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We consider a diffusion process under a local weak Hörmander condition on the coefficients. We find Gaussian estimates for the density in short time and exponential lower and upper bounds for the probability that the diffusion remains in a small tube around a deterministic trajectory (skeleton path), explicitly depending on the radius of the tube and on the energy of the skeleton path. We use a norm which reflects the non-isotropic structure of the problem, meaning that the diffusion propagates in R 2 with different speeds in the directions σ and [σ, b]. We establish a connection between this norm and the standard control distance.

Introduction

In this article we consider the following stochastic differential equation on [0, T ]:

X t = x 0 + t 0 σ(X s ) • dW s + t 0 b(X s )ds (1.1)
where the diffusion X is two-dimensional and the Brownian Motion W is one-dimensional.

•dW s denotes the Stratonovich integral, and we suppose a certain geometric property for the diffusion coefficient (which holds true in particular for the equation associated with the Asian option). Since σ is just a column vector, the ellipticity assumption fails at any point, and the strong Hörmander condition fails as well, so we investigate the regularity of this process assuming a hypoellipticity condition of weak Hörmander type. The prototype of this kind of problems is a two dimensional system where the first component X 1 follows a stochastic dynamic, and the second component X 2 is a deterministic functional of X 1 , so the randomness acts indirectly on X 2 . Besides the natural application to the Asian option, there are others such as in [START_REF] Höpfner | Ergodicity for a stochastic Hodgkin-Huxley model driven by Ornstein-Uhlenbeck type input[END_REF], [START_REF] Höpfner | Strongly degenerate time inhomogeneous SDEs: densities and support properties. Application to a Hodgkin-Huxley system with periodic input[END_REF]. In these papers the functioning of a neuron is modeled: X 2 is the concentration of some chemicals resulting from a reaction involving the first component X 1 . Differently from our setting, though, there are several measurements corresponding to the input X 1 , so X 2 is multi-dimensional. The pattern, however, is similar. We find Gaussian estimates for the density in short time, supposing the process satisfies a weak Hörmander condition. Ben Arous and Léandre investigate the decay of the heat kernel of a hypoelliptic diffusion over the diagonal in their celebrated paper [START_REF] Ben Arous | Décroissance exponentielle du noyau de la chaleur sur la diagonale[END_REF]. Their framework is different because they work under a strong Hörmander condition and because they are interested in asymptotic results, whereas we provide results holding for finite positive times. In [START_REF] Kusuoka | Applications of the Malliavin calculus[END_REF] explicit two-sided bounds for the density of diffusion processes are established under strong Hörmander conditions, if the drift is generated by the vector fields of the diffusive part. On the opposite, the problem we consider here is of weak Hörmander type, meaning that the drift has a key role in the propagation of the noise. In this case, the drift gives an additional specific contribution which is usually difficult to handle when trying to estimate the density of the solution. In [START_REF] Bally | Lower bounds for densities of Asian type stochastic differential equations[END_REF] and [START_REF] Delarue | Density estimates for a random noise propagating through a chain of differential equations[END_REF] bounds are provided for the density of the Asian type SDE and for a chain of SDEs, in a weak Hörmander framework. An analytical approach to a similar density estimate is given by Polidoro, Pascucci and Boscain in [START_REF] Polidoro | A global lower bound for the fundamental solution of Kolmogorov-Fokker-Planck equations[END_REF], [START_REF] Pascucci | Harnack inequalities and Gaussian estimates for a class of hypoelliptic operators[END_REF], [START_REF] Boscain | Gaussian estimates for hypoelliptic operators via optimal control[END_REF].

In this paper, we obtain a more general result than those known in the cited literature, as we allow for a more general coefficient for the Brownian Motion. Indeed we suppose that locally the vector field σ has the same direction of the directional derivative ∂ σ σ, whereas the works mentioned above would apply for σ = (σ 1 , 0) which is a more restrictive condition. Moreover, our coefficients are just locally hypoelliptic. The other novelty is that thanks to our short time non-asymptotic result we are able to find exponential lower and upper bounds for the probability that the diffusion remains in a small tube around a deterministic trajectory. More precisely we consider (1.1) and introduce the associated skeleton path solution of the following ODE:

x t (φ) = x 0 + t 0 σ(x s (φ))φ s ds + t 0 b(x s (φ))ds, for a control φ ∈ L 2 [0, T ]. We assume the following weak Hörmander condition: σ, [σ, b] span R 2 locally around x(φ). This is enough to ensure the existence of the density in the case of diffusions (see [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF], [START_REF] Shigekawa | Stochastic analysis, volume 224 of Translations of Mathematical Monographs[END_REF]). Similar results are also available for SDEs with coefficients with dependence on time, under very weak regularity assumptions ( [START_REF] Cattiaux | Hypoelliptic non-homogeneous diffusions[END_REF]), SDEs driven by a fractional Brownian Motion ( [START_REF] Baudoin | A version of Hörmander's theorem for the fractional Brownian motion[END_REF]) and for rough differential equations ( [START_REF] Cass | Densities for rough differential equations under Hörmander's condition[END_REF]).

We prove here a tube estimate for (1.1), meaning that we find upper and lower bounds for P sup 0≤t≤T X t -x t (φ) ≤ R , explicitly depending on the energy of the skeleton path and on the radius of the tube, that can be time-dependent. Several works have considered this subject, starting from Stroock and Varadhan in [START_REF] Stroock | On the support of diffusion processes with applications to the strong maximum principle[END_REF], where such result is used to prove the support theorem for diffusion processes. In their work • is the Euclidean norm, but later on different norms have been used to take into account the regularity of the trajectories (about this, see for example [START_REF] Ben Arous | Hölder norms and the support theorem for diffusions[END_REF] and [START_REF] Friz | Lévy's area under conditioning[END_REF]). This problem is interesting for physicists because of the Onsager-Machlup functional (see [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF], [START_REF] Capitaine | On the Onsager-Machlup functional for elliptic diffusion processes[END_REF]), and is also related to large and moderate deviation theory (see [START_REF] Bismut | Large deviations and the Malliavin calculus[END_REF], [START_REF] Guillin | Averaging principle of SDE with small diffusion: Moderate deviations[END_REF]).

Since we work under Hörmander-type conditions, in order to give accurate estimates we consider a norm accounting for the non-diffusive time scale of the process. Indeed, thanks to the Hörmander condition, the noise propagates in the whole R 2 , but with with speed t 1/2 in the direction σ and t 3/2 in the direction [σ, b]. We also introduce a suitable control metric, adapting the classic control-Carathéodory distance, which is equivalent to this norm.

We apply techniques based on the recent work by Bally and Caramellino ( [START_REF] Bally | Riesz transform and integration by parts formulas for random variables[END_REF], [START_REF] Bally | Positivity and lower bounds for the density of Wiener functionals[END_REF], [START_REF] Bally | On the distances between probability density functions[END_REF]) on density estimates for random variables. In Section 3 we recall some of these results and derive an upper and a lower bound for the density in a fairly abstract framework, starting from the Malliavin-Thalmaier representation formula for the density. The importance of these abstract estimates may go beyond our particular problem.

This paper is organized as follows. In Section 2 we introduce notations and state our main results: the short-time density estimate and the tube estimate. In Section 3 we develop the Malliavin calculus techniques that we apply to estimate the density of our diffusion. In Section 4 we apply these techniques, finding the short-time density estimates mentioned above. In Section 5 we use the short-time result and a concatenation procedure to prove the tube estimate.

Notations and results

Notations

We start introducing some notations. We write α = (α 1 , ..., α k ) ∈ {1, ..., n} k for a multiindex with length |α| = k and ∂ α x = ∂ xα 1 ...∂ xα k . For f, g : R n → R n we recall the definition of the directional derivative of f in the direction g as

∂ g f (x) = (∇f ) g(x) = n i=1 g i (x)∂ x i f (x).
The Lie bracket [f, g] in x is defined as

[f, g](x) = ∂ f g(x) -∂ g f (x).
We denote by M T the transpose of a 2 × 2 matrix M . We also use the notation λ * (M ) for the smallest singular value of M , and λ * (M ) for the largest one. We recall that singular values are the square roots of the eigenvalues of M M T , and that, when M is symmetric and semi-definite, singular values coincide with the eigenvalues of M . In particular, when M is a covariance matrix, λ * (M ) and λ * (M )) are the smallest and the largest eigenvalues of M .

If M is invertible we also associate to M the norm on R 2

|ξ| M = (M M T ) -1 ξ, ξ = |M -1 ξ|
For two 2 × 2 positive semi-definite symmetric matrices B 1 , B 2 , we write

B 1 ≤ B 2 for ξ T B 1 ξ ≤ ξ T B 2 ξ, for all ξ ∈ R 2 .
As we said, we consider the diffusion

X t = x 0 + t 0 σ(X s ) • dW s + t 0 b(X s )ds, (2.1)
where X is in dimension two, W is in dimension one. For x ∈ R 2 , we set

A(x) = (σ(x), [σ, b](x)) (2.2) 
and, for any

R > 0, A R (x) = R 1/2 σ(x), R 3/2 [σ, b](x) (2.3) 

Density estimate

In the first part of the paper we prove an estimate for the density of the solution of (2.1).

We consider the following assumptions on the coefficients:

A1

The "first order" weak Hörmander condition holds at the initial point of the diffusion:

λ * (A(x 0 )) > 0 A2 σ, b ∈ C 5 (R 2
) and there exists a constant ρ > 0 such that, ∀x ∈ R 2 :

1≤|α|≤5 |∂ α x σ(x)| + |∂ α x b(x)| ≤ ρ A3 There exist a neighborhood V ⊂ R 2 of x 0 and a differentiable scalar function κ σ : V → R such that for all x ∈ V ∂ σ σ(x) = κ σ (x)σ(x). (2.4) We suppose that 0≤|α|≤1 |∂ α x κ σ (x 0 )| ≤ ρ. If σ(x) = (σ 1 (x), 0
), the Asian option stochastic differential equation, this property holds true with κ σ = ∂ x 1 σ 1 .

We prove the following Gaussian bound: Theorem 4.5. Suppose A1, A2, A3 hold. Let (X t ) t∈[0,T ] be the solution of (2.1), and for t ∈ [0, T ], let p t (x 0 , y) be the density of X t at y. Then there exist constants L, C, δ * such that, for any r > 0

, if 0 < δ ≤ δ * exp -Lr 2 , setting x0 = x 0 + b(x 0 )δ, for |y -x0 | A δ (x 0 ) ≤ r 1 Cδ 2 exp -C|y -x0 | 2 A δ (x 0 ) ≤ p δ (x 0 , y) ≤ C δ 2 exp -C -1 |y -x0 | 2 A δ (x 0 ) (2.5)
This estimate is local around the point x0 = x 0 + δb(x 0 ). Since we assume the weak Hörmander condition only at x 0 , it is not possible to obtain global lower bounds. Indeed the "local" weak Hörmander condition ensures the existence of the density ( [START_REF] Kusuoka | Applications of the Malliavin calculus. I. Stochastic analysis[END_REF]), but not its positivity. See Example 2.3 for more details on this aspect.

Tube estimate

We suppose σ, b ∈ C 5 (R 2 ). For x ∈ R 2 define n(x) = 5 k=0 |α|=k |∂ α x b(x)| + |∂ α x σ(x)|,
and set λ(x) = λ * (A(x)). We take now a control φ ∈ L 2 [0, T ], and the associated skeleton path solution of

x t (φ) = x 0 + t 0 σ(x s (φ))φ s ds + t 0 b(x s (φ))ds. (2.6) 
We denote by L(µ, h) the class of non-negative functions which have the property

f (t) ≤ µf (s) for |t -s| ≤ h. (2.7)
These functions have been used in [START_REF] Bally | Lower bounds for densities of Asian type stochastic differential equations[END_REF], in the choice of an"elliptic evolution sequence", and in [START_REF] Bally | Estimates for the probability that a Itô process remains near a path[END_REF]. They allow us to control the variation of the quantities we are concerned with, along the skeleton path. In section 5, when considering the tube estimate, we assume that:

H1 There exists a function λ

• : [0, T ] → (0, 1] such that λ(y) ≥ λ t , ∀|y -x t (φ)| < 1, ∀t ∈ [0, T ].
H2 There exists a function n

• : [0, T ] → [1, ∞) such that n(y) ≤ n t , ∀|y -x t (φ)| < 1, ∀t ∈ [0, T ].
H3 There exists a differentiable scalar function κ σ : R 2 → R s. t.

∂ σ σ(y) = κ σ (y)σ(y), ∀|y -x t (φ)| < 1, ∀t ∈ [0, T ]
We suppose also that |κ σ (y)| ≤ n(y), |∇κ σ (y)| ≤ n(y).

H4 We suppose |φ • | 2 , λ • , n • , R • ∈ L(µ, h), for some h > 0, µ ≥ 1.
Notice that the above hypothesis do not involve global controls of our bounds on R 2 : they concern the behavior of the coefficients only along the tube, and may vary with t ∈ [0, T ]. We stress that also R • , the radius of the tube, may vary with t, but that H4 implies that inf t∈[0,T ] R t > 0. This means that we cannot "squeeze" the tube to 0 at any time.

For K, q, K * , q * > 0, for 0 ≤ t ≤ T , we denote

H t = K µn t λ t q , R * t (φ) = exp -K * µn t λ t q * µ 2q * h ∧ inf 0≤δ≤h δ t+δ t |φ s | 2 ds .
Theorem 5.1. Let X t be given by (2.1), x t (φ) by (2.6), and suppose H1, H2, H3, H4.

There exist positive constants K, q, K * , q * such that, for

H t and R * t (φ) as above, if R t ≤ R * t (φ) for 0 ≤ t ≤ T , exp - T 0 H t 1 R t + |φ t | 2 dt ≤ P sup t≤T |X t -x t (φ)| A R t (xt(φ)) ≤ 1 ≤ exp - T 0 e -Ht 1 R t + |φ t | 2 dt .
(2.8)

In general, even if R • does not satisfy R t ≤ R * t (φ) for 0 ≤ t ≤ T , the lower bound holds in the form exp - T 0 H t 1 h + 1 R t + |φ t | 2 dt ≤ P sup t≤T |X t -x t (φ)| A R t (xt(φ)) ≤ 1 .
Remark 2.1. Notice that estimate (2.8) holds for the controls φ which belong to the class L(µ, h), and µ is involved in the definition of H t . In this sense, H t depends on the "growth property" (2.7) of φ.

