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Diffusions under a local strong Hörmander condition. Part II: tube estimates

We study lower and upper bounds for the probability that a diffusion process in R n remains in a tube around a skeleton path up to a fixed time. We assume that the diffusion coefficients σ 1 , . . . , σ d may degenerate but they satisfy a strong Hörmander condition involving the first order Lie brackets around the skeleton of interest. The tube is written in terms of a norm which accounts for the non-isotropic structure of the problem: in a small time δ, the diffusion process propagates with speed √ δ in the direction of the diffusion vector fields σ j and with speed δ = √ δ × √ δ in the direction of [σ i , σ j ]. The proof consists in a concatenation technique which strongly uses the lower and upper bounds for the density proved in the part I.

Introduction

We consider a diffusion process in R n solution of

dX t = d j=1 σ j (t, X t ) • dW j t + b(t, X t )dt, X 0 = x 0 .
where W = (W 1 , ..., W d ) is a standard Brownian motion and •dW j t denotes the Stratonovich integral. We assume suitable regularity properties for σ j , b : R + × R n → R n (see (2.1) for details). We also assume that the coefficients σ j , b verify the strong Hörmander condition of order one (that is, involving the σ j 's and their first order Lie brackets [σ i , σ j ]'s) locally around a skeleton path dx t (φ) = d j=1 σ j (t, x t (φ))φ j t dt + b(t, x t (φ))dt, x 0 (φ) = x 0 (this is formally written in property (H 2 ) of (2.11)). In such a framework, in this paper we find exponential lower and upper bounds for the probability that the diffusion X remains in a small tube around the skeleton path x(φ).

Several works have considered this subject, starting from Stroock and Varadhan in [START_REF] Stroock | On the support of diffusion processes with applications to the strong maximum principle[END_REF],

where such result is used to prove the support theorem for diffusion processes. In their work, the tube is written in terms of the Euclidean norm, but later on different norms have been used to take into account the regularity of the trajectories ( [START_REF] Ben Arous | Hölder norms and the support theorem for diffusions[END_REF][START_REF] Friz | Lvy's area under conditioning[END_REF]) and their geometric structure ( [START_REF] Pigato | Tube estimates for diffusion processes under a weak Hörmander condition[END_REF]). This kind of problems is also related to the Onsager-Machlup functional and large or moderate deviation theory, see e.g. [START_REF] Capitaine | On the onsager-machlup functional for elliptic diffusion processes[END_REF][START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF][START_REF] Guillin | Averaging principle of sde with small diffusion: Moderate deviations[END_REF].

In this work, we construct the tube using a distance coming from a norm which reflects the non isotropic structure of the problem, i.e. the fact that the diffusion process X t propagates with speed √ t in the direction of the diffusion vector fields σ j and with speed t = √ t × √ t in the direction of [σ i , σ j ]. We also prove that this distance is locally equivalent with the standard control (Carathéodory) metric. A key step in proving our tube estimates is given by the use of the density estimates provided in [START_REF] Bally | Diffusions under a local strong Hörmander condition. Part I: density estimates[END_REF]. Generally speaking, there is a strong connection between tube and density estimates. In this work we use a concatenation of short time density estimates to prove a tube estimate, but one may proceed in reverse order: tubes estimates, for instance, can be used to provide lower bounds for the density. In [START_REF] Bally | Estimates for the probability that a itô process remains near a path[END_REF], tube estimates for locally elliptic diffusions are proved, and applied to find lower bounds for the probability to be in a ball at fixed time and bounds for the distribution function. In [START_REF] Bally | Some estimates in extended stochastic volatility models of heston type[END_REF], this is applied to lognormal-like stochastic volatility models, finding estimates for the tails of the distribution, and estimates on the implied volatility. The paper is organized as follows. In Section 2, we state our main result, given in Theorem 2.2, and we propose some examples of application. The proof of Theorem 2.2 is developed in Section 3. In Section 4 we study the local equivalence between the control metric and the distance we use to define the tube when the diffusion coefficients depend on the space variable only. As a straightforward consequence, we can state our tube estimate result in terms of the Carathéodory metric (see Theorem 2.7).

Notation and main results

We recall the notation from [START_REF] Bally | Diffusions under a local strong Hörmander condition. Part I: density estimates[END_REF] and introduce some new ones. We consider vector fields σ j , b : R + × R n → R n which are four time differentiable in x ∈ R n and one time differentiable in time t ∈ R + , and suppose that the derivatives with respect to the space x ∈ R n are one time differentiable with respect to t. Hereafter, for k ≥ 1, α = (α 1 , . . . , α k ) ∈ {1, ..., n} k represents a multi-index with length |α| = k and ∂ α

x = ∂ xα 1 • • • ∂ xα k .
We allow the case k = 0 by setting α = ∅ (the void multiindex), |α| = 0 and ∂ α x = Id. For (t, x) ∈ R + × R n we denote by n(t, x) a constant such that ∀s ∈ [(t -1) ∨ 0, t + 1], ∀y ∈ B(x, 1) one has (2.1)

For f, g : R + × R n → R n we define the directional derivative (w.r.t. the space variable x) ∂ g f (t, x) = n i=1 g i (t, x)∂ x i f (t, x), and we recall that the Lie bracket (again w.r.t. the space variable) is defined as [g, f ](t, x) = ∂ g f (t, x) -∂ f g(t, x). Let M ∈ M n×m be a matrix with full row rank. We write M T for the transposed matrix, and M M T is invertible. We denote by λ * (M ) (respectively λ * (M )) the smallest (respectively the largest) singular value of M . We recall that singular values are the square roots of the eigenvalues of M M T , and that, when M is symmetric, singular values coincide with the absolute values of the eigenvalues of M . In particular, when M is a covariance matrix, λ * (M ) and λ * (M ) coincide with the smallest and the largest eigenvalues of M . We consider the following norm on R n :

|y| M = (M M T ) -1 y, y . (2.2)
We introduce the n × d 2 matrix A(t, x) defined as follows. We set m = d 2 and define the function l(i, p) = (p -1)d + i ∈ {1, . . . , m}, p, i ∈ {1, . . . , d}.

(

Notice that l(i, p) is invertible. For l = 1, . . . , m, we set the (column) vector field A l (t, x) in R n as follows:

A l (t, x) = [σ i , σ p ](t, x) if l = l(i, p) with i = p, = σ i (t, x) if l = l(i, p) with i = p (2.4)
and we set the n×m matrix A(t, x) to be the one having A 1 (t, x), . . . , A m (t, x) as its columns, that is

A(t, x) = [A 1 (t, x), . . . , A m (t, x)]. (2.5) 
We denote by λ(t, x) the smallest singular value of A(t, x), so

λ(t, x) 2 = λ * (A(t, x)) 2 = inf |ξ|=1 m i=1 A i (t, x), ξ 2 . (2.6)
For fixed R > 0 we define the m × m diagonal scaling matrix D R as

(D R ) l,l = R if l = l(i, p) with i = p, = √ R if l = l(i, p) with i = p (2.7)
and the scaled directional matrix

A R (t, x) = A(t, x)D R . (2.8)
Notice that the lth column of the matrix A R (t, x) is given by

√ Rσ i (t, x) if l = l(i, p) with i = p, and if i = p then the lth column of A R (t, x) is R[σ i , σ p ](t, x) = [ √ Rσ i , √ Rσ p ](t, x). For a control φ ∈ L 2 ([0, T ],
R n ) we consider the skeleton x(φ) associated to (2.12), that is,

dx t (φ) = d j=1 σ j (t, x t (φ))φ j t dt + b(t, x t (φ))dt, x 0 (φ) = x 0 .
(2.9)

In the following, we also need a function R : [0, T ] → (0, 1] that will play the role of a radius function (for the tube around x(φ)).

We consider now a "regularity property" already introduced in [START_REF] Bally | Lower bounds for densities of Asian type stochastic differential equations[END_REF], which is needed to control the growth of certain quantities along the skeleton path. For µ ≥ 1 and 0 < h ≤ 1 we denote by L(µ, h) the following class of functions:

L(µ, h) = f : R + → R + such that f (t) ≤ µf (s) for |t -s| ≤ h . (2.10) 
From now on, we make use of the following hypotheses: there exist some functions n : [0, T ] → [1, ∞) and λ : [0, T ] → (0, 1] such that for some µ ≥ 1 and 0 < h ≤ 1 we have

(H 1 ) n(t, x t (φ)) ≤ n t , ∀t ∈ [0, T ], (H 2 ) λ(t, x t (φ)) ≥ λ t , ∀t ∈ [0, T ], (H 3 ) R . , |φ . | 2 , n . , λ . ∈ L(µ, h).
(2.11)

Recall that φ ∈ L 2 ([0, T ], R n ) is the control giving the skeleton path and R : [0, T ] → (0, 1] stands for the radius function.

Remark 2.1. Hypothesis (H 2 ) implies that for each t ∈ (0, T ), the space R n is spanned by the vectors (σ i (t, x t ), [σ j , σ p ](t, x t )) i,j,p=1,...,d,j<p , meaning that a strong Hörmander condition locally holds along the curve x t (φ).

