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Abstract

We introduce a class of stochastic volatility models (Xt)t≥0 for which the absolute moments
of the increments exhibit anomalous scaling: E (|Xt+h −Xt|q) scales as hq/2 for q < q∗, but
as hA(q) with A(q) < q/2 for q > q∗, for some threshold q∗. This multi-scaling phenomenon
is observed in time series of financial assets. If the dynamics of the volatility is given by
a mean-reverting equation driven by a Levy subordinator and the characteristic measure
of the Levy process has power law tails, then multi-scaling occurs if and only if the mean
reversion is superlinear.
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1. Introduction

The last few decades have seen a considering effort in constructing stochastic dynamics
which exhibit some of the peculiar features of many observed time series, such as: heavy
tailed distribution, long memory and path discontinuities. In particular, applications to
mathematical finance have motivated the use of stochastic differential equations driven by
general Levy processes. In this paper we consider a different, though related, pattern which is
rather systematically observed in time series of financial assets, that we call multi-scaling of
moments ([18, 12, 11, 9, 8]). Let (Xt)t≥0 be a continuous-time martingale, having stationary
increments; in financial applications this could be identified with the de-trended log-price of
an asset, or the price with respect to the martingale measure used to price derivatives. We
say the multi-scaling of moments occurs if the limit

lim sup
h↓0

logE (|Xt+h −Xt|q)
log h

=: A(q) (1.1)

is non-linear of the set {q ≥ 1 : |A(q)| < +∞}. More intuitively, (1.1) says that E (|Xt+h −Xt|q)
scales, in the limit as h ↓ 0, as hA(q), with A(q) non-linear. In the case Xt is a Brownian
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martingale (i.e. a stochastic integral w.r.t. a Brownian motion), one would expect A(q) = q
2 ,

at least for q sufficiently small. In this case, multi-scaling of moments can be identified with
deviations from this diffusive scaling, occurring for q above a given threshold; this type of
multi-scaling is indeed observed in the values of many financial indexes and exchange rates.

A class of stochastic processes that exhibit multi-scaling for a rather arbitrary scaling
function A(q) are the so-called multifractal models ([3, 4, 5]). In these models, the process
Xt is given as the random time change of a Brownian motion:

Xt := WI(t), (1.2)

where (Wt)t≥0 is a standard Brownian motion, and I(t) is a stochastic process, often taken to
be independent of W·, with continuous and increasing trajectories, sometimes called trading
time. Modeling financial series through a random time-change of Brownian motion is a clas-
sical topic, dating back to Clark [6], and reflects the natural idea that external information
influences the speed at which exchanges take place in a market. In multi fractal models, the
trading time I(t) is a process with non absolutely continuous trajectories. As a consequence,
Xt cannot be written as a stochastic volatility model, i.e. in the form dXt = σtdBt, for a
Brownian motion Bt. This makes the analysis of multi fractal models hard in many respects,
as the standard tools of Ito’s Calculus cannot be applied.

In [1] a much simpler process has been constructed which exhibits a bi-scaling behavior:
(1.1) hold with a function A(q) which is piecewise linear and the slope A′(q) takes two
different values, which suffices to fit most of the cases observed. This process is a stochastic
volatility model, although of a rather peculiar type. Besides exhibiting multi-scaling, this
model accounts for other relevant stylized facts in time series of financial indexes, such as the
autocorrelation profile t 7→ Cov(|Xh −X0|, |Xt+h −Xt|) as well as heavy tailed distribution
of Xh −X0.

The aim of this paper is to analyze multi-scaling in a more general class of stochastic
volatility models, namely those of the form dXt = σtdBt, with a volatility process σt inde-
pendent of the Brownian motion Bt; these processes are exactly those that can be written
in the form (1.2) with a trading time I(t) independent of Wt, and with absolutely contin-
uous trajectories. We devote special attentions to models in which Vt := σ2

t is a stationary
solution of a stochastic differential equation of the form

dVt = −f(Vt)dt+ dLt, (1.3)

for a Levy subordinator Lt whose characteristic measure has power law tails at infinity, and
a function f(·) such that a stationary solution exists, and it is unique in law. We first show
multi-scaling is not possible if f(·) has linear growth. Thus, the heavy tails produced by
the Levy process are not sufficient to produce multi-scaling. On the other hand, we show
that, if f(·) behaves as Cxγ as x → +∞, with C > 0 and γ > 1, then the stochastic
volatility process whose volatility is a stationary solution of (1.3), exhibits multi-scaling.
In this class of models multi-scaling comes from the combination of heavy tails of Lt and
superlinear mean reversion; technically speaking, as will be seen later, the key point is that
the distribution of Vt has lighter tails than those of Lt.

We remark that the class of processes introduced in [1] can be seen as limiting cases of
those considered here, with γ > 2 and the characteristic measure of the Levy process Lt

concentrated on +∞.
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The paper is organized as follows. In Section 2 we give some basic facts on stochastic
volatility models, and provide some necessary conditions for multi-scaling. Section 3 contains
more specific results for models whose volatility is given by (1.3).

2. Multiscaling in stochastic volatility models

We consider a stochastic process (Xt)t≥0 that can be expressed in the form

dXt = σtdWt, (2.1)

where (Wt)t≥0 is a standard Brownian motion, and (σt)t≥0 is a stationary, [0,+∞)-valued
process, independent of (Xt)t≥0, that we will call the volatility process. We assume the
following weak continuity assumption on the volatility process.

Assumption A. As h ↓ 0, the limit

1

h

∫ h

0
(σs − σ0)

2ds → 0

holds in probability.

We begin with a basic result on the scaling function A(q) defined in (1.1). It states
that under a uniform integrability condition on the integrated squared volatility, the diffu-
sive scaling holds. Thus a necessary condition for multi-scaling is the loss of this uniform
integrability.

Proposition 1. Assume that, p > 1,

lim sup
h↓0

E

[

(

1

h

∫ h

0
σ2
sds

)p/2
]

< +∞. (2.2)

Then, under Assumption A, A(q) = q
2 for every q < p.

Proof. Note that
Xh −X0√

h
=

1√
h

∫ h

0
σsdWs =

∫ 1

0
σuhdB

h
u ,

where Bh
u := 1√

h
Whu is also a standard Brownian motion. Thus, Xh−X0√

h
has the same law of

∫ 1
0 σuhdBu, where B is any Brownian motion independent of the volatility process (σt)t≥0.
It follows from Assumption A and the isometry property of the stochastic integral, that

∫ 1

0
σuhdBu → σ0B1 (2.3)

in L2 and therefore in probability, as h ↓ 0. By (2.2) and Burkholder-Davis-Gundy inequality
(see [15]),

E

[
∣

∣

∣

∣

∫ 1

0
σuhdBu

∣

∣

∣

∣

p]

≤ CpE

[

(
∫ 1

0
σ2
uhdu

)p/2
]

= E

[

(

1

h

∫ h

0
σ2
sds

)p/2
]

,
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so the family of random variables
{

∫ 1
0 σuhdBu : h > 0

}

is bounded in Lp. This implies that

the convergence in (2.3) is also in Lq, for every q < p. Thus

E

[∣

∣

∣

∣

Xh −X0√
h

∣

∣

∣

∣

q]

= E

[∣

∣

∣

∣

∫ 1

0
σuhdBu

∣

∣

∣

∣

q]

→ E (σq
0)E [|B1|q]

as h ↓ 0 (in particular E (σq
0) < +∞). Taking the logarithms in the limit above, one obtains

A(q) = q
2 .

