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Any decision taken by an agent requires some knowledge of its environment. Communica-
tion with other agents is a key issue for assessing the overall quality of its own knowledge.
This assessment is a challenge itself as the agent may receive information from unknown
agents. The aim of this paper is to propose a framework for assessing the reliability of
unknown agents based on communication. We assume that information is represented
through logical statements and logical inconsistency is the underlying notion of reliability
assessment. In our context, assessing consists of ranking the agents and representing
reliability through a total preorder.
The overall communication set is first evaluated with the help of inconsistency measures.
Next, the measures are used for assessing the contribution of each agent to the overall
inconsistency of the communication set. After stating the postulates specifying the
expected properties of the reliability preorder, we show through a representation theorem
how these postulates and the contribution of the agent are interwoven. We also detail how
the properties of the inconsistency measures influence the properties of the contribution
assessment. Finally we describe how to aggregate different reliability preorders, each of
them may be based on different inconsistency measures.

1. Introduction

To be able to act or deliberate, any rational agent must acquire knowledge of its environment. It gets it by merging 
information provided by its own sensors and/or by merging information communicated by other agents. Merging basic in-
formation is a key issue for any agent as it is the underlying rational for decision making and it contributes to justify the 
agent’s epistemic state. Techniques for merging raw information have been studied in an extensive way. These techniques 
usually assume that all information provided by the sources (i.e. agents) should be considered as a whole. Two different 
approaches have been studied: the first one considers sources in an equal way and has led to merging techniques such 
as majority merging, negotiation, arbitration merging or distance-based merging for solving conflict between contradicting 
information [21,8,27,9]. The second one distinguishes sources through a reliability criterion. Taking sources reliability into 
account provides rationales for discounting or ignoring pieces of information whose source is not considered as sufficiently 
reliable. Some promote a quantitative model of reliability: information sources are associated with a reliability level repre-
sented by a number used by the merging operator. According to the belief function theory, the reliability level of a source is 
a number between 0 and 1. This number is then used by the discounting rule in order to weaken the importance of infor-
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mation provided by this source [31]. Some others promote a qualitative approach to reliability and consider that information 
sources are ranked according to their reliability. This order or pre-order is then used by the merging operator. In [5], the 
author defines a merging operator which assumes that the sources are totally ordered: if s is said to be more reliable than 
s′ and together provide contradicting information, then information provided by s is privileged; while information provided 
by s′ which does not contradict information of s is also considered as acceptable. The same idea is followed by [22] for 
reasoning about more complex beliefs and in [24] for revising a belief base. All these works assume that the reliability of 
the sources is given as a parameter (quantitative or qualitative), they do not address the question of how to build up this 
reliability.

In this present paper our aim is to address the key question of how to build a reliability preorder of information sources, 
in a context where sources are unknown: no extra information about sources is available and information provided by 
the sources is only qualitative (i.e., statements). We adopt a qualitative point of view to represent reliability: the relative 
reliability of information sources is represented by a total preorder. We propose to consider a phase, before the information 
merging phase, during which information sources are observed in order to obtain a reliability preorder. The purpose of this 
phase is to analyze the inconsistency of information reported by the different sources w.r.t. some trusted knowledge.

Our main goal is thus to show that the relative reliability of information sources can be estimated from the inconsistency 
of reported information. Two different approaches can be followed. The first approach consists in using an ad-hoc model for 
reported information and in developing new inconsistency measures. The second approach consists in modeling reported 
information in a conventional way in order to use well known inconsistency measures.

In a recent paper [6], we followed the first approach. Reported information was modeled by pairs: < agent, f ormula >, 
f ormula representing a piece of information communicated by agent . For instance, the set {< a, p >, < b, ¬p >, < b, q >}
represented the fact that agent a had reported p, agent b had reported ¬p and had also reported q. The main notions 
(inconsistency, minimal inconsistent subsets, inconsistency measures...) available in the literature have been adapted to this 
model.

In this paper, our very motivation is to show an original application of inconsistency measures, i.e. reliability estimation. 
Our starting point is the existing inconsistency measures. Hereafter, we simplify the representation of reported information 
so that we can re-use these existing inconsistency measures for elaborating agent’s reliability.

Our original contributions consist in (i) characterizing the individual contribution of each agent to the overall incon-
sistency of a set of reported information and (ii) introducing postulates which characterize the expected properties of the 
reliability preorder; Based on these axiomatic perspective on reliability assessment, we show (i) how the properties of the 
inconsistency measure influence the properties of the contributions measures and (ii) how postulates about reliability and 
properties of agent contribution are related through a representation theorem. Finally, we show how to aggregate several 
preorders possibly obtained through different inconsistency measures; namely we show how the overall aggregated preorder 
may satisfy the reliability postulates if the initial preorders also satisfy these postulates.

This paper is organized as follows. Section 2 and Section 3 introduce the main notions needed to assess reliability of 
agents. They introduce inconsistent communication sets and focus on measuring the inconsistency in communication sets. 
Based on the inconsistency measures, Section 4 shows how to assess the individual contribution of an agent to the overall 
inconsistency of a communication set. Contribution is first characterized in an axiomatic way and next two possible con-
tribution functions instantiating the expected properties are detailed. Some implementation and complexity considerations 
are also addressed. Section 5 proposes a set of postulates which axiomatically characterize reliability preorders and show 
through two representation theorems how these postulates and the agent contributions are related. Still in Section 5, we 
present two possible solutions for building a reliability preorder compliant with these postulates. Section 6 considers the 
aggregation of several reliability preorders and shows how Arrow’s condition for aggregation and our postulates interplay. 
Finally, Section 7 concludes the paper and discusses future work.

2. Inconsistent communication sets

This section introduces communication sets and focuses on their inconsistency.

2.1. Preliminaries

Let L be a propositional language of formulas defined over a finite set of propositional symbols P , propositional con-
stants �, ⊥ and the logical connectives ∧, ∨, ¬. We use p, q, r, ... to denote the propositional symbols and Greek letters 
φ, ψ, ... to denote formulas of the classical propositional logic defined over L. An interpretation i is a total function from 
P to {0, 1} from which an assignment to {0, 1} is generated for all the formulas of L defined in the usual way of classical 
logic. As usual, i(�) = 1 and i(⊥) = 0. Interpretation i is a model of formula φ iff i(φ) = 1. Tautologies are formulas which 
are interpreted by 1 in any interpretation. We write |= φ when φ is a tautology. A formula is consistent iff it has at least 
one model. Otherwise it is inconsistent.

A communication base1 K is a finite (possibly empty) set of formulas of L. At(K ) denotes the set of propositional sym-
bols appearing in formulas which belong to K . A communication base is consistent iff the conjunction of its formulas is 
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consistent. Otherwise, it is inconsistent. For a communication base K , M I(K ) is the set of minimal inconsistent subsets 
of K , i.e., M I(K ) = {K ′ ⊆ K | K ′ is inconsistent and ∀K ′′ ⊂ K ′ K ′′ is consistent}. MC(K ) is the set of maximal consistent 
subsets of K , i.e., MC(K ) = {K ′ ⊆ K | K ′ is consistent and ∀K ′′s.t. K ′ ⊂ K ′′ K ′′ is inconsistent}. If M I(K ) = {M1, ..., Mn} then 
Problematic(K ) = M1 ∪ ... ∪ Mn , and F ree(K ) = K \ Problematic(K ). The set of formulas in K that are inconsistent is given 
by the function Self contradiction(K ) = {φ ∈ K | φ is inconsistent}. Notice that these definitions are provided by [10].

Finally, as shown in [10], a three-valued logic can be used to give a semantics to inconsistent formulae. The three values 
are T , F , B where T and F correspond to the classical values 1, 0 respectively and the additional truth value B stands for 
both and represents inconsistency. Assuming that the three values are ordered by: F <t B <t T , the valuation of formulae 
in an interpretation i is given by: i(�) = T , i(⊥) = F , i(¬φ) = B ⇐⇒ i(φ) = B , i(¬φ) = T ⇐⇒ i(φ) = F , i(φ ∧ ψ) =
min≤t(i(φ), i(ψ)), i(φ ∨ ψ) = max≤t(i(φ), i(ψ)). Interpretation i is a model of K if no formula in K is assigned the truth 
value F . We write i |=3 K . Binarybase(i) = {p ∈ P | i(p) = T or i(p) = F } and Conf lictbase(i) = {p ∈ P | i(p) = B}. Notice 
that for i |=3 K , Conf lictbase(i) returns the subset of propositional symbols directly involved in inconsistency according to i.

