete information about the system and allows the
computation of the phase-dependent local density of states
(LDOS) and the Josephson current [24,30]. The poles of
the Green’s function, eq. (7), give direct access to the
whole spectrum of the Josephson junction: the discrete
Andreev bound states coincide with poles of the Andreev
reflection coefficients, eq. (6), while the branch cuts of
eq. (6) provide the continuum part of the spectrum.

The LDOS at the tunneling barrier can be related to
the (1, 1) component of the retarded Green’s function
eq. (7) [31], using the formula ρ(E, x) =

∑
σ ρσ(E, x) =

− limx′→x
1
π Im[Gr

11(x, x′, E)]. In our case, the spin-
resolved LDOS reads

ρσ(E) =
m

π�2kF
Re
[(

2Eν
σ + (ae

σσ + ah
σσ)Δ

2Ων
σ

)]
, (8)

where the atomic scale oscillations of ρ(E) are assumed to
be averaged out [32].

In addition to the energy spectrum, we are also inter-
ested in the Josephson current through the junction

I =
ie�

8πm

∫ ∞

−∞
dE tanh

(
E

2kBT

)

× lim
x′→x=0+

(
∂

∂x
− ∂

∂x′

)
Tr [Gr(x, x′, E)−Ga(x, x′, E)], (9)

where kB is the Boltzmann constant and Tr[. . .] is the trace
in Nambu-spin space and Gr/a is the retarded/advanced
Green’s function, using the real-time representation of the
Furusaki-Tsukada formula [33,34].

Results: Andreev bound states. – We start by an-
alyzing the results for the discrete Andreev bound state
(ABS) spectrum of a short junction with a perfect trans-
mission coefficient (τ = 1), thereby recovering the well-
known phase dependence of the ABS energy in a short
S/N/S junction without spin-splitting fields (fig. 2(a),
black dashed line). In the case of parallel exchange fields
equal in magnitude (hL = hR) we find a splitting of the
ABS energy-phase relationship of magnitude |hL +hR| be-
tween spin-up and spin-down quasiparticles (fig. 2(a), red
and blue solid lines).

By lowering the value of one of the exchange fields
while keeping the other fixed, the ABSs disappear within
finite intervals of the phase difference φ (figs. 2(b), (c)).
Moreover, this behaviour is independent of the trans-
mission of the barrier. The minimal phase difference
φC = arccos(1 − |hL − hR|/Δ) for which bound states
exist depends only on the difference between the exchange
fields. In short, the ABSs are found only in the interval
φ ∈ [φC, 2π−φC]. At the same time we observe a reduction
of the gap.

One can provide a physical interpretation for the reduc-
tion of the gap and disappearance of ABS for some phase
ranges: For illustration we consider a spin-up quasipar-
ticle with positive energy coming from the left electrode
(cf fig. 1(b)), in the parameter regime with hL > 0 > hR,
|hR| > |hL|. This quasiparticle encounters a reduced gap
in the left SS of magnitude Δ − hL and an enhanced gap
of magnitude Δ − hR in the right SS. If the quasiparticle
energy is higher than the energy of the left gap and lower
than the right one, it can be Andreev reflected only at the
right SS and ABSs cannot be formed. The process for a
spin-down quasiparticle incoming from the right electrode
is analogous. The same picture applies for quasiparticles
with energies E < 0 and can be modified to any case of
collinear orientation of the exchange fields. This scenario
is very similar to the case of a junction between two super-
conductors with gaps different in magnitude [35], where
the existence of the ABSs was shown to be set by the
smaller gap, but was completely spin independent. In
the case of SS leads, the distinct exchange fields induce
the asymmetry between the gaps, which is different for
spin-up or spin-down quasiparticles (fig. 1(b)).