Let X denote a process in R n solving

dX t = d j=1 σ j (t, X t ) • dW j t + b(t, X t )dt, X 0 = x 0 , (2.12) 
W being a standard Brownian motion in R d . Remark that (H 1 ) is only a local assumption: we do not assume global Lipschitz continuity or sublinear growth properties for the coefficients, so the above SDE might not have a unique solution. We only assume to work with a continuous adapted process X solving (2.12) on the time interval [0, T ].

For K, q, K * , q * > 0, µ ≥ 1, h ∈ (0, 1], n : [0, T ] → [1, +∞), λ : [0, T ] → (0, 1] and φ ∈ L 2 ([0, T ], R n ),
we set the functions

H t = K µnt λt q , R * t (φ) = exp -K * µnt λt q * µ 2q * h ∧ inf 0≤δ≤h δ t+δ t |φ s | 2 ds .
(2.13)

The main result of this paper is the following:

Theorem 2.2. Let µ ≥ 1, h ∈ (0, 1], n : [0, T ] → [1, +∞), λ : [0, T ] → (0, 1], R : [0, T ] → (0, 1] and φ ∈ L 2 ([0, T ], R n ) be such that (H 1 )-(H 3 ) in (2.11) hold. Then there exist K, q, K * , q * > 0 such that, for H and R * (φ) as in (2.13), if R t ≤ R * t (φ) one has exp - T 0 H t 1 R t + |φ t | 2 dt ≤ P sup t≤T |X t -x t (φ)| A R t (t,xt(φ)) ≤ 1 ≤ exp - T 0 e -Ht 1 R t + |φ t | 2 dt .
(2.14)

The proof of Theorem 2.2 is developed in Section 3. We discuss here some comments and examples.

Remark 2.3. The estimate (2.14) allows for a regime shift, meaning that the dimension of the space generated by the σ i 's and the [σ i , σ j ]'s may change along the tube, and this is accounted by the variation of A R along x t (φ).

Remark 2.4. The fact that R ∈ L(µ, h) implies that inf t∈[0,T ] R t > 0. So, the radius of the tube is small, but cannot go to 0 at any time.

Remark 2.5. The lower bound holds even if the inequality

R t ≤ R * t (φ) is not satisfied, in the form exp - T 0 H t 1 h + 1 R t + |φ t | 2 dt ≤ P sup t≤T |X t -x t (φ)| A R t (t,xt(φ)) ≤ 1 .
Details are given in next Theorem 3.9.

Remark 2.6. Suppose X t = W t and x(φ) = 0, so that n t = 1, λ t = 1, µ = 1 and φ t = 0. Take

R t = R constant. Then |X t -x t (φ)| A R (t,xt(φ)) = R -1/2 W t and we obtain exp(-C 1 T /R) ≤ P(sup t≤T |W t | ≤ √ R) ≤ exp(-C 2 T /R
) which is consistent with the standard estimate (see [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF]).

A global two-sided bound for the density of X t is proved in [START_REF] Kusuoka | Applications of the Malliavin calculus[END_REF], under the strong Hörmander non-degeneracy condition. It is also assumed that the coefficients do not depend time, i.e. b(t, x) = b(x), σ(t, x) = σ(x), and that b

(x) = d j=1 α i σ i (x), with α i ∈ C ∞ b (R n ) (i.
e. the drift is generated by the vector fields of the diffusive part, which is a quite restrictive hypothesis). This bound is Gaussian in the control metric that we now define. For x, y ∈ R n we denote by C(x, y) the set of controls ψ ∈ L 2 ([0, 1]; R d ) such that the corresponding solution of

du t (ψ) = d j=1 σ j (u t (ψ))ψ j t dt, u 0 (ψ) = x
satisfies u 1 (ψ) = y. The control (Carathéodory) distance is defined as

d c (x, y) = inf 1 0 |ψ s | 2 ds 1/2 : ψ ∈ C(x, y) .
The result in [START_REF] Kusuoka | Applications of the Malliavin calculus[END_REF] is the following. Let p δ (x, •) denote the density of X δ with starting condition X 0 = x. Then there exists a constant M ≥ 1 such that

1 M |B dc (x, √ δ)| exp - M d c (x, y) 2 δ ≤ p δ (x, y) ≤ M |B dc (x, √ δ)| exp - d c (x, y) 2 M δ
where δ ∈ (0, T ], x, y ∈ R n , B d (x, r) = {y ∈ R n : d(x, y) < r} and |B dc (x, r)| denotes its Lebesgue measure. Remark that now, as in [START_REF] Kusuoka | Applications of the Malliavin calculus[END_REF], σ(t, x) = σ(x). We define the semi distance Theorem 2.7. Suppose that the diffusion coefficients σ j , j = 1, . . . , d, in (2.12) depend on the space variable x only and that the hypotheses of Theorem 2.2 hold. Then,

d via: d(x, y) < √ R if |x -y| A R (x) < 1,
exp - T 0 H t 1 R t + |φ t | 2 dt ≤ P sup 0≤t≤T d c (X t , x t (φ)) ≤ R t ≤ exp - T 0 e -Ht 1 R t + |φ t | 2 dt . (2.15)
We prove the tube estimates in Section 3, whereas the equivalence between the matrix norm and the Carathéodory distance is given in Section 4.

We present now two examples of application.

Example 1. [Grushin diffusion] Consider a positive, fixed R and the two dimensional diffusion process

X 1 t = x 1 + W 1 t , X 2 t = x 2 + t 0 X 1 s dW 2 s .
Here

A R A T R (x) = R 0 0 R(x 2 1 + 2R) , so the associated norm is |ξ| 2 A R (x) = ξ 2 1 R + ξ 2 2 R(x 2 1 +2R) . On {x 1 = 0}, |ξ| 2 A R (x) = ξ 2 1 R + ξ 2 2
2R 2 and consequently {ξ : |ξ| A R (x) ≤ 1} is an ellipsoid. If we take a path x(t) with x 1 (t) which keeps far from zero then we have ellipticity along the path and we may use estimates for elliptic SDEs (see [START_REF] Bally | Estimates for the probability that a itô process remains near a path[END_REF]). If x 1 (t) = 0 for some t ∈ [0, T ] we need our estimate. Let us compare the norm in the two cases: if x 1 > 0 the diffusion matrix is non-degenerate and we can consider the norm |ξ| B R (x) with B R (x) = Rσ(x). We have

|ξ| 2 B R (x) = 1 R ξ 2 1 + 1 Rx 2 1 ξ 2 2 ≥ 1 R ξ 2 1 + 1 R(x 2 1 + 2R) ξ 2 2 = |ξ| 2 A R (x) ,
and the two norms are equivalent for R small. Let us now take x t (φ) = (0, 0). We have n s = 1 and λ s = 1 and X tx t (φ) = (W 1 t , t 0 W 1 s dW 2 s ), so we obtain

e -C 1 T /R ≤ P sup t≤T 1 R W 1 t 2 + 1 2R 2 t 0 W 1 s dW 2 s 2 ≤ 1 = P sup t≤T (|X t -x t | 2 A R (xt) ≤ 1 ≤ e -C 2 T /R . Example 2.
[Principal invariant diffusion on the Heisenberg group] Consider on R 3 the vector fields

∂ x 1 -x 2 2 ∂ x 3 and ∂ x 2 -x 1 2 ∂ x 3 .
The associated Markov process is the triple given by a Brownian motion on R 2 and its Lévy area, that is

X 1 t = x 1 + W 1 t , X 2 t = x 2 + W 2 t , X 3 t = x 3 + 1 2 t 0 X 1 s dW 2 s - 1 2 t 0 X 2 s dW 1 s .
We refer e.g. to [START_REF] Driver | Hypoelliptic heat kernel inequalities on the heisenberg group[END_REF][START_REF] Bakry | On gradient bounds for the heat kernel on the heisenberg group[END_REF][START_REF] Li | Estimations asymptotiques du noyau de la chaleur sur les groupes de heisenberg[END_REF], where gradient bounds for the heat kernel are obtained, and [START_REF] Baudoin | An introduction to the Geometry of stochastic flows[END_REF].

Since the diffusion is in dimension n = 3 and the driving Brownian in dimension d = 2, ellipticity cannot hold. Direct computations give

σ 1 (x) =   1 0 -x 2 2   , σ 2 (x) =   0 1 x 1 2   , [σ 1 , σ 2 ](x) = ∂ σ 1 σ 2 -∂ σ 2 σ 1 =   0 0 1   .
Therefore σ 1 (x), σ 2 (x), [σ 1 , σ 2 ](x) span R 3 and hypoellipticity holds. In x = 0 we have

|ξ| 2 A R (0) = ξ 2 1 +ξ 2 2 R + ξ 2 3
2R 2 , so taking the control φ ≡ 0 and denoting

A t (W ) = 1 2 t 0 X 1 s dW 2 s - 1 2
t 0 X 2 s dW 1 s (the Lévy area), we obtain

P sup t≤T /R |W 1 t | 2 + |W 2 t | 2 + |A t (W )| 2 2 ≤ 1 = P sup t≤T |W 1 t | 2 + |W 2 t | 2 R + |A t (W )| 2 2R 2 ≤ 1 = P sup t≤T |X t | 2 A R (xt(φ)) ≤ 1 .
Appling our estimate we have

e -C 1 T /R ≤ P sup t≤T /R |W 1 t | 2 + |W 2 t | 2 + |A t (W )| 2 2 ≤ 1 ≤ e -C 2 T /R .