2.2. Communication sets

From now, we assume a finite set of agents A = {a1, ..., an} (n ≥ 1). For each agent ai , K (ai) is an L-formula which is 
the conjunction of all the pieces of information reported by ai . K (ai) is called report of agent ai . The report of an agent 
which provides no information is any tautology or, for short, �. Given K (a1), ..., K (an), the multi-set of formulas � =
{K (a1), ..., K (an)} is called communication set.

Given � = {K (a1), ..., K (an)} and C = {ai1 , .., aim } ⊆ A, we define �(C) by �(C) = {K (ai1 ), .., K (aim )}.
Consider now two situations, one in which agent reports are K (a1)...K (an) and a second one in which they report 

K ′(a1)...K ′(an). Let � = {K (a1), ..., K (an)} and � ′ = {K ′(a1), ..., K ′(an)} be the corresponding communication sets. We write 
� ≡ � ′ (� and � ′ are equivalent) iff ∀a ∈ A, |= K (a) ↔ K ′(a). That is, a’s report in � is equivalent to a’s report in � ′ . We
write � � � ′ (� and � ′ are weakly equivalent) iff ∀a ∈ A, ∃b, ∃c ∈ A such that |= K (a) ↔ K ′(b) and |= K ′(a) ↔ K (c). That 
is, we relax here the constraint that report of agent a should be equivalent both in � and � ′; instead we only require some 
other agent, possibly different from a, reports equivalent information.

2.3. IC-inconsistent communication sets

In the context of a communication set � , consistency will be evaluated with respect to some integrity constraints IC
which is a consistent formula of L. IC has to be viewed as information taken for granted or certain. Thus we say that 
� = {K (a1), ..., K (an)} is IC-inconsistent iff � ∪{IC} is inconsistent; otherwise � is IC-consistent. In the following, we adapt
the definitions given in the preliminaries to the case of communication sets.

Definition 1.

• � ⊥ IC is the multi-set of minimal IC-inconsistent subsets of � i.e the multi-set of X ⊆ � such that X is
IC-inconsistent and ∀X ′ X ′ ⊂ X, X ′ is IC-consistent.

• ��IC = {X ⊆ � : X is IC-consistent and ∀X ′ X ⊂ X ′, X ′ is IC-inconsistent} is the set of maximal IC-consistent sub-
multisets of � .

• Problematic(�) = ⋃
M∈�⊥IC M .

• F ree(�) = � \ Problematic(�).
• Self contradiction(�) = {K (a) ∈ �: K (a) ∧ IC is inconsistent}.

2.4. IC-inconsistent sets of agents

We finally introduce the notion of minimal IC-inconsistent subsets of agents and the notion of problematic agents which 
are agents whose reports are problematic:

Definition 2.

• A ⊥ IC = {X ⊆ A : �(X) ∈ � ⊥ IC}.
• Problematic(A) = {a ∈ A : K (a) ∈ Problematic(�)}.

Example 1. Consider A = {a, b, c}, IC = ¬q, K (a) = p, K (b) = ¬p ∧ q, K (c) = r ∧ s. i.e., a has reported p, b has reported ¬p
and q, and c has reported r and s. Here, � = {p, ¬p ∧q, r ∧ s}. Thus, � ⊥ IC = {{¬p ∧q}}, ��IC = {{p, r ∧ s}}, A ⊥ IC = {{b}}
and Problematic(A) = {b}.

Example 2. Assume A = {a, b, c}, IC = ¬(p ∧ q), K (a) = K (b) = p, K (c) = q. Here, � = {p, p, q}. Thus, � ⊥ IC =
{{p, q}, {p, q}}. Problematic(�) = {p, q} and F ree(�) = ∅. A ⊥ IC = {{a, c}, {b, c}} and Problematic(A) = {a, b, c}.



3. Measuring the I C -inconsistency of communication sets

Understanding the nature of inconsistency of a set of formulas is an important topic which aroused a great amount 
of research during the past decade The purpose is to analyze to which degree a set of formulas is inconsistent. A lot of 
inconsistency measures have been proposed according to different points of view: some of them are based on minimal 
inconsistent subsets [15,16,25,20] or on maximal consistent subsets [10,1], some consider paraconsistent models such as 
three valued logic [17,10], some consider probabilistic functions over the underlying propositional language [29], some 
consider model distance [11] and finally some are proof-based [19]. For a detailed review of these inconsistency measures 
we refer the reader to [30]. In this section, we first review some well-known inconsistency measures then we show our 
requirements to adapt them to our context.

3.1. Inconsistency measures for sets of formulas

According to [10], an inconsistency measure on sets of formulas is a function I which assigns any set of formulas K to 
an element of R+ satisfying at least the following three properties:

• Consistency: I(K ) = 0 iff K is consistent.
• Monotony: if K ⊆ K ′, then I(K ) ≤ I(K ′).
• Free formula independence: If φ ∈ F ree(K ) then I(K ) = I(K \ {φ}).

That is, the measure of inconsistency of a set of formulas is null iff this set is not inconsistent. The measure of inconsis-
tency of a set of formulas does not decrease if we add more formulas. Finally, removing a formula that does not cause any 
contradiction does not change the inconsistency measure.

Let us now briefly review some inconsistency measures for sets of formulas, introduced in the literature [15–17,10]

• I D(K ) = 0 if K is consistent; 1 otherwise.
• IC (K ) = |M I(K )|.
• IM(K ) = (|MC(K )| + |Self contradictions(K )|) − 1.
• I P (K ) = |Problematic(K )|.
• I Q (K ) = 0 if K is consistent; 

∑
K ′∈M I(K )

1
|K ′ | otherwise.

• I B(K ) = min{|Conf lictbase(i)| | i |=3 K }.

I D(K ) is a trivial measure which assigns 0 to any consistent set of formulas and 1 to any inconsistent set. It does not
quantify how much K is inconsistent. IC (K ) counts the number of minimal inconsistent subsets of K . IM (K ) counts the 
number of maximal consistent subsets together with the number of contradictory formulas but 1 to make IM(K ) = 0 when 
K is consistent. I P (K ) counts the number of formulas in minimal inconsistent subsets of K . I Q (K ) computes the weighted 
sum of the minimal inconsistent subsets of K , where the weight is the inverse of the size of the minimal inconsistent subset, 
so that smaller inconsistent subsets are regarded as more inconsistent than larger ones. I B (K ) returns the minimum number 
of propositional symbols that have to be set to value B in order to get a three valued model of K . Measures IC (K ), I P (K )

and I Q (K ) assume that inconsistency is rooted in minimal inconsistent subsets: removing any formula from a minimal 
inconsistent subset in sufficient to produce a maximal consistent subset. To some extent IM(K ) can be viewed as a variant 
of these inconsistency measures. It is interesting to note that while IC (K ) give the same score to sets of formulas containing 
the same number of minimal inconsistent subsets, I Q (K ) is able to differentiate their level of inconsistency considering 
that the smaller is the size of a minimal inconsistent subset, the bigger is the amount of inconsistency. Measures I B and 
I L Pm follow a different approach assessing the severity of inconsistency by considering the number of propositional symbols 
involved in inconsistency.

J. Grant and A. Hunter showed in [10] that inconsistency measures can be used to order several sets of formulas from
the least inconsistent one to the most inconsistent one. They defined two inconsistency measures Ix and I y as being order-
compatible if for all sets of formulas K1 and K2, Ix(K1) < Ix(K2) iff I y(K1) < I y(K2). They proved that IC , IM , I P , I Q and I B

are pairwise order-incompatible and we add that I D is also order-incompatible with each of them. This result is interesting 
as it shows that each inconsistency measure gives a particular insight on the inconsistency of a set of formulas.

3.2. IC-inconsistency measures for communication sets

In order to assign a degree of IC-inconsistency to a communication set, we adapt the inconsistency measures. I D , IC , 
IM , I p and I Q are typically syntax-based inconsistency measures in the sense they mainly take into consideration the 
formulas composing K . This aspect is quite important in our context. However we need to introduce an extra property that 
IC-inconsistency measures should satisfy. This property is named syntax weak-independence. It states that IC-inconsistency 
measures should not be dependent of the syntax of IC and that two weakly equivalent communication sets should have the 
same IC-inconsistency measure. In other words, the measure does not depend on the sources of the communication.