Remark 2. Suppose 1 ≤ q < p. Then A(p)
p ≤ A(q)

q . This follows immediately from the fact
that, for every h > 0,

logE (|Xt+h −Xt|q)
q

= log ‖Xt+h −Xt‖q

is increasing in q, so that
logE(|Xt+h−Xt|q)

q log h is decreasing in q for all 0 < h < 1.

In what follows, for models of the form (2.1), we assume the following further conditions.
Assumption B. E

(

σ2
0

)

< +∞.

Under Assumption B, (2.2) holds true for p = 2. By Proposition 1 and Remark 2, we
have that A(q) = q

2 for 1 ≤ q < 2, while q
2 ≥ A(q) ≥ −∞ for q ≥ 2. This suggests the

following formal definition of multi-scaling.

Definition 3. Under Assumptions A and B, we say that multi-scaling occurs if {q : −∞ <
A(q) < q

2} has a nonempty interior.

In what follows, Assumptions A and B will be assumed implicitely. Note now that, by
Burkholder-Davis-Gundy inequality, there are constant cp, Cp such that for each h > 0

cpE

[

(
∫ h

0
σ2
t dt

)p/2
]

≤ E [|Xh −X0|p] = E

[

∣

∣

∣

∣

∫ h

0
σsdWs

∣

∣

∣

∣

p
]

≤ CpE

[

(
∫ h

0
σ2
t dt

)p/2
]

.

(2.4)
Thus, the condition

E

[

(

1

h

∫ h

0
σ2
sds

)q/2
]

< +∞

for each h > 0 is necessary for A(q) > −∞. Note also that, by Jensen’s inequality,

E

[

(

1

h

∫ h

0
σ2
sds

)q/2
]

≤ 1

h

∫ h

0
E [σq

s ] ds = E [σq
0] , (2.5)

for q ≥ 2. Thus, whenever E [σq
0] < +∞, the assumption of Proposiiton 1 holds.

This remarks, together with Proposition 1, yields the following statement.

Corollary 4. A necessary condition for multi-scaling in (2.1) is that there exists p > 2 such
that

E

[

(

1

h

∫ h

0
σ2
sds

)p/2
]

< +∞

for each h > 0, but
E [σp

0 ] = +∞.
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From the result above we derive an alternative necessary condition for multi-scaling,
which has sometimes the advantage to be more easily checked in specific models.

Corollary 5. A necessary condition for multi-scaling in (2.1) is that, for some h > 0, there
exists p ≥ 2 such that

E [σp
0 ] < +∞ E

[

sup
0≤t≤h

σp
t

]

= +∞.

Proof. Assume multi-scaling holds, and define

q∗ := inf{q : E [σq
0] = +∞}.

By Corollary 4, q∗ < +∞ while, by Assumption B, q∗ ≥ 2. Moreover, by Proposition 1,
A(q) = q/2 for q < q∗. Thus, by Definition 3, A(q) has to be finite for some q > q∗; in
particular, as observed above,

E

[

(

1

h

∫ h

0
σ2
sds

)q/2
]

< +∞

for h > 0. Consider l, r with q∗ < l < r < q. Setting Mh := sup0≤t≤h σt, we have

1

h

∫ h

0
σl
sds ≤ M l−2

h

1

h

∫ h

0
σ2
sds.

By stationarity of σt, and by applying Höder inequality with conjugate exponents r
2 and

r/2
r/2−1 , we obtain

E

(

σl
0

)

≤
[

E

(

M
r
l/2−1
r/2−1

h

)]1− 2
r

[

E

[

(

1

h

∫ h

0
σ2
sds

)r/2
]]2/r

.

Since l > q∗, it follows that E
(

σl
0

)

= +∞. Moreover, being r < q,

E

[

(

1

h

∫ h

0
σ2
sds

)r/2
]

< +∞.

Thus, necessarily,

E

(

M
r
l/2−1
r/2−1

h

)

= +∞.

It is easily checked that, choosing l and q∗ sufficiently close, one gets

r̃ := r
l/2− 1

r/2− 1
< q∗,

which implies
E
(

σr̃
0

)

< +∞.

Setting p := max(r̃, 2), the proof is completed.

5



We conclude this section showing a further property of the scaling function A(q)

Remark 6. Assume that, for each h > 0, the integrated volatility has moments of all orders,
i.e.

E

[

(
∫ h

0
σ2
t dt

)q
]

< +∞ for every q ≥ 1. (2.6)

The following argument shows that, under this assumption, A(q) is increasing in q. We will
see later an example in which the integrated volatility has heavy tails, so it violates (2.6),
and A(·) is decreasing in an interval. We begin by observing that, by (2.4),

A(q) = lim sup
h↓0

logE

[

(

∫ h
0 σ2

t dt
)p/2

]

log h
. (2.7)

From this it easily follows that

lim inf
h↓0

E

[

(

∫ h
0 σ2

t dt
)p/2

]

hλ
= 0 =⇒ λ ≤ A(q), (2.8)

and

λ < A(q) =⇒ lim inf
h↓0

E

[

(

∫ h
0 σ2

t dt
)p/2

]

hλ
= 0. (2.9)

Consider p > q ≥ 1. Moreover, let ǫ > 0, and take l < q such that [A(q) − ǫ] ql < A(q). Set

ah :=

(
∫ h

0
σ2
t dt

)1/2

.

We now use Young’s inequality αβ ≤ αr

r + βr′

r′ , valid for α, β ≥ 0, r, r′ > 0, 1
r + 1

r′ = 1.

Choosing α =
alh

hA(q)−ǫ , β = ap−l
h , r = q

l , we get

aph
hA(q)−ǫ

≤ l

q

aqh
h(A(q)−ǫ) q

l

+
q − l

q
a
q p−l
q−l

h .