Tube estimates

The proof of Theorem 2.2 is inspired by the approach in [START_REF] Bally | Estimates for the probability that a itô process remains near a path[END_REF]. A similar procedure is also used in [START_REF] Pigato | Tube estimates for diffusion processes under a weak Hörmander condition[END_REF] in a weak Hörmander framework. Such a proof strongly uses the estimates for the density developed in [START_REF] Bally | Diffusions under a local strong Hörmander condition. Part I: density estimates[END_REF] and it is crucial that these estimates hold in a time interval of a fixed small length. This is because the proof consists in a "concatenation" of such estimates in order to recover the whole time interval [0, T ]. And since the "concatenation" works around the skeleton path x(φ), it suffices that the properties for all objects hold only locally around x(φ), as required in (2.11). In order to set-up this program, we need the precise behavior of the norm | • | A R . So, we first present the desired properties for | • | A R (Section 3.1) and then we proceed with the proof of Theorem 2.2 (Section 3).

Matrix norms

Recall the definitions (2.5) and (2.8) for A(t, x) and A R (t, x) respectively. We work with the norm

|y| 2 A R (t,x) = (A R A T R (t, x)) -1 y, y , y ∈ R n . Lemma 3.1. Let x ∈ R n , t ≥ 0, R > 0 and recall that λ * (A(t, x)
) and λ * (A(t, x)) denote the largest and lowest singular value of A(t, x).

i) For every y ∈ R n and 0

< R ≤ R ′ ≤ 1 R R ′ |y| A R (t,x) ≥ |y| A R ′ (t,x) ≥ R R ′ |y| A R (t,x) (3.1) 1 √ Rλ * (A(t, x)) |y| ≤ |y| A R (t,x) ≤ 1 Rλ * (A(t, x)) |y| . (3.2) ii) For every z ∈ R m and R > 0 |A R (t, x)z| A R (t,x) ≤ |z| . (3.3) iii) For every ϕ ∈ L 2 ([0, T ]; R m ), r 0 ϕ s ds 2 A R (t,x) ≤ r r 0 |ϕ s | 2 A R (t,x) ds, r ∈ [0, T ]. (3.4) 
Proof. For fixed x ∈ R n and t ≥ 0, during the proof we omit in A(t, x) and A R (t, x) the dependence on (t, x), so we simply write A and

A R i) For 0 < R ≤ R ′ ≤ 1, it is easy to check that R ′ R A R A T R ≤ A R ′ A T R ′ ≤ R ′ R 2 A R A T R
which is equivalent to (3.1). This also implies (taking

R ′ = 1 so A R ′ = A) that 1 R λ * (A R ) 2 ≤ λ * (A) 2 ≤ 1 R 2 λ * (A R ) 2 1 R λ * (A R ) 2 ≤ λ * (A) 2 ≤ 1 R 2 λ * (A R ) 2 which immediately gives (3.2). ii) For z ∈ R m , we write z = A T R y + w with y ∈ R n and w ∈ (ImA T R ) ⊥ = Ker A R . Then A R z = A R A T R y so that |A R z| 2 A R = A R A T R y 2 A R = (A R A T R ) -1 A R A T R y, A R A T R y = y, A R A T R y = A T R y, A T R y = A T R y 2 ≤ |z| 2 and (3.3) holds. iii) For ϕ ∈ L 2 ([0, T ]; R m ) and r ∈ [0, T ], r 0 ϕ s ds 2 A R = (A R A T R ) -1 r 0 ϕ s ds, r 0 ϕ s ds = r 0 r 0 (A R A T R ) -1 ϕ s , ϕ u dsdu = 1 2 r 0 r 0 (A R A T R ) -1 (ϕ s -ϕ u ), ϕ s -ϕ u dsdu - r 0 r 0 (A R A T R ) -1 ϕ s , ϕ s -(A R A T R ) -1 ϕ u , ϕ u dsdu = 1 2 r 0 r 0 |ϕ s -ϕ u | 2 A R -2|ϕ s | 2 A R dsdu ≤ r 0 r 0 |ϕ u | 2 A R dsdu = t t 0 |ϕ u | 2 A R du.
Next Lemma 3.2 is strictly connected to Remark 2.3, where we stressed that our result allows for a regime switch along the tube. In fact, here we fix R > 0, two points (t, x) and (s, y) and we get an equivalence between the norms

| • | A R (t,x) and | • | A R (s,y)
without supposing that in these two points the Hörmander condition holds "under the same regime". To compensate this lack of uniformity, we suppose that the distance between (t, x) and (s, y) is bounded by √ R, and we will need to take this fact into account. In the concatenation procedure of next Section 3.2, the size of the intervals, to which we apply our density estimates, will have to depend on the radius of the tube. We set

O = {(t, x) ∈ [0, T ] × R : λ(t, x) > 0}
which is open, and under (2.1), we define

D = C : O → R + such that C(t, x) = K n(t, x) λ(t, x) q , K, q > 0 . (3.5)
We also define

1/D = c : O → R + such that 1/c ∈ D}.
Lemma 3.2. Assume (2.1) and let D as in (3.5). There exists C * ∈ D such that for every

(t, x), (s, y) ∈ O and R ∈ (0, 1] satisfying |x -y| + |t -s| ≤ √ R/C * (t, x), (3.6) 
then for every z ∈ R n one has

1 4 |z| 2 A R (t,x) ≤ |z| 2 A R (s,y) ≤ 4 |z| 2 A R (t,x) . (3.7) Proof. (3.7) is equivalent to 4(A R A T R )(t, x) ≥ (A R A T R )(s, y) ≥ 1 4 (A R A T R )(t, x), so we prove the above inequalities. Let A R,k , k = 1, . . . , m, denote the columns of A R . We use (a + b) 2 ≥ 1 2 a 2 -b 2 : A R A T R (s, y)z, z = m k=1 A R,k (s, y), z 2 = m k=1 ( A R,k (t, x), z + A R,k (s, y) -A R,k (t, x), z ) 2 ≥ 1 2 m k=1 A R,k (t, x), z 2 - m k=1 A R,k (s, y) -A R,k (t, x), z 2 .
We use (2.1): for every (s, y) such that |t -s| ≤ 1 and |x -y| ≤ 1, we have

A R A T R (s, y)z, z ≥ 1 2 m k=1 A R,k (t, x), z 2 -C 1 n(t, x) α R(|x -y| 2 + |t -s| 2 ) |z| 2 , in which C 1 > 0 and α ≥ 1 denote universal constants. Notice that m k=1 A R,k (t, x), z 2 = A R A T R (t, x)z, z ≥ λ 2 * (A R (t, x))|z| 2 ≥ R 2 λ 2 * (A(t, x))|z| 2 .
We choose the constants (K, q) characterizing C * (t, x) such that K ≥ 2 √ C 1 ∨ 1 and q ≥ α. So, under (3.6) we obtain

C 1 n(t, x) α R(|x -y| 2 + |t -s| 2 ) |z| 2 ≤ 1 4 m k=1 A R,k (t, x), z 2 and (A R A T R )(s, y)z, z ≥ 1 4 m k=1 A R,k (t, x), z 2 = 1 4 (A R A T R )(t, x)z, z .
The converse inequality follows from analogous computations and inequality (a

+ b) 2 ≤ 2a 2 + 2b 2 .
We prove that moving along the skeleton associated to a control φ ∈ L 2 ([0, T ], R d ) for a small time δ, the trajectory remains close to the initial point in the A δ -norm. To this purpose, we assume the conditions (H 1 ) and (H 2 ) in (2.11). Notice that these give (t, x t (φ)) ∈ O for every t. Moreover, in such a case the set D can be replaced by the following class of functions:

A = C : [0, T ] → R + : C t = K n t λ t q , for some K, q > 0 , (3.8) 
n t and λ t being defined in (2.11). We also set

1/A = c : [0, T ] → (0, 1] : 1/c t ∈ A . Lemma 3.3. Let x(φ) be the skeleton path (2.9) associated to φ ∈ L 2 ([0, T ], R d ). Assume (H 1 )
and (H 2 ) in (2.11). Then there exists δ * , ε * ∈ 1/A such that for every t ∈ [0, T ],

δ t ≤ δ * t , ε t (δ t ) ≤ ε * t , s ∈ [0, δ t ] with t + s ≤ T and for every z ∈ R n one has 1 4 |z| 2 A δ t (t,xt(φ)) ≤ |z| 2 A δ t (t+s,x t+s (φ)) ≤ 4 |z| 2 A δ t (t,xt(φ)) . (3.9)
Moreover, there exists C ∈ A such that

sup 0≤s≤δt |x t+s (φ) -(x t (φ) + b(t, x t (φ))s)| A δ t (t,xt(φ)) ≤ Ct (ε t (δ t ) ∨ δ t ) (3.10)
where

ε t (δ) = t+δ t |φ s | 2 ds 1/2 . Proof. Set s t = inf{s > 0 : |x t+s (φ) -x t (φ)| ≥ 1}. From (2.1
) and (H 1 ) in (2.11), we have

1 = |x t+st (φ) -x t (φ)| ≤ n t s t + √ s t ε t (s t ) .
We take 

C ∈ A such that n t √ s t + ε t (s t ) ≤ C 1/2 t , so that s t ≥ 1/C t . Take now δ * ∈ 1/A such that δ * ≤ 1/C. Then if s ≤ δ t ≤ δ * t ,
|x t+s (φ) -x t (φ)| + |s| ≤ δ t n t ( δ * t + ε t (δ t )) + δ * t .
By continuity, for every ε * ∈ 1/A and for every t there exists δt such that ε t ( δt ) ≤ ε * t . So, there actually exists δ t ≤ δ * t for which ε t (δ t ) ≤ ε * t . And for such a δ t , we have

|x t+s (φ) -x t (φ)| + |s| ≤ δ t n t ( δ * t + ε * t ) + δ * t .
We now choose δ * , ε * ∈ 1/A in order that the last factor in the above right hand side is smaller than 1/C * (t, x t (φ)), where C * (t, x) is the function in D for which Lemma 3.2 holds. Then (3.6) is satisfied with R = δ t , x = x t (φ), y = x t+s (φ) and s replaced by t + s. Hence (3.9) follows by applying (3.7).