Definition 3. Let IC and IC ′ be two integrity constraint and � and � ′ be two communication sets on A. Function I IC :
2A×L →R+ is a syntax weak-independent IC-inconsistency measure iff it satisfies the following properties:

• Consistency: I IC (�) = 0 iff � is IC-consistent.
• Monotony: If � ⊆ � ′ then I IC (ψ) ≤ I IC (ψ ′).
• Free formula independence: If φ ∈ F ree(�) then I IC (�) = I IC (� \ {φ}).
• Syntax weak-independence:

1. for all IC ′ if |= IC ↔ IC ′ then I IC (�) = I IC ′ (�).
2. for all � ′ if � �� ′ then I IC (�) = I IC (� ′).

According to this definition, the measure of IC-inconsistency of a communication set is null iff this communication 
set is not IC-inconsistent. The measure of IC-inconsistency of a communication set does not decrease if we add more 
communications. Removing a report which does not cause any contradiction does not change the IC-consistency measure 
of the communication set. Finally, the measure of IC-inconsistency of a communication set does not depend on the syntax 
on the integrity constraints and two weakly equivalent communication sets get the same measure of IC-inconsistency.

The different measures introduced for sets of formulas can now be redefined for communication sets as follows:

Definition 4. Let � be a communication set and IC an integrity constraint. The IC-inconsistency measures I D
IC , IC

IC , I M
IC , I P

IC , 
I Q

IC and I B
IC are defined as follows:

• I D
IC (�) = 0 if � is IC-consistent; 1 otherwise.

• IC
IC (�) = |� ⊥ IC |.

• I M
IC (�) = (|��IC | + |Self contradictions(�)|) − 1.

• I P
IC (�) = |Problematic(�)|.

• I Q
IC (�) = 0 if � is IC-consistent; 

∑
K∈�⊥IC

1
|K | otherwise.

• I B
IC (�) = min{|Conf lictbase(i)| | i |=3

∧
K∈� K ∧ IC}.

Proposition 1. I D
IC , IC

IC , I M
IC , I P

IC , I Q
IC and I B

IC are syntax weak-independent inconsistency measures.

(All proofs are detailed in the appendix section, before references)
I D

IC (�) is still a trivial measure, while each other measure gives insight on the contribution of reports to inconsis-
tency. IC

IC (�) counts the number of minimal IC-inconsistent subsets of reports. I M
IC (�) counts the number of the maximal 

IC-consistent subsets of reports together with the number of self contradictory reports but 1 to make I M
IC (�) = 0 when 

� is IC-consistent. I P
IC (�) counts the number of problematic reports. I Q

IC (�) adds the inverse of the sizes of the minimal
IC-inconsistent subsets of reports, so that smaller IC-inconsistent subsets of reports are regarded as more inconsistent than
larger ones. I B

IC (�) returns the minimum number of propositional symbols that have to be set to value B in order to get a 
three valued model of � ∪ IC .

4. Contribution of an agent to inconsistency

In this section, we aim at characterizing the contribution of an agent to the overall inconsistency of a communication
set.

4.1. Contribution function

Evaluating the contribution of an agent to the overall inconsistency of a communication set should be relative to an 
inconsistency measure. As previously stressed, inconsistency measures provides different perspectives on inconsistency and 
the contribution of an agent may then differ w.r.t. some inconsistency measure. Several possible solutions are possible for 
assessing this contribution but, as for the inconsistency measure, some constraints should also be satisfied. At first, the 
contribution of an agent should be null if it does not contribute to any inconsistency. Second, an agent not involved in any 
inconsistency should not influence the assessment of the contribution of the other agents; finally contribution should be 
syntax independent. Syntax-weak independence is not relevant here as illustrated by the following example: suppose two 
sets � and � ′ such that they are weakly equivalent; in that context, it may be the case that some agent a is problematic 
w.r.t. � while it is not w.r.t. � ′ . Hence their contribution should not be the same.

Definition 5. Consider a set of agents A, a communication set � on A, an integrity constraint IC and an IC-inconsistency 
measure I IC . Function Cont�,I IC is a syntax independent contribution function if it associates to any agent a ∈ A a positive 
real number Cont�,I IC (a) so that:



• Consistency: Cont�,I IC (a) = 0 iff a /∈ Problematic(A).
• Free agent independence: if b /∈ Problematic(A) then Cont�,I IC (a) = Cont�\{K (b)},I IC (a).
• Syntax independence:

1. for all IC ′ if |= IC ↔ IC ′ then Cont�,I IC (a) = Cont�,I IC ′ (a).
2. for all � ′ if � ≡ � ′ then Cont�,I IC (a) = Cont� ′,I IC (a).

4.2. Assessing the contribution

Hereafter, we adapt two well known metrics in order to define the contribution of an agent to the communication set 
inconsistency, namely the Shapley value and the Banzhaf index. They are well known measures for assessing the power 
of an agent in a voting procedure. Our context is similar: Shapley value enables to asses the personal contribution of an 
agent to overall inconsistency of a communication base; in other words it measures the importance of this agent in a 
coalitional game defined by function I IC [17]. The Banzhaf index assesses the pivotal role of an agent in the definition of an 
inconsistent set. It corresponds to the Banzhaf score as shown in [18]. Theses functions are respectively denoted Cont�,I IC

s

and Cont�,I IC
b and whenever it’s clear, we denote them Conts and Contb for short. The Shapley based contribution function 

is defined as follows.

Definition 6. Consider a set of agents A, a communication set � on A, an integrity constraint IC and an IC-inconsistency 
measure I IC . Function Conts associates any agent a with a positive real number Conts(a) so that:

Conts(a) =
∑

C⊆A
C �=∅

(|C | − 1)!(|A| − |C |)!
|A|! (I IC (�(C)) − I IC (�(C \ {a}))).

The following proposition connects the inconsistency measure and the contribution function. It states that if the incon-
sistency measure is syntax weak independent then the contribution function is syntax independent.

Proposition 2. Function Conts is a syntax independent contribution function if I IC is a syntax-weak independent IC-inconsistency 
measure.

Let us now consider the Banzhaf based contribution:

Definition 7. Consider a set of agents A, a communication set � on A, an integrity constraint IC and an IC-inconsistency 
measure I IC . Function Contb associates any agent a with a positive real number Contb(a) so that:

Contb(a) =| {C : I IC (�(C ∪ {a})) �= 0 and I IC (�(C)) = 0} | .

As for the Shapley value, function Contb is syntax independent as long as the inconsistency measure is syntax weak 
independent.

Proposition 3. Function Contb is a syntax independent contribution function if I IC is a syntax-weak independent IC-inconsistency 
measure.

4.3. Implementation and complexity considerations

4.3.1. Implementation of Conts

Algorithm 1 implements function Conts . Its parameters are a communication set � , an integrity constraint IC and a list 
of inconsistency measures I IC list . It shows that if we only consider inconsistency measures based on minimal inconsistent 
subsets, then the Shapley values for all the inconsistency measures can be computed without adding extra calls to a SAT 
solver. It is composed of two steps. First step (Line 3) is a call to Function InconsistencyMeasures (detailed in Algorithm 2) 
which computes, for each coalition of agents, the inconsistency measures requested in I IC list and stores the results in a 
tuple of arrays indexed by the coalition number. Second step (Lines 4 to 16) computes, for each agent, the Shapley values 
for each inconsistency measure by applying simple operations on the arrays computed at the previous step. Clearly, the 
second step is not computationally hard except that it contains an internal loop on each coalition which is exponential 
with respect to the number of agents. This second step is precisely in O (n ∗ 2n−1/2), n being the number of agents and 
considering that each agent is involved in half of the possible coalitions. It doesn’t require any call to a SAT solver.

Algorithm 2 is composed of a preparation step and an execution step. The preparation step (Lines 3 to 5) is executed only 
if inconsistency measures based on minimal inconsistent subsets are requested and computes the set of minimal inconsistent 
subsets for the coalition composed of the whole set of agents (�⊥IC ). Computing the set of minimal inconsistent subsets of 
a belief base is a hard problem which requires to use a SAT solver. It is shown in [26,12] that this problem is DP-complete. 