Taking expectations:

E

[

(

∫ h
0 σ2

t dt
)p/2

]

hA(q)−ǫ
≤ l

q

E

[

(

∫ h
0 σ2

t dt
)q/2

]

h(A(q)−ǫ) q
l

+
q − l

q
E





(
∫ h

0
σ2
t dt

)q p−l
2(q−l)



 . (2.10)

Since [A(q)− ǫ] ql < A(q), by (2.9)

lim inf
h↓0

E

[

(

∫ h
0 σ2

t dt
)q/2

]

h(A(q)−ǫ) q
l

= 0. (2.11)
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Moreover,

lim
h↓0

E





(
∫ h

0
σ2
t dt

)q p−l
2(q−l)



 = 0 (2.12)

by (2.6) and dominated convergence. It follows from (2.10), (2.11) and (2.12), that

lim inf
h↓0

E

[

(

∫ h
0 σ2

t dt
)p/2

]

hA(q)−ǫ
= 0

which, together with (2.8), yields A(p) ≥ A(q)−ǫ. Since ǫ is arbitrary, the conclusion follows.

3. Superlinear Ornstein-Uhlenbeck volatility

In this section we devote our attention to a specific class of stochastic volatility models,
namely those of the form

dXt = σtdBt

dVt = −f(Vt)dt+ dLt

Vt = σ2
t ,

(3.1)

where:

• (Bt)t≥0 is a standard Brownian motion.

• (Lt)t≥0 is a Levy process with increasing paths (subordinator) independent of (Bt)t≥0.
More precisely (Lt)t≥0 is a real-valued process, with independent increments, L0 = 0
and

E [exp(−λLt)] = exp[−tΨ(λ)],

with

Ψ(λ) = mλ+

∫

(0,+∞)

(

1− e−λx
)

ν(dx),

where m ≥ 0 is the drift of the process, and ν is a positive measure on (0,+∞), called
characteristic measure, satisfying the condition

∫

(0,+∞)
(1 ∧ x)ν(dx) < +∞.

For generalities on Levy Processes see [2, 7, 17].

• f(·) is a locally Lipschitz, nonnegative function such that f(0) = 0 (which guarantees
Vt ≥ 0 if V0 ≥ 0).

Some conditions on f(·) are needed for (3.1) to have a stationary solution. We will address
this point later. We will always assume that V0 is independent of (Lt)t≥0. We note now that
for many “natural” choices of f , multi-scaling is not allowed. In particular, multiscaling is
not present in Ornstein-Uhlenbeck models (see e.g. [10, 13]).
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Proposition 7. Suppose f(·) satisfies the linear growth condition

|f(v)| ≤ Av +B

for some A,B > 0 and all v > 0. Moreover, assume (3.1) has a solution for which (Vt)t≥0

is stationary, nonnegative and integrable, such that Assumptions A and B hold. Then multi-
scaling does not occur.

Proof. By Remark 2, A(q) ≤ q/2, so we need to show the converse inequality. Let (V ′
t )t≥ be

solution of

dV ′
t = −(AV ′

t + 2B)dt+ dLt

V ′
0 = V0.

(3.2)

Note that
d(Vt − V ′

t ) = −
[

f(Vt)−AV ′
t − 2B

]

dt.

In particular Vt−V ′
t is continuously differentiable, and V0−V ′

0 = 0. It follows that Vt−V ′
t ≥ 0

for every t ≥ 0: indeed the path of Vt − V ′
t cannot downcross the value zero, since whenever

t is such that Vt = V ′
t
= v, then

d

dt
(Vt − V ′

t ) = −f(v) +Av + 2B ≥ B > 0.

Thus for every t ≥ 0

Vt ≥ V ′
t = V0e

−At +
2B

A

(

e−At − 1
)

+

∫ t

0
e−A(t−s)dLs ≥ V0e

−At + e−tA/2Lt/2 −
2B

A
.

On the other hand

Vt = V0 −
∫ t

0
f(Vs)ds+ Lt ≤ V0 + Lt,

which yields
sup

t∈[0,h]
Vt ≤ V0 + Lh.

Putting all together

V0e
−Ah + e−Ah/2Lh/2 −

2B

A
≤ Vh ≤ sup

t∈[0,h]
Vt ≤ V0 + Lh. (3.3)

Since

V0e
−Ah + e−Ah/2Lh/2 −

2B

A
∈ Lp ⇐⇒ V0 + Lh ∈ Lp,

the conclusion now follows from (3.3) and Corollary 5.

Proposition 7 shows that, for models of the form (3.1) to exhibit multi-scaling, one need
to consider a drift f(·) with a superlinear growth.

Definition 8. We say that a function f : (0,+∞) → (0,+∞) is regularly varying at infinity
with exponent α ∈ R if, for every x > 0,

lim
t→+∞

f(tx)

f(t)
= xα.

8



In the case α = 0 we say that f is slowly varying at infinity. Note that f is regularly
varying at infinity with exponent α if and only if f(u) = uαl(u) where l is slowly varying
at infinity. In what follows we consider models of the form (3.1) for which the following
assumptions hold:

A1 (Bt)t≥0 is a standard Brownian motion.

A2 (Lt)t≥0 is a Levy subordinator with characteristic measure ν. Moreover (Bt)t≥0 and
(Lt)t≥0 are independent.

A3 The function u 7→ ν((u,+∞)) is regularly varying at infinity with exponent −α < 0.

A4 f : [0,+∞) → [0,+∞) is increasing, locally Lipschitz, f(0) = 0, and it is regularly
varying at infinity with exponent γ > 1.

The following result has been proved in [16] (see also [14] for related results).

Theorem 9. Under assumption A2-A4, the equation dVt = −f(Vt)dt + dLt admits an
unique stationary distribution µ. Moreover µ((u,+∞)) is regularly varying at infinity with
exponent −α− γ + 1.

In what follows we assume V0 is independent of (Bt)t≥0 and (Lt)t≥0, and it has distribu-
tion µ. Theorem 9 shows that, if γ > 1, Vt has a distribution with lighter tails than those of
the Levy process Lt.

We are now ready to state the main result of this paper.

Theorem 10. Assume A1-A4 are satisfied, and that α+γ > 2 (which, in particular, implies
Assumption B). Then the following statements hold.

(1) If γ ≥ 2 then

A(q) =

{

q
2 for 1 ≤ q < 2(α+ γ − 1)
γ−2

2(γ−1)q +
α+γ−1
γ−1 for q > 2(α+ γ − 1).

(2) If 1 < γ < 2 then

A(q) =











q
2 for 1 ≤ q < 2(α+ γ − 1)
γ−2

2(γ−1)q +
α+γ−1
γ−1 for 2(α + γ − 1) < q < 2α

2−γ

−∞ for q > 2α
2−γ .

Moreover, for q 6= 2(α+ γ− 1), 2α
2−γ , the scaling exponent A(q) in (1.1) can be defined

as a limit rather that a lim sup.

We remark that, in the case 1 < γ < 2, A(·) is decreasing for 2(α + γ − 1) < q < 2α
2−γ .

This is not in contradiction with Remark 6, since assumption (2.6) is not satisfied.

Remark 11. A simple consequence of Theorem 10, is that, by a comparison argument,
Proposition 7 can be extended to any f which is regularly varying at infinity with exponent
1.