We prove now (3.10). For the sake of simplicity, we let x t denote the skeleton path x t (φ). We write

J t,s := x t+s -x t -b(t, x t )s = t+s t ( ẋu -b(u, x u ))du + t+s t (b(u, x u ) -b(t, x t ))du = t+s t σ(u, x u )φ u du + t+s t (b(u, x u ) -b(t, x t ))ds, so that |J t,s | 2 A δ t (t,xt) ≤ 2s t+s t |σ(u, x u )φ u | 2 A δ t (t,xt) dt + 2s t+s t |b(u, x u ) -b(t, x t )| 2 A δ t (t,xt) du.
In the above right hand side, we apply (3.9) to the norm in the first term and we use (3.2) in the second one. And we obtain:

|J t,s | 2 A δ t (t,xt) ≤ 2s t+s t 4|σ(u, x u )φ u | 2 A δ t (u,xu) du + 2s t+s t 1 δ 2 t λ 2 t |b(u, x u ) -b(t, x t )| 2 du ≤ 8s t+s t |σ(u, x u )φ u | 2 A δ t (u,xu) du + 2δ t t+δt t 1 δ 2 t λ 2 t × n 2 t (|u -t| + |x u -x t |) 2 du.
We have already proved that, for u

∈ [t, t + s], |u -t| + |x u -x t | ≤ √ δ t /C * t , with C * ∈ A, so |J t,s | 2 A δ t (t,xt) ≤ 8s t+s t |σ(u, x u )φ u | 2 A δ (u,xu) du + Ct δ t ,
with C ∈ A. It remains to study the first term in the above right hand side. For i = 1, . . . , m, we set ψ (j-1)d+j = 1 √ δt φ j for j = 1, . . . , d, ψ i = 0 otherwise. Then, recalling (2.8), we can write σ(u, x u )φ u = A δt (u, x u (φ))ψ u , so that, by (3.3),

|σ(u, x u )φ u | 2 A δ t (u,xu) = |A δt (u, x u )ψ u | 2 A δ t (u,xu) ≤ |ψ u | 2 = 1 δ t |φ u | 2 .
Hence, for s ≤ δ t , we finally have |J t,s | 2 A δ t (t,xt) ≤ 8ε t (δ t ) 2 + Ct δ t , and the statement follows.

Remark 3.4. Let us finally discuss an inequality which will be used in next Section 4. Fix x ∈ R n and let x(φ) be the skeleton path (2.9) associated to φ ∈ L 2 ([0, T ], R d ) with starting condition x 0 (φ) = x. Assume simply (2.1) and recall D defined in (3.5). Then looking at the proof of Lemma (3.3), we have the following result: if (0, x) ∈ O, there exists δ, ε ∈ 1/D and

C ∈ D such that if δ ≤ δ(0, x), ε 0 (δ) ≤ ε(0, x) and s ∈ [0, δ] then sup 0≤s≤δ |x s (φ) -(x + b(0, x)s)| A δ (0,x) ≤ C(0, x)(ε 0 (δ) ∨ √ δ). (3.11) 

Proof of Theorem 2.2

This section is organized as follows: the lower bound in Theorem 2.2 is proved in next Theorem 3.9, whereas the upper bound in Theorem 2.2 is studied in next Theorem 3.10.

As already mentioned, the proof we are going to develop relies on a two-sided bound for the density of equation (2.12) in short time, proved in [START_REF] Bally | Diffusions under a local strong Hörmander condition. Part I: density estimates[END_REF]. The estimate is diagonal, meaning that it is local around the drifted initial condition x 0 + b(0, x 0 )δ, δ denoting the (small) time at which we are studying the density. But in order to be more precise and self-contained, we briefly recall the result from [START_REF] Bally | Diffusions under a local strong Hörmander condition. Part I: density estimates[END_REF] we are going to strongly use. We will suppose that

0≤|α|≤4 d j=1 |∂ α x σ j (t, x)| + |∂ α x b(t, x)| + |∂ α x ∂ t σ j (t, x)| ≤ κ, ∀t ∈ [0, T ], ∀x ∈ R n . (3.12)
Of course (3.12) is much stronger than (2.1) but we will see in the sequel that, by a suitable localization, one can reduce to the validity of (3.12) (see next Remark 3.8). We also assume that λ(0, x 0 ) > 0, (3.13)

x 0 denoting the starting point of the diffusion X solving (2.12), and we consider the following set of constants:

D 0 = C > 0 : C = K κ λ(0, x 0 ) q , ∃ K, q > 0 . (3.14)
We use the notation 1/D 0 for constants c such that 1/c ∈ D 0 . We set p δ (x 0 , •) the density of X δ when X 0 = x 0 . We use here the following version of Theorem 3.5 in [START_REF] Bally | Diffusions under a local strong Hörmander condition. Part I: density estimates[END_REF]:

Theorem 3.5. Suppose that (3.13) and (3.12) hold. Let D 0 be defined in (3.14). Then there exist r * , δ * ∈ 1/D 0 , C ∈ D 0 such that for δ ≤ δ * and for |yx 0b(0, x 0 )δ| A δ (0,x 0 ) ≤ r * one has 1

Cδ n-dim σ(0,x 0 ) 2 ≤ p δ (x 0 , y) ≤ e C δ n-dim σ(0,x 0 ) 2
where dim σ(0, x 0 ) denotes the dimension of the vector space spanned by σ 1 (0, x 0 ), . . . , σ d (0, x 0 ).

Notice that (3.13) and (3.12) are, respectively, Assumption 2.2 and Assumption 2.3 in [START_REF] Bally | Diffusions under a local strong Hörmander condition. Part I: density estimates[END_REF]. Therefore, Theorem 3.5 is actually a re-writing of Theorem 3.7 in [START_REF] Bally | Diffusions under a local strong Hörmander condition. Part I: density estimates[END_REF] (with the constant C specified in Remark 3.8 therein) and Theorem 4.6 in [START_REF] Bally | Diffusions under a local strong Hörmander condition. Part I: density estimates[END_REF].

Remark 3.6. Of course, Theorem 3.5 can be written for a general starting condition (t, x) in place of (0, x 0 ). In such a case, (3.13) and (3.14) have to be replaced by

λ(t, x) > 0 and D t,x = C > 0 : C = K κ λ(t, x) q , ∃ c, q > 0
respectively. But a closer look to the proofs of Theorem 3.7 and of Theorem 4.6 in [START_REF] Bally | Diffusions under a local strong Hörmander condition. Part I: density estimates[END_REF] shows that the constants K and q in D 0 are universal, that is, they can be taken independently of all the data (the starting point (0, x 0 ), the diffusion coefficients, the quantities λ(0, x 0 ), κ etc.). This means that Theorem 3.5 can be formulated as follows. Assume that (3.12) holds and define the (open) set O = (t, x) : λ(t, x) > 0 .

Set D = C : O → R + : C(t, x) = K κ λ(t, x) q , ∃ c, q > 0 .
Then there exist C ∈ D, r * , δ * ∈ 1/D such that for (t, x) ∈ O, δ ≤ δ * (t, x) and for every y such that |yxb(t, x)δ| A δ (t,x) ≤ r * t one has 1

C(t, x)δ n-dim σ(t,x) 2 ≤ p(t, t + δ, x, y) ≤ e C(t,x) δ n-dim σ(t,x) 2 ,
where p(t, s, x, •) denotes the density of the solution X at time s of the equation in (2.12) but with the starting condition X t = x.

Remark 3.7. From (2.8) and the Cauchy-Binet formula we obtain (for details see

(3.43) in [2]) 1 C(t, x) δ n-dim σ(t,x) 2 ≤ det A δ A T δ (t, x) ≤ C(t, x)δ n-dim σ(t,x) 2 , (3.15) 
so the density bounds above are equivalent to the following ones:

1

C(t, x) det A δ A T δ (t, x) ≤ p(t, t + δ, x, y) ≤ e C(t,x) det A δ A T δ (t, x) (3.16) 
Remark 3.8. The plan for the proof is the following. Consider first the lower bound (see Theorem 3.9). For φ ∈ L 2 [0, T ], let x(φ) be the skeleton associated to (2.12) is given in (2.9). We set a discretization 0 = t 0 < t 1 < • • • < t N = T of the time interval [0, T ]. Then, as k varies, we consider the events

D k = sup t k ≤t≤t k+1 |X t -x t (φ)| A R t (t,xt(φ)) ≤ 1 and Γ k = y : |y -x t k (φ)| A R t k (t k ,xt k (φ)) ≤ r k ,
(3.17) where r k < 1 is a radius that will be suitably defined in the sequel. We denote P k the conditional probability

P k (•) = P (•|W t , t ≤ t k ; X t k ∈ Γ k )
We 

P(D k ∩ {X t k +1 ∈ Γ k+1 }) = P( Dk ∩ { Xt k +1 ∈ Γ k+1 })
and therefore we can equivalently prove our tube estimate supposing that the bound in (H 1 ) holds globally, that is assuming (3.12). This really allows us to apply Theorem 3.5. And a similar procedure can be developed for the upper bound (see Theorem 3.10).