Both these theorems can also be stated in a variant of the Carathéodory distance which looks appropriate to our framework. Here we just briefly give the definition, for more details see Appendix 6.2. For φ = (φ

1 s , φ 2 s ) ∈ L 2 ((0, 1), R 2 ), set φ 2 1,3 = 1 0 |φ 1 s | 2 ds + 1 0 |φ 2 s | 2 ds 1 3
and define the class of controls

C A (x, y) = {φ ∈ L 2 ((0, 1), R 2 ) : dv s = A(v s )φ s ds, x = v 0 , y = v 1 } (recall A = (σ, [σ, b])). We set d c (x, y) = inf { φ 1,3 : φ ∈ C A (x, y)}. Just remark that φ 1,3
accounts of the different speed in the [σ, b] direction. We define also the following quasi-

distance on Ω = {x ∈ R 2 : λ * (A(x)) > 0}. For x, y ∈ Ω, d(x, y) < √ R ⇔ |x -y| A R (x) < 1.
In Appendix 6.2 we prove that d and d c are equivalent quasi-distances, and that Theorem 5.1 also holds in the following form:

Corollary 2.2. Let X t be given by (2.1), x t (φ) by (2.6), and suppose H1, H2, H3, H4.

There exist constants C T > 0 and R * > 0 depending on σ, b, µ, h such that, if

R t ≤ R * for every t ∈ [0, T ], it holds exp -C T T 0 1 R t + |φ t | 2 dt ≤ P d c (X t , x t (φ)) ≤ R t , ∀t ∈ [0, T ] ≤ exp - 1 C T T 0 1 R t + |φ t | 2 dt

Examples and comments

Example 2.3. As mentioned before, assuming the weak Hörmander condition only in the initial point x 0 ensures the existence of the density p δ (x 0 , y), but not its positivity. It does not even ensure that the density is positive locally around x 0 . In [START_REF] Delarue | Density estimates for a random noise propagating through a chain of differential equations[END_REF], a multidimensional system under a weak Hörmander condition is studied, and a global lower bound for the density is provided, but the coefficients are hypoelliptic uniformly on the whole space where the diffusion propagates.

The fact that we have lower bounds for the density supposing only A1 might appear contradictory. In fact, our estimates are local around x0 , the translated initial condition, and there is no contradiction, as we see in the following classical example (see for instance (3.2.6) in [START_REF] Coron | of Mathematical Surveys and Monographs[END_REF]). Take

X 1 t = 1 + W t , X 2 t = t 0 b 2 (X 1 s )ds, where b 2 (ξ) = ξ 2 1 {|ξ|≤1} + b(ξ)1 {|ξ|>1}
and b is chosen non-negative and such that A2 is satisfied. Weak Hörmander holds at

X 0 = x 0 = 1 0
, but for any y = y 1 y 2 with y 2 < 0, p δ (x 0 , y) = 0, ∀δ > 0. We have

σ(x 0 ) = 1 0 , b(x 0 ) = 0 (x 1 0 ) 2 = 0 1 , [σ, b](x 0 ) = 0 2x 1 0 = 0 2
In fact, for any fixed r > 0, the set {y : |y -x0 | A δ (x 0 ) ≤ r}, on which Theorem 4.5 holds, is included in R × R + , the support of X δ . Indeed y satisfies

|y -x0 | A δ (x 0 ) = δ -1 (y 1 -1) 2 + 1 4 δ -3 (y 2 -δ) 2 ≤ r For y 2 < 0, |y -x0 | A δ (x 0 ) ≤ r ⇒ 1 2 δ -1/2 ≤ r ⇒ δ ≥ 1 4r 2 ≥ δ * exp(-2Lr 2 ) if δ * ≤ 1 4
, and this is in contrast with condition δ ≤ δ * exp(-Lr 2 ) of Theorem 4.5.

Example 2.4. Looking at the geometric condition ∂ σ σ(x) = κ σ (x)σ(x) (see A3 and H3) on the coefficients, it is easy to see that it holds if σ = (σ 1 , 0). We give here some other simple examples of diffusion coefficient σ satisfying this condition, but with σ 2 = 0:

• If σ = (σ 1 , σ 2 )
, with σ 2 = Cσ 1 for some constant C, we have that the condition is satisfied with

κ σ = ∂ x 1 σ 1 + ∂ x 2 σ 2 .
Remark that with C = 0 we recover the Asian option SDE.

• If, for α, β, γ constants,

σ(x 1 , x 2 ) = αx 1 + β αx 2 + γ
the condition is satisfied with κ σ = α.

• If, for α, C constants,

σ(x 1 , x 2 ) = C (x 1 /x 2 ) α (x 1 /x 2 ) α-1
the condition is satisfied with κ σ = 0. These examples show that our estimates are applicable to systems where the regimes of propagation are not completely separated, meaning that the one-dimensional Brownian Motion W can act on both the components of X (improving in this sense the results in [START_REF] Bally | Lower bounds for densities of Asian type stochastic differential equations[END_REF] and [START_REF] Delarue | Density estimates for a random noise propagating through a chain of differential equations[END_REF]). On the other hand, the condition required on ∂ σ σ has in some sense the same role of "separating" the different speeds of propagation. Indeed, we need this assumption to deal with a term of order t, which is hard to handle because of its fast speed of propagation, in comparison with the speed t 3/2 associated to [σ, b].

For this reason, a multidimensional extension of these results looks quite hard to obtain, especially if we want to consider systems where W is multi-dimensional. This would produce terms of order t, associated to the brackets [σ i , σ j ]. To handle these terms we could imagine a generalization of the condition on ∂ σ σ, but we believe that this is not an easy task. On the other hand, similar results on a multidimensional system, but of strong Hörmander type, are the subject of the recent work with Bally and Caramellino ( [START_REF] Bally | Diffusions under a local strong Hörmander condition. Part I: density estimates[END_REF][START_REF] Bally | Diffusions under a local strong Hörmander condition. Part II: tube estimates[END_REF]), and the techniques used in this paper are also applicable to the system studied in [START_REF] Delarue | Density estimates for a random noise propagating through a chain of differential equations[END_REF] (cf. [START_REF] Pigato | Tube Estimates for Hypoelliptic Diffusions and Scaling Properties of Stochastic Volatility Models[END_REF]).

Example 2.5. Consider the geometric Asian option with time horizon T on the Black & Scholes model ( [START_REF] Foschi | Black-Scholes formulae for Asian options in local volatility models[END_REF]). This can be expressed as

dX 1 t = σ • dW t + rdt = σdW t + rdt; X 1 0 = ξ, dX 2 t = X 1 t T dt; X 2 0 = 0.
In this case, for R > 0 fixed constant,

A -1 R (x) = σR 1/2 0 0 σ T R 3/2 -1 = 1 σ 1 R 1/2 0 0 T R 3/2
does not depend on x. We take as control φ t = 0 so x t (φ) = ξ + rt, ξt+rt 2 /2 T . We have

|X t -x t (φ)| A R (xt(φ)) = 1 σ |X 1 t -(ξ + rt)| 2 R + T 2 |X 2 t -(ξt + rt 2 /2)/T | 2 R 3 = 1 σ |σW t | 2 R + |σ t 0 W s ds| 2 R 3 ,
and (2.8) gives

e -C 1 T /R ≤ P sup t≤T |W t | 2 R + | t 0 W s ds| 2 R 3 ≤ 1 ≤ e -C 2 T /R .
Example 2.6. Consider a system given by the Black & Scholes model for the price of an asset, and an (arithmetic average) Asian option on that asset with time horizon T (see for instance [START_REF] Yor | On some exponential functionals of Brownian motion[END_REF][START_REF] Carr | Bessel processes, the integral of geometric Brownian motion, and Asian options[END_REF][START_REF] Foschi | Black-Scholes formulae for Asian options in local volatility models[END_REF]). This is a model of real interest in mathematical finance. The associated SDE is

dX 1 t = X 1 t (σ • dW t + rdt); X 1 0 = ξ > 0, dX 2 t = X 1 t T dt; X 2 0 = 0,
and X 1 t = ξe σWt+rt . The stochastic integral is in Stratonovich form so to recover the classical formulation r → r + σ 2 /2. In this case, for R > 0 fixed constant,

A -1 R (x) = σx 1 R 1/2 0 0 σx 1 T R 3/2 -1 = 1 σx 1 1 R 1/2 0 0 T R 3/2
Remark that this matrix is invertible for x 1 = 0. Since we are working under local nondegeneracy assumptions, our tube estimates hold for any initial condition ξ > 0, provided that R > 0 is small enough, since this implies the positivity of the first component of the skeleton path at any time t > 0. On the other hand, results requiring "global" non degeneracy, such as the density estimates in [START_REF] Delarue | Density estimates for a random noise propagating through a chain of differential equations[END_REF], do not hold for this model. We take as control φ t = 0 so x t (φ) = ξ e rt , 1 T t 0 e rs ds . We have

|X t -x t (φ)| A R (xt(φ)) = 1 σξe rt |X 1 t -ξe rt | 2 R + T 2 |X 2 t -ξ T t 0 e rs ds| 2 R 3 = 1 σξe rt ξ 2 |e rt (e σWt -1)| 2 R + ξ 2 | t 0 e rs+σWs ds - t 0 e rs ds| 2 R 3 = 1 σe rt |e rt (e σWt -1)| 2 R + | t 0 e rs (e σWs -1)ds| 2 R 3
and (2.8) gives

e -C 1 T /R ≤ P sup t≤T |e σWt -1| 2 Rσ 2 + | t 0 e r(s-t) (e σWs -1)ds| 2 R 3 σ 2 ≤ 1 ≤ e -C 2 T /R .
3 Malliavin calculus and density estimates

Notations

Our main reference for this section is [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF]. We consider a probability space (Ω, F, P) and a Brownian motion W = (W 1 t , ..., W d t ) t≥0 . We denote by D k,p the space of the random variables which are k times differentiable in the Malliavin sense in L p , and D k,∞ = ∞ p=1 D k,p . For a multi-index α = (α 1 , . . . , α m ) we denote by D α F the Malliavin derivative of F corresponding to the multi-index α. D k,p is the closure of the space of the simple functionals with respect to the Malliavin Sobolev norm

F k,p = [E|F | p + k j=1 E|D (j) F | p ] 1 p
where

|D (j) F | =   |α|=j [0,T ] j |D α s 1 ,...,s j F | 2 ds 1 ...ds j   1/2
.

For the special case j = 1, we use the standard notation

|DF | = |D (1) F | = d m=1 [0,T ] |D m s F | 2 ds 1/2 .
Hereafter, for j ∈ N \ {0}, we write D (j) for the "derivative of order j" and D j for the "derivative with respect to W j ".

As usual, we also denote by L the Ornstein-Uhlenbeck operator, i.e. L = -δ • D, where δ is the adjoint operator of D.

For a random vector F = (F 1 , ..., F n ) in the domain of D, we define its Malliavin covariance matrix as follows:

γ i,j F = DF i , DF j H = d k=1 T 0 D k s F i × D k s F j ds.
We say that F is non-degenerate if its Malliavin covariance matrix is invertible and

E(| det γ F | -p ) < ∞, ∀p ∈ N. (3.1)
We denote by γF the inverse of γ F .

Localization

The following notion of localization is introduced in [START_REF] Bally | Positivity and lower bounds for the density of Wiener functionals[END_REF]. Consider a random variable U ∈ [0, 1] and denote dP U = U dP.

P U is a non-negative measure (not a probability measure, in general). We also set E U the expectation (integral) w.r.t. P U , and denote

F p p,U = E U (|F | p ) = E(|F | p U ) F p k,p,U = F p p,U + k j=1 E U (|D (j) F | p ).
We assume that U ∈ D 2,∞ and for every p ≥ 1

m U (p) := 1 + (E U |D ln U | p ) 1/p + (E U |D (2) ln U | p ) 1/p < ∞.
(notice that our definition of m U is slightly different from the definition in [START_REF] Bally | Positivity and lower bounds for the density of Wiener functionals[END_REF]: we are taking p-norms instead of moments, and we also consider D (2) , whereas in [START_REF] Bally | Positivity and lower bounds for the density of Wiener functionals[END_REF] only the first order derivative D appears in m U ). For

F = (F 1 , • • • , F n ) such that F 1 , • • • , F n ∈ D 2,∞ and V ∈ D 1,∞
, for any localization function U we introduce the localized Malliavin weights

H i,U (F, V ) = n j=1 V γi,j F LF j -D(V γi,j F ), DF j -V γi,j F D ln U, DF j
and the vector

H U (F, V ) = (H i,U (F, V )) i=1,...n .
The following representation formula for the localized density has been proved in [START_REF] Bally | Riesz transform and integration by parts formulas for random variables[END_REF].

Theorem 3.1. Let U be a localizing r.v. such that under P U (3.1) holds, i.e.

E U [| det γ F | -p ] < ∞, ∀p ∈ N.
Then, under P U the law of F is absolutely continuous and has a continuous density p F,U which may be represented as

p F,U (x) = n i=1 E U [∂ i Q n (F -x)H i,U (F, 1)] (3.2)
where Q n denotes the Poisson kernel on R n , i.e. the fundamental solution of the Laplace operator ∆Q n = δ 0 . This is given by

Q 1 (x) = max(x, 0); Q 2 (x) = A -1 2 ln |x|; Q n (x) = -A -1 n |x| 2-n , n > 2,
where A n is the area of the unit sphere in R n .

This is a localized version of the formula

p F (x) = n i=1 E [∂ i Q n (F -x)H i (F, 1)]
where the Malliavin weights are given by

H(F, G) = Gγ F × LF -D(γ F G), DF
for which we refer to [START_REF] Malliavin | Stochastic Calculus of Variations in Mathematical Finance[END_REF]. We recall the following relation between localized weights, which can be easily checked (a similar formula is proved in [START_REF] Bally | Positivity and lower bounds for the density of Wiener functionals[END_REF]). For any U, V localizing r.v.s,

F, G ∈ D 2,∞ H U (F, V G) = V H U V (F, G) (3.3) Example 3.2.
The following example of localizing function is taken from [START_REF] Bally | Positivity and lower bounds for the density of Wiener functionals[END_REF]. Consider the function depending on a parameter a > 0:

ψ a (x) = 1 |x|≤a + exp 1 - a 2 a 2 -(x -a) 2 1 a<|x|<2a ,
which is a smooth version of the indicator function 1 {|x|≤a} . For Θ i ∈ D 1,∞ , i = 1 . . . n, and r > 0, we define the localization r. v.