Algorithm 1 Contribution function Conts .
1: function Conts(�, IC, I IC list)
2: n = |�|
3: (IC

IC , I P
IC , I B

IC , Ratio) = InconsistencyMeasures(�, IC, I IC list)
4: for j = 0 to n − 1 do � for each agent
5: for i = 1 to 2n − 1 do � for each coalition
6: if Bit( j, BinString(i))=1 then
7: switch I IC list do
8: case IC

IC

9: Cont
IC

IC
s [ j] = Cont

IC
IC

s [ j] + Ratio[i] ∗ (IC
IC [i] − IC

IC [i − 2 j ])
10: case I P

IC

11: Cont
I P

IC
s [ j] = Cont

I P
IC

s [ j] + Ratio[i] ∗ (I P
IC [i] − I P

IC [i − 2 j ])
12: case I B

IC

13: Cont
I B

IC
s [ j] = Cont

I B
IC

s [ j] + Ratio[i] ∗ (I B
IC [i] − I B

IC [i − 2 j ])
14: end if
15: end for
16: end for

17: return (Cont
IC

IC
s , Cont

I P
IC

s , Cont
I B

IC
s )

18: end function

Algorithm 2 Computing inconsistency measures for each coalition.
1: function InconsistencyMeasures(�, IC, I IC list)
2: n = |�|
3: switch I IC list do
4: case IC

IC or I P
IC or I Q

IC
5: �⊥IC = Compute�⊥IC (�, IC)

6: for i = 0 to 2n − 1 do � for each coalition
7: switch I IC list do
8: case IC

IC or I P
IC or I Q

IC
9: M I[i] = M IC(i, �⊥IC)

10: switch I IC list do
11: case IC

IC
12: IC

IC [i] = |M I[i]|
13: case I P

IC
14: I P

IC [i] = ComputeI P (M I[i])
15: case I B

IC
16: I B

IC [i] = ComputeI B (Ci)

17: Ratio[i] = (|Ci |−1)!(n−|Ci |)!
n!

18: end for
19: return (IC

IC , I P
IC , I B

IC , Ratio)
20: end function

Fortunately, algorithms such as those published in [12] make the computation of minimal inconsistent subsets feasible in 
real-life applications. The execution step (Lines 6 to 18) computes, for each coalition of agents, the requested inconsistency 
measures plus the ratio based on the coalition size. We use function MIC (detailed later) which allows to extract for any 
coalition of agents the corresponding set of minimal inconsistent subsets out of �⊥IC without any more call to a SAT solver. 
Thanks to this result computing IC

IC , I P
IC or I Q

IC is very easy at this level. On the other hand computing I B
IC still requires

to compute the three valued models of the current coalition, which is computationally hard. The execution sub-step is in 
O (2n−1) and is not computationally hard if we only compute inconsistency measures based on minimal inconsistent subsets. 
Note that in [12], the set of maximal consistent subsets is computed before producing the set of minimal inconsistent 
subsets. Consequently, inconsistency measure I M

IC can also be computed without extra complexity. It is not the case for 
inconsistency measure I B

IC
In summary, computing Conts is C preparationstep + Cexecution step + Csecond step where Cpreparation step is DP-complete, 

Cexecution step is in O (2n−1) and Csecond step is in O (n ∗ 2n−1/2). In [16] the authors show that in the specific case using 
inconsistency measure IC (K ), it is possible to compute the Shapley value in polynomial time. This result can directly be 
applied for computing Conts using inconsistency measure IC

IC .
Let us detail some hints used by Algorithm 1. Suppose there are n agents named 0, ...n − 1. Then there are 2n possi-

ble coalitions of agents we name 0, 1...2n − 1 with 0 being the empty coalition and 2n − 1 the whole set of agents. We 
introduce two functions BinString and Bit . BinString(i) returns a binary string corresponding to the binary representation 
of coalition i. Bit( j, BinString(i)) returns the bit of weight 2 j in BinString(i). Thus, agent j is involved in coalition i iff 
Bit( j, BinString(i)) = 1.

Let us now detail some hints used by Algorithm 2. Line 5 calls function Compute�⊥IC (�, IC ) which returns �⊥IC . As 
previously mentioned, this is DP-complete. One can notice that once �⊥IC is computed, we immediately get � ′⊥IC for 



any � ′ included in � i.e removing the report of some agent from � does not create new inconsistent subset. This remark 
allows us to drastically reduce the complexity for producing the minimal inconsistent subsets of each coalition. Line 9 is 
a call to function M IC(i, �⊥IC) which returns the set of minimal inconsistent subsets of � which are made of reports 
emitted by agents in coalition i, that is {X | X ⊆ �(Agents(i)) and X ∈ � ⊥ IC} (Agents(i) returns the agents involved in 
coalition i, i.e. agents whose bit is set to 1 in BinString(i)).

4.3.2. Implementation of Contb
Algorithm 3 provides an implementation of function Contb . It takes as parameter a communication set � and an integrity 

constraint IC . This algorithm is similar to Algorithm 1 and has the same computational complexity. Again, most of the 
complexity is in the computation of the inconsistency measures for each possible coalition. However it is interesting to 
notice that the Banzhaf-based contribution uses only two inconsistency values, namely > 0 and = 0. Consequently, the 
drastic inconsistency measure, whose computation is the cheapest one, should be preferred to compute the Banzhaf-based 
contribution of the agents.

Algorithm 3 Contribution function Contb .
1: function Contb(�, IC, I IC )
2: n = |�|
3: (I IC ) = InconsistencyMeasures(�, IC, I IC )

4: for j = 0 to n − 1 do � for each agent
5: for i = 1 to 2n − 1 do � for each coalition
6: if Bit( j, BinString(i))=1 then
7: if then(I IC [i] > 0 and I IC [i − 2 j ] = 0)

8: Cont I IC
b [ j] = Cont I IC

b [ j] + 1
9: end if

10: end if
11: end for
12: end for
13: return (Cont I IC

b )
14: end function

5. Assessing reliability

We now consider the question of assessing reliability. In the following, we represent reliability as a preorder over the
set of agents and statement a ≤ b stands for b is at least as reliable as a. The following postulates axiomatically characterize 
any reliability preorder based on what the agents have reported in the context of a given integrity constraint.

Given a set of agents A, an integrity constraint IC and a communication set � , the total preorder representing the 
relative reliability of agents in A is denoted ≤A,�

IC . This preorder is characterized by the following postulates which show 
that reliability should be rooted in inconsistency:

P1 ≤A,�
IC is a total preorder on A.

P2 If � ≡ � ′ then ≤A,�
IC =≤A,� ′

IC .

P3 If |= IC ↔ IC ′ then ≤A,�
IC =≤A,�

IC ′ .

P4 If a /∈ Problematic(A) then ∀b, c ∈ A, if b ≤A\{a},�\{K (a)}
IC c then b ≤A,�

IC c.

P5 If � is IC-consistent then ≤A,�
IC is the equality preorder.

P6 If � is IC-inconsistent then ∀a ∈ Problematic(A), ∀b /∈ Problematic(A), a <A,�
IC b.

P7 If {a1, ..., ak} ∈ A ⊥ IC for k ≥ 2, then ∃i, j such that j �= i, ai <
A,�
IC a j .

Postulate P1 specifies that the reliability preorder is a total preorder. P2 and P3 deal with syntax independence. More 
precisely, if we consider two equivalent communication sets or if we consider two equivalent integrity constraints, then 
we get the same total preorder on agents. P4 states that reliability is assessed with respect to inconsistency: in other 
words, agents which do not cause inconsistency issues have no influence. A typical example is an agent which reports a 
tautology or which reports no information, then it should not have influence on the relative reliability of other agents.
P5, P6 and P7 focus on consistency of information provided by agents in A. Postulate P5 considers the case when � set 
is not IC-inconsistent. In such a case, the agents are considered as equally reliable. P6 and P7 consider the case where �
is IC-inconsistent. According to P6, any agent which is responsible of the IC inconsistency of � is considered as strictly 
less reliable than any other agent which is not. According to P7, the agents of a minimal IC-inconsistent subset cannot 
be equally reliable: at least one of these agents is strictly less reliable than the others. This is coherent with the way 
we understand reliability: if some agents are equally reliable, then after merging we will believe, with the same strength, 
information they will provide. However, it is generally assumed [7,23] that graded belief satisfies the modal logic axiom 
which states that belief should be consistent: that is, two contradictory pieces of information cannot be believed with the 
same strength. Consequently, agents who are involved in a minimal IC-inconsistent set cannot be equally reliable.