The proof of Theorem 10 will be divided into several steps. We begin by dealing with
the case f(v) = Cvγ , with C > 0, and Lt is a compound Poisson process.

9



Proposition 12. The conclusion of Theorem 10 hold if f(v) = Cvγ, with C > 0, Lt is a
Levy subordinator with zero drift and finite characteristic measure ν.

Proof. Note that, for q < 2(α+ γ − 1), by Theorem 9, we have E
[

V
q/2
0

]

< +∞ so that, by

Proposition 1 and (2.5), A(q) = q
2 . Thus it is enough to consider the case q > 2(α + γ − 1).

In what follows we also write ah ∼ hu for

lim
h→0

log ah
log h

= u. (3.4)

We will repeatedly use the simple fact that (3.4) follows if we show that for every ǫ > 0
there exist Cǫ > 1 such that

1

Cǫ
hu+ǫ < ah < Cǫh

u−ǫ.

In what follows all estimates on A(q) are based on the fact (see (2.7)) that the limit

lim
h↓0

logE

[

(

∫ h
0 σ2

t dt
)p/2

]

log h

exists if and only if the limit

lim
h↓0

logE (|Xt+h −Xt|q)
log h

exists, and in this case the coincide.
Part 1: γ > 2
By the assumption of finiteness of ν, (Lt) jumps finitely many times in any compact interval.
Denote by (Tk)k≥1 the (ordered) set of positive jump times, and T0 = 0. Given h > 0, we
denote by i(h) the random number of jump times in the interval (0, h].
Case i(h) = 0. When i(h) = 0, Vt solves, for t ∈ [0, h], the differential equation d

dtVt = −CV γ
t ,

whose solution is

Vt =
(

V 1−γ
0 + (γ − 1)Ct

)
1

1−γ
.

Integrating, we get

∫ h

0
Vtdt =

γ − 2

γ − 1

[

(V 1−γ
0 + (γ − 1)Ch)

γ−2
γ−1 − (V 1−γ

0 )
γ−2
γ−1

]

. (3.5)

Note that, setting λ := ν([0,+∞)),

E

[

(
∫ h

0
Vtdt

)q/2

1{i(h)=0}

]

= E

[

(
∫ h

0
Vtdt

)q/2
∣

∣

∣
i(h) = 0

]

e−λh.

The factor e−λh gives no contribution to the behavior of E

[

(

∫ h
0 Vtdt

)q/2
1{i(h)=0}

]

as h → 0,

and it can be neglected. Moreover, by (3.5), and using the fact that V0 and {i(h) = 0} are

10



independent,

E

[

(
∫ h

0
Vtdt

)q/2
∣

∣

∣
i(h) = 0

]

=

=

(

γ − 2

γ − 1

)q/2

((γ − 1)Ch)
γ−2

2(γ−1)
q
E











(

V 1−γ
0

(γ − 1)Ch
+ 1

)
γ−2
γ−1

−
(

V 1−γ
0

(γ − 1)Ch

)
γ−2
γ−1





q/2





.

(3.6)

Since, for 0 < a < 1 and z > 0,

a(z + 1)a−1 ≤ (z + 1)a − za ≤ (z + 1)a−1, (3.7)

for computing the limit limh

logE

[

(

∫ h
0
Vtdt

)q/2
]

logh , the right hand side of (3.6) can be replaced

by (using the previous inequality for a = γ−2
γ−1 ; recall that γ > 2)

h
γ−2

2(γ−1)
q
E











(

V 1−γ
0

(γ − 1)Ch
+ 1

)
γ−2
γ−1

−1




q/2





= h

γ−2
2(γ−1)

q
E





(

V 1−γ
0

(γ − 1)Ch
+ 1

)− q
2(γ−1)



 . (3.8)

In other words:

E

[

(
∫ h

0
Vtdt

)q/2

1{i(h)=0}

]

∼ h
γ−2

2(γ−1)
q
E





(

V 1−γ
0

(γ − 1)Ch
+ 1

)− q
2(γ−1)



 . (3.9)

To estimate the r.h.s. of (3.9), we observe that for y > 0 and 0 < u < r, the following
inequalities can be easily checked

1

2r
1{y<1} ≤ (1 + y)−r ≤ (1 + y)−u ≤ y−u. (3.10)

Setting r := q
2(γ−1) and Y :=

V 1−γ
0

(γ−1)Ch , using (3.10) we obtain

1

2r
P(Y < 1) ≤ E





(

V 1−γ
0

(γ − 1)Ch
+ 1

)− q
2(γ−1)



 ≤ E
(

Y −u
)

(3.11)

for every u < q
2(γ−1) . Set ξ := α+γ−1

γ−1 . Note that ξ < r for q > 2(α + γ − 1). By Theorem 9:

P(Y < 1) = P

(

V0 >

(

1

(γ − 1)Ch

)
1

γ−1

)

∼
[

(

1

(γ − 1)Ch

)
1

γ−1

]α+γ−1

∼ hξ, (3.12)

Moreover, take u < ξ. We have

E
(

Y −u
)

= [(γ − 1)Ch]u E
[

V
u(γ−1)
0

]

≤ Ahu, (3.13)
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for some A > 0 that may depend on u but not on h, where we have used the fact that

E

[

V
u(γ−1)
0

]

< +∞, since u(γ − 1) < α+ γ − 1. Since u can be taken arbitrarily close to ξ,

by (3.11), (3.12) and (3.13) we obtain

E





(

V 1−γ
0

(γ − 1)Ch
+ 1

)− q
2(γ−1)



 ∼ hξ, (3.14)

which yields

E

[

(
∫ h

0
Vtdt

)q/2

1{i(h)=0}

]

∼ h
γ−2

2(γ−1)
q+α+γ−1

γ−1 . (3.15)

Note that (3.15) has the right order, according to the statement of Theorem 10. Therefore,
in order to complete the proof for γ > 2, it is enough to show that for each u < α+γ−1

γ−1

E

[

(
∫ h

0
Vtdt

)q/2

1{i(h)≥1}

]

≤ Ah
γ−2

2(γ−1)
q+u

(3.16)

for some A > 0 that may depend on u but not on h.