U r = n i=1 ψ r (Θ i ) (3.4)
For this choice of U r we have that for any p ≥ 1,

m Ur (p) ≤ C p 1 + Θ 2 2,p r 2 (3.5) and 1 -U r 1,p ≤ C 1 + Θ 1,2p r n i=1 P(|Θ i | ≥ r) 1/2p . (3.6)
The proof of (3.5) follows from inequalities

sup x |(ln ψ a ) ′ (x)| p ψ a (x) ≤ 4 p a p sup t≥0 (t 2p e 1-t ) ≤ C p a p < ∞ (3.7) and sup x |(ln ψ a ) ′′ (x)| p ψ a (x) ≤ 8 p a 2p sup t≥0 (t 3p e 1-t ) + 2 p a 2p sup t≥0 (t 2p e 1-t ) ≤ C p a 2p < ∞ (3.8) Indeed U r |D ln U r | p = n i=1 ψ r (Θ i ) n i=1 (ln ψ r ) ′ (Θ i )DΘ i p ≤ n i=1 ψ r (Θ i ) n i=1 |(ln ψ r ) ′ (Θ i )| 2 p/2 n i=1 |DΘ i | 2 p/2 ≤ c p n i=1 |(ln ψ r ) ′ (Θ i )| p ψ r (Θ i ) |DΘ| p .
Here we apply (3.7), and find

U r |D ln U r | p ≤ C p |DΘ| p r p . (3.9) This implies (E Ur |D ln U r | p ) 1/p ≤ C p Θ 1,p r
. We also have, using (3.7) and (3.8),

U r |D (2) ln U r | p = n i=1 ψ r (Θ i ) D n i=1 (ln ψ r ) ′ (Θ i )DΘ i p ≤ C p n i=1 ψ r (Θ i ) n i=1 (ln ψ r ) ′′ (Θ i )(DΘ i ) 2 p + n i=1 (ln ψ r ) ′ (Θ i )D (2) Θ i p ≤ C p n i=1 |(ln ψ r ) ′′ (Θ i )| p ψ r (Θ i ) |DΘ| 2p + C p n i=1 |(ln ψ r ) ′ (Θ i )| p ψ r (Θ i ) |D (2) Θ| p ≤ C p |DΘ| 2p r 2p + |D (2) Θ| p r p
and so

(E Ur |D (2) ln U r | p ) 1/p ≤ C p Θ 1,p r 2 + Θ 2,p r .
This proves (3.5) Moreover, since

D s U r = 0 on i {|Θ i | < r} = i {|Θ i | ≥ r} c , D s (1 -U r ) = -1 { i {|Θ i |≥r}} D s U r
and from Hölder inequality

E|D s (1 -U r )| p ≤ (E1 { i {|Θ i |≥r}} ) 1/2 (E|D s U r | 2p ) 1/2
We control the first factor with the tail estimate

(E1 {∪ i {|Θ i |≥r}} ) 1/2 ≤ C n i=1 P(|Θ i | ≥ r) 1/2 ,
and we also have

|D s U r | 2p ≤ U r |D ln U r | 2p ,
and from (3.9)

(E|D s (1 -U r )| p ) 1/p ≤ C p Θ 1,2p r n i=1 P(|Θ i | ≥ r) 1/2p . Moreover E|1 -U r | p ≤ P(1 -U r > 0) ≤ P(|Θ i | > r, ∃i = 1, . . . n) ≤ n i=1 P(|Θ i | > r), so (3.6) is proved.

The distance between two local densities

We discuss some techniques, based on Malliavin calculus, for estimating the density of a random variable. These ideas are based on the recent work of Bally and Caramellino ([2], [START_REF] Bally | On the distances between probability density functions[END_REF]).

In what follows for a given matrix A we consider its Frobenius norm, given as

A F r = i,j |A 2 i,j | = T r(A T A).
We will employ the fact that the Frobenius norm is sub-multiplicative. Take a square d × d matrix γ, symmetric and positive definite. Recall that we denote by λ * (γ) and λ * (γ) the largest and the smallest singular values of γ, which in this case coincide with the largest and smallest eigenvalues. From the equivalence between Frobenius and spectral norm we have

λ * (γ) ≤ γ F r ≤ √ dλ * (γ). Denoting γ = γ -1 , it holds λ * (γ) = 1/λ * (γ). So 1 λ * (γ) ≤ γ F r ≤ √ d λ * (γ)
.

For two time dependent matrices A s , B s , we have the following "Cauchy-Schwartz" inequality:

A s B s ds 2 F r ≤ A s 2 F r ds B s 2 F r ds.
In particular, if B s = v s is a vector,

| A s v s ds| 2 ≤ A s 2 F r ds |v s | 2 ds.
We fix some notation. Let W be a Brownian Motion in R d . For two random variables

F = (F 1 , . . . F n ), G = (G 1 , . . . G n ) in D 3,∞ and a localizing r. v. U , we denote Γ F,U (p) = 1 + E U λ * (γ F ) -p 1/p Γ F,G,U (p) = 1 + sup 0≤ε≤1 E U λ * (γ G+ε(F -G) ) -p 1/p n F,G,U (p) = 1 + F 3,p,U + G 3,p,U + LF 1,p,U + LG 1,p,U ∆ 2 (F, G) = |D(F -G)| + |D (2) (F -G)| + |L(F -G)|
We also write n F,U (p) for n F,0,U (p). Moreover, in all the above notations, when U = 1, i.e. the localization is "trivial", we omit it in the notation. Remark that notations n F,U and n F,G , although similar, denote different things. Since we are differentiating with respect to a Brownian Motion, as a direct consequence of Meyer's inequality (see for instance [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF]), we have

n F,G,U (p) ≤ 1 + C ( F 3,p + G 3,p )
for every F, G, U . We now give the main result of this section, comparing the densities of the laws of two random variables under P U .

Theorem 3.3. Let U be a localizing r.v. with m U (32n) < ∞. Let F = (F 1 , . . . , F n ), G = (G 1 , . . . , G n ) ∈ D 3,32n . Suppose Γ G,U (p) < ∞ and Γ F,U (p) < ∞ for any p > 1. Then there exists a constant C 1 such that p G,U (y) -C 1 ∆ 2 (F, G) 32n,U ≤ p F,U (y) ≤ p F (y) If, in addition, Γ F (32n) < ∞, there exists a constant C 2 such that p F (y) ≤ p G,U (y) + C 2 ( ∆ 2 (F, G) 32n,U + 1 -U 1,14n ) Remark 3.4. We can take C 1 = C [m U (32n)Γ G,U (32n)n F,G,U (32n)] 24n 2 C 2 = C [m U (32n)Γ F (32n)n F,G (32n)] 24n 2
where C is a constant depending only on the dimension n.

The lower bound for p F,U is a version of Proposition 2.5. in [START_REF] Bally | Positivity and lower bounds for the density of Wiener functionals[END_REF], where here we have specified as possible choice for the exponent p = 32n. Moreover, we find here that in m U and n F,G,U we need to consider one more order of derivatives with respect to [START_REF] Bally | Positivity and lower bounds for the density of Wiener functionals[END_REF]. Similar estimates can be found also in [START_REF] Bally | On the distances between probability density functions[END_REF].

Before proceeding with the proof we need some preliminary results. We start with an estimate for the localized Malliavin weights and for the difference of weights:

Lemma 3.5. Let U be a localizing r.v, V ∈ D 1,∞ , F = (F 1 , . . . , F n ) ∈ D 3,∞ . Suppose Γ F,U (q) < ∞ for any q > 1. For fixed p ≥ 1, p i ≥ 1, i = 1, . . . , 4, with 1 p = 1 p 1 + 1 p 2 + 2 p 3 + 3 p 4
, there exists a constant C depending only on p and the dimension n such that

H U (F, V ) p,U ≤ C V 1,p 1 m U (p 2 )Γ F,U (p 3 ) 2 n F,U (p 4 ) 3
(3.10)

Moreover if 1 p = 1 p 1 + 1 p 2 + 3 p 3 + 5 p 4 and V ∈ D 2,∞ , H U (F, V ) 1,p,U ≤ C V 2,p 1 m U (p 2 )Γ F,U (p 3 ) 3 n F,U (p 4 ) 5 , (3.11 
)

Let now G = (G 1 , . . . , G n ) ∈ D 3,∞ . If Γ F,G,U (q) < ∞ for any q > 1, for fixed p i ≥ 1, i = 1, . . . , 5 with 1 p = 1 p 1 + 1 p 2 + 3 p 3 + 4 p 4 + 1 p 5 , it also holds H U (F, V ) -H U (G, V ) p,U ≤ C V 1,p 1 m U (p 2 )Γ F,G,U (p 3 ) 3 n F,G,U (p 4 ) 4 ∆ 2 (F, G) p 5 ,U . (3.12)
Proof. Consider the weight:

H U (F, V ) = V [γ F × LF -Dγ F , DF ] -γF (DV + V D ln U ), DF (3.13) 
Recall that D (k) means "derivative of order k" and D k means "derivative with respect to W k ". We first consider Dγ F and have the following estimate:

d l=1 D l s γ F 2 F r ds = d l=1 d k=1 t 0 D l s D k u F i × D k u F j + D k u F i × D l s D k u F j du i,j 2 F r ds ≤ 4|D (2) F | 2 |DF | 2
We now consider Dγ F . From the chain rule and the derivative of the inversion of matrices,

D k γF = -γ F (D k γ F )γ F . (3.14) 
So, applying also the previous estimate

d k=1 D k s γF 2 F r ds ≤ γF 4 F r d k=1 D k s γ F 2 F r ds ≤ 4 γF 4 F r |DF | 2 |D (2) F | 2 .
From (3.13) we see that

|H U (F, V )| ≤ |V | γF F r |LF | + d k=1 D k γF 2 F r ds 1/2 |DF | + γF F r |DV | + |V ||D ln U | |DF | ≤ C(|V | + |DV |)(1 + |D ln U |)(|DF | + |LF |) γF F r + d k=1 D k γF 2 F r ds 1/2 ≤ C(|V | + |DV |)(1 + |D ln U |)(1 + |DF | + |D (2) F | + |LF |) 3 (1 + γF F r ) 2 Now H U (F, V ) p,U ≤ C V 1,p 1 m U (p 2 )Γ F,U (p 3 ) 2 n F,U (p 4 ) 3 , for 1 p = 1 p 1 + 1 p 2 + 2 p 3 + 3 p 4
, follows easily applying Hölder and Minkowski inequalities for L p norms.

The estimate of H U (F, V ) 1,p,U follows using very similar techniques. The part giving the "main" contribution is D (2) γF , for which, iterating (3.14), it is not difficult to see

|D (2) γF | ≤ C(|DF | + • • • + |D (3) F |) 4 γF 3 F r
This term is also multiplied by |DF |, so we have the estimate of the term giving the main contribution. We leave out the similar estimate of the other terms.

When considering the difference

H U (F, V ) -H U (G, V ) p,U
, we use similar arguments and the following property of norms: |ab -cd| ≤ |a -c||b| + |c||b -d|. As before the main contribution comes from D(γ F -γG ), so we consider this and leave out the estimates of the other terms. We remark that γF -γG = γF (γ G -γ F )γ G and differentiate this product, finding

|D(γ F -γG )| ≤ C(1 + γF F r ∨ γG F r ) 3 (1 + |Dγ F | ∨ |Dγ G |) (|γ F -γ G | + |D(γ F -γ G )|) where 1 + |Dγ F | ∨ |Dγ G | ≤ C 1 + 2 i=1 |D (i) F | ∨ |D (i) G| 2 We have |γ F -γ G | ≤ C|D(F -G)| |D(F + G)| and |D(γ F -γ G )| ≤ C |D(F -G)| + |D (2) (F -G)| |D(F + G)| + |D (2) (F + G)|
Multiplying with |DF |, and applying Hölder inequality, we prove the statement.

Lemma 3.6. Let U be a localizing r.v.,

F = (F 1 , . . . , F n ), G = (G 1 , . . . , G n ) ∈ D 3,∞ . If Γ F,G,U ( 
q) < ∞ for any q > 1, there exists a constant C depending only on the dimension n such that

|p F,U (y) -p G,U (y)| ≤ C [m U (32n)Γ F,G,U (32n)n F,G,U (32n)] 12n 2 ∆ 2 (F, G) 32n,U
Proof. We write the densities using (3.2):

p F,U (y) -p G,U (y) = E U ( ∇Q n (F -y), H U (F, 1) -∇Q n (G -y), H U (G, 1) ) = E U ∇Q n (F -y), H U (G, 1) -H U (F, 1) + E U ∇Q n (G -y) -∇Q n (F -y), H U (G, 1) = I + J
We recall the following inequality proved in [START_REF] Bally | Riesz transform and integration by parts formulas for random variables[END_REF]. For p > n, with p ′ = p/(p -1),

(E U |∇Q n (F -y)| p ′ ) 1/p ′ ≤ C p,n (E U |H U (F, 1)| p ) p n-1 p-n .
In particular, for p = 2n (fixed from now on), applying (3.10) with k = 0, 1) .

p 1 = p 2 = p 3 = p 4 = 7p = 14n, (E U |∇Q n (F -y)| 2n/(2n-1) ) (2n-1)/(2n) ≤ C(E U |H U (F, 1)| 2n ) 2(n-1) ≤ C m U (14n)Γ F,U (14n) 2 n F,U (14n) 3 4n(n-
(3.15)

We use now Lemma 3.5 to estimate I and J. From Hölder inequality

I =E U | ∇Q n (F -y), H U (G, 1) -H U (F, 1) | ≤ ∇Q n (F -y) 2n 2n-1 ,U H U (G, 1) -H U (F, 1) 2n,U
and we have just provided the estimate for the first factor. For the second we apply (3.12) with

p 1 = p 2 = p 3 = p 4 = p 5 = 20n H U (F, 1) -H U (G, 1) 2n,U ≤ Cm U (20n)Γ F,G,U (20n) 3 n F,G,U (20n) 4 ∆ 2 (F, G) 20n,U , We now study J. For λ ∈ [0, 1] we denote F λ = G + λ(F -G).
With a Taylor expansion, applying Hölder inequality, integrating again by parts and denoting

V j,k = H j,U (G, 1)(F - G) k . E U ∇Q n (F -y) -∇Q n (G -y), H U (G, 1) = d k,j=1 1 0 E U (∂ k ∂ j Q n (F λ -y)H j,U (G, 1)(F -G) k )dλ = d k,j=1 1 0 E U (∂ j Q n (F λ -y)H k,U (F λ , H j,U (G, 1)(F -G) k ))dλ = d k,j=1 1 0 E U (∂ j Q n (F λ -y)H k,U (F λ , V j,k ))dλ
Now, applying first (3.10) and then (3.11), with some computations in the same fashion as before, it is possible to show

(H k,U (F λ , V j,k )) j=1,...,n 2n,U ≤ Cm U (32n) 2 Γ F,G,U (32n) 5 n F,G,U (32n) 8 F -G 1,32n,U .
From (3.15) and Hölder as before,

|J| ≤ C m U (32n)Γ F,G,U (32n) 2 n F,G,U (32n) 3 4n 2 F -G 1,32n,U .
The statement follows.