We recall the set A defined in (3.8):

A = C : [0, T ] → R + : C t = K n t λ t q
, for some K, q > 0 .

We also recall 1/A defined as usual. Notice that that, under (2.11), n(t, x t (φ)) ≤ n t and λ(t, x t (φ)) ≥ λ t . So, any C(t, x) ∈ D evaluated in (t, x t (φ)) is upper bounded by the function C t in A written with the same constants K and q.

For µ ≥ 1, h ∈ (0, 1] and K * , q * > 0, we denote

R * t (φ) = exp -K * µn t λ t q * µ 2q * h ∧ inf 0≤δ≤h δ t+δ t |φ s | 2 ds (3.18) Theorem 3.9. Let µ ≥ 1, h ∈ (0, 1], n : [0, T ] → [1, +∞), λ : [0, T ] → (0, 1], φ ∈ L 2 ([0, T ],
R n ) and R : [0, T ] → (0, 1] be such that (H 1 )-(H 3 ) in (2.11) hold. Then there exist K, q > 0 such that

P sup t≤T |X t -x t (φ)| A R t (t,xt(φ)) ≤ 1 ≥ exp - T 0 K µn t λ t q 1 h + 1 R t + |φ t | 2 dt . (3.19) Moreover, if R t ≤ R * t (φ)
for some K * , q * > 0, R * (φ) being given in (3.18), then

P sup t≤T |X t -x t (φ)| A R t (t,xt(φ)) ≤ 1 ≥ exp - T 0 2 K µn t λ t q 1 R t + |φ t | 2 dt . (3.20)
Proof. STEP 1. We first set-up some quantities which will be used in the rest of the proof. We recall (H 3 ): R . , |φ . | 2 , n . , λ . ∈ L(µ, h), where f ∈ L(µ, h) if and only if f (t) ≤ µf (s) for |t -s| ≤ h. We set, for q 1 , K 1 > 1 to be fixed in the sequel,

f R (t) = K 1 µn t λ t q 1 1 h + 1 R t + |φ t | 2 .
Then straightforward computations give that f R ∈ L(µ 2q 1 +1 , h). We define

δ(t) = inf δ > 0 : t+δ t f R (s)ds ≥ 1 µ 2q 1 +1 . (3.21) 
We have

δ(t) h = t+δ(t) t 1 h ds ≤ t+δ(t) t f R (s)ds = 1 µ 2q 1 +1 , so δ(t) ≤ h. We now prove that δ(•) ∈ L(µ 4q 1 +1 , h). In fact, if 0 < t -t ′ ≤ h, µ 2q 1 +1 f R (t)δ(t) ≥ t+δ(t) t f R (s)ds = 1 µ 2q 1 +1 = t ′ +δ(t ′ ) t ′ f R (s)ds ≥ µ -(2q 1 +1) f R (t)δ(t ′ ), so δ(t ′ ) ≤ µ 4q 1 +2 δ(t).
Since the converse holds as well, we get δ(•) ∈ L(µ 4q 1 +2 , h). We now prove a further property for δ(•): we have

1 µ 2q 1 +1 = t+δ(t) t f R (s)ds ≥ t+δ(t) t f R (t) µ 2q 1 +1 ds ≥ δ(t) f R (t) µ 2q 1 +1 , so δ(t) ≤ 1 f R (t) ≤ R t K 1 λ t µn t q 1 ≤ 1 K 1 λ t µn t q 1 ∈ 1/A (3.22)
(recall that R t , λ t ≤ 1 and n t ≥ 1 for every t). We also set the energy over the time interval [t, t + δ(t)]:

ε t (δ(t)) = t+δ(t) t |φ s | 2 ds 1/2 .
Since n, λ ∈ L(µ, h) and δ(t) ≤ h, for s ∈ (t, t + δ(t)) we have

f R (s) ≥ K 1 µn s λ s q 1 |φ s | 2 ≥ K 1 µ 2q 1 µn t λ t q 1 |φ s | 2 . Hence 1 µ 2q 1 +1 = t+δ(t) t f R (s)ds ≥ K 1 µ 2q 1 µn t λ t q 1 t+δ(t) t |φ s | 2 ds,
which gives that

ε t (δ(t)) 2 ≤ 1 K 1 λ t µn t q 1 ∈ 1/A. (3.23) STEP 2.
We set now some notation and properties that will be used in the "concatenation", which is developed in the following steps.

We define the time grid as

t 0 = 0, t k = t k-1 + δ(t k-1 ),
and introduce the following notation on the grid:

δ k = δ(t k ), ε k = ε t k (δ k ), n k = n t k , λ k = λ t k , X k = X t k , x k = x t k (φ), R k = R t k .
Recall that δ(t) < h for every t, so we have

R k /µ ≤ R t ≤ µR k , for t k ≤ t ≤ t k+1 .
We also define Xk

= X k + b(t k , X k )δ k , xk = x k + b(t k , x k )δ k ,
and for t k ≤ t ≤ t k+1 , Xk (t) = X k + b(t k , X k )(t -t k ), xk (t) = x k + b(t k , x k )(t -t k ).
Let r * ∈ 1/A be the radius-function of Theorem 3.5, in the version of Remark 3.6, associated to the points (t, x t (φ)) as t ∈ [0, T ]. We set r * k = r * t k . Let us see some properties. For all t k ≤ t ≤ t k+1 , we have R t ≥ R k /µ ≥ δ k /µ and, by using (3.1), we obtain

|ξ| A R t (t,xt) ≤ δ k R k |ξ| A δ k /µ (t,xt) ≤ |ξ| A δ k /µ (t,xt) ,
last inequality holding because δ k ≤ R k . Since δ k /µ ≤ δ k , we apply again (3.1) to the norm in the right hand side above and we get

|ξ| A R t (t,xt) ≤ µ |ξ| A δ k (t,xt) . ( 3 

.24)

Taking ξ = x txk (t), we have

|x t -xk (t)| A R t (t,xt) ≤ µ |x t -xk (t)| A δ k (t,xt) .
By (3.22) and (3.23), we can choose q 1 , K 1 large enough such that δ(t) ≤ δ * (t), ε t (δ(t)) ≤ ε * (t) where δ * ∈ 1/A and ε * ∈ 1/A are the functions in Lemma 3.3. So, we apply (3.9) to the norm in the above right hand side and we obtain

|x t -xk (t)| A R t (t,xt) ≤ µ × 4|x t -xk (t)| A δ k (t k ,x k ) .
We use now (3.10): for some C ∈ A, we get

|x t -xk (t)| A δ k (t k ,x k ) ≤ Ck (ε k ∨ δ k )
where Ck = Ct k , and, as a consequence of the estimate above, we have also

|x t -xk (t)| A R t (t,xt) ≤ 4µ Ck (ε k ∨ δ k ),
for all t ∈ [t k , t k+1 ] and for all k. By recalling that x t k+1xk (t k+1 ) = x k+1xk , and possibly choosing K 1 larger, we can resume by asserting that δ k ≤ δ * t k in Theorem 3.5 with initial condition (t k , x k ) (see its version in Remark 3.6) and

|x k+1 -xk | A δ k (t k ,x k ) ≤ r * k /4 for all k, (3.25) |x k (t) -x t | A R t (t,xt) ≤ 1 4 for all t ∈ [t k , t k+1
] and for all k.