Case i(h) = 1. Now

Vt =











(

V 1−γ
0 + (γ − 1)Ct

)
1

1−γ
for 0 ≤ t ≤ T1

(

V 1−γ
T1

+ (γ − 1)C(t− T1)
)

1
1−γ

for T1 ≤ t ≤ h,

which yields
∫ h

0
Vtdt =

γ − 2

γ − 1

[

(V 1−γ
0 + (γ − 1)CT1)

γ−2
γ−1 − (V 1−γ

0 )
γ−2
γ−1

]

+
γ − 2

γ − 1

[

(V 1−γ
T1

+ (γ − 1)C(h− T1))
γ−2
γ−1 − (V 1−γ

T1
)
γ−2
γ−1

]

=: P (h) +Q(h),

(3.17)

and therefore

E

[

(
∫ h

0
Vtdt

)q/2

1{i(h)=1}

]

≤ 2q−1
[

E

(

P q/2(h)1{i(h)=1}
)

+ E

(

Qq/2(h)
)

1{i(h)=1}
]

(3.18)

We now show that E

[

(

∫ h
0 Vtdt

)q/2
1{i(h)=1}

]

can be bounded above as in (3.16):

E

[

(
∫ h

0
Vtdt

)q/2

1{i(h)=1}

]

≤ Ah
γ−2

2(γ−1)
q+u

, (3.19)

for every u < α+γ−1
γ−1 . By (3.18) it suffices to show that both E

(

P q/2(h)1{i(h)=1}
)

and

E
(

Qq/2(h)1{i(h)=1}
)

have an upper bound of the same form.
Note first that

P (h) ≤ γ − 2

γ − 1

[

(V 1−γ
0 + (γ − 1)Ch)

γ−2
γ−1 − (V 1−γ

0 )
γ−2
γ−1

]

,

12



which coincides with (3.5), whose scaling has already been obtained. Since P(i(h) = 1) ∼ h,
we have that E

(

P q/2(h)1{i(h)=1}
)

scales as the term studied in the case i(h) = 0, but with
an extra factor h, i.e.

E

(

P q/2(h)1{i(h)=1}
)

≤ Ah
1+ γ−2

2(γ−1)
q+u ≤ Ah

γ−2
2(γ−1)

q+u
. (3.20)

For the term E
(

Qq/2(h)1{i(h)=1}
)

we repeat the steps of the case i(h) = 0 (note that all
inequalities used there held pointwise) with VT1 in place of V0 and h− T1 in place of h (see
(3.9)), obtaining

E

(

Qq/2(h)1{i(h)=1}
)

≤ E



(h− T1)
γ−2

2(γ−1)
q

(

V 1−γ
T1

(γ − 1)C(h− T1)
+ 1

)− q
2(γ−1)

1{i(h)=1}





≤ h
γ−2

2(γ−1)
q
E





(

V 1−γ
T1

(γ − 1)C(h− T1)
+ 1

)− q
2(γ−1)

1{i(h)=1}





(3.21)

This last term can be bounded from above as follows, for u < q
2(γ−1) and using the trivial

bound VT1 ≤ V0 + Lh

E





(

V 1−γ
T1

(γ − 1)C(h− T1)
+ 1

)− q
2(γ−1)

1{i(h)=1}



 ≤ E





(

V 1−γ
T1

(γ − 1)C(h− T1)
+ 1

)−u

1{i(h)=1}





≤ E





(

V 1−γ
T1

(γ − 1)C(h− T1)

)−u

1{i(h)=1}





≤ E





(

V 1−γ
T1

(γ − 1)Ch)

)−u

1{i(h)=1}





≤ AhuE
[

(V0 + Lh)
u(γ−1)

1{i(h)=1}
]

(3.22)

for a constant A > 0. Now observe that V0 is independent of 1{i(h)=1}, that Lh has distribu-
tion ν conditioned to {i(h) = 1}, and that P(i(h) = 1) ≤ λh. It follows that, for a suitable
constant C > 0,

E

[

(V0 + Lh)
u(γ−1)

1{i(h)=1}
]

≤ CP (i(h) = 1)
[

E

(

V
u(γ−1)
0

)

+ E

(

L
u(γ−1)
h |i(h) = 1

)]

= CP (i(h) = 1)

[
∫

vu(γ−1)µ(dv) +

∫

lu(γ−1)ν(dl)

]

.

(3.23)

Since, by Theorem 9, the tails of µ are lighter that those of ν, the above integrals are both
finite if an only if

∫

vu(γ−1)ν(dv) < +∞, which holds true for u < α/(γ − 1) (assumption
A3). Thus, for every u < α/(γ − 1),

E

[

(V0 + Lh)
u(γ−1)

1{i(h)=1}
]

≤ Ah (3.24)
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for some A > 0. By (3.21), (3.22), (3.23) and (3.24), we have that E
(

Qq/2(h)1{i(h)=1}
)

is
bounded from above by

Bh
γ−2

2(γ−1)
q+u+1

for every u < α/(γ − 1) and some B > 0 possibly depending on u. Equivalently,

E

(

Qq/2(h)1{i(h)=1}
)

≤ Bh
γ−2

2(γ−1)
q+u

(3.25)

for all u < α+γ−1
γ−1 . Therefore, by (3.20) and (3.25), (3.19) is established.

Case i(h) ≥ 2. To prove (3.16) and thus to complete the whole proof, we are left to show
that

E

[

(
∫ h

0
Vtdt

)q/2

1{i(h)≥2}

]

≤ Ah
γ−2

2(γ−1)
q+u

(3.26)

for all u < α+γ−1
γ−1 and some A > 0.

Let n ≥ 2, and restrict to the event {i(h) = n}. We have

Vt =



















































(

V 1−γ
0 + (γ − 1)Ct

)
1

1−γ
for 0 ≤ t ≤ T1

(

V 1−γ
T1

+ (γ − 1)C(t− T1)
)

1
1−γ

for T1 ≤ t ≤ T2

...
(

V 1−γ
Tn−1

+ (γ − 1)C(t− Tn−1)
)

1
1−γ

for Tn−1 ≤ t ≤ Tn
(

V 1−γ
Tn

+ (γ − 1)C(t− Tn)
)

1
1−γ

for Tn ≤ t ≤ h,

so that (3.17) becomes

∫ h

0
Vtdt =

γ − 2

γ − 1

n
∑

k=1

[

(V 1−γ
k−1 + (γ − 1)C(Tk − Tk−1))

γ−2
γ−1 − (V 1−γ

k−1 )
γ−2
γ−1

]

+
γ − 2

γ − 1

[

(V 1−γ
Tn

+ (γ − 1)C(h− Tn))
γ−2
γ−1 − (V 1−γ

Tn
)
γ−2
γ−1

]

=:

n
∑

k=1

Pk(h) + Pn+1(h).