Lemma 3.7. Let U be a localizing r.v.,

F = (F 1 , . . . , F n ), G = (G 1 , . . . , G n ) ∈ D 3,∞ . If Γ F,U (q) < ∞, Γ G,U ( 
q) < ∞ for any q > 1, there exists a constant C depending only on the dimension n such that

|p F,U (y) -p G,U (y)| ≤ C [m U (32n)(Γ F,U ∨ Γ G,U )(32n)n F,G,U (32n)] 24n 2 ∆ 2 (F, G) 32n,U
Proof. We denote in this proof M = γG (γ F λ -γ G ), and define, as in (3.4),

V = 1≤i,j≤n ψ 1/(8n 2 ) (M i,j ). (3.16)
We have from Lemma 3. 

6 that if Γ F,G,U V (q) is finite for q > 0 |p F,U V (y) -p G,U V (y)| ≤ C [m U V (32n)Γ F,G,U V (32n)n F,G,U V (32n)] 12n 2 ∆ 2 (F, G) 32n,U V (3.17) Remark γG -γF λ = γG (γ F λ -γ G )γ F λ , so γF λ -γG F r ≤ γG (γ F λ -γ G ) F r γF λ F r On V = 0 we have γG (γ F λ -γ G ) F r ≤ 1/2, because of definition (3.16), so γF λ F r ≤ 2 γG F r and therefore Γ F,G,U V (32n) ≤ 2Γ G,U V (32n) ≤ 2Γ G,U (32n) 
p F,U (1-V ) (y) = E U (1-V ) [∇Q(F -y), H U (1-V ) (F, 1)] = E U [∇Q(F -y), (1 -V )H U (1-V ) (F, 1)] = E U [∇Q(F -y), H U (F, 1 -V )]
which implies, using as before (3.10) and (3.15)

p F,U (1-V ) (y) = E U (1-V ) ∇Q d (F -y), H U (F, 1 -V ) ≤ C m U (14n)Γ F,U (14n) 2 n F,U (14n) 3 4n(n-1) H U (F, 1 -V ) 2n,U ≤ C m U (24n)Γ F,U (24n) 2 n F,U (24n) 3 8n(n-1)+1 1 -V 1,4n,U and, using (3.6), 1 -V 1,4n,U ≤ C γG (γ F λ -γ G ) 1,4n,U
Now, we first apply Hölder inequality and then

|γ F λ -γ G | ≤ C|D(F λ -G)| |D(F λ + G)| and |D(γ F λ -γ G )| ≤ C |D(F λ -G)| + |D (2) (F λ -G)| |D(F λ + G)| + |D (2) (F λ + G)| We find 1 -V 1,4n,U ≤ CΓ G,U (12n)n F,G,U (12n) F -G 2,12n,U so p F,U (1-V ) (y) ≤ C m U (24n)(Γ F,U ∨ Γ G,U )(24n) 2 n F,G,U (24n) 3 8n 2 ∆ 2 (F, G) 32n,U
We conclude writing

|p F,U (y) -p G,U (y)| = |p F,U V (y) + p F,U (1-V ) (y) -p G,U V (y) -p G,U (1-V ) (y)| ≤ |p F,U V (y) -p G,U V (y)| + p F,U (1-V ) (y) + p G,U (1-V ) (y)
and the statement follows easily.

Proof. (of Theorem 3.3). Let V as in the last proof. We can write

p F,U (y) ≥ p F,U V (y) ≥ p G,U V (y) -|p F,U V (y) -p G,U V (y)| = p G,U (y) -p G,U (1-V ) (y) -|p F,U V (y) -p G,U V (y)|.
From (3.10) and (3.15) as before

p G,U (1-V ) (y) ≤ C m U (14n)Γ G,U (14n) 2 n F,G,U (14n) 3 8n 2 ∆ 2 (F, G) 32n,U .
Using also (3.17) and (3.18) we obtain the desired lower bound for p F .

For the upper bound we apply Proposition 3.2 localizing on 1 -U . We have

p F,1-U (x) = E (1-U ) ∇Q n (F -x)H (1-U ) (F, 1) = E ∇Q n (F -x)H (1-U ) (F, 1) (1 -U ) From (3.3), H(F, 1 -U ) = (1 -U )H (1-U ) (F, 1), so p F,1-U (x) = E[∇Q n (F -x)H(F, 1 -U )]
Now we apply Hölder and find

p F,1-U (x) = ∇Q n (F -x) 2n 2n-1 H(F, 1 -U ) 2n
We use (3.15), with U = 1, to deal with the gradient of the Poisson kernel: 1) .

(E|∇Q n (F -y)| 2n/(2n-1) ) (2n-1)/(2n) ≤ C Γ F (14n) 2 n F (14n) 3 4n(n-
Now consider the non-localized version of (3.10):

H(F, V ) p ≤ C V 1,14n Γ F (14n) 2 n F (14n) 3
and take V = 1 -U . We obtain

p F,1-U ≤ C 1 -U 1,14n Γ F (14n) 2 n F (14n) 3 4n 2 . ( 3 

.19)

We apply now the lower bound result to p G,U , interchanging the roles of F and G, and find

p F,U (y) ≤ p G,U (y) + [m U (32n)Γ F,U (32n)n F,G (32n)] 24n 2 ∆ 2 (F, G) 32n,U .
Putting together this inequality and (3.19), we have the upper bound.

Density estimates via local inversion

We recall some results from [START_REF] Bally | Diffusions under a local strong Hörmander condition. Part I: density estimates[END_REF]. We see how to use the local inversion theorem to transfer a known estimate for a Gaussian random variable to its image via a function η such that

η ∈ C 3 (R n , R n ), η(0) = 0, λ * (∇η(0)) ≤ 1 2 . Define, for h > 0, c * (η, h) = sup |x|≤2h max i,j |∂ i η j (x)| and c 2 (η) = max i,j=1,..,n sup |x|≤1 |∂ 2 ij η(x)|, c 3 (η) = max i,j,k=1,..,n sup |x|≤1 |∂ 3 ijk η(x)|,
Let now Θ be a n-dimensional centered Gaussian variable with covariance matrix Q, nondegenerate. Denote by λ and λ the lower and the upper eigenvalues of Q. Suppose to have r > 0 such that

c * (η, 16r) ≤ 1 2n λ λ , r ≤ h η = 1 16n 2 (c 2 (η) + c 3 (η)) . (3.20)
We take a localizing function as in (3.4): U r = n i=1 ψ r (Θ i ). We also define Φ(θ) = θ + η(θ).

Lemma 3.8. The density p G,Ur of

G := Φ(Θ) = Θ + η(Θ)
under P Ur has the following bounds on B(0, r):

1 C det Q 1/2 exp - C λ |z| 2 ≤ p G,Ur (z) ≤ C det Q 1/2 exp - 1 Cλ |z| 2
This result is proved in [START_REF] Bally | Diffusions under a local strong Hörmander condition. Part I: density estimates[END_REF] under a slightly stronger constraint on r, but going trough the proof it is easy to see that what we suppose here is enough. For details see [START_REF] Pigato | Tube Estimates for Hypoelliptic Diffusions and Scaling Properties of Stochastic Volatility Models[END_REF]. The proof is quite standard and follows from the local inversion theorem (see [START_REF] Rudin | Principles of mathematical analysis[END_REF] for a standard version of this theorem).

Density estimates of the diffusion process

In this section we prove lower and upper bounds for the density of X δ .

Development

In this section, in order to lighten the notation, we do not mention the dependence of the parameters on the initial condition (so, for example, we write A instead of A(x 0 ), and so on). We need to introduce some notation. Consider a small time δ ∈ (0, 1]. We define

• The translated initial condition x0 = x 0 + b(x 0 )δ.
• The matrices Ā and Āδ as

Ā = (σ + δ∂ b σ, [σ, b]) and Āδ = δ 1/2 (σ + δ∂ b σ), δ 3/2 [σ, b] .
Recall (2.2), (2.3), and remark that A1 implies that these matrices are always invertible if δ is small enough.

• The Gaussian r.v.

Θ = Θ 1 Θ 2 = δ -1/2 W δ δ -3/2 δ 0 (δ -s)dW s .
• The polynomial of degree 3 and direction σ(x 0 ) (recall κ σ defined in (2.4)):

η(u) = κ σ (x 0 ) 2 u 2 + (∂ σ κ σ + κ 2 σ )(x 0 ) 6 u 3 σ(x 0 ). ( 4.1) 
• The principal term

G = Θ + ηδ (Θ) (4.2) 
where ηδ (Θ) = Ā-1 δ η(δ 1/2 Θ 1 ).

• The remainder R δ :

R δ = δ 0 s 0 (∂ b σ(X u ) -∂ b σ(x 0 )) du • dW s + δ 0 s 0 (∂ σ b(X u ) -∂ σ b(x 0 )) • dW u ds + δ 0 s 0 ∂ b b(X u )duds + δ 0 s 0 u 0 (∂ σ ∂ σ σ(X v ) -∂ σ ∂ σ σ(x 0 )) • dW v • dW u • dW s + δ 0 s 0 u 0 ∂ b ∂ σ σ(X v ) • dv • dW u • dW s . (4.3) 
Notice that R δ ∼ O(δ 2 ). We also denote Rδ := Ā-1 δ R δ . We now prove that the following decomposition holds:

X δ = x0 + Āδ (G + Rδ ) (4.4)
This is a main tool in our approach. Indeed, we find Gaussian bounds for the density of the variable

F := Ā-1 δ (X δ -x0 ) = G + Rδ in the Euclidean metric of R 2 .
The fact that in Theorem 4.5 the bounds for the diffusion are in the A δ (x 0 )-norm follows from the change of variable suggested by (4.4).

Let us prove (4.4). We write the stochastic Taylor development of X t with a remainder of order t 2 :

X t = x 0 + b(x 0 )t + U t + R t ,
where

U t = σ(x 0 )W t + ∂ σ σ(x 0 ) t 0 W s • dW s + ∂ σ ∂ σ σ(x 0 ) t 0 s 0 W u • dW u • dW s + ∂ b σ(x 0 ) t 0 sdW s + ∂ σ b(x 0 ) t 0 W s ds Now we write t 0 W s ds = t 0 (t -s)dW s t 0 sdW s = - t 0 (t -s)dW s + tW t Therefore U t = (σ(x 0 ) + t∂ b σ(x 0 ))W t + (∂ σ b(x 0 ) -∂ b σ(x 0 )) t 0 (t -s)dW s + ∂ σ σ(x 0 ) W 2 t 2 + ∂ σ ∂ σ σ(x 0 ) W 3 t 6
So we have the following decomposition of X t :

X t = x 0 + b(x 0 )t + (σ(x 0 ) + t∂ b σ(x 0 ))W t + [σ, b](x 0 ) t 0 (t -s)dW s + η(W t ) + R t (4.5)
where x 0 is the initial condition. Remark that A3 implies that both the coefficients of η have the same direction as σ(x 0 ):

η(u) = ∂ σ σ(x 0 ) 2 u 2 + ∂ σ ∂ σ σ(x 0 ) 6 u 3 = κ σ (x 0 ) 2 u 2 + (∂ σ κ σ + κ 2 σ )(x 0 ) 6 u 3 σ(x 0 ).

Preliminary estimates

We introduce the following class of constants:

C = C > 0 : C = K ρ λ * (A(x 0 )) q , ∃K, q ≥ 1 (4.6)
We stress that the constants defined above depend on the parameters of the diffusion through the ratio ρ/λ * (A(x 0 )) (cf. A1, A2), but K, q do not depend on σ, b. We will also denote by 1/C = {δ > 0 : 1/δ ∈ C}.

We keep using the notations of the previous development.