The above results where obtained for short weak links,
i.e., for L � �vF/Δ, where L is the length of the nor-
mal region separating the two superconducting leads, and
vF is the Fermi velocity. We now discuss whether the
previous picture (spin-dependent reduced gaps and disap-
pearance of ABS) holds for longer junctions. For arbi-
trary lengths of the junction and a fully transparent link
(U = 0), the critical phase can be obtained by analyz-
ing the Bohr-Sommerfeld quantization condition for the
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Fig. 2: (Colour online) Top panels (a)–(c) show Andreev bound-state energies for (a) non-magnetic case (black dashed line)
and parallel orientation of the exchange fields (hL = hR = 0.3Δ), (b) one side of the junction with zero exchange field
(hL = 0.3Δ, hR = 0) and (c) anti-parallel orientation of the exchange fields (hL = −hR = 0.3Δ). The coloured regions
correspond to the interval |φ| < φC where there is no formation of Andreev bound states. The panels (d)–(f) show the
corresponding current phase relationships. Where applicable we separated the continuum and bound-state contribution to the
total current (dashed red and dash-dotted blue lines). All plots are for τ = 1 and the current vs. phase relationships are
calculated at T/TC = 0.01.

Fig. 3: (Colour online) Discrete part of the spectrum of a
SS/N/SS junction as a function of the phase across the junc-
tion in the anti-parallel configuration (hL = −hR = 0.2) for
three different lengths of the junction: L = 0 (dashed black
line), L = 0.3ξ (dotted blue line) and L = 0.6ξ (solid red line).

SS/N/SS junction, where we assume no magnetic field in
the normal region [36]:

2
EL

�vF
± φ−

∑
ν={L,R}

arccos
(
E + σhν

Δ

)
= 2nπ, (10)

with n ∈ Z. Note that the spin-splitting of the gaps (being
a bulk property of the SS leads) is independent of the
length L. In the short junction limit (L � �vF/Δ), one
recovers the critical phase φC = arccos(1 − |hL − hR|/Δ)
introduced earlier. From eq. (10) we can also infer the
dependence of the critical phase on the length L of the
weak link: φC decreases as the length L is increased,
and φC → 0, for lengths exceeding the superconducting

Fig. 4: (Colour online) LDOS of the junction ρ(E) divided by
the normal state LDOS ρ0(E), for parallel (left column) and
anti-parallel (right column) orientation of the exchange fields
of magnitude |hL,R|/Δ = 0.3. The phase difference gradually
increases from the top panels where φ = 0 through φC to the
bottom panels with φ = π. All plots are for τ = 1.0.

coherence length ξ = �vF/Δ (fig. 3). Indeed in the long
junction limit, even if the highest ABS merges into the
continuum, there are other ABSs (with lower energies)
which are still defined for all values of the phase. Note that
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Fig. 5: (Colour online) Andreev bound-state energies for (a) non-magnetic case (black dashed) and parallel orientation of the
exchange fields (hL = hR = 0.3Δ), and (b), (c) anti-parallel orientation of the exchange fields (hL = −hR = 0.3Δ). For panels
(a), (b) τ = 0.8 and for (c) τ = 0.2. The coloured regions correspond to the intervals with no formation of Andreev bound
states. Panels (d)–(f) show the corresponding current-phase relationships separated into the continuum states (red dashed line)
and bound-states contribution (blue dash-dotted line) to the total current. All plots are for T/TC = 0.01.

the study of ABSs associated with the Bohr-Sommerfeld
quantization condition, eq. (10), can be generalized to
the case of a spin-active weak link using the formalism
developed in ref. [37].

Results: local density of states. – Direct insight
about states for all phases can also be obtained by cal-
culating the LDOS of the junction using eq. (8). In the
parallel case and φ = 0, we obtain (as expected) the spec-
trum of a bulk SS with the two spin-split BCS densi-
ties of states with coherence peaks at E = ±(Δ + σh)
(fig. 4(a)). For a finite phase difference between the SSs,
spin-split ABSs appear. The peaks corresponding to hole-
and electron-like quasiparticles with spin σ are centered
around E = σ|hν | (red (blue) lines in the left column in
fig. 4) and merge at this energy when approaching φ = π.