5.1. Building reliability from contribution

It is clear that the more an agent contributes to the overall inconsistency of a communication set, the less is should 
be reliable. That is, a source is considered strictly more (resp, equally) reliable than a second one iff its contribution to the 
global inconsistency is strictly smaller than (resp equal to) the contribution of the other. Notice that this principle only takes 
care of the first six postulates as shown by the following postulates.

Theorem 1. Given a set of agents A, an integrity constraint IC and a communication set � , the reliability preorder ≤A,�
IC satisfies

P1–P6 iff there exists a syntax independent Contribution Function Cont such that for any two agents a and b:

a ≤A,�
IC b iff Cont(a) � Cont(b).

The following example illustrates that P7 does not hold.

Example 3. Consider � = {< a, p >, < b, ¬p >, < c, q >} and IC = �. Then {a, b} is a minimal IC-conflicting set of agents 
but Shapley-based Contribution Function gives: Cont�,I IC

s (a) = Cont�,I IC
s (b) and consequently a = b which violates P7.

This example shows that a tie-breaking rule is missing: if all agents involved in the definition of a minimal inconsistent 
subset have an equal contribution then one of them should still be considered as less reliable. For voting rules, a classical 
way to handle tie-breaking is to consider an additional lexicographic order over the set of agents in order to always get a 
winner [2]. In our context, the contribution function should prevent the cases where all agent involved in an inconsistent 
coalition have similar contribution. The following constraint translates this principle in formal terms:

Definition 8. Let Cont be a syntax independent Contribution Function. Cont is said to be tie-free if it satisfies the following 
constraint:

∀C ∈ A⊥IC, ∃a,b ∈ C, s.t. Cont(a) �= Cont(b).

The immediate question is “does such function exist?”. To get the answer, let us revisit our Shapley and Banzhaf based 
contribution functions and built on top of them a tie-free function. The idea is similar tie-breaking: for any inconsistent set 
of agents, one agent contribution is slightly increased so that there is no more inconsistent set of agents where all agents 
have the same contribution. As we have no information about the agents involved in the communication set, the modified 
contribution may be chosen in an arbitrary way. Hereafter we just consider a lexicographic order for this choice (as in the 
voting rules).

Definition 9. Let Cont be a Contribution function defined either by Definitions 6 and 7. Function Contt is then defined as 
follows:

• If Problematic(A) = ∅ then Contt = Cont .
• Otherwise, let ε be a positive real number which is strictly smaller than the smallest difference between two contribu-

tions: 0 < ε < min({Cont(a) − Cont(b) | Cont(a) � Cont(b)}).
1. Let Stie be the set of agents with equal contribution t:

Stie = {a | ∃C ∈ A⊥IC such that |C | > 1 and a ∈ C and ∀x, y ∈ C, Cont(x) = Cont(y)}.
Let S be the minimal subset of Stie w.r.t. the lexicographic order such that (i) ∀C ∈ A⊥IC , ∃a ∈ S ∩ C and (ii) 
∀C ∈ A⊥IC , C \ S �= ∅. Set Contt(a) = Cont(a) + ε for any a ∈ S .

2. Contt(b) = Cont(b) for any agent b /∈ S .

The following proposition shows that this function is a tie-free one.

Proposition 4. Contt is tie-free.

We have proved that there exist Contribution functions which are tie-free, we can rephrase the previous theorem so that
P7 holds.

Theorem 2. Given a set of agents A, an integrity constraint IC and a communication set � , the reliability preorder ≤A,�
IC satisfies

P1–P7 iff there exists a syntax independent Contribution Function Cont which is tie-free such that for any two agents a and b:

a ≤A,�
IC b iff Cont(a) � Cont(b).



Example 4. Take again A = {a, b} and K (a) = p, K (b) = ¬p and IC = �. {a, b} ∈ A ⊥ IC and, according to the Shapley based 
Contribution function, it holds that Conts(a) = Conts(b). Let us consider the tie-free Contribution function based on Conts . 
According to the lexicographic agent a then, Contt(a) > Contt(b) and we get: a < b.

This second theorem shows at first that there exists a reliability preorder which satisfy all the postulates. Second, it 
shows that one of the key issue in the inconsistency definition of reliability is Postulate P7. It forces to rank the agents 
involved in a minimal IC-inconsistent subset. We propose to handle this issue by constraining the contribution function. 
Remind that all agents are unknown and we do not have extra information for setting the choice. Hence this function 
may lead to arbitrary choices. However, even if we do not know any extra information, we have seen that we can build 
up a reliability preorder by first assessing the overall inconsistency of a communication set; secondly by computing the 
“responsibility” degree or contribution of each agent in the overall inconsistency and thirdly by rooting the reliability of the 
agents into their contributions.

6. Reliability aggregation

In the previous section, we have shown that assessing reliability of agents may be achieved by choosing a particular
inconsistency measure and a particular contribution function, each specific pair 〈measure,contribution〉 assessing the sources 
in a different way. The choice of a specific pair is a challenge since we have no information about the sources. A solution 
may be to assess reliability with respect to several pairs and to merge all the resulting preorders to obtain a “consolidated” 
one. The immediate question is then: if each of the reliability preorders satisfies postulates P1–P7, can we then obtain an 
aggregated preorder which also satisfies these postulates? The aim of this section is to tackle this issue.

This problem is clearly connected to the field of preferences aggregation. Arrow impossibility theorem [3] states that it 
is not possible to aggregate preferences while guaranteeing Universality, Non-Dictatorship, Unanimity and Independence to 
Irrelevant Alternatives. The question is then to evaluate how Arrow’s conditions interplay with the reliability postulates.

6.1. Arrow’s conditions

In the following, we first define our aggregation operator and next revisit the Arrow’s conditions. Let ⊕ be our aggrega-
tion operator defined as follows:

Definition 10. A n-ary reliability aggregation operator ⊕ is a function which associates n total preorders on A, respectively 
≤1, ..., ≤n , with a total preorder on A denoted ≤⊕ .

Next, we rephrase the classical Arrow’s conditions:

Definition 11. Let ⊕ be a n-ary reliability aggregation operator. We consider the following properties:

Universality the domain of ⊕ is the set of all possible n-tuple of reliability total preorders.
Non-dictatorship �i ∈ {1...n} such that ∀ ≤1 ... ≤n total preorders on A, ≤⊕=≤i .
Unanimity Let a ∈ A and b ∈ A. If ∀i ∈ {1...n} a ≤i b then a ≤⊕ b.
Independence of irrelevant alternatives (IIA) Let a and b be two agents. Let (≤1, ..., ≤n) and (≤′

1, ..., ≤′
n) be two sets of n

total preorders. If ∀i ∈ {1...n}, (a ≤i b ⇔ a ≤′
i b) then (a ≤⊕ b ⇔ a ≤′⊕ b).

6.2. Influence of arrow’s conditions

The following propositions exhibit the interplay between Arrow’s conditions and the seven postulates characterizing the 
consistency-based reliability assessment. Namely, assuming that each ≤i satisfies our postulates, which Arrow’s condition(s) 
are required so that the postulates are also satisfied by the resulting preorder.

Propositions 5 to 11 all use the following elements: let � be a communication set on A and IC an integrity constraint; 
let I i

IC (i = 1...n) be n syntax weak-independent IC-inconsistency measures. For the sake of conciseness, ≤i (i = 1...n) stands 
for ≤A,�

IC ith reliability preorder.

Proposition 5 (P1⊕). If ⊕ satisfies the condition of Universality then

If all ≤i satisfies P1, then ≤⊕ satisfies P1 (i.e., ≤⊕ is a total preorder).

This proposition states that if the input is itself a tuple of total preorders Universality will guarantee that the aggregation 
operator ⊕ will return a total preorder.

Proposition 6 (P2⊕). If all ≤i satisfy P2 then ≤⊕ satisfies P2 (i.e., if � ≡ � ′ then ≤⊕=≤′⊕).



Table 1
Interplay between postulates and Arrow’s conditions.

Sufficient conditions Satisfied postulates

Universality {P1}
Dictatorship {P7}
Unanimity {P5, P6}
IIA {P4}

This proposition is an immediate consequence of Postulate P2: if each reliability assessment operator is syntax indepen-
dent (w.r..t. communication set) then the resulting preorder is also syntax independent.

Proposition 7 (P3⊕). If all ≤i satisfy P3 then ≤⊕ satisfies P3 (i.e., for any IC ′ s.t. |= IC ↔ IC ′ , ≤⊕=≤′⊕).