Lemma 4.1. There exist L 1 , L 2 , K 1 , K 2 positive constants not depending on the parameters, δ * ∈ 1/C such that: for any fixed r > 0 and δ such that δ ≤ δ * exp -2L 1 r 2 , let G = Θ + ηδ (Θ) be the r.v. defined in (4.2); let U r be the localizing r.v. defined in (3.4), and p G,Ur the local density of G; then the following estimate holds for |z| ≤ r:

K 1 exp -L 1 |z| 2 ≤ p G,Ur (z) ≤ K 2 exp -L 2 |z| 2 . (4.7)
Proof. In what follows, C ∈ C, and may vary from line to line (meaning that K, q may vary in (4.6)). We start by computing the derivatives of η:

η(y) = κ σ 2 y 2 + ∂ σ κ σ + κ 2 σ 6 y 3 σ η ′ (y) = κ σ y + ∂ σ κ σ + κ 2 σ 2 y 2 σ η ′′ (y) = (κ σ + (∂ σ κ σ + κ 2 σ )y)σ η ′′′ (y) = (∂ σ κ σ + κ 2 σ )σ.
By the definition of Ā-1

δ , Ā-1 δ δ 1/2 (σ + δ∂ b σ) = (1, 0) T . Therefore Ā-1 δ σ = δ -1/2 (1, 0) T -Ā-1 δ δ∂ b σ.
By (6.2) and (6.4) (see the appendix) we have

| Ā-1 δ δ∂ b σ| ≤ Cδ -1/2 , so that | Ā-1 δ σ| ≤ Cδ -1/2
. We stress that this upper bound is δ -1/2 in contrast with δ -3/2 in (6.2), because Āδ works in the specific direction σ. Now we can estimate the norms of ηδ and its derivatives. Since they are collinear with σ, we have

|η δ (u)| = | Ā-1 δ η(δ 1/2 u 1 )| ≤ C(|u 1 | 2 δ 1/2 + |u 1 | 3 δ) |∂ u 1 ηδ (u)| = | Ā-1 δ δ 1/2 η ′ (δ 1/2 u 1 )| ≤ C(|u 1 |δ 1/2 + |u 1 | 2 δ) |∂ 2 u 1 ηδ (u)| = | Ā-1 δ δη ′′ (δ 1/2 u 1 )| ≤ C(δ 1/2 + |u 1 |δ) |∂ 3 u 1 ηδ (u)| = | Ā-1 δ δ 3/2 η ′′′ (δ 1/2 u 1 )| ≤ Cδ |∂ u 2 ηδ (u)| = 0.
So, referring to the notation of Section 3.4, we have

c * (η δ , h) = sup |u|≤2h max i,j ∂ i ηj δ (u) ≤ Chδ 1/2 c 2 (η δ ) = max i,j sup |u|≤1 ∂ 2 i,j ηδ (u) ≤ Cδ 1/2 c 3 (η δ ) = max i,j,k sup |u|≤1 ∂ 3 i,j,k ηδ (u) ≤ Cδ. (4.8) 
We first want to apply Lemma 3.8 to G = Θ + ηδ (Θ). Here n = 2, and the covariance matrix of Θ is

γ Θ = 1 1/2 1/2 1/3 .
It has 2 positive eigenvalues, 0 < λ 1 < λ 2 , and det(γ Θ ) = 1/12. We are supposing here δ ≤ δ * exp -2L 1 r 2 ≤ δ * /r 2 . Since

h ηδ = 1 64(c 2 (η δ ) + c 3 (η δ )) ≥ 1 C 1 √ δ ≥ r C 1 √ δ * and c * (η δ , 16r) ≤ C 2 r √ δ ≤ C 2 √ δ * , choosing δ * ≤ 1 16 λ 1 λ 2 1 C 2 1 C 2 2
the conditions (3.20) are satisfied:

c * (η δ , 16r) ≤ 1 4 λ 1 λ 2 , r ≤ h ηδ (4.9)
So there exist L 1 , L 2 , K 1 , K 2 universal constants, such that for |z| ≤ r,

K 1 exp -L 1 |z| 2 ≤ p G,Ur (z) ≤ K 2 exp -L 2 |z| 2 .
The following lemma is a slight modification of Lemma 2.3.1. in [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF].

Lemma 4.2. Let γ be a symmetric non-negative definite n × n matrix. We assume that, for fixed p ≥ 2, E γ p+1 F r < ∞, and that ∃ ε 0 > 0 s.t. for ε ≤ ε 0 ,

sup |ξ|=1 P[ γξ, ξ < ε] ≤ ε p+2n
Then there exist a constant C depending only on the dimension n such that

E λ * (γ) -p ≤ CE γ p+1 F r ε -p 0 .
We consider now

F = Ā-1 δ (X δ -x0 ). ( 4 

.10)

We will use the general estimates of section 3. We denote by D the Malliavin derivative with respect to W , the Brownian motion driving (2.1). We first prove that the moments of λ * (γ -1 F ) = λ * (γ F ) -1 are bounded, and these bounds do not depend on δ. This result looks interesting by itself, since it means that we are able to account precisely of the scaling of the diffusion in the two main directions σ and [σ, b]. In this particular case this is a refinement of the classical result on the bounds of the Malliavin covariance under the (weak) Hörmander condition (cf. [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF], [START_REF] Kusuoka | Applications of the Malliavin calculus[END_REF], [START_REF] Norris | Simplified malliavin calculus[END_REF]).

Lemma 4.3. Let F = Ā-1 δ (X δ -x0 ). For any p > 1, there exists C ∈ C such that for any δ ≤ 1, Γ F (p) ≤ e C .
Proof. Following [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF] we define the tangent flow of X as the derivative with respect to the initial condition of X, Y t := ∂ x X t . We also denote its inverse Z t = Y -1 t . They satisfy the following stochastic differential equations

Y t = Id + t 0 ∇σ(X s )Y s • dW s + t 0 ∇b(X s )Y s ds Z t = Id - t 0 Z s ∇σ(X s ) • dW s - t 0 Z s ∇b(X s )ds The Malliavin derivative of X is D s X t = Y t Z s σ(X s ), so D s F = D s Ā-1 δ (X δ -x0 ) = Ā-1 δ Y δ Z s σ(X s ). We define γδ = δ 0 A -1 δ Z s σ(X s )σ(X s ) T Z T s A -1,T δ ds. Then γ F = DF, DF = Ā-1 δ Y δ A δ γδ A T δ Y T δ Ā-1,T δ . Remark that γ -1 F = ĀT δ Z T δ A -1,T δ γ-1 δ A -1 δ Z δ
Āδ , and that in this representation we have both A δ and its "perturbed" version Āδ . We have to check the integrability of λ * (γ F ) -1 = λ * (γ -1 F ). Recall that λ * (•) is a norm on the set of matrices, and that for two 2

× 2 matrices M 1 , M 2 , λ * (M 1 M 2 ) ≤ 2λ * (M 1 )λ * (M 2 ). We have λ * (γ F ) -1 ≤ 4λ * (γ -1 δ )λ * (A -1 δ Z δ Āδ ) 2 ,
We need to bound A -1 δ Z δ Āδ , which we expect to be close to the identity matrix for small δ, andγ-1 δ . We take care first of the moments of λ * (γ -1 δ ). We use the following representation, holding for general φ, which follows applying Ito's formula (details in [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF])

Z t φ(X t ) = φ(x 0 ) + t 0 Z s [σ, φ](X s )dW k s + t 0 Z s [b, φ] + 1 2 [σ, [σ, φ]] (X s )ds (4.11) 
Taking φ = σ the representation above reduces to

Z t σ(X t ) = σ(x 0 ) + t 0 Z s [b, σ](X s )ds = σ(x 0 ) + t[b, σ](x 0 ) + L t , (4.12) 
with

L t = t 0 Z s [b, σ](X s ) -Z 0 [b, σ](x 0 )ds. Notice that L t ∼ O(t 3/2 ). Using A2 one gets E λ * δε 0 L s L T s ds q ≤ E δε 0 L s L T s ds q F r ≤ e C ′ (δε) 4q , ∀q > 0, ∃C ′ ∈ C
(e C ′ comes from Gronwall inequality). We have

A -1 δ Z s σ(X s ) = A -1 δ (σ(x 0 ) + s[b, σ](x 0 ) + L s ) = 1 δ 1/2 1 -s/δ + A -1 δ L s
For constant c and fixed ε, we introduce the stopping time

S ε = inf s ≥ 0 : λ * s 0 L u L T u du ≥ c(δε) 3 ∧ δ,
We have

λ * A -1 δ Sε 0 L u L T u duA -1,T δ ≤ 4λ * A -1 δ 2 λ * Sε 0 L u L T u du ≤ C ′′ δ 3 c(δε) 3
where C ′′ ∈ C. We fix c = 1 64C ′′ , so

λ * A -1 δ Sε 0 L u L T u duA -1,T δ ≤ ε 3 64 (4.13)
Now we suppose to be on the event { Sε δ ≥ ε}. Applying first inequality

(v + R)(v + R) T ξ, ξ ≥ 1 2 vv T ξ, ξ -RR T ξ, ξ ,
which holds for any vectors v, R, ξ, and then (4.12), we obtain

γδ = δ 0 A -1 δ Z s σ(X s )σ(X s ) T Z T s A -1,T δ ds ≥ Sε 0 A -1 δ Z s σ(X s )σ(X s ) T Z T s A -1,T δ ds ≥ 1 2 Sε 0 1 δ 1 -s/δ -s/δ (s/δ) 2 ds -A -1 δ Sε 0 L s L T s dsA -1,T δ .
We have

Sε 0 1 δ 1 -s/δ -s/δ (s/δ) 2 ds ≥ δε 0 1 δ 1 -s/δ -s/δ (s/δ) 2 ds ≥ ε -ε 2 2 -ε 2 2 ε 3 3 ≥ Id 2 ε 3 16 , so, from (4.13), γδ ξ, ξ ≥ 1 2 ε 3 16 |ξ| 2 - ε 3 64 |ξ| 2 = ε 3 64 |ξ| 2 , ∀|ξ| = 1.
Now, remark that t → λ * t 0 L s L T s ds is increasing. For any q > 0

P(S ε < δε) ≤ P λ * δε 0 L s L T s ds q ≥ c q (δε) 3q ≤ E λ * δε 0 L s L T s ds q c q (δε) 3q ≤ e C ′ (δε) 4q c q (δε) 3q ≤ e C ′ c q (δε) q ≤ ε q/2 for δ ≤ 1, for ε ≤ ε 0 = e -C ′′′ with C ′′′ ∈ C.
Therefore, for any q, for any ε ≤ ε 0 , δ ≤ 1,

P( γδ ξ, ξ < ε 3 /64) ≤ P[S ε < δε] ≤ ε q/2
Now we apply Lemma 4.2. We obtain

Eλ * (γ -1 δ ) q = Eλ * (γ δ ) -q ≤ e C for δ ≤ 1, C ∈ C.
We consider now A -1 δ Z δ Āδ . Applying (4.11) and A3, one can prove that

Z t σ(x 0 ) = (1 -κ σ (x 0 )W t )σ(x 0 ) + J t , with J t ∼ O(t). So Z δ Āδ = √ δ(1 -κ σ (x 0 )W δ )σ(x 0 ), 0 + M δ
where M δ is a 2 × 2 matrix with Eλ * (M δ ) q ≤ e C δ 3q/2 , C ∈ C. This estimate follows again from A2.

Since A δ = (δ 1/2 σ(x 0 ), δ 3/2 [σ, b](x 0 )) A -1 δ √ δ(1 -κ σ (x 0 )W δ )σ(x 0 ), 0 = 1 -κ σ (x 0 )W δ 0 0 0 and E|1 -κ σ (x 0 )W δ | q ≤ C ∈ C. Clearly Eλ * A -1 δ M δ q ≤ e C , C ∈ C, so Eλ * (A -1 δ Z δ Āδ ) q ≤ e C , C ∈ C.

Two-sided bound for the density of X δ

In this section we prove the short time density estimate (2.5). We start with the following lemma, which is a density estimate for the "renormalized" random variable F (see (4.10)).

We use Theorem 3.3 to recover estimates for p F from (4.7). We will need the preliminary estimates of Section 4.2.

Lemma 4.4. Recall (4.6), the definition of C, and that, for fixed δ > 0, we set F = Ā-1 δ (X δ -x0 ) and p F is its density.

(1) There exist C, C * , L ∈ C such that the following holds. We set δ * = e -C * . For any fixed r > 0, if δ ≤ δ * exp -Lr 2 , for |z| ≤ r we have

1 C exp -C|z| 2 ≤ p F (z)
(2) There exists δ * ∈ 1/C; C, L ∈ C such that: for any fixed r > 0, if δ ≤ δ * exp -Lr 2 , for |z| ≤ r, we have

p F (z) ≤ e C exp -C -1 |z| 2 .
Proof. We apply Theorem 3.3. Here n = 2, so 32n = 64.

(1) (lower bound) Let L 1 be the constant in Lemma 4.1. We first prove the lower bound for r ≥ 1

√ L 1 =: r. We start checking that C 1 in Remark 3.4 is in C. From(3.5) and r ≥ 1 √ L 1 , m Ur (64) ≤ C 1 + Θ 2 2,64 r 2 ≤ C ∈ C.
Recall that G = Θ + ηδ (Θ), where Θ is a Gaussian with covariance (and also Malliavin covariance matrix) given by

γ Θ = 1 1/2 1/2 1/3 .
This matrix has 2 positive eigenvalues, 0 < λ 1 < λ 2 . Recall also that the Malliavin derivative D is taken with respect to the Brownian motion W driving (2.1). We consider Γ

G,Ur = 1 + (E Ur λ * (γ G ) -p ) 1/p . γ G ξ, ξ = δ 0 D s G, ξ 2 ≥ δ 0 1 2 D s Θ, ξ 2 -D s ηδ (Θ), ξ 2 ds = S 1 + S 2 .
We have

S 2 = δ 0 ∇η δ (Θ)D s Θ, ξ 2 ds = δ 0 D s Θ, ∇η δ (Θ) T ξ 2 ds ≤ λ 2 ∇η δ (Θ) 2 F r |ξ| 2 and S 1 ≥ λ 1 /2, so λ * (γ G ) ≥ λ 1 1 2 - λ 2 λ 1 ∇η δ (Θ) 2 F r . Recall c * (η δ , h) = sup |x|≤2h max i,j |∂ i ηj δ (x)
|, so on the event {U r = 0} we have |Θ| ≤ 4r and ∇η δ (Θ) F r ≤ 2c * (η δ , 16r). We proved in (4.9) that c * (η δ , 16r) Recall (4.3). By using A2, one can show that R δ 2,p ≤ e C δ 2 , with C ∈ C. So, from (6.1) with Āδ instead of A δ ,

≤ 1 4 λ 1 λ 2 , so it follows ∇η δ (Θ) F r ≤ 1 2 λ 1 λ 2 ,
Rδ 64,Ur = Ā-1 δ R δ 64,Ur ≤ e C δ 2 /δ 3/2 = e C √ δ, so there exists C ∈ C such that p F (z) ≥ K 1 exp -L 1 |z| 2 -e C √ δ. We have that, for r ≥ r, if δ ≤ K 1 exp(-C) exp(-L 1 r 2 ) 2 2 = K 1 exp(-C) 2 2 exp(-2L 1 r 2 ) (4.14)
the following lower bound holds for |z| ≤ r:

p F (z) ≥ K 1 2 exp -L 1 |z| 2
and this implies Lemma 4.4-(1) for r ≥ r. We take now 0 < r ≤ r. Remark that exp(-2) = exp(-2L 1 r2 ). We can suppose

δ * ≤ K 1 exp(-C-1) 2 2
, so

δ ≤ K 1 exp(-C -1) 2 2 = K 1 exp(-C) 2 2 exp(-2L 1 r2 ).
If |z| ≤ r, then |z| ≤ r, and we apply what we have just proved for r ≥ r, taking r as radius. The following holds:

p F (z) ≥ K 1 2 exp -L 1 |z| 2 .
(2) (upper bound). The proof of the upper bound follows again from Theorem 3.3. We deal with C 2 exactly as for the lower bound, with the difference that we need a bound for Γ F (64) instead of Γ G,Ur (64). This is proved in Lemma 4.3. As before, we first suppose r ≥ 1

√ L 2
, where L 2 is the constant in Lemma 4.1. We obtain

p F (z) ≤ K 2 exp -L 2 |z| 2 + e C ( √ δ + 1 -U r 1,28 )
C ∈ C. We fix L ∈ C and take δ ≤ exp(-Lr 2 ), and we also need to prove that 1 -U r 1,28 decays as C exp(-C -1 |z| 2 ) for |z| ≤ r. This follows from (3.6):

∃C ∈ C such that 1 -U r 1,28 ≤ i=1,2 P(|Θ i | > r) 1 56 C(1 + 1/r) ≤ Ce -C -1 r 2 .
We have the desired result for r ≥ 1

√ L 2
. Now, we take r ≤ 1

√ L 2 . If |z| ≤ r, then |z| ≤ 1 √ L 2
, and we can apply the result already proved for r ≥ 1

√ L 2 , taking 1 √ L 2
as radius.. Then, we prove as in (1) that the result can be extended to all r > 0.