In the anti-parallel case and |φ| < φC (see fig. 4(f)
and (g)) the spectrum deviates drastically from the BCS-
like spectrum and no BCS coherent peaks are observed.
At the critical value of the phase φC these peaks appear
at energies ±(Δ − |hν |). The two peaks corresponding to
ABSs merge into a single peak at φ = π (fig. 4(j)).

For imperfect transmission (τ < 1) and parallel config-
uration of the exchange fields (hR = hL = h) (fig. 5(a))
the energy difference between the spin polarized ABSs re-
mains the same as in the τ = 1 case. In contrast, in the
anti-parallel case there is no splitting of the ABSs. In both
cases there are avoided energy crossings at φ = π due to fi-
nite backscattering. Noticeably, neither the spin-splitting
nor the critical phase φC are τ -dependent.

Results: current-phase relation. – To understand
how the absence of ABSs influences the Josephson current

in the non-parallel case for |φ| < φC, we numerically eval-
uate eq. (9). In the lower panels of fig. 2 current phase re-
lations are shown for different orientations of the exchange
fields and perfect transmission of the barrier (τ = 1).
The current-phase relations show the well-known saw-
tooth shape, fig. 2(d)–(f). Lowering the transmission, the
current phase relationships become sinusoidal and one re-
covers the usual current-phase relation of a tunneling junc-
tion, see figs. 5(d)–(f). We also verified the enhancement
of the critical current with respect to the non-magnetic
case by the presence of anti-parallel exchange fields in the
low transmission limit [18,19].

The total current is the sum of two contributions: one
originating from the ABS (IABS) and the other from states
in the continuous spectrum (ICont). These are shown in the
lower panels of figs. 2 and 5. In the parallel configuration
with identical exchange fields the Josephson current is car-
ried exclusively by the ABSs. In contrast, if the exchange
fields are different both IABS and ICont contribute to the
current. The vanishing contribution from the discrete
spectrum for |φ| < φC is compensated by a finite ICont
(see figs. 2(e) and (f) for τ = 1 and in figs. 5(e) and (f) for
τ < 1). In other words, current from tunneling through
ABSs is only present for φ 
∈ (−φC, φC) and gets reduced
by lowering the transmission of the junction. High enough
exchange interactions and low transmission can lead to
a current dominated by contributions from continuum
states, as seen in fig. 5(f). This is consistent with the re-
sults of Chtchelkatchev et al. [19] where the critical current
is shown to be purely due to the states of the continu-
ous spectrum in the case of high magnitudes of the anti-
parallel exchange fields and sufficiently low transmissions.
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Conclusion. – We have presented a detailed study of
the spectrum and current-phase relation of a Josephson
junction consisting of a short weak link connecting two
superconducting leads with a spin-split density of states.
We have shown that for collinear orientations of the ex-
change fields, any deviation from the case of equal fields
leads to finite intervals of phases without Andreev bound
states. These intervals are independent of the transmis-
sion of the junction and are characterized by a critical
phase difference φC = arccos(1 − |hL − hR|/Δ) for which
ABSs disappear by merging within the continuum.

When the phase difference is in the range |φ| < φC, the
Josephson current is therefore completely carried by states
in the continuous part of the spectrum. Outside this range
the current is a superposition of the contributions from the
ABS and the continuous spectrum. For perfect transmis-
sion the current is mainly due to tunneling through the
ABSs (fig. 2(e)), whereas for low transmission the current
is totally due to excitations from the continuous part of
the spectrum (fig. 5(f)). Hence changing the transmission
of the junction allows to tune the origin of the current.

Our findings on the spectrum of SS/I/SS junctions can
be tested by tunneling spectroscopy of the ABS spectrum
as in refs. [38,39] by using electrodes made of ferromag-
netic insulator-superconducting bilayers, e.g., EuS-Al [4],
coupled by a thin normal nanowire in a closed loop. The
full current-phase relation can be determined by means
of a tunneling probe (cf. fig. 1) in the middle of the
N wire.
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