This proposition is a consequence of Postulate P3: if each ≤i is syntax independent w.r.t. some integrity constraint then 
the resulting preorder is also syntax independent. Notice that the last two propositions do not involve any Arrow conditions 
as opposed to the other ones.

Proposition 8 (P4⊕). If ⊕ satisfies the condition of Independence of Irrelevant Alternatives then

If all ≤i satisfy P4 then ≤⊕ satisfies P4 (i.e., if ≤−a denotes the preorder ≤A\{a},�\K (a)
IC , if a /∈ Problematic(A), then ∀b, c ∈ A, if 

b ≤−a⊕ c then b ≤⊕ c).

This proposition states that P4 (no influence of agent a who only reports tautologies) can only be preserved if IIA holds. 
That is, if all preorders are unchanged after excluding agent a, then aggregation also produces a similar result if IIA also 
holds.

Proposition 9 (P5⊕). If ⊕ satisfies the condition of Unanimity then

If all ≤i satisfy P5 then ≤⊕ satisfies P5 (i.e., if � is IC-consistent then ≤⊕ is the equality preorder).

Postulate P5 states that consistency leads to a flat ordering. Consequently, if there is no conflict among agents, every ≤i

has to be flat and the aggregation produces a flat order as long as Unanimity holds for the operator ⊕.

Proposition 10 (P6⊕). If ⊕ satisfies the condition of Unanimity then

If all ≤i satisfy P6 then ≤⊕ satisfies P6 (i.e., if � is IC-inconsistent then ∀a ∈ Problematic(A), ∀b /∈ Problematic(A), a <⊕ b).

Proposition 10 stresses up a second time the key role of Unanimity condition. If Postulate P6 holds for every ≤i then 
preorders ≤i unanimously states that for any a ∈ Problematic(A) and b ∈ A \ Problematic(A), b is more reliable than a. 
a <⊕ b also holds only if Unanimity holds.

Proposition 11 (P7⊕). If ⊕ does not satisfy the condition of Non-dictatorship then

If all ≤i satisfy P7 then ≤⊕ satisfies P7 (i.e., if {a1, ..., ak} ∈ A ⊥ IC for k ≥ 2, then ∃i, j such that j �= i and ai <⊕ a j).

This proposition shows the role of the Non-dictatorship condition. Postulate P7 states that at least one agent involved 
in a conflicting set of agents should be ranked with a lower reliability. If each ≤i have decreased the reliability of a different 
agent then, if the Non-dictatorship property holds, no agent will be decreased by the aggregation procedure ⊕. Hence, the 
constraint enforces by P7 will hold only if the Non-dictatorship property is not satisfied, i.e. there is a dictator.

To sum up, as shown by Table 1 four Arrow’s conditions have an influence on the fulfillment of the postulates. Notice 
that these conditions are sufficient conditions for satisfying the postulates.

With the help of Table 1, we are fully informed on what postulates or Arrow’s conditions one should give up during the 
definition of an aggregation operator. The table shows that reliability aggregation is different from preference aggregation: 
the postulate are not compatible with Arrow’s conditions. It also means that some underlying priority should be considered 
in the definition of the operator: if we give priority to the fulfillment of the postulates then fulfillment of Arrow’s conditions 
is not that important. In the next section, we illustrate this issue by considering a simple aggregation procedure satisfying 
all the postulates but abandoning one Arrow’s condition.



6.3. Lexicographic-based aggregation

The proposed aggregation procedure is a lexicographic procedure [14], widely used in preference aggregation and belief 
merging. In [2], the authors show how preference relations can be aggregated. First consider a hierarchy among n preorders 
(with no loose of generality, ≤1 is the most important while ≤n is the least important). According to this hierarchy, if 
all k first preorders state a =k b and at k + 1, a <k+1 b then a will be considered as less reliable than b in the resulting 
preorder. No divergence entails that a and b are considered as equal in the resulting preorder. Let ⊕L denote the reliability 
aggregation operator defined as follows:

Definition 12. If ≤1, ... ≤n are n reliability preorders on a set of agents A and if ≤L denotes the preorder ⊕L(≤1 ... ≤n), 
then ≤L is defined by:

• a <L b iff ∃k = 1...n ∀ j ∈ {1...k − 1} a = j b and a <k b.
• a = Lb else.

Example 5. Assume the following total preorders defined over the set of agents A = {a, b, c, d, e}.

a =1 b <1 c <1 d =1 e.

a <2 b =2 c <2 d =2 e.

e =3 b < c =3 d =3 a.

We obtain the following aggregated preorder a < LbLc < Le < Ld. For instance, a < Lb holds because a =1 b and a <2 b.

It is well known that among the four Arrow’s conditions, Non-dictatorship does not hold for Lexicographic aggregation 
(see [2]). I.e.,

Theorem 3. [14] ⊕L satisfies Universality, Unanimity, Independence of Irrelevant Alternatives and does not satisfy Non-dictator-
ship.

Corollary 1. If all preorders <i satisfy Postulates P1–P7, then Preorder <L also satisfies Postulates P1–P7.

It means that this reliability aggregation operator is a good candidate to aggregate reliability preorders as long as these 
individual preorders also satisfy P1–P7.

Example 6. Consider agent a whose aim is to assess the relative reliability of three communicating agents b, c and d. With 
the specific pair < measure, contribution > it chose, a gets the preorder: b ≺s c =s d, i.e., b has to be considered as strictly 
less reliable than c and d who have to be considered as equally reliable. Assume that before applying this method, a had an 
a priori about the three agents and thought that d was more reliable than the two others which were equally reliable, i.e., 
b =a c ≺a d (where ≺a denotes the a priori preorder). This a priori information can be used by a to decide weather c or d
is the least reliable. More precisely, by aggregating the two preorders and by giving priority to ≺s , a gets: b ≺L c ≺L d.

6.4. Avoiding dictatorship condition

If we want to consider each inconsistency measure in an equal way, we should avoid the dictatorship condition and in-
stead go towards voting rules for the definition of a non-dictator reliability aggregation operator. An immediate consequence 
is that postulate P7 will not be satisfied in the aggregated preorder. Another consequence is that Arrow’s theorem forces 
us to give up an other condition since we want the non-dictatorship condition to be satisfied. It means that some other 
postulates will also have to be abandoned depending on the condition that will be given up (IIA or Unanimity).

Let us consider the classical preferential voting rules such as Condorcet, Borda and Copeland [13], which enforce the 
non-dictatorship condition. All these rules usually consider strict and total preorders as input and provide a preorder as 
output. In our context, we have to consider a variant where input is a set of preorders that may not be strict. We also 
consider that the aggregation method should take into account the relative position of each agent (w.r.t. other agents) 
in all preorders: agent a may be poorly ranked according to some inconsistency measure while it may obtain a good rank 
according to some other inconsistency measure. Hence the rank of an agent should be balanced by its position in the overall 
preorder. It means that a counting based procedure is more adapted than a pairwise comparison method, which argues for 
a Borda based aggregation procedure instead of an aggregation procedure based on Condorcet or Copeland.

The rule proposed hereafter rephrases the Borda-based rule initially proposed in [13, Chapter 13] which handles total 
preorders (that may be strict). As mentioned, we want to take into account the relative position in the preorder (‘’good” 
or ‘’poor” position). Consequently, for any agent a and preorder ≤i , the rule computes a score which takes into account its 
relative position w.r.t. the median agent associated to preorder ≤i .



Let us detail the computation of the score of agent a, w.r.t. ≤i . Set of agent A is first partitioned w.r.t. ≤i such that in 
each partition all agents are equally reliable; let t be the number of partitions. The partitions are ranked w.r.t. ≤i such that 
P1 is the partition containing the most reliable agents and Pt contains the less reliable agent. Let m be the median agent; 
the score of each agent is set according to its relative position with m w.r.t. the partitions. w.r.t. some preorder ≤:

score(a,≤) = (k − j) iff a ∈ P j and m ∈ Pk.

The median agent m receives a score equal to zero, while each agent strictly more reliable than m gets a positive score 
and agents strictly less reliable than m receive a negative score.

Notice, that the score also gives privileges to preorders which are informative (i.e. discriminating agents), that is if the 
number of partitions is large then the range of the score is also large.

Definition 13. If ≤1, ... ≤n are n reliability preorders on a set of agents A and if ≤B denotes the preorder ⊕B(≤1 ... ≤n), 
then ≤B is defined by:

a ≤B b ⇐⇒
n∑

i=1

score(a,≤i) ≤
n∑

i=1

score(b,≤i).