We are now ready to prove the main theorem in short time.

Theorem 4.5. Suppose A1, A2, A3 hold. Let (X t ) t∈[0,T ] be the solution of (2.1), and for t ∈ [0, T ], let p t (x 0 , y) be the density of X t at y.

(1) There exist C, C * , L ∈ C such that the following holds. We set δ * = e -C * . For any fixed r > 0,

if 0 < δ ≤ δ * exp -Lr 2 , setting x0 = x 0 + b(x 0 )δ, for |y -x0 | A δ (x 0 ) ≤ r we have 1 Cδ 2 exp -C|y -x0 | 2 A δ (x 0 ) ≤ p δ (x 0 , y) (2) There exists δ * ∈ 1/C, L, C ∈ C such that: for any fixed r > 0, if 0 < δ ≤ δ * exp -Lr 2 , setting x0 = x 0 + b(x 0 )δ, for |y -x0 | A δ (x 0 ) ≤ r, we have p δ (x 0 , y) ≤ e C δ 2 exp -C -1 |y -x0 | 2 A δ (x 0 ) .
Proof. We write the expectation of f (X δ ) for a function f with support included in B(0, r).

We get

E[f (X δ )] = E[f (x 0 + Āδ F )] = f (x 0 + Āδ z)p F (z)dz.
With δ, r satisfying the hypothesis of Lemma 4.4, we can apply the previous density estimates to p F . Then the change of variable y = x0 + Āδ z gives that, for |y -x0 | Āδ (x 0 ) ≤ r, we obtain respectively

(1)

1 C| det Āδ (x 0 )| exp -C|y -x0 | 2 Āδ (x 0 ) ≤ p δ (x 0 , y) (2) p δ (x 0 , y) ≤ e C | det Āδ (x 0 )| exp -C -1 |y -x0 | 2 Āδ (x 0 )
where p δ (x 0 , y) is the density of X δ in y. These estimates and the equivalence between | • | A δ and | • | Āδ (see (6.4) in the appendix) imply the thesis. we have that n F,G,Ur ≤ C and R δ 2,p ≤ Cδ 2 , C ∈ C. This holds because, supposing the boundedness of the coefficients, we do not need anymore to use the Gronwall lemma to estimate the moments, but a direct computation is enough. These are standard estimates. In particular, in (4.14) we have 1/ C instead of exp(-C). As a consequence, if we also suppose (4.15), the lower bound in Lemma 4.4 and Theorem 4.5 holds for δ * ∈ 1/C. In particular, taking r * = (L ∨ C) -1/2 in Theorem 4.5-( 1) we can state that:

∃r * , δ * ∈ 1/C, C ∈ C such that for δ ≤ δ * , for |y -x0 | A δ (x 0 ) ≤ r * 1 Cδ 2 ≤ p δ (x 0 , y)
On the other hand, in the upper bound we cannot get rid of the exponential dependence in the constant. Indeed, the estimate on Γ F (64) of Lemma 4.3 is involved (the estimate on the "non-degeneracy" of the rescaled diffusion F ). This has an exponential dependence on the parameters, even supposing (4.15), because it involves the moments of Z t , the inverse of the flow of X, and in this estimate we always need to use Gronwall lemma. Anyways, taking r * = (L) -1/2 in Theorem 4.5-(2) we find that:

∃r * , δ * ∈ 1/C, C ∈ C such that for δ ≤ δ * , for |y -x0 | A δ (x 0 ) ≤ r * p δ (x 0 , y) ≤ e C δ 2
We put together those two inequalities in the following two-sided bound, which is the formulation that will be used to prove the tube estimate:

∃r * , δ * ∈ 1/C, C ∈ C such that for δ ≤ δ * , for |y -x0 | A δ (x 0 ) ≤ r * 1 Cδ 2 ≤ p δ (x 0 , y) ≤ e C δ 2 .
(4.16)

Tube estimates of the diffusion process

As an application of Theorem 4.5 we prove the tube estimate. We suppose in this section σ, b ∈ C 5 (R 2 ) and set, for

x ∈ R 2 , n(x) = 5 k=0 |α|=k |∂ α x b(x)| + |∂ α x σ(x)|, λ(x) = λ * (A(x)).
We consider the diffusion (2.1) on [0, T ], and the skeleton path (2.6): for φ ∈ L 2 [0, T ], let

x t (φ) = x 0 + t 0 σ(x s (φ))φ s ds + t 0 b(x s (φ))ds, for t ∈ [0, T ].
Recall H1, H2, H3, H4:

λ(y) ≥ λ t , n(y) ≤ n t , ∂ σ σ(y) = κ σ (y)σ(y), ∀|y -x t (φ)| < 1, ∀t ∈ [0, T ]
Moreover, defining (R t ) t∈[0,T ] the time-dependent radius of the tube, we suppose that

n • : [0, T ] → [1, ∞) R • : [0, T ] → (0, 1] λ • : [0, T ] → (0, 1] |φ • | 2 : [0, T ] → (0, ∞)
are in ∈ L(µ, h), for some h > 0, µ ≥ 1, where L(µ, h) is the class of non-negative functions which have the property

f (t) ≤ µf (s) for |t -s| ≤ h.
Denote, for 0 ≤ t ≤ T , for K * , q * positive universal constants,

R * t (φ) = exp -K * µn t λ t q * µ 2q * h ∧ inf 0≤δ≤h δ t+δ t |φ s | 2 ds (5.1)
Theorem 5.1. Let (X t ) t∈[0,T ] be a process verifying (2.1), and x t (φ) the skeleton path defined above. If H1, H2, H3, H4 are satisfied, there exist positive universal constants K, q such that exp -

T 0 K µn t λ t q 1 h + 1 R t + |φ t | 2 dt ≤ P sup t≤T |X t -x t (φ)| A R t (xt(φ)) ≤ 1 .
Moreover, there exist positive universal constants K, q, K * , q * such that if R . ≤ R * . (φ)

P sup t≤T |X t -x t (φ)| A R t (xt(φ)) ≤ 1 ≤ exp   - T 0 K µn t λ t q   exp -K * µnt λt q * R t + |φ t | 2   dt   Remark 5.2. Remark that for R t ≤ R * t (φ) ≤ h exp -K * µnt λt q *
the statement in (2.8) is implied by this one.

Proof. A main point in this proof is the choice a sequence of short time intervals in a way that allows us to apply the short time density estimate. This issue is related to the choice of a an "elliptic evolution sequence" in [START_REF] Bally | Lower bounds for densities of Asian type stochastic differential equations[END_REF][START_REF] Bally | Estimates for the probability that a Itô process remains near a path[END_REF]. We fix φ from the beginning and write x t for x t (φ) to have a more readable notation.

We introduce also the time-dependent version of (4.6). For t ∈ [0, T ]

C t = {C t > 0 : C t = exp (K (n t /λ t ) q )) , ∃K, q ≥ 1} (5.2)
The constants defined above depend on σ, b through the ratio n t /λ t locally along the skeleton path. We stress that K, q do not depend on σ, b and do not depend on t ∈ [0, T ]. We will also denote by 1/C t = {δ t > 0 : 1/δ t ∈ C t }.

We start proving the lower bound. STEP 1 (Time grid and notations): We set, for large q 1 , K 1 to be fixed in the sequel,

f R (t) = K 1 µn t λ t q 1 1 h + 1 R t + |φ t | 2 .
We use this function to split the time interval [0, T ] is short-enough sub-intervals (our time grid). Recall H4:

|φ . | 2 , n . , λ . , R . ∈ L(µ, h), ∃µ ≥ 1, 0 < h ≤ 1. This implies f R ∈ L(µ 2q 1 +1 , h).
We also define

δ(t) = inf δ>0 t+δ t f R (s)ds ≥ 1 µ 2q 1 +1 . (5.3) Since δ(t) h = t+δ(t) t 1 h ds ≤ t+δ(t) t f R (s)ds = 1 µ 2q 1 +1 , for any t ∈ [0, T ], δ(t) ≤ h/µ 2q 1 +1 ≤ h. Therefore we can use on the intervals [t, t + δ(t)] the fact that our bounds are in L(µ, h). If 0 < t -t ′ ≤ h, µ 2q 1 +1 f R (t)δ(t) ≥ t+δ(t) t f R (s)ds = 1 µ 2q 1 +1 = t ′ +δ(t ′ ) t ′ f R (s)ds ≥ µ -(2q 1 +1) f R (t)δ(t ′ ), so δ(t ′ )/δ(t) ≤ µ 4q 1 +2
. Also the converse holds, and δ(•) ∈ L(µ 4q 1 +2 , h). We set

ε(t) = t+δ(t) t |φ s | 2 ds 1/2 . We have 1 µ 2q 1 +1 = t+δ(t) t f R (s)ds ≥ t+δ(t) t f R (t) µ 2q 1 +1 ds ≥ δ(t) f R (t) µ 2q 1 +1 , so δ(t) ≤ 1 f R (t) ≤ R t K 1 λ t µn t q 1 . (5.4) 
Similarly, 1

µ 2q 1 +1 ≥ t+δ(t) t K 1 µn s λ s q 1 |φ s | 2 ds ≥ 1 µ 2q 1 K 1 µn t λ t q 1 ε(t) 2 ,
and we can write both

δ(t) ≤ 1 K 1 λ t µn t q 1 , and 
ε(t) 2 ≤ 1 K 1 λ t µn t q 1 . (5.5) 
We set our time grid as

t 0 = 0; t k = t k-1 + δ(t k-1 ),
and introduce the following notation on the grid:

δ k = δ(t k ); ε k = ε(t k ); n k = n t k ; λ k = λ t k ; X k = X t k ; x k = x t k ; R k = R t k .
We also define Xk

= X k + b(X k )δ k ; xk = x k + b(x k )δ k , and for t k ≤ t ≤ t k+1 , Xk (t) = X k + b(X k )(t -t k ); xk (t) = x k + b(x k )(t -t k ).
Moreover we denote

|ξ| k = |ξ| A δ k (x k ) ; C k = C t k ,
and r * k ∈ C k the radius r * associated to (4.16), when taking as initial condition A classical theorem (see [START_REF] Whitney | On the extension of differentiable functions[END_REF]) tells us that we can define σ, b which coincide with σ, b on {y ∈ R 2 : |y -x k | ≤ 1}, which are differentiable as many times as σ, b but on the whole R 2 , and for which n(y) ≤ αn k for all y ∈ R 2 , with α constant.

x 0 = x k . Remark 5.3. Consider D k = {sup t k ≤t≤t k+1 |X t -x t | A R t (xt) ≤ 1}, and Γ k = {|X k -x k | k ≤ r k },
Let X be the strong solution to

Xt = X k + t t k σ( Xs ) • dW s + t t k b( Xs )ds, t ∈ [t k , t k+1 ].
It is clear that

P(D k ∩ Γ k+1 ) = P { sup t k ≤t≤t k+1 | Xt -x t | A R t (xt) ≤ 1} ∩ {| Xt k+1 -x k+1 | k+1 ≤ r k+1 } ,
and therefore we can equivalently prove our estimates supposing that n(y) is globally, and not just locally, bounded by n k . From now on we assume that n(y) ≤ n k for y ∈ R 2 .

STEP 2 (Application of the density estimate): Lemmas 6.3, 6.5, 6.6, 6.7 hold for δ k and ε k small enough, and in particular Lemma 6.7 says that

1 C 1 k |ξ| A δ (x k ) ≤ |ξ| A δ (x k+1 ) ≤ C 1 k |ξ| A δ (x k ) , (5.6) 
for some C 1 k ∈ C k , for any δ ≤ δ k . Recall (5.5), and

R k /µ ≤ R t ≤ µR k , for t k ≤ t ≤ t k+1 , so that R t ≥ δ k for t k ≤ t ≤ t k+1 . Moreover we have |x k+1 -xk | k ≤ C k (ε k ∨ √ δ k )
, and for all t k ≤ t ≤ t k+1 , applying also (6.1)

, |x t -xk (t)| A R t (xt) ≤ C k (ε k ∨ √ δ k ) for t k ≤ t ≤ t k+1 .
Recall again (5.5), and we fix q 3 , K 3 such that, for q 1 ≥ q 3 , K 1 ≥ K 3 , the Lemmas 6.3, 6.5, 6.6, 6.7 hold and

|x k+1 -xk | k ≤ r * k /8 (5.7) |x k (t) -x t | A R t (xt) ≤ 1 4 for all t k ≤ t ≤ t k+1 , (5.8) 
and moreover δ k ≤ δ * k associated to (4.16) with initial condition x k . Now, δ(•) ∈ L(µ 4q 1 +2 , h) implies δ k /δ k+1 ≤ µ 4q 1 +2 and δ k+1 /δ k ≤ µ 4q 1 +2 . This, (5.6) and (6.1) give 1

C 1 k µ 2q 1 +1 |ξ| k ≤ |ξ| k+1 ≤ µ 2q 1 +1 C 1 k |ξ| k , (5.9) 
where C 1 k is in C k , depending on K 3 , q 3 . We now set, for K 2 , q 2 to be fixed in the sequel,

r k = 1 K 2 µ 2q 1 +2q 2 +1 λ k n k q 2 , (5.10) 
and define as we said before

Γ k = {|X k -x k | k ≤ r k }, D k = { sup t k ≤t≤t k+1 |X t -x t | A R t (xt) ≤ 1},
and P k as the conditional probability