(3.27)

Each term E

[

P
q/2
k (h)1{i(h)=n}

]

can be estimated as in (3.21) and (3.22), obtaining

E

[

P
q/2
k (h)1{i(h)=n}

]

≤ Ch
γ−2

2(γ−1)
q+u

E

[

(V0 + Lh)
u(γ−1)

1{i(h)=n}
]

≤ C ′h
γ−2

2(γ−1)
q+u

P(i(h) = n)
[

E

(

V
u(γ−1)
0

)

+ E

(

L
u(γ−1)
h |i(h) = n

)]

(3.28)

for u < q
2(γ−1) and some constant C,C ′ that may depend on u but not on n and h. The

distribution of Lh given {i(h) = n} is given by the n-fold convolution ν∗n. In other words,
if X1,X2, . . . ,Xn are independent random variables with law ν,

E

(

L
u(γ−1)
h |i(h) = n

)

= E

[

(X1 +X2 + · · ·+Xn)
u(γ−1)

]

≤ nu(γ−1)−1
E

[

X
u(γ−1)
1

]

.
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For u < α/(γ − 1), E
[

X
u(γ−1)
1

]

< +∞ as well as E
(

V
u(γ−1)
0

)

< +∞. Thus

E

[

P
q/2
k (h)1{i(h)=n}

]

≤ Ch
γ−2

2(γ−1)
q+u

nu(γ−1)−1
P(i(h) = n), (3.29)

for some constant C independent of n, h and k. By (3.27), (3.28) and (3.29) we obtain, for
u < q

2(γ−1) ,

E

[

(
∫ h

0
Vtdt

)q/2

1{i(h)=n}

]

≤ nq/2
n+1
∑

k=1

E

[

P
q/2
k (h)1{i(h)=n}

]

≤ Ch
γ−2

2(γ−1)
q+u

nu(γ−1)+q/2
P(i(h) = n).

(3.30)

We can now sum over n ≥ 2, observing that P(i(h) = n) ≤ λnhn

n! :

∑

n≥2

E

[

(
∫ h

0
Vtdt

)q/2

1{i(h)=n}

]

≤ Ch
γ−2

2(γ−1)
q+u+2

∑

n≥2

nu(γ−1)+q/2λ
nhn−2

n!

≤ C ′h
γ−2

2(γ−1)
q+u+2

.

(3.31)

Since q
2(γ−1) + 2 > α+γ−1

γ−1 (recall that q > 2(α + γ − 1)), we have that

E

[

(
∫ h

0
Vtdt

)q/2

1{i(h)≥2}

]

is negligible with respect to (3.15).
This completes the proof for the case γ > 2.
Part 2: 1 < γ < 2

Case i(h) = 0. Formula (3.5) still hold, but now γ − 2 < 0. So (3.6) becomes

E

[

(
∫ h

0
Vtdt

)q/2

1{i(h)=0}

]

=

(

2− γ

γ − 1

)q/2

((γ−1)Ch)
γ−2

2(γ−1)
q
E











(

V 1−γ
0

(γ − 1)Ch

)
γ−2
γ−1

−
(

V 1−γ
0

(γ − 1)Ch
+ 1

)
γ−2
γ−1





q/2





e−λh.

(3.32)

To estimate this last expression we need, letting a := 2−γ
γ−1 , the following modifications of

(3.7), valid for z > 0:

a(z + 1)−1z−a ≤ z−a − (z + 1)−a ≤ (z + 1)−1z−a for 0 < a ≤ 1
(z + 1)−1z−a ≤ z−a − (z + 1)−a ≤ a(z + 1)−1z−a for a > 1.

(3.33)

Using these inequalities as in (3.6) we obtain, for some C > 1

1

C
E

[(

V γ−1
0 h

1 + V γ−1
0 h

V 2−γ
0

)q]

≤ E

[

(
∫ h

0
Vtdt

)q/2

1{i(h)=0}

]

≤ CE

[(

V γ−1
0 h

1 + V γ−1
0 h

V 2−γ
0

)q]

.

(3.34)
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We now observe that

E





(

V γ−1
0 h

1 + V γ−1
0 h

V 2−γ
0

)q/2


 = E





(

V γ−1
0 h

1 + V γ−1
0 h

V 2−γ
0

)q/2

1{V γ−1
0 h≤1}





+ E





(

V γ−1
0 h

1 + V γ−1
0 h

V 2−γ
0

)q/2

1{V γ−1
0 h>1}





∼ hq/2E
[

V
q/2
0 1{V γ−1

0 h≤1}

]

+ E

[

V
q
2
(2−γ)

0 1{V γ−1
0 h>1}

]

.

(3.35)

In order to estimate the two summand of the left hand side of (3.35) we use the following
fact, whose simple proof follows from simple point wise bounds, and it is omitted. Let µ be
a probability on [0,+∞) such that µ((u,+∞)) is regularly varying with exponent −ξ < 0.
Then

∫ x

0
upµ(du) ∼ xp−ξ for p > ξ (3.36)

∫ +∞

x
upµ(du) ∼ xp−ξ for p < ξ. (3.37)

Let µ be the law of V0, so that, by Theorem 9, ξ = α + γ − 1. Since q > 2(α + γ − 1), by

(3.36) we have E

[

V
q/2
0 1{V γ−1

0 h≤1}

]

∼ h
− 1

γ−1
( q
2
−α−γ+1)

, and therefore

hq/2E
[

V
q/2
0 1{V γ−1

0 h≤1}

]

∼ h
γ−2

2(γ−1)
q+α+γ−1

γ−1 . (3.38)

Moreover, by (3.37), also

E

[

V
q
2
(2−γ)

0 1{V γ−1
0 h>1}

]

∼ h
γ−2

2(γ−1)
q+α+γ−1

γ−1 . (3.39)

for q
2(2− γ) < α+ γ − 1, while

E

[

V
q
2
(2−γ)

0 1{V γ−1
0 h>1}

]

= +∞ (3.40)

for q
2(2− γ) > α+ γ − 1.
Summing up, we have shown that

E

[

(
∫ h

0
Vtdt

)q/2

1{i(h)=0}

]

∼ h
γ−2

2(γ−1)
q+α+γ−1

γ−1 for 2(α+ γ − 1) < q <
2(α + γ − 1)

2− γ

E

[

(
∫ h

0
Vtdt

)q/2

1{i(h)=0}

]

= +∞ for q >
2(α+ γ − 1)

2− γ
. (3.41)

Case i(h) = 1. This case is dealt with as for γ > 2, and, using the same argument leading
to (3.34), one sees that the crucial term to estimate is

E





(

V γ−1
T1

(h− T1)

1 + V γ−1
T1

(h− T1)
V 2−γ
T1

)q/2

1{i(h)=1}



 . (3.42)
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Since VT1 ≥ LT1 , (3.42) can be bounded from below by

E





(

Lγ−1
T1

(h− T1)

1 + Lγ−1
T1

(h− T1)
L2−γ
T1

)q/2

1{i(h)=1}





which takes the value infinity as soon as E

[

(

L2−γ
T1

)q/2
1{i(h)=1}

]

= +∞. Recalling that LT1

independent of {i(h) = 1} and it has law ν, this hold as q > 2α
2−γ . This implies that

E

[

(
∫ h

0
Vtdt

)q/2

1{i(h)=1}

]

= +∞ for q >
2α

2− γ
. (3.43)

Comparing with (3.41), note that 2α
2−γ < 2(α+γ−1)

2−γ . Thus, assume 2(α + γ − 1) < q < 2α
2−γ

(note that, being by assumption α + γ > 2, indeed 2(α + γ − 1) < 2α
2−γ ). An upper bound

for (3.42) is given by

E





(

V γ−1
T1

(h− T1)