Example 7. Let us revisit the previous example Assume the following total preorders defined over the set of agents A =
{a, b, c, d, e}. We present the partition and the associated score

{a,b} <1 {c} <1 {d, e} [1 0 −1]
{a} <2 {b, c} <2 {d, e} [1 0 −1]
{e,b} <3 {c,d,a} [1 0]

We get the following scores:

score(a) = 2, score(b) = 2, score(c) = 0, score(d) = −2, score(e) = −1.

We then obtain the following aggregating preorder a =B b <B c <B e <B d. The key difference with the previous ranking 
is the equal rank for a and b: as they are both rank first twice in this example, the absence of dictator entails to not 
distinguish them.

We remind that among the four Arrow’s conditions, IIA does not hold for Borda aggregation.

Theorem 4. [14] ⊕B satisfies Universality, Unanimity, Non-dictatorship and does not satisfy Independence of Irrelevant Alter-
natives.

Corollary 2. If all preorders <i satisfy Postulates P1–P7, then preorder <B only satisfies Postulates P1–P3 and P5–P6.

As shown by the corollary, the main consequence is that even if all individual preorders satisfy Postulates P1–P7, the 
properties corresponding to P4 and P7 do not hold in the resulting preorder. For postulate P4, it means that an agent only 
reporting tautologies may influence the output, i.e. the overall reliability. Second, for postulate P7, it means that agents 
involved in some minimal IC-inconsistent subset may not be discriminated with the aggregated reliability ranking while 
they are supposed.

7. Conclusion

This work proposes to assess the relative reliability of some agents by analyzing the inconsistency of information they
report w.r.t some trusted knowledge. We have defined postulates stating what the relative reliability preorder should be. 
Then we have shown through two representation theorems how such preorders are related to the contribution of each agent 
to the overall inconsistency of a communication set. Implementation and complexity questions have also been considered. 
Finally, we have shown how aggregating reliability preorders is constrained by Arrow’s impossibility theorem.

This framework may be extended in several ways. First, inconsistency measures should deserve more attention. Recent 
work on this topic [11,4] shows promising results such as giving a weight to the inconsistency itself. A second issue con-
cerns our key principle for reliability assessment which only considers inconsistency: the more an agent is connected to 
inconsistency, the less it is reliable. We could extend this principle by considering not only conflicts between agents but 
also agreement [28]. We could also extend it by considering that an agent producing more information than others should 
be rewarded. The problem here will be how to quantify the amount of information produced by an agent which is not con-
tradicted. To this end some information measures have already been proposed in [10]. The main question will be to revise 
the postulates to take into account these extensions. The third issue concerns the one shot dimension of the assessment 
process: iteration should be possible and reliability assessment should then be viewed as a refinement process.
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Appendix A. Proofs

Proof of Proposition 1. First, if |= IC ↔ IC ′ then � ⊥ IC = � ⊥ IC ′ , ��IC = ��IC ′ and i |=3
∧

K∈� K ∧ IC iff
i |=3

∧
K∈� K ∧ IC ′ . Secondly, if � � � ′ then | � ⊥ IC |=| � ′ ⊥ IC |, | ��IC |=| � ′�IC | and i |=3

∧
K∈� K ∧ IC iff

i |=3
∧

K∈� ′ K ∧ IC .

Proof of Proposition 2. Consistency. Assume a /∈ Problematic(A), then K (a) ∈ F ree(�). Then ∀C I IC (�(C)) = I IC (�(C \ {a}))
since I I C satisfies Free formula Independence. This proves that if a /∈ Problematic(A) then Conts(a) = 0.

Assume a ∈ Problematic(A): if K (a) ∈ Problematic(�) then ∃M ∈ � ⊥ IC K (a) ∈ M . Let’s write M = {K (a), K (b1), ...
K (bk)}. Then �({a, b1, ...bk}) is IC-inconsistent while �({b1, ...bk}) is IC-consistent. Consequently, I IC (�({a, b1, ...bk})) >
I IC (�({b1, ...bk})) = 0 as I IC satisfies the Consistency property and is monotonic. Thus Conts(a) �= 0. This proves that if 
Conts(a) = 0, then a /∈ Problematic(A).

Free agent independence. Assume b /∈ Problematic(A). Then, ∀C ⊆ A, I IC (�(C)) = I IC (�(C \ {b})) since I I C satisfies Free for-
mula Independence. Hence for any agent a, I IC (�(C)) − I IC (�(C \ {a})) = I IC (�(C \ {b})) − I IC (�(C \ {b} \ {a})). Consequently 
Cont�,I IC

s (a) = Cont�−{K (b)},I IC
s (a).

Syntax independence. Assume IC ′ such that |= IC ↔ IC ′ . Then ∀C , I IC (�(C)) = I IC ′ (�(C)) since I I C satisfies the syntax weak 
independence property. Hence for any agent a, I IC (�(C)) − I IC (�(C \ {a})) = I IC ′ (�(C)) − I IC ′ (�(C \ {a})). Consequently 
Cont�,I IC

s (a) = Cont
�},I IC ′
s (a).

Assume � ≡ � ′ . Then ∀C �(C) ≡ � ′(C). Thus ∀C �(C) � � ′(C). Since I I C satisfies the syntax weak independence 
property, this implies that ∀C I IC (�(C)) = I IC (� ′(C)). Hence for any agent a, I IC (�(C)) − I IC (�(C \ {a})) = I IC (� ′(C)) −
I IC (� ′(C \ {a})). Then Cont�,I IC

s (a) = Cont� ′},I IC
s (a).

Hence Conts is a syntax independent contribution function.

Proof of Proposition 3. The proof is similar to the proof of Proposition 2.

Consistency. Assume a /∈ Problematic(A), then K (a) ∈ F ree(�). Then ∀C I IC (�(C)) = I IC (�(C \ {a})) since I I C satisfies Free 
formula Independence. Hence there is no C where a is pivotal. This proves that if a /∈ Problematic(A) then Contb(a) = 0.

Assume a ∈ Problematic(A): if K (a) ∈ Problematic(�) then ∃M ∈ � ⊥ IC K (a) ∈ M . Let’s write M = {K (a), K (b1), ...
K (bk)}. Then �({a, b1, ...bk}) is IC-inconsistent while �({b1, ...bk}) is IC-consistent. Consequently, I IC (�({a, b1, ...bk})) >
I IC (�({b1, ...bk})) = 0 as I IC satisfies the Consistency and Monotonicity property. Thus Contb(a) �= 0 as a is pivotal for coali-
tion C = {b1, ...bk}. This proves that if Contb(a) = 0, then a /∈ Problematic(A).

Free agent independence. Let b /∈ Problematic(A). Then ∀C I IC (�(C)) = I IC (�(C \ {b})) since I I C satisfies Free formula In-
dependence. Hence for any agent a, I IC (�(C)) = I IC (�(C \ {a})) and I IC (�(C \ {b})) = I IC (�(C \ {b} \ {a})). Consequently 
Cont�,I IC

b (a) = Cont�−{K (b)},I IC
b (a).

Syntax-weak independence.

Syntax independence. Let IC ′ be such that |= IC ↔ IC ′ . Then ∀C I IC (�(C)) = I IC ′ (�(C)) since I I C satisfies the syntax weak 
independence property. Hence for any agent a, I IC (�(C)) = I IC ′ (�(C)) and I IC (�(C \ {a})) = I IC ′ (�(C \ {a})). Consequently 
Cont�,I IC

b (a) = Cont
�},I IC ′
b (a).

Assume � ≡ � ′ . Then ∀C, �(C) ≡ � ′(C), thus ∀C, �(C) � � ′(C), thus ∀C, I IC (�(C)) = I IC (� ′(C)) since I I C satisfies the 
syntax weak independence property. Hence for any agent a, I IC (�(C)) = I IC (� ′(C)) and I IC (�(C \ {a})) = I IC (� ′(C \ {a})). 
Then Cont�,I IC

b (a) = Cont� ′},I IC
b (a).

Consequently, Contb is syntax independent.

A.1. Theorems about reliability preorders

Proof of Theorem 1. Let us first prove that Postulates P1–P6 hold. In the following, whenever it’s clear ≤ denotes the 
reliability preorder instead of full notation ≤A,� .
IC



• Function Cont outputs numerical values and thus preorder ≤ is total P1 is satisfied.
• If � ≡ � ′ , then ∀C ⊆ A �(C) ≡ � ′(C). As Cont satisfies syntax independence, then, ∀x ∈ A Cont�,I IC (x) = Cont� ′,I IC (x).