(3.26)

We have already noticed that, under our settings, (3.9) holds, so that

1 2 |ξ| A δ k (t k ,x k ) ≤ |ξ| A δ k (t k+1 ,x k+1 ) ≤ 2|ξ| A δ k (t k ,x k ) . Since δ(•) ∈ L(µ 4q 1 +2 , h), one has δ k /δ k+1 ≤ µ 4q 1 +2 and δ k+1 /δ k ≤ µ 4q 1 +2
. So, using (3.1) to the right hand side of the above inequality we easily get

1 2µ 2q 1 +1 |ξ| A δ k (t k ,x k ) ≤ |ξ| A δ k+1 (t k+1 ,x k+1 ) ≤ 2µ 2q 1 +1 |ξ| A δ k (t k ,x k ) for all k.
(3.27) STEP 3. We are ready to set-up the concatenation for the lower bound. We set, for K 2 and q 2 to be fixed in the sequel,

r k = 1 K 2 µ 2q 1 +2q 2 +1 λ k n k q 2 .
(3.28)

Moreover, since λ, n ∈ L(µ, h) and δ k ≤ h, one easily gets r k+1 /r k ≤ µ 2q 2 for every k. We define

Γ k = {y : |y -x k | A δ k (t k ,x k ) ≤ r k } and P k (•) = P (•|W t , t ≤ t k ; X k ∈ Γ k ) ,
that is, P k is the conditional probability with respect to the knowledge of the Brownian motion up to time t k and the fact that X k ∈ Γ k . The aim of this step is to prove that

P k (X k+1 ∈ Γ k+1 ) ≥ 2µ -4nq 1 exp(-K 3 (log µ + log n k -log λ k )) for all k. (3.29)
for some constant K 3 depending on K 1 , K 2 , q 1 and q 2 . We denote ρ k (X k , y) the density of X k+1 with respect to this probability. We prove that 

Γ k+1 ⊂ {y : |y -Xk | A δ k (t k ,X k ) ≤ r * k }. ( 3 
C ∈ A such that ρ k (X k , y) ≥ 1 C k det A δ k A T δ k (t k , X k ) for all y ∈ Γ k+1 , (3.31) 
where C k = C t k . Let us show that (3.30) holds. We estimate

|y -Xk | A δ k (t k ,x k ) ≤ |y -x k+1 | A δ k (t k ,x k ) + |x k+1 -xk | A δ k (t k ,x k ) + |x k -Xk | A δ k (t k ,x k )
and by using (3.25) we obtain

|y -Xk | A δ k (t k ,x k ) ≤ |y -x k+1 | A δ k (t k ,x k ) + r * k 4 + |x k -Xk | A δ k (t k ,x k ) . (3.32) 
Using (3.27), the fact that r k+1 /r k ≤ µ 2q 2 and recalling that |y-x k+1 | A δ k+1 (t k+1 ,x k+1 ) ≤ r k+1 , we obtain

|y -x k+1 | A δ k (t k ,x k ) ≤ 2µ 2q 1 +1 |y -x k+1 | A δ k+1 (t k+1 ,x k+1 ) ≤ 2µ 2q 1 +1 r k+1 ≤ 2µ 2q 1 +2q 2 +1 r k ≤ 2 K 2 λ k n k q 2 . (2.1) also gives |x k -Xk | A δ k (t k ,x k ) ≤ C k |x k -X k | A δ k (t k ,x k ) , where C k = C t k and C is a suitable function in A, and the conditioning with respect to Γ k gives |x k -Xk | A δ k (t k ,x k ) ≤ C k r k . Similarly, |x k (t) -Xk (t)| A R t (t,xt) ≤ C k |x k -X k | A R t (t,xt)
and by using firstly (3.24) and secondly (3.9), we get 

|x k (t) -Xk (t)| A R t (t,xt) ≤ C k × µ|x k -X k | A δ k (t,xt) ≤ C k µ × 2|x k -X k | A δ k (t k ,x k ) ≤ 2µC k r k , for every t ∈ [t k , t k+1 ]. Recalling (3.28), K 2 and q 2 (possibly large) such that |y-x k+1 | A δ k (t k ,x k ) ≤ r * k /8, |x k -Xk | A δ k (t k ,x k ) ≤ r * k /8,
Xk | A δ k (t k ,x k ) ≤ r * k /2. On the event Γ k , we also have, from (3.2), |x k -X k | ≤ |x k -X k | A δ k (t k ,x k ) λ * (A(t k , x k )) √ δ k ≤ n α t k √ δ k r k ,
for some universal constant α > 0. So, we can fix K 2 and q 2 in order that Lemma 3.2 holds with R = δ k , x = x k , y = X k , t = t k and s = 0. Then, we get

1 2 |ξ| A δ k (t k ,x k ) ≤ |ξ| A δ k (t k ,X k ) ≤ 2|ξ| A δ k (t k ,x k ) .
These inequalities give two consequences. First, we have

|y -Xk | A δ k (t k ,X k ) ≤ 2|y -Xk | A δ k (t k ,x k ) ≤ r * k ,
so that (3.30) actually holds and then (3.31) holds as well. As a second consequence, we have that

y : |y -x k+1 | A δ k (t k ,X k ) ≤ r k+1 4µ 2q 1 +1 ⊂ y : |y -x k+1 | A δ k (t k ,x k ) ≤ r k+1 2µ 2q 1 +1 ⊂ {y : |y -x k+1 | A δ k+1 (t k+1 ,x k+1 ) ≤ r k+1 } = Γ k+1 ,
in which we have used (3.27). Since r k+1 /(4µ 2q 1 +1 ) ≥ r k /(4µ 2q 1 +2q 2 +1 ), we obtain

Γ k+1 ⊃ y : |y -x k+1 | A δ k (t k ,X k ) ≤ r k 4µ 2q 1 +2q 2 +1 . By recalling that r k /(4µ 2q 1 +2q 2 +1 ) = 1 4K 2 µ 4q 1 +4q 2 +2 λ k n k q 2
, we can write, with Leb n denoting the Lebesgue measure in R n ,

Leb n (Γ k+1 ) ≥ det(A δ k A T δ k (t k , X k )) 1 4K 2 µ 4q 1 +4q 2 +2 λ k n k q 2 n . So, from (3.31), P k (X k+1 ∈ Γ k+1 ) ≥ 1 C k 1 4K 2 µ 4q 1 +4q 2 +2 λ k n k q 2 n
where C k is the constant in (3.31). This implies (3.29), for some constant K 3 depending on K 2 and q 2 . STEP 4. We give here the proof of the lower bounds (3.19) and (3.20). We set

D k = sup t k ≤t≤t k+1 |X t -x t | A R t (t,xt) ≤ 1 and E k = sup t k ≤t≤t k+1 |X t -Xk (t)| A R t (t,xt) ≤ 1 2 .
For t ∈ [t k , t k+1 ], by using (3.26) and (3.33) we have

|X t -x t | A R t (t,xt) ≤ |X t -Xk (t)| A R t (t,xt) + | Xk (t) -xk (t)| A R t (t,xt) + |x k (t) -x t | A R t (t,xt) ≤ |X t -Xk (t)| A R t (t,xt) + 1 2 ,
so that E k ⊂ D k . Moreover, by passing from Stratonovich to Itô integrals and by using (3.2), we have

|X t -Xk (t)| A R t (t,xt) ≤ |σ(t k , X t k )(W t -W t k )| A R t (t,xt) + t t k σ(s, X s ) -σ(t k , X k ) dW s A R t (t,xt) + t t k b(s, X s ) -b(t k , X k ) ds A R t (t,xt) + d l=1 t t k ∇σ l (s, X s )(σ l (s, X s ) -σ l (t k , X k ))ds A R t (t,xt) ≤ √ µ √ R k σ(t k , X t k )(W t -W t k ) A(t,xt) + µ R k t t k σ(s, X s ) -σ(t k , X k ) dW s + µ R k t t k b(s, X s ) -b(t k , X k ) ds + d l=1 µ R k t t k ∇σ l (s, X s ) 2 (σ l (s, X s ) -σ l (t k , X k ))ds .
We use now the exponential martingale inequality (see also Remark 3.8) and we find that

P k (E c k ) ≤ exp - 1 K 4 λ k µn k q 4 R k δ k for some constants K 4 , q 4 . From (3.22), R k /δ k ≥ K 1 (µn k /λ k ) q 1 ,
so by choosing K 1 and q 1 possibly larger and by recalling (3.29), we can conclude that

P k (E c k ) ≤ µ -4nq 1 exp(-K 3 (log µ + log n k -log λ k )) ≤ 1 2 P k (X k+1 ∈ Γ k+1 ).
Hence,

P k ({X k+1 ∈ Γ k+1 } ∩ D k ) ≥ P k ({X k+1 ∈ Γ k+1 } ∩ E k ) ≥ P k (X k+1 ∈ Γ k+1 ) -P k (E c k ) ≥ 1 2 P k (X k+1 ∈ Γ k+1 ) ≥ exp (-K 5 (log µ + log n k -log λ k )) , (3.34) 
for some constant K 5 . Let now N (T ) = max{k :

t k ≤ T }. From definition (3.21), T 0 f R (t)dt ≥ N (T ) k=1 t k t k-1 f R (t)dt = N (T ) µ 2q 1 +1 .
From (3.34),

P sup t≤T |X t -x t | A R t (t,xt) ≤ 1 ≥ P N (T ) k=1 {X k+1 ∈ Γ k+1 } ∩ D k ≥ N (T ) k=1 exp(-K 5 (log µ + log n k -log λ k )) = exp -K 5 N (T ) k=1 log µ + log n k -log λ k .
Since .

N (T ) k=1 (log µ + log n k -log λ k ) = µ 2q 1 +1 N (T ) k=1 t k +1 t k f R (t)(log µ + log n k -log λ k )dt ≤ µ 2q 1 +1 T 0 f R (t)
We can now address the problem of the upper bound.