P k (•) = P (•|W t , t ≤ t k ; Γ k ) .
We find a lower bound for P k (Γ k+1 ∩ D k ) using our density estimate in short time. We denote p k (X k , y) = p δ k (X k , y) the density of X k+1 in y with respect to P k . We prove that on {y : |y -x k+1 | k+1 ≤ r k+1 } we can apply (4.16) to p k (X k , •) and so there exists

C k ∈ C k such that 1 C k δ 2 k ≤ p k (X k , y) (5.11) We estimate |y -Xk | k ≤ |y -x k+1 | k + |x k+1 -xk | k + |x k -Xk | k .
(5.12)

We already have (5.7). Since we are on |y -x k+1 | k+1 ≤ r k+1 , from (5.9) and the fact that (5.13) From (5.12), (5.7) this implies |y -Xk | k ≤ r * k /4. We also have |x k -X k | k ≤ r k , so we can also fix K 2 , q 2 such that r k ≤ α in Lemma 6.5. Therefore [START_REF] Cattiaux | Hypoelliptic non-homogeneous diffusions[END_REF]) holds (which means that (5.11) holds). Now, from Lemma 6.5 and (5.9)

r k+1 /r k ≤ µ 2q 2 |y -x k+1 | k ≤ C 1 k µ 2q 1 +1 |y -x k+1 | k+1 ≤ C 1 k µ 2q 1 +1 r k+1 ≤ C 1 k µ 2q 1 +2q 2 +1 r k ≤ C 1 k K 2 λ k n k q 2 . It also holds |x k -Xk | k ≤ C k |x k -X k | k ≤ C k r k , for some C k ∈ C k . Similarly, since R t ≥ δ k , from (6.1) |x k (t) -Xk (t)| A R t (xt) ≤ C k r k ,
1 4 |ξ| k ≤ |ξ| A δ k (X k ) ≤ 4|ξ| k . So |y -Xk | A δ k (X k ) ≤ r * k and (4.
{| • -x k+1 | A δ k (X k ) ≤ r k+1 /(4C 1 k µ 2q 1 +1 )} ⊂ {| • -x k+1 | k ≤ r k+1 /(C 1 k µ 2q 1 +1 )} ⊂ {| • -x k+1 | k+1 ≤ r k+1 }, and r k+1 /(4C 1 k µ 2q 1 +1 ) ≥ r k /(4C 1 k µ 2q 1 +2q 2 +1 ) = 1 4C 1 k K 2 µ 4q 1 +4q 2 +2 λ k n k q 2 . So Leb(| • -x k+1 | k+1 ≤ r k+1 ) ≥ δ 2 k det A(X k ) 1 4C 1 k K 2 µ 4q 1 +4q 2 +2 λ k n k q 2 2
. Now, from H1, det A(X k ) ≥ λ k . So, from (5.11),

P k (Γ k+1 ) ≥ 1 C k 1 4C 1 k K 2 µ 4q 1 +4q 2 +2 λ k n k q 2 2 λ k
where C k ∈ C k is the constant in (4.16). This implies

2µ -8q 1 exp(-K 4 (log µ + log n k -log λ k )) ≤ P k (Γ k+1 )
for some constant K 4 (depending on K 2 , K 3 , q 2 , q 3 ; on the contrary, we keep explicit the dependence in q 1 , which is not fixed yet). STEP 3 (Concatenation): Consider now t k ≤ t ≤ t k+1 . Recall the definition

D k = sup t k ≤t≤t k+1 |X t -x t | A R t (xt) ≤ 1 ,
and introduce

E k = sup t k ≤t≤t k+1 |X t -Xk (t)| A R t (xt) ≤ 1 2 .
We decompose

|X t -x t | A R t (xt) ≤ |X t -Xk (t)| A R t (xt) + | Xk (t) -xk (t)| A R t (xt) + |x k (t) -x t | A R t (xt) ,
and, from the previous part of the proof, (5.8) (4.4) gives that the diffusion moves with speed δ

1/2 k in the direction of σ(x k ), δ 3/2 k otherwise. Taking the |•| A R t (xt)
norm we account precisely of this fact. Applying the exponential martingale inequality we find that

P k (E c k ) ≤ exp - 1 K 5 λ k µn k q 5 R k δ k
for some constants K 5 , q 5 . From (5.4), R k /δ k ≥ K 1 (µn k /λ k ) q 1 . We recall that λ k ≤ 1 and n k ≥ 1, so choosing and fixing now q 1 , K 1 large enough we conclude

P k (E c k ) ≤ µ -8q 1 exp(-K 4 (log µ + log n k -log λ k )) ≤ 1 2 P k (Γ k+1 ), so P k (Γ k+1 ∩ D k ) ≥ P k (Γ k+1 ∩ E k ) ≥ P k (Γ k+1 ) -P k (E c k ) ≥ 1 2 P k (Γ k+1 ) ≥ exp (-K 6 (log µ + log n k -log λ k )) , (5.14) 
for some constant K 6 . Let now N (T ) = max{k : t k ≤ T }. From Definition (5.3)

T 0 f R (t)dt ≥ N (T ) k=1 t k t k-1 f R (t)dt ≥ N (T ) µ 2q 1 +1 .
From (5.14),

P sup t≤T |X t -x t (φ)| A R t (xt(φ)) ≤ 1 ≥ P   N (T ) k=1 Γ k+1 ∩ D k   ≥ N (T ) k=1 exp(-K 6 (log µ + log n k -log λ k )) = exp   -K 6 N (T ) k=1 log µ + log n k -log λ k   . Since N (T ) k=1 (log µ + log n k -log λ k ) = µ 2q 1 +1 N (T ) k=1 t k +1 t k f R (s)ds(log µ + log n k -log λ k ) ≤ T 0 µ 2q 1 +1 f R (t) log µ 3 n t λ t dt,
the lower bound follows. STEP 4 (Upper bound): We define, with the same K 1 , q 1 as in STEP 1,

g R (t) = K 1 µn t λ t q 1   exp -K * µnt λt q * µ 2q * R t + |φ t | 2   Because of (5.1), for all t ∈ [0, T ], exp -K * µnt λt q * µ 2q * R t ≥ 1 h (5.15)
We define now a new δ(t)

δ(t) = inf δ>0 t+δ t g R (s)ds ≥ 1 µ 2q 1 +1
and, as before,

ε(t) = t+δ(t) t |φ s | 2 ds 1/2 .
As in STEP 1, using also (5.15), we can check that (5.5) holds also for this choice of δ:

δ(t) ≤ h K 1 λ t µn t q 1 ≤ 1 K 1 λ t µn t q 1 , and ε(t) 2 ≤ 1 K 1 λ t µn t q 1 .
In particular, δ(t) ≤ h. With these definitions we set a time grid {t k : k = 0, . . . , N (T )} and all the associated quantities as in STEP 1. As we did for the lower bound, since we estimate the probability of remaining in the tube for any t ∈ [t k , t k+1 ], we can suppose that the bound n(y) ≤ n k holds ∀y ∈ R 2 . The short time density estimate (4.16) holds again.

Recall now that R . ∈ L(µ, h), and this gives the analogous to (5.9):

1 C 1 k √ µ |ξ| A R k (x k ) ≤ |ξ| A R k+1 (x k+1 ) ≤ C 1 k √ µ|ξ| A R k (x k ) We define ∆ k = {|X k -x k | A R k (x k ) ≤ 1},
Pk as the conditional probability Pk (•) = P (•|W t , t ≤ t k ; ∆ k ). Now, since δ(t) ≤ h, we can apply the fact that R, λ, n ∈ L(µ, h) and

t+δ(t) t K 1 µn s λ s q 1 |φ| 2 s ds ≤ µ 2q 1 K 1 µn t λ t q 1 t+δ(t) t |φ| 2 s ds, t+δ(t) t K 1 µn s λ s q 1 exp -K * µns λs q * µ 2q * R s ds ≤ µ 2q 1 +1 K 1 µn t λ t q 1 exp -K * µn t λ t q * δ(t) R t .
Recall now (5.1)

R t ≤ R * t (φ) = exp -K * µn t λ t q * µ 2q * inf 0≤δ≤h δ t+δ t |φ s | 2 ds , which implies t+δ(t) t |φ s | 2 ds ≤ exp -K * µn t λ t q * δ(t) R t
We obtain

1 = µ 2q 1 +1 t+δ(t) t g R (s)ds ≤ 2µ 4q 1 +2 K 1 µn t λ t q 1 exp -K * µn t λ t q * δ(t) R t so R t δ(t) ≤ 2µ 4q 1 +2 K 1 µn t λ t q 1 exp -K * µn t λ t q *
(5.16)

As we did in STEP 1, if q * , K * are large enough, R k is small enough and the upper bound for the density holds on ∆ k+1 . Because of (5.6),

Leb(| • -x k | A R k (x k+1 ) ≤ 1) ≤ Leb(| • -x k | A R k (x k ) ≤ 1)(C 1 k ) 2 = (C 1 k ) 2 det(A(x k ))R k 2 .
Now, using the density estimate,

Pk (∆ k+1 ) ≤ (C 1 k ) 2 det(A(x k )) e C k R k δ k 2 .
where C k is the constant in the upper bound of (4.16). Recall (5.16), for t

= t k R k δ k ≤ 2µ 4q 1 +2 K 1 µn k λ k q 1 exp -K * µn k λ k q *
so we chose now K * , q * large enough to have

Pk (∆ k+1 ) ≤ exp(-K 7 )
for a constant K 7 > 0. From the definition of N (T )

T 0 g R (t)dt = N (T ) k=1 t k t k-1 g R (t)dt = N (T ) µ 2q 1 +1 ≤ N (T ).
As before

P sup t≤T |X t -x t (φ)| A R t (xt(φ)) ≤ 1 ≤ N (T ) k=1 Pk (∆ k+1 ) ≤ N (T ) k=1 exp(-K 7 ) = exp(-K 7 N (T )) ≤ exp -K 7 T 0 g R (t) ,
and we have the upper bound.

6 Matrix norm and control metric

Matrix norms

In this work we use a number of properties of norms associated to the matrix A and A R .

Recall that in general we can associate a norm to a matrix M with full row rank via

|y| M = (M M T ) -1 y, y .
Recall that, for R > 0,

A = (σ, [σ, b]) , A R = R 1/2 σ, R 3/2 [σ, b] Lemma 6.1. For every y ∈ R 2 and 0 < R ≤ R ′ ≤ 1, (R/R ′ ) 1/2 |y| A R ≥ |y| A R ′ ≥ (R/R ′ ) 3/2 |y| A R (6.1) 1 R 1/2 λ * (A) |y| ≤ |y| A R ≤ 1 R 3/2 λ * (A) |y| (6.2)
Proof. Writing explicitly the inequalities (6.1), we easily see that they are verified if 0

< R ≤ R ′ ≤ 1. Taking R ′ = 1, we have R 1/2 |y| A R ≥ |y| A ≥ R 3/2 |y| A R and so 1 R 1/2 λ * (A) |y| ≤ |y| A R ≤ 1 R 3/2 λ * (A) |y| Remark 6.2.
Recall the following properties of matrices:

∀ξ, C |ξ| 2 B ≥ |ξ| 2 A ⇔ C BB T -1 ≥ AA T -1 ⇔ BB T ≤ C AA T and, denoting with M i the columns of M , M M T ξ, ξ = i M i , ξ 2 , so that λ * (M ) 2 = inf |ξ|=1 i M i , ξ 2 and λ * (M ) 2 = sup |ξ|=1 i M i , ξ 2 Taking M = A(x) = (σ(x), [σ, b](x)) we have in particular that λ * (A(x)) 2 |ξ| 2 ≤ σ(x), ξ 2 + [σ, b](x), ξ 2 ≤ λ * (A(x)) 2 |ξ| 2 ∀ξ ∈ R 2 (6.3) 
We prove now some equivalences between norms that will be needed especially in the concatenation along the tube. We state them for t k = t 0 = 0 to lighten the notation. Recall that x 0 is the initial condition of (2.1), and that in the concatenation (Section 5) we have

H1 λ * (A(x)) ≥ λ 0 , ∀|x -x 0 | < 1 H2 n(x) ≤ n 0 , ∀x ∈ R 2 (this is justified in STEP 1 of the proof) H3 ∂ σ σ(x) = κ σ (x)σ(x), ∀|x -x 0 | < 1, |κ σ | ≤ n 0 , |∇κ σ | ≤ n 0
Moreover, we recall that λ 0 ≤ 1 and n 0 ≥ 1. In (5.2) we define a class of constants that in the case t = 0 is

C 0 = {C > 0 : C = (K (n 0 /λ 0 ) q )) , ∃K, q ≥ 1} Lemma 6.3. There exists C ∈ C 0 , δ * ∈ 1/C 0 such that for δ ≤ δ * , with x0 = x 0 + b(x 0 )δ, for any ξ ∈ R 2 1 C |ξ| A δ (x 0 ) ≤ |ξ| Āδ (x 0 ) ≤ C|ξ| A δ (x 0 ) (6.4) 1 C |ξ| A δ (x 0 ) ≤ |ξ| A δ (x 0 ) ≤ C|ξ| A δ (x 0 ) (6.5)
Remark 6.4. This lemma is used also in Section 4, when C t has not yet been defined. It is clear that in that case the constants must be taken in C defined in (4.6).

Proof. We take M = A δ (x 0 ) and M = Āδ (x 0 ) in Remark 6.2. Recall that λ 0 ≤ 1 and n 0 ≥ 1 and notice that

|∂ b σ(x 0 )| ≤ 4n 2 0 ≤ 4n 2 0 λ * (A(x 0 )) λ * (A(x 0 )) ≤ Cλ * (A(x 0 )), with C ∈ C 0 so, from (6.3) δ 3 ∂ b σ(x 0 ), ξ 2 ≤ δ 3 Cλ 2 * (A(x 0 ))|ξ| 2 ≤ C(δ σ(x 0 ), ξ 2 + δ 3 [σ, b](x 0 ), ξ 2 ).
We have

δ σ(x 0 ) + δ∂ b σ(x 0 ), ξ 2 + δ 3 [σ, b](x 0 ), ξ 2 ≤ 2δ σ(x 0 ), ξ 2 + 2δ 3 ∂ b σ(x 0 ), ξ 2 + δ 3 [σ, b](x 0 ), ξ 2 ≤ C(δ σ(x 0 ), ξ 2 + δ 3 [σ, b](x 0 ), ξ 2 ), so |ξ| 2 A δ (x 0 ) ≤ C|ξ| 2 Āδ (x 0 ) . Analogously, δ σ(x 0 ), ξ 2 + δ 3 [σ, b](x 0 ), ξ 2 ≤ C( δσ(x 0 ) + δ∂ b σ(x 0 ), ξ 2 + δ 3 [σ, b](x 0 ), ξ 2 ), so |ξ| 2 Āδ (x 0 ) ≤ C|ξ| 2 A δ (x 0 ) . From |σ(x 0 ) -σ(x 0 )| = |σ(x 0 + b(x 0 )δ) -σ(x 0 )| ≤ δ 0 |∇σ(x 0 + b(x 0 )t)b(x 0 )|dt ≤ Cδ,
applying again Remark 6.2 as in the previous point, also (6.5) follows.