Thus, P2 holds.
• If |= IC ↔ IC ′ then, because Cont is syntax independent, ∀a ⊆ A, Cont�,I IC (a) = Cont�,I IC ′ (a). Consequently, P3 holds.
• Assume a is not problematic: K (a) ∈ F ree(�). Next function Cont is free agent independent, ∀x, y ∈ A Cont�,I IC (x) =

Cont�\{K (a)},I IC (x) and Cont�,I IC (y) = Cont�\{K (a)},I IC (y). Then, if x ≤A\{a},�\{K (a)}
IC y then it must be the case that x ≤ y.

This shows that P4 is satisfied by ≤.
• If � is IC-consistent, then by consistency property, ∀x ∈ A, Cont(x) = 0 and then ∀x, y ∈ A, x = y. This shows that P5

is satisfied.
• Suppose � is IC-inconsistent. Let a be in A.

– Assume a /∈ Problematic(A). Then by consistency property for Function Cont , Cont(a) = 0.
– Assume a ∈ Problematic(A). Then by consistency property for Function Cont , Cont(a) > 0.
This shows that P6 holds.

Let us focus on the other direction: assume a preorder ≤A,�
IC , or ≤ for short such that P1–P6 hold. Next, we build a Function 

Cont as following: we partition the set of agents w.r.t. preorder ≤ as follows:

• A0 = min(A, ≤)

• Ai = min(A − ∪0� j<i A j, ≤) for any i > 0.

Notice, that as A is finite, then the number of partitions is also finite. Assume there are N partitions and then A0 the less 
reliable agents while AN−1 contains the most reliable ones. For any agent a ∈ Ak , Cont(a) = N − k − 1.

Due to postulate P1, the immediate consequence of this definition is that for any agents a and b:

If a ≤A,�
IC b then Cont(a) � Cont(b)

Hence, the first requirement stating that for any agent a, Cont provides a positive real number is fulfilled.
Let us now check that Function Cont is actually syntax independent.
First we check that Cont is consistent. Postulate P5 entails that there is a unique partition A0 = A and consequently 

Cont(a) = 0 for all agent a. Assume now, that some agents are problematic. Then there is at least 2 partitions: suppose 
there are N > 1 partitions. Due to postulate P6, only agents a such that a /∈ Problematic(A) belong to AN−1. Hence, for all 
agents a /∈ Problematic(A), it holds that Cont(a) = 0 and P6 also enforces that for all agents a ∈ Problematic(A), Cont(a) > 0.

Then we check that Cont is free agent independent. Assume a such a /∈ Problematic(A). Suppose that A is partitioned in 
N partitions. P6 entails that a belongs to AN−1. Due to postulate P4, we get that the partition of A −{a} w.r.t. ≤A−{a},�−K (a)

IC

is equal to the partition of A w.r.t. ≤A,�
IC except for AN−1 which does not contain a. Hence for every other agent b �= a, we 

get that Cont�,I IC (b) = Cont�−{K (b)},I IC (b) and thus Cont is free agent independent.
Finally, we check that Cont is syntax independent. Assume IC ′ such that |= IC ↔ IC ′ . Then P3 entails that pre-

orders ≤A,�
IC and ≤A,�

IC ′ are identical. Then partitions will be the same and consequently, for any agent a, Cont�,I IC (a) =
Cont�,I IC ′ (a). In a similar way, assume � ′ such that � ≡ � ′ . P2 entails that preorders ≤A,�

IC and ≤A,� ′
IC are identical. Then 

partitions will be the same and consequently, for any agent a, Cont�,I IC (a) = Cont� ′,I IC (a).

Proof of Proposition 4. If the communication set is consistent then A ⊥ IC = ∅ thus the constraint of tie-free contribution 
function holds.

If the communication set is inconsistent then we have two cases: either Stie is empty or not. If Stie is empty then tie-free
holds.

Now suppose that Stie is not empty. Let S be the minimal subset of Stie w.r.t. the lexicographic order such that (i) 
∀C ∈ A⊥IC , ∃a ∈ S ∩ C and (ii) ∀C ∈ A⊥IC , C \ S �= ∅. Let us first show that such S exists. Assume it is not the case, then it 
entails that either condition (i) or (ii) does not hold. Suppose (i) holds but not (ii). Hence, it means there exists a coalition 
C such that there is no agent a which belongs to C \ S . Hence C = S , and S is then not minimal. Contradiction. Other cases 
can be considered in a similar way.

Consequently, the definition of Contt entails that for every coalition C where agents have an equal contribution: (i) one 
agent has its contribution increased as it belongs to S and C and (ii) one agent has its contribution unchanged as it belongs 
to C \ S . Next the second step guarantees that the contribution is not increased for all other members of the set. Hence, it 
means that in each minimal IC-inconsistent subset of agents, there is always two agents which have unequal contribution, 
i.e., the constraint of tie-free contribution function holds.

Proof of Theorem 2. We only focus on Postulate P7 as the proof for the other postulates is similar to the proof of Theorem 1.
Let us first prove that the postulate is satisfied: suppose that {a1, ..., ak} ∈ A ⊥ IC for k ≥ 2, then as Cont is tie-free, it 

entails ∃i, j, such Cont(ai) �= Cont(a j). Then by definition of <A,�
IC , ai <

A,�
IC a j or a j <

A,�
IC ai holds and P7 holds.

Now consider the other direction. Assume that we built up a function Cont similar to the one considered in the proof of 
Theorem 1. Due to P7, for any inconsistent coalition C such that |C | > 1, there always exist a, b ∈ C such that a < b. Hence, 



it means that there is no partition Ai such that all agents of an inconsistent coalition belong to Ai . Consequently, for any 
inconsistent coalition C ∈ A⊥IC , its members belong at least to two partitions. Then it means that there is no C ∈ A⊥IC
such that |C | > 1 where ∀a, b ∈ C , Cont(a) = Cont(b). Consequently Cont satisfies the tie-free constraint.

A.2. Propositions on arrow’s conditions and postulates

We do not detail the proofs of Propositions 6 and 7, they are obvious.

Proof of Proposition 5. Operator ⊕ is defined as an operator with n total preorders as input. Postulate P1 guarantees that 
each ≤i is total. Second, Universality entails that all possible input ≤i · · · ≤n will give an output. Definition of ⊕ states that 
this output is a total preorder.

Proof of Proposition 8. Let a be such that |= K (a). If every ≤i satisfies P4, then for any x and y in A if (x ≤−a
i y) then

(x ≤i y). Consequently, for any x and y in A, (x ≤i y) ⇐⇒ (x ≤−a
i y). Thus, if ≤⊕ satisfies Independence of Irrelevant 

Alternatives, then it holds that (x ≤⊕ y) ⇐⇒ (x ≤−a⊕ y). Thus, for any x and y in A if (x ≤−a
i y) then (x ≤i y), i.e., ≤⊕ is 

compatible with ≤−a⊕ .

Proof of Proposition 9. Suppose that A is not IC-conflicting. Now assume that P5 holds for all ≤i . Then ∀i = 1..n, ≤i is the 
equality preorder. Unanimity states that for all a, b ∈ A, if ∀i ∈ {1...n} a ≤i b then a ≤⊕ b. Consequently, if Unanimity holds 
then ≤⊕ is the equality preorder and P5 holds for ≤⊕ .

Proof of Proposition 10. Let a ∈ Problematic(A). Assume P6 holds for all ≤i . That is ∀i ∈ {1...n} and ∀a ∈ Problematic(A), 
∀b /∈ Problematic(A), a <A,�

IC b. If Unanimity holds then, it entails that a <⊕ b as a ≤i b ∀i ∈ {1...n}. Consequently P6 holds 
for ≤⊕.

Proof of Proposition 11. If ⊕ does not satisfy the property of Non-dictatorship then ∃i0 ∈ {1...n} such that ∀ ≤1 ... ≤n
total preorders on A, ⊕(≤1, ..., ≤n) =≤i0 . Assume preorder ≤i0 satisfies P7 and suppose {a1...ak} ∈ A ⊥ IC . Consequently, 
∃ j, j′ ∈ {1 . . .k} such that j �= j′ and a j <i0 a j′ . Hence, as ⊕(≤1, ..., ≤n) =≤i0 , it also holds that a j <⊕ a j′ . Consequently P7
holds for ≤⊕ .
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