Theorem 3.10. Let µ ≥ 1, h ∈ (0, 1], n : [0, T ] → [1, +∞), λ : [0, T ] → (0, 1], φ ∈ L 2 ([0, T ],
R n ) and R : [0, T ] → (0, 1] be such that (H 1 )-(H 3 ) in (2.11) hold. Suppose that, for some K * , q * > 0 and for R * (φ) as in (3.18), one has R t ≤ R * t (φ). Then there exist K, q > 0 such that

P sup t≤T |X t -x t (φ)| A R t (t,xt(φ)) ≤ 1 ≤ exp - T 0 K µn t λ t q exp -K * µnt λt q * R t + |φ t | 2 dt . (3.35)
Proof. We refer here to notation and arguments already introduced and developed in the proof of Theorem 3.9. So, when we recall here STEP 1, 2 and 3, we intend to refer to the same steps developed in the proof of Theorem 3.9. We define, with the same K 1 , q 1 as in STEP 1,

g R (t) = K 1 µn t λ t q 1   exp -K * µnt λt q * µ 2q * R t + |φ t | 2   Because of (3.18), for all t ∈ [0, T ], exp -K * µnt λt q * µ 2q * R t ≥ 1 h (3.36)
We work here with δ(t) as in the proof od Theorem 3.9 but defined from g R :

δ(t) = inf δ > 0 : t+δ t g R (s)ds ≥ 1 µ 2q 1 +1 .
We set, as before,

ε t (δ(t)) = t+δ(t) t |φ s | 2 ds 1/2 .
As in STEP 1, using also (3.36), we can check estimates similar to (3.22) and (3.23): we have indeed,

δ(t) ≤ h K 1 λ t µn t q 1 ≤ 1 K 1 λ t µn t q 1 and ε t (δ(t)) 2 ≤ 1 K 1 λ t µn t q 1 .
In particular, δ(t) ≤ h. With these definitions we set a time grid {t k : k = 0, . . . , N (T )} and all the associated quantities as in STEP 2. As we did for the lower bound, since we estimate the probability of remaining in the tube for any t ∈ [t k , t k+1 ], we can suppose that the bound in (3.12) holds on R + × R n (recall Remark 3.8). The short time density estimate (3.16) holds again. Recall now that R . ∈ L(µ, h), and this gives the analogous to (3.27):

1 2 √ µ |ξ| A R k (t k ,x k ) ≤ |ξ| A R k+1 (t k+1 ,x k+1 ) ≤ 2 √ µ|ξ| A R k (t k ,x k ) (3.37)
We define

∆ k = {y : |y -x k | A R k (t k ,x k ) ≤ 1} and Pk (•) = P (•|W t , t ≤ t k ; X k ∈ ∆ k ) ,
so Pk is the conditional probability given the Brownian path up to time t k and the fact that X k ∈ ∆ k . Now, since δ(t) ≤ h and R, λ, n ∈ L(µ, h), we have

t+δ(t) t K 1 µn s λ s q 1 |φ| 2 s ds ≤ µ 2q 1 K 1 µn t λ t q 1 t+δ(t) t |φ| 2 s ds and t+δ(t) t K 1 µn s λ s q 1 exp -K * µns λs q * µ 2q * R s ds ≤ µ 2q 1 +1 K 1 µn t λ t q 1 exp -K * µn t λ t q * δ(t) R t . Since R t ≤ R * t (φ) ≤ exp -K * µn t λ t q * µ 2q * inf 0≤δ≤h δ t+δ t |φ s | 2 ds , we have t+δ(t) t |φ s | 2 ds ≤ exp -K * µn t λ t q * δ(t) R t
We obtain

1 = µ 2q 1 +1 t+δ(t) t g R (s)ds ≤ 2µ 4q 1 +2 K 1 µn t λ t q 1 exp -K * µn t λ t q * δ(t) R t so R t δ(t) ≤ 2µ 4q 1 +2 K 1 µn t λ t q 1 exp -K * µn t λ t q * (3.38)
As we did in STEP 3, if q * , K * are large enough, R k is small enough and the upper bound for the density holds on ∆ k+1 . By using (3.37) and (3.1), we obtain

Leb n (y : |y -

x k+1 | A R k+1 (t k+1 ,x k+1 ) ≤ 1) ≤ 2 n Leb n (y : |y -x k+1 | A R k (t k ,x k ) ≤ 1) = 2 n det(A R k A T R k (t k , x k )) = C k det(AA T (t k , x k )) R n- dim σ(t k ,x k ) 2 k
, in which we have used the Cauchy-Binet formula (see also Remark 3.7). Now, using the upper estimate for the density in the version of Theorem 3.5 given in Remark 3.6, we obtain

Pk (X k+1 ∈ ∆ k+1 ) ≤ e C k R k δ k n- dim σ(t k ,x k ) 2
where C k = C t k , C ∈ A (see the constant in the upper bound of (3.16)). Recall (3.38), for

t = t k R k δ k ≤ 2µ 4q 1 +2 K 1 µn k λ k q 1 exp -K * µn k λ k q *
so we chose now K * , q * large enough to have

Pk (X k+1 ∈ ∆ k+1 ) ≤ exp(-K 2 )
for a constant K 2 > 0. From the definition of N (T )

T 0 g R (t)dt = N (T ) k=1 t k t k-1 g R (t)dt = N (T ) µ 2q 1 +1 ≤ N (T ).
So, we have

P sup t≤T |X t -x t (φ)| A R t (t,xt(φ)) ≤ 1 ≤ E N (T ) k=1 Pk (∆ k+1 ) ≤ N (T ) k=1 exp(-K 2 ) = exp(-K 2 N (T )) ≤ exp -K 2 T 0 g R (t)
and (3.35) holds.

On the equivalence with the control distance

We establish here the local equivalence between the norm |•| A R (t,x) and the control (Carathéodory) distance. We use in a crucial way the alternative characterization given in [START_REF] Nagel | Balls and metrics defined by vector fields. I. Basic properties[END_REF]. These results hold in the homogeneous case, so we consider now the vector fields σ j (t, x) = σ j (x), and the associated norm A R (t, x) = A R (x). We assume in this section the following bound on σ: there exists κ :

R n → [1, +∞) such that sup |y-x|≤1 0≤|α|≤4 d j=1 |∂ α x σ j (y)| ≤ κ(x), ∀x ∈ R n . (4.1)
So, (4.1) agrees with (2.1) in the homogeneous case and when b = 0. We now introduce a quasi-distance d which is naturally associated to the family of norms |y| A R (x) . We set

O = {x ∈ R n : λ * (A(x)) > 0} = {x : det(AA T (x)) = 0} which is an open set since x → det(AA T (x)) is a continuous function. Notice that if x ∈ O then det(A R A T R (x)) > 0 for every R > 0. For x, y ∈ O, we define d(x, y) by d(x, y) < √ R ⇔ |y -x| A R (x) < 1.
The motivation for taking √ R is the following: in the elliptic case |y -

x| A R (x) ∼ R -1/2 |y -x| so |y -x| A R (x) ≤ 1 amounts to |y -x| ≤ √ R.
It is straightforward to see that d is a quasidistance on O, meaning that d verifies the following three properties (see [START_REF] Nagel | Balls and metrics defined by vector fields. I. Basic properties[END_REF]): We recall the definition of equivalence of quasi-distances. Two quasi-distances d 1 : Ω × Ω → R + and d 2 : Ω × Ω → R + are equivalent if for every compact set K ⋐ Ω there exists a constant C such that for every x, y ∈ K We introduce now the control metric. Without loss of generality, we assume T = 1, For ψ ∈ L 2 ([0, 1], R d ), let u(ψ) satisfy the following controlled equation:

1 C d 1 (x, y) ≤ d 2 (x, y) ≤ Cd 1 (x, y). ( 4 
du t (ψ) = d j=1 σ j (u t (ψ))ψ j t dt. (4.3) 
Notice that the equation for u(ψ) is actually the skeleton equation (2.9) when the drift b is null. For x, y ∈ O we denote by C 2 σ,1 (x, y) the set of controls ψ ∈ L 2 ([0, 1]; R d ) such that the corresponding solution u(ψ) of (4.3) satisfies u 0 (ψ) = x and u 1 (ψ) = y. We define the control (Carathéodory) distance as

d c (x, y) = inf ψ∈C 2 σ,1 (x,y) ψ 2 .
For δ ∈ (0, 1], we also denote C 2 σ,δ (x, y) the set of controls φ ∈ L 2 ([0, δ]; R d ) such that the corresponding solution u(φ) to (4.3) satisfies u 0 (φ) = x and u δ (φ) = y. For φ ∈ C 2 σ,δ (x, y), we set the associated energy

ε φ (δ) = δ 0 |φ s | 2 ds 1/2 . Notice that d c (x, y) = √ δ inf φ∈C 2 σ,δ (x,y) ε φ (δ). ( 4.4) 
Indeed, for each x, y ∈ R n and ψ ∈ C 2 σ,1 (x, y), take φ t = δ -1 ψ(tδ -1 ) and ξ t = u t/δ (ψ). Then, dξ t = d j=1 σ j (ξ t )φ j t dt and of course ξ 0 = x, ξ δ = y. Moreover, ψ 2 = √ δ ε φ (δ). Lastly, we define C ∞ σ,1 (x, y) the set of paths g ∈ L ∞ ([0, 1]; R d ) such that the corresponding solution u(g) of (4.3) satisfies u 0 (g) = x and u 1 (g) = y. Using this set of controls, we define

d ∞ (x, y) = inf g∈C ∞ σ,1 (x,y) g ∞ .
Under (4.1), we define

D = C : O → R + : C = K κ(x) λ(x) q , ∃ K, q > 0 .
Notice that D is actually the set in (3.5) in the homogeneous case. Proof. A. Assume that d c (x, y) ≤ 1/ C2 (x), with C ∈ D to be chosen later. We set δ

(x) = C2 (x)d c (x, y) 2 . Notice that δ(x) ≤ 1/ C2 (x). (4.4) with δ = δ(x) gives d c (x, y) = δ(x) inf φ∈C 2 σ,δ(x) (x,y) ε φ (δ(x)) = C(x)d c (x, y) inf φ∈C 2 σ,δ(x) (x,y) ε φ (δ(x))
and thus, inf

φ∈C 2 σ,δ(x) (x,y) ε φ (δ(x)) = 1 C(x) < 2 C(x)
.