The following lemma establish the equivalence of matrix norms of this kind when the matrix is taken in two points that are close in such matrix norms. Since A δ (x) is invertible, ∇σ(x)(x -y) = ∇σ(x)A δ (x)A -1 δ (x)(x -y). We take now α ≤ 1/(C 4 C 2 1 ), and we conclude that From Remark 6.2 we have |ξ| A δ (x) ≤ 4|ξ| A δ (y) . The converse inequality follows from an analogous reasoning. Remark that all the conditions we need on α are satisfied taking α ∈ 1/C 0 small enough, since |x -x 0 | < 1 and H1, H2, H3.

The control metric

Recall (2.1), (2.2), (2.3). In the spirit of [START_REF] Kusuoka | Applications of the Malliavin calculus[END_REF], we want to express our results is some control norm. Let Ω = {x ∈ R 2 : λ(x) = λ * (A(x)) > 0}

A natural way to associate a quasi-distance to the matrix norm | • | A R (•) used in this paper is to define d(x, y) < √ R ⇔ |x -y| A R (x) < 1.

(we take √ R because it is the"diffusive" regime). With this definition, d is a quasi-distance on Ω, verifying the following properties (see [START_REF] Nagel | Balls and metrics defined by vector fields. I. Basic properties[END_REF]): 

In particular if d 1 is a distance and d 2 is equivalent with d 1 then d 2 is a quasi-distance.

On the other hand, the distance usually considered in the framework of hypoelliptic stochastic differential equations is the control distance defined as follows: denote, for x, y ∈ Ω, C(x, y) = {φ ∈ L 2 (0, 1) : dv s = σ(v s )φ s ds, x = v 0 , y = v 1 }.

(6.7)

The control distance d c between x and y is : φ ∈ C(x, y) .

Geometrically speaking, this corresponds to take the geodesic (i.e. the length-minimizing curve) joining x and y on the sub-Riemannian manifold associated with the diffusion coefficient σ. In our case this notion looks inadequate: we are supposing just a weak Hörmander condition, and this means that we have to use the drift coefficient b to generate the whole space R We generalize (6.7) to C A (x, y) = {φ ∈ L 2 ((0, 1), R 2 ) : dv s = A(v s )φ s ds, x = v 0 , y = v 1 }.

A classic result by Carathéodory says that for any x, y ∈ Ω there exist a piecewise smooth φ ∈ C A (x, y). We set d c (x, y) = inf { φ 1,3 : φ ∈ C A (x, y)}

We are interested in establishing an equivalence between d, the quasi-distance defined via the matrix-norm, and d c , the quasi-distance in terms of the control. Lemma 6.9. Let ξ ∈ Ω. Suppose that there exists a neighborhood U ξ of ξ such that for all x ∈ U ξ : Then there exist a neighborhood V ξ of ξ and a constant C ξ such that, for any x, y ∈ V ξ Proof. We use in this proof some notions on similar metrics and pseudo-metrics for which we refer to [START_REF] Nagel | Balls and metrics defined by vector fields. I. Basic properties[END_REF]. For any φ ∈ L ∞ ((0, T ), R 2 ) we set In [START_REF] Nagel | Balls and metrics defined by vector fields. I. Basic properties[END_REF] the quasi-distances ρ and ρ 2 are defined in a slightly different way, but clearly equivalent to ours. It is also proved that ρ and ρ 2 are locally equivalent. We use here only the trivial inequality ρ ≤ ρ 2 . Remark that the difference between ρ and d c is that we take φ 1,3,∞ instead of φ 1,3 , so d c ≤ ρ follows easily from the fact that the L 2 (0, 1) norm is dominated by the L ∞ (0, 1) norm. We prove that, for fixed ξ, there exist V ξ and C ξ such that

d(x, y) < √ R ⇒ ρ 2 (x, y) < C ξ √ R,

. ( 3 . 18 )

 318 Now, using (3.3) with G = 1,

  and therefore λ * (γ G ) ≥ λ 1 /4, which implies Γ G,Ur (64) ≤ C. Recall (4.4) and (4.10). Standard computations usign A2 and Gronwall lemma give n F,G,Ur (p) ≤ e C , C ∈ C, so from Theorem 3.3 we have that ∃C ∈ C such that for |z| ≤ r p F (z) ≥ p G,Ur (z) -e C Rδ 64,Ur ≥ K 1 exp -L 1 |z| 2 -e C Rδ 64,Ur .

Remark 4 . 6 .

 46 In the proof of Lemma 4.4 we have used A2, the assumption of uniformly bounded derivatives, to say that n F,G,Ur (p) ≤ e C and R δ 2,p ≤ e C δ 2 , C ∈ C. If we also ask that |σ(x)| + |b(x)| ≤ ρ, ∀x ∈ R 2 (4.15)

Lemma 6 . 5 .

 65 Consider x 0 , x, y ∈ R 2 , with |x -x 0 | < 1. There exist α ∈ 1/C 0 such that if and |x -y| A δ (x) ≤ α,1 4 |ξ| A δ (x) ≤ |ξ| A δ (y) ≤ 4|ξ| A δ (x) , ∀ξ ∈ R 2 Proof. Remark that (6.2) implies |x -y| ≤ δ 1/2 C 1 |x -y| A δ (x) ≤ αC 1 δ 1/2 ≤ δ 1/2 for α ≤ 1/C 1 . A Taylor development gives σ(x) -σ(y) = ∇σ(x)(x -y) + O(|x -y| 2 ), so σ(x), ξ 2 ≤ 4 σ(y), ξ 2 + 4 ∇σ(x)(x -y), ξ 2 + C 2 |x -y| 4 |ξ| 2 .

From 4 1 α 4 δ 2 |ξ| 2 α ≤ 1 8C 3 C 2 C 2 1 ,

 421321 Cauchy-Schwartz inequality and |A-1 δ (x)(x -y)| ≤ α, | ∇σ(x)(x -y), ξ | = | A -1 δ (x)(x -y), (∇σ(x)A δ (x)) T ξ | ≤ α|(∇σ(x)A δ (x)) T ξ|We are supposing H3, so ∂ σ σ = κ σ σ holds in x, and∇σ(x)A δ (x) = ∇σ(x)(δ 1/2 σ(x), δ 3/2 [σ, b](x)) = (δ 1/2 κ σ (x)σ(x), δ 3/2 ∂ [σ,b] σ(x)), so |(∇σ(x)A δ (x)) T ξ| 2 = δκ 2 σ (x) σ(x), ξ 2 + δ 3 ∂ [σ,b] σ(x), ξ 2 and therefore ∇σ(x)(x -y), ξ 2 ≤ α 2 (δκ 2 σ (x) σ(x), ξ 2 + δ 3 ∂ [σ,b] σ(x), ξ 2 ) ≤ C 3 α 2 δ σ(x), ξ 2 + C 3 α 2 δ 3 |ξ| 2 Now, C 2 |x -y| 4 |ξ| 2 ≤ C 2 C 4 1 α 4 δ 2 |ξ| 2 So σ(x), ξ 2 ≤ 4 σ(y), ξ 2 + 4C 3 α 2 δ σ(x), ξ 2 + 4C 3 α 2 δ 3 |ξ| 2 + C 2 CTaking this implies σ(x), ξ 2 ≤ 8 σ(y), ξ 2 + αδ 2 |ξ| 2 . In the direction [σ, b] we have [σ, b](x) -[σ, b](y) = O(|x -y|) [σ, b](x), ξ 2 ≤ 2 [σ, b](y), ξ 2 + C 4 |x -y| 2 |ξ| 2 ≤ 2 [σ, b](y), ξ 2 + C 4 C 2 1 α 2 δ|ξ| 2 .

  δ σ(x), ξ 2 + δ 3 [σ, b](x), ξ 2 ≤ 8δ σ(y), ξ 2 + 2δ 3 [σ, b](y), ξ 2 + 2αδ 3 |ξ| 2 .Using now (6.3) and H1,|ξ| 2 ≤ C 5 ( σ(y), ξ 2 + [σ, b](y), ξ 2 ) So taking α ≤ 4/C 5 we have δ σ(x), ξ 2 + δ 3 [σ, b](x), ξ 2 ≤ 16δ σ(y), ξ 2 + 16δ 3 [σ, b](y), ξ 2 .

1 C d 1

 11 i) for every x ∈ Ω, for every r > 0, the set {y ∈ Ω :d(x, y) < r} is open ii) d(x, y) = 0 if and only if x = y iii) for every compact set K ⋐ Ω there exists C > 0 such that d(x, y) ≤ C d(x, z)+d(z, y)holds for every x, y, z ∈ KWe say that two quasi-distances d 1 : Ω × Ω → R + and d 2 : Ω × Ω → R + are equivalent if for every compact set K ⋐ Ω there exists a constant C such that for every x, y ∈ K (x, y) ≤ d 2 (x, y) ≤ Cd 1 (x, y).

2 .Definition 6 . 8 .

 268 Therefore any reasonable associated distance should incorporate b as well. Moreover it should account of the different speed associated to the vector field [σ, b]. This is the reason for the following definition. We first introduce a function which accounts of the different scale of propagation in the direction [σ, b]. For φ = (φ 1 s , φ 2 s ) ∈ L 2 ((0, 1), R 2 ),

  A1' λ * (A(x)) > λ ξ > 0, A2' 0≤|α|≤5 |∂ α x σ(x)| + |∂ α x b(x)| ≤ ρ ξ , A3' ∂ σ σ(x) = κ σ (x)σ(x), where κ σ is a differentiable scalar function, |κ σ (x)| ≤ ρ ξ and |∇κ σ (x)| ≤ ρ ξ .

1 8 ) 6 . 10 .

 18610 C ξ d(x, y) ≤ d c (x, y) ≤ C ξ d(x, y).(6.Remark This implies, using the fact that every open cover of a compact has a finite subcover, Corollary 2.2. Moreover, again via a standard compactness argument, we have that if A1', A2', A3' hold for any ξ ∈ Ω, then d and d c are equivalent quasi-distances on Ω.

  , y) = inf { φ 1,3,∞ : φ ∈ C A (x, y)}It is also possible to allow only constant linear combinations of the vector fields:CA (x, y) = {θ ∈ R 2 : dv s = A(v s )θds, x = v 0 , y = v 1 }(6.9)Analogously, we defineρ 2 (x, y) = inf |θ 1 | + |θ 2 | 1/3 : θ ∈ CA (x, y)

  where r k is radius smaller than 1 that will be defined in the sequel. We denote P k the conditional probabilityP k (•) = P (•|W t , t ≤ t k ; Γ k )We will lower boundP sup t≤T |X t -x t (φ)| A R t (xt(φ)) ≤1 computing the product of the probabilities P k (D k ∩ Γ k+1 ), and this computation relies on the application of the density estimate in short time. Remark that A1, A3 are local assumption, therefore it is enough to ask for H1, H3 to apply Theorem 4.5. What about A2 (global) and H2 (local)? Suppose that we have a process X which, for some external reasons, verifies (2.1) for t k ≤ t ≤ t k+1 , and such that sup t k ≤t≤t k+1 |X t -x t | A R t (xt) ≤ 1. From H2 n(y) ≤ n k for {y ∈ R 2 : |y -x k | ≤ 1}

  for all t k ≤ t ≤ t k+1 . Recalling (5.10), we can fixK 2 , q 2 such that |y -x k+1 | k ≤ r * k /16, |x k -Xk | k ≤ r * k /16, and | Xk (t) -xk (t)| A R t (xt) ≤ 1/4, for all t k ≤ t ≤ t k+1 .

  gives |x k (t)-x t | A R t (xt) ≤ 1/4, and (5.13) gives| Xk (t) -xk (t)| A R t (xt) ≤ 1/4. So |X t -x t | A R t (xt) ≤ |X t -Xk (t)| A R t (xt) + 1/2,and therefore E k ⊂ D k . Now we have to estimate E k . A development of X t -Xk (t) similar to
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We prove now that moving along a control φ ∈ L 2 [0, T ] for a small time, the trajectory remains close to the initial point in the A δ -norm. Define, for fixed δ,

. Recall that we have

Proof. Via computations analogous to Decomposition 4.4 it is possible to write

where

Remark that, by Hölder inequality,

Proof. Recall x0 = x 0 + δb(x 0 ). Applying in this order (6.5), (6.4), Lemma 6.6 we obtain

Now, choosing δ * , ε * small enough, we can apply Lemma 6.5 to the points x δ , x0 , and

Now again (6.5) concludes the proof.

for x, y ∈ V ξ . Since x, y ∈ V ξ , we can suppose |x -y| < γ ξ small. By definition, d(x, y) < √ R means |x -y| A R (x) < 1. We prove that this implies the existence of θ ∈ CA (x, y) with

with v satisfying dv s = A(v s )θds, v 0 = x. Remark that Φ : R 2 → R 2 , Φ(0) = 0 and ∇Φ(0) = A(x), which is non-degenerate because of A1'. Therefore it is locally invertible: there exist two neighborhoods of 0 such that Φ is a diffeomorphism from one to the other, and therefore for y -x in the neighborhood in the image we can find θ such that Φ(θ) = y -x. Moreover, from the fact that A1' and A2' are uniform around ξ, the size of the neighborhoods can be taken uniformly in x. Therefore we can find a neighborhood of ξ such that for given x, y in this neighborhood, there exist θ for which Φ(θ) = y -x. Again from A1' and A2', we can also suppose that |θ| ≤ C ξ 1 |Φ(θ)|. So, there exists V ξ neighborhood of ξ such that, for x, y ∈ V ξ , there exists θ ∈ CA (x, y), and moreover

We now show

. Now, with a development similar to (4.5), we can write 

(we have used again A3'). So

We now prove

, which implies