1 + V γ−1
T1

(h− T1)
V 2−γ
T1

)q/2

1{i(h)=1}





≤ E

[

(

(V0 + LT1)
γ−1h

1 + (V0 + LT1)
γ−1h

(V0 + LT1)
2−γ

)q/2

1{i(h)=1}

]

= E

[

(

(V0 + LT1)
γ−1h

1 + (V0 + LT1)
γ−1h

(V0 + LT1)
2−γ

)q/2
]

P(i(h) = 1), (3.44)

where we used the facts that V0 and LT1 are independent of {i(h) = 1}. Now, (3.44) is
estimated exactly as (3.35), but with V0 +LT1 in place of V0. Since the tails of V0 +LT1 are
the same of those of LT1 , i.e. regularly varying with exponent α, while P(i(h) = 1) ∼ h, we
get

E

[

(

(V0 + LT1)
γ−1h

1 + (V0 + LT1)
γ−1h

(V0 + LT1)
2−γ

)q/2
]

∼ h
γ−2

2(γ−1)
q+ α

γ−1P(i(h) = 1) ∼ h
γ−2

2(γ−1)
q+α+γ−1

γ−1 .

Summing up:

E

[

(
∫ h

0
Vtdt

)q/2

1{i(h)=1}

]

∼ h
γ−2

2(γ−1)
q+α+γ−1

γ−1 for 2(α+ γ − 1) < q <
2α

2− γ

E

[

(
∫ h

0
Vtdt

)q/2

1{i(h)=0}

]

= +∞ for q >
2α

2− γ
. (3.45)

Case i(h) ≥ 2. This case goes along the same line as for γ > 2, using the upper bound
obtained for i(h) = 1. The details are omitted. The proof for 1 < γ < 2 is thus completed.
Part 3: γ = 2
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In this case we have, in the case of no jumps (i(h) = 0),

Vt =
(

V −1
0 + Ct

)−1

and therefore

∫ h

0
Vtdt =

1

C

[

log(V −1
0 +Ch)− log(V −1

0 )
]

=
1

C
[log(1 + ChV0)] . (3.46)

Un upper bound for E

[

(

∫ h
0 Vtdt

)q/2
1{i(h)=0}

]

is obtained using (3.46) and the inequality,

valid for y, r > 0,

log(1 + y) ≤ 1

r
yr,

which gives

E

[

(
∫ h

0
Vtdt

)q/2

1{i(h)=0}

]

≤ 1

Cq/2
Crq/2hrq/2E

(

V
rq/2
0

)

.

Since E

(

V
rq/2
0

)

< +∞ for rq
2 < α+ 1, letting rq

2 ↑ α+ 1 we obtain

E

[

(
∫ h

0
Vtdt

)q/2

1{i(h)=0}

]

≤ Chrq/2, (3.47)

for some C > 0 and every r such that rq
2 < α+ 1. A corresponding lower bound is obtained

using the inequality

log(1 + y) ≥ 1

2
1(1,+∞)(y),

which gives

E

[

(
∫ h

0
Vtdt

)q/2

1{i(h)=0}

]

≥ 1

(2C)q/2
P(ChV0 > 1) ∼ hα+1, (3.48)

where we have used Theorem 9 for the last inequality. By (3.47) and (3.48) we have

E

[

(
∫ h

0
Vtdt

)q/2

1{i(h)=0}

]

∼ hα+1.

The cases with i(h) ≥ 1 are similar to what seen in Parts 1 and 2, and are omitted.

Proof of Theorem 10. We now complete the proof of Theorem 10. We need to extend Proposi-
tion 12 in two directions: a) generalize from f(v) = Cvγ to any f satisfying Assumption A4;
b) extend to Levy subordinator satisfying Assumptions A2 and A3, thus with a possibly
infinite characteristic measure ν.

18



Step 1. We keep all assumption of Proposition 12, except that we require f(v) = Cvγ only
for v > ǫ, for some ǫ > 0, and f satisfies Assumption A4. In other words we do not prescribe
the asymptotics of f near v = 0. Let V, V ′ be solutions, respectively, of the equations

dVt = −f(Vt)dt+ dLt

dV ′
t = −CV ′γ

t + dLt.

Assume V0 = V ′
0 = v > 0. We claim that

|Vt − V ′
t | ≤ 2ǫ (3.49)

a.s., for every t ≥ 0. This follows from the following fact: there is a constant δ > 0 such that
as soon as |Vt − V ′

t | ≥ 2ǫ,
d

dt
|Vt − V ′

t | ≤ −δ. (3.50)

To see (3.50), suppose first Vt − V ′
t ≥ 2ǫ. In particular Vt ≥ ǫ, so

d

dt
[Vt − V ′

t ] = −C
(

V γ
t − V ′γ

t

)

< −C(2ǫ)γ ,

where we have used the fact that, for c > 0, the map (x+ c)γ − xγ is increasing for x > 0.
Suppose now V ′

t − Vt ≥ 2ǫ. If Vt ≥ ǫ then,

d

dt
[V ′

t − Vt] = −C
(

V ′γ
t − V γ

t

)

< −C(2ǫ)γ ;

If Vt < ǫ, since f is increasing, then

d

dt
[V ′

t − Vt] = −CV ′γ
t + f(Vt) ≤ −C(2ǫ)γ + Cǫγ < 0.

Thus (3.50), and so (3.49) is proved. In particular, the law of Vt is stochastically smaller
than that of V ′

t + 2ǫ, which means that for every g increasing and bounded, E[g(Vt)] ≤
E[g(V ′

t + 2ǫ)]. By the ergodicity results proved in [16], this inequality can be taken to the
limit as t → +∞, so to a stochastic inequality between the stationary distributions of V and
V ′. This implies that we can realize, on a suitable probability space, two random variables
V0 and V ′

0 , independent of the Levy process L, distributed according to the stationary laws
of the corresponding processes, and such that V0 ≤ V ′

0 + 2ǫ. By repeating the argument
above, we see that the inequality Vt ≤ V ′

t + 2ǫ is a.s. preserved for all t > 0 also for the
stationary processes. It follows that

E

[

(
∫ h

0
Vtdt

)q/2
]

≤ E

[

(
∫ h

0
[V ′

t + 2ǫ]dt

)q/2
]

≤ 2q/2−1

{

E

[

(
∫ h

0
V ′
t dt

)q/2
]

+ (2ǫh)q/2

}

.

(3.51)
Since

A(q) = lim sup
h→0

logE

[

(

∫ h
0 Vtdt

)q/2
]

log h
, (3.52)

and

A′(q) = lim
h→0

logE

[

(

∫ h
0 V ′

t dt
)q/2

]

log h
≤ q

2
, (3.53)
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by (3.51) we get
A(q) ≥ A′(q).