Hence, there exists φ * ∈ C 2 σ,δ(x) (x, y) such that

ε φ * (δ(x)) < 2 C(x)
.

For every fixed x, we apply Remark 3.4 to φ * (recall that here b ≡ 0): there exists δ, ε ∈ 1/D and C ∈ D such that (with the slightly different notation of the present section)

|u δ (φ * ) -x| A δ (x) ≤ C(x)(ε φ * (δ) ∨ √ δ),
for every δ such that δ ≤ δ(x) and ε φ * (δ) ≤ ε(x). We have just proved that δ(x) ≤ 1/ C2 (x) and ε φ * (δ(x)) ≤ 2/ C(x). So, possibly taking C larger, we can actually use δ = δ(x). B. We prove now the converse inequality. We use a result from [START_REF] Nagel | Balls and metrics defined by vector fields. I. Basic properties[END_REF], for which we need to recall the definition of the quasi-distance d * (denoted by ρ 2 in [START_REF] Nagel | Balls and metrics defined by vector fields. I. Basic properties[END_REF]). The definition we give here is slightly different but clearly equivalent. For θ ∈ R m , consider the equation dv t (θ) = A(v t (θ))θdt. Notice that θ ∈ CA (x, y) is a constant vector, and not a time depending control as in (4.3). Moreover, recalling the definitions (2.4)-(2.5) for A, (4.5) involves also the vector fields [σ i , σ j ], differently from (4.3). In both equations the drift term b does not appear. Let D R be the diagonal matrix in (2.7) and recall that A R (x) = A(x)D R . We define d * (x, y) = inf{R > 0 : there exists θ ∈ CA (x, y) such that |D -1 R θ| < 1}. As a consequence of Theorem 2 and Theorem 4 from [START_REF] Nagel | Balls and metrics defined by vector fields. I. Basic properties[END_REF], d * is locally equivalent with d ∞ . Since d c (x, y) ≤ d ∞ (x, y) for every x and y, one gets that d c is locally dominated from above by d * . To conclude we need to prove that d * is locally dominated from above by d. Let us be more precise: for x ∈ O, we look for C ∈ D and R ∈ 1/D such that the following holds: if 0 < R ≤ R(x) and d(x, y) ≤ √ R, then there exists a control θ ∈ CA (x, y) such that |D -1 R θ| < C(x). This implies d * (x, y) ≤ C(x) √ R, and the statement holds. Notice that we discuss local equivalence, and that is why we can take C(x) and R(x) depending on x. Recall that d(x, y) ≤ √ R means |x-y| A R (x) ≤ 1, and this also implies |x-y| ≤ λ * (A(x)) √ R, by (3.2). Let v(θ) denote the solution to (4.5) with v 0 (θ) = x. We look for θ such that v 1 (θ) = y. We define Φ(θ) = We introduce now the Moore-Penrose pseudoinverse of A(x): A(x) + = A(x) T (AA T (x)) -1 . The idea here is to use it as in the least squares problem, but we need some computations to overcome the fact that we are in a non-linear setting. We use the following properties: AA(x) + = Id; |x -y| A(x) = |A(x) + (xy)|. Write θ = A(x) + γ, γ ∈ R n . This implies A(x)θ = γ, and so we are looking for γ ∈ R n such that γ + r(A(x) + γ) = yx.

One has r(0) = 0, ∇r(0) = 0 and, as a consequence, |r(θ)| ≤ C(x)|θ| 2 , for some C ∈ Dfrom now on, C ∈ D will denote a function that may vary from line to line. From the local inversion theorem (in a quantitative form), there exists l ∈ D such that γ → γ + r(A(x) + γ) is a diffeomorrphism from B(0, l x ) to B(0, l x /2). Remark that |x -y| ≤ λ * (A(x)) √ R. So, taking R x such that λ * (A(x)) √ R = l x /2, then for every R < R x and |y -x| < λ * (A(x)) √ R then there exists a unique γ such that γ + r(A(x) + γ) = yx and moreover, |γ| ≤ 2|x -y|. Now, using (3.2) x) .

|r(A(x) + γ)| A R (x) ≤ λ * (A(x))|r(A(x) + γ)| R ≤ C x |A(x) + γ| 2 R ≤ C x |x -y| 2 R ≤ C x |x -y| 2 A R (
Since γ = xyr(A(x) + γ),

|γ| A R (x) ≤ |x -y| A R (x) + C x |x -y| 2 A R (x) ≤ C x ,
(using |x -y| A R (x) ≤ 1). We have |D -1 R θ| = |D -1 R A(x) + γ|. Since A + R A R (x) = A + R (x)A(x)D R is an orthogonal projection and AA + (x) is the identity, 

|D -1 R θ| ≤ |D -1 R A(x) + γ| ≤ A|A + R (x)A(x)D R D -1 R A(x) + γ| = |A + R (x)γ| = |γ| A R (x) . So |D -1 R θ| ≤ C x ,

  s, y)| + |∂ t ∂ α x b(s, y)| + d j=1 |∂ α x σ j (s, y)| + |∂ t ∂ α x σ j (s, y)| ≤ n(t, x).

  i) for every x ∈ O and r > 0, the set {y ∈ O : d(x, y) < r} is open; ii) d(x, y) = 0 if and only if x = y; iii) for every compact set K ⋐ O there exists C > 0 such that for every x, y, z ∈ K one has d(x, y) ≤ C d(x, z) + d(z, y) .

Theorem 4 . 1 .

 41 Suppose that (4.1) hold. A. There exists C ∈ D such that if d c (x, y) ≤ 1/ C2 (x) then d(x, y) ≤ 2 C(x)d c (x, y). B. d is locally equivalent to d c on O. C. For every compact set K ⋐ O there exists r K and C K such that for every x, y ≤ r K one has d c (x, y) ≤ C K d(x, y).

  And since u δ(x) (φ * ) = y, the above inequality gives|y -x| A δ (x) ≤ C(x)(ε φ * (δ(x)) ∨ δ(x)) ≤ 2.By (3.2), we obtain |y -x|A 4δ (x) ≤ 1, that is d(x, y) ≤ 4δ(x) = 2 C(x)d c (x,y), and the statement follows.

  y) = {θ ∈ R m : the solution v(θ) to (4.5) satisfies v 0 (θ) = x and v 1 (θ) = y}.

1 0A 1 0

 11 (v s (θ))θds = A(x)θ + r(θ)with r(θ) = (A(v s (θ))-A(x))θds. With this notation, we look for θ such that Φ(θ) = y-x.

  and prove in Section 4 the local equivalence of d and d c . This allows us to state Theorem 2.2 in the control metric:

  one has s ≤ s t and again from (2.1) and (H 1 ) in (2.11) we have

  will lower bound P(sup t≤T |X tx t (φ)| A R t (t,xt(φ)) ≤ 1) by computing the product of the probabilities P k (D k ∩ {X t k +1 ∈ Γ k+1 }), and this computation uses the lower estimate of the densities given in Theorem 3.5. Remark that Theorem 3.5 uses (3.12), a condition which asks for a global bound for the derivatives of the coefficients, whereas for the tube estimates we are assuming only (H 1 ) in (2.11), i.e. a bound for the coefficients which is not global but just in a neighborhood of the skeleton. Suppose that we have a process X which, for some external reasons, verifies (2.12) for t k ≤ t ≤ t k+1 , and such that sup t k ≤t≤t k+1 |X

tx t (φ)| A R t (t,xt(φ)) ≤ 1.

From (H 1 ), n t k bounds the derivatives of σ(t, y) and b(t, y) for all (t k -1) ∨ 0 ≤ t ≤ t k + 1, and for all |yx t k (φ)| ≤ 1. Then, for example using the result in

[START_REF] Whitney | On the extension of differentiable functions[END_REF]

, we can define σ, b

which coincide with σ, b on [(t k -1)∨ 0, t k + 1]× {y ∈ R n : |yx t k (φ)| ≤ 1},

are differentiable as many times as σ, b but the bound in (3.12) holds on the whole R + × R n . Let now X be the strong solution to Xt = X t k + t t k σ(s, Xs ) • dW s + t t k b(s, Xs )ds, t ∈ [t k , t k+1 ]. Now, if we call Dk the sets in (3.17) with X replaced by X, it is clear that

  .30) If(3.30) holds, as we will see, then we can apply the lower bound in Remark 3.6 to ρ k (X k , y). More precisely, we use here the version of the estimate given in (3.16): there exists

  .2) d 1 and d 2 are locally equivalent if for every ξ ∈ Ω there exists a neighborhood V of ξ such that d 1 and d 2 are equivalent on V .

  The proof immediately follows from the previous items. The proof of Theorem 