By exchanging the role of V and V ′ we get A(q) = A′(q). Moreover, the existence of the limit
(3.53), which follows from Proposition 12, implies that also (3.52) is a limit. Since A′(q) is
given by Proposition 12, the first extension is obtained.
Step 2. In this step we allow the Levy process L to have infinite characteristic measure ν
and positive drift m > 0, though satisfying Assumptions A2 and A3. On the other hand we
make a specific choice for f : f(v) = Cvγ for v > ǫ, while f is linear in [0, ǫ), with f(0) = 0
and f(ǫ) = Cǫγ. Moreover we let νǫ := ν1[ǫ,+∞), which is a finite measure. Denote by L(ǫ)

the compound Poisson process with characteristic measure νǫ, and by V (ǫ) the solution of

dV
(ǫ)
t = −f(V

(ǫ)
t )dt+ dL

(ǫ)
t (3.54)

The original Levy process L can be decomposed in the form Lt = L(ǫ) + L(<ǫ), where L(<ǫ)

is independent of L(ǫ), it has characteristic measure νǫ := ν1[0,ǫ) and drift m > 0. Writing

dVt = −f(Vt)dt+ dLt, (3.55)

we obtain
d(Vt − V

(ǫ)
t ) = −[f(Vt)− f(V

(ǫ)
t )]dt+ dL(<ǫ). (3.56)

This implies, for instance that whenever V
(ǫ)
0 ≤ V0, then V

(ǫ)
t ≤ Vt for all t > 0. Thus, using

as above the ergodicity of V and V (ǫ), Vt dominates stochastically V
(ǫ)
t also in equilibrium.

Thus, as before, we can start the processes from V
(ǫ)
0 and V0, each having the corresponding

stationary distribution, and such that V
(ǫ)
0 ≤ V0. Thus V

(ǫ)
t ≤ Vt for all t > 0. Note that

with this construction we have that the two processes in (3.54) and (3.55) are separately

stationary, by not necessarily the Markov process (V
(ǫ)
t , Vt), whose law will be demoted by

µ
(2)
t , is stationary. To fix this we observe that, since the family of distribution (µ

(2)
t )t≥0 is

tight, by a standard argument its Cesaro means 1
t

∫ t
0 µ

(2)
s ds admit at least a limit point, which

is a stationary distribution for (V
(ǫ)
t , Vt). This limiting operation preserves the stochastic

order between the laws of the two components. Thus, we can assume to realize V
(ǫ)
0 and V0

in such a way their joint distribution is stationary for (3.54) and (3.55), and V
(ǫ)
0 ≤ V0.

Now we use the fact that f is super linearly increasing, to conclude that

f(Vt)− f(V
(ǫ)
t ) ≥ c[Vt − V

(ǫ)
t ]

for some c > 0. It follows that

d(Vt − V
(ǫ)
t ) ≤ −c[Vt − V

(ǫ)
t ] + dL

(<ǫ)
t ,

which implies that

0 ≤ Vt − V
(ǫ)
t ≤ e−ct[V0 − V

(ǫ)
0 ] +

∫ t

0
e−c(t−s)dL(<ǫ)

s . (3.57)

Since the law of Vt − V
(ǫ)
t does not depend on t, it must be stochastically dominated by

the limit of the law of the r.h.s. of (3.57), which is just the stationary distribution of the
Ornstein-Uhlenbeck process

dZt = −cZtdt+ dL
(<ǫ)
t .
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As observed e.g. in [10], this stationary law is infinitely divisible with characteristic pair
(m, ν̃), with

ν̃([x,+∞)) =

∫

[x,+∞)
u−1νǫ(du).

Since νǫ, and therefore ν̃, has bounded support, the stationary law of Zt has moments of all

order (see e.g. [19]). So, also Vt − V
(ǫ)
t has moments of all order. Thus, using the inequality

(x+ y)q ≤ 2q−1[xq + yq] for x, y ≥ 0, we have

E

[

(
∫ h

0
V

(ǫ)
t dt

)q/2
]

≤ E

[

(
∫ h

0
Vtdt

)q/2
]

≤ 2q/2−1

{

E

[

(
∫ h

0
V

(ǫ)
t dt

)q/2
]

+ E

[

(
∫ h

0
[Vt − V

(ǫ)
t ]dt

)q/2
]}

≤ 2q/2−1

{

E

[

(
∫ h

0
V

(ǫ)
t dt

)q/2
]

+ hq/2E

[

(

V0 − V
(ǫ)
0

)q/2
]

}

.

Since, by Proposition 12 and steps 1, E

[

(

∫ h
0 V

(ǫ)
t dt

)q/2
]

∼ hA(q) for every ǫ > 0 and

A(q) ≤ q/2, it follows that

E

[

(
∫ h

0
Vtdt

)q/2
]

∼ hA(q),

thus completing the proof of this step.
Step 3. The extension of Proposition 12 to any f which satisfy (A4) is now easy, and it will
only be sketched. In a first stage, repeating the argument in step 1, one extends from the
special f ’s used for step 2, to the larger class of f in step 1.

The further extension to a general f which satisfy (A4) proceeds as follows: for every
δ > 0 we can find f1 and f2 such that f1 ≤ f ≤ f2, and f1(v) = C1v

γ−δ, f2(v) = C2v
γ+δ for

v > ǫ. By using coupling arguments similar to those in step 1, one shows that the scaling
function A(q) of the process with drift f is bounded above and below by the scaling functions
of the processes with drift f1 and f2. The continuity of A(q) w.r.t. γ, and the fact that δ is
arbitrary, implies that A(q) is given by Proposition 12.

Acknowledgments: We thank Francesco Caravenna for useful discussions and suggestions.
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[10] V. Fasen, C Klüppelberg, A. Lindner, Extremal behavior of stochastic volatility models,
In Stochastic finance (pp. 107-155). Springer US, 2006.

[11] S. Galluccio, G. Caldarelli, M. Marsili, Y. C. Zhang, Scaling in currency exchange,
Physica A 245 (1997), 423-36.

[12] S. Ghashghaie, W. Breymann, J. Peinke, P. Talkner, Y. Dodge, Turbulent cascades in
foreign exchange markets, Nature 381 (1996), 767-70.

[13] C. Kluppelberg, A. Lindner, R. A. Maller, Continuous time volatility modelling: COG-
ARCH versus Ornstein-Uhlenbeck models, in From Stochastic Calculus to Mathematical
Finance, Yu. Kabanov, R. Lipster and J. Stoyanov (Eds.), Springer, 2007.

[14] A. Kohatsu-Higa, M. Yamazato, On moments and tail behaviors of storage processes,
Journal of Applied Probability 40, no. 4, 1069–1086, 2003.

[15] P.E. Protter. Stochastic Integration and Differential Equations: Version 2.1. Vol. 21.
Springer, 2004.

[16] G. Samorodnitsky, M. Grigoriu, Tails of solutions of certain nonlinear stochastic dif-
ferential equations driven by heavy tailed Levy motions, Stochastic processes and their
applications 105.1 (2003): 69-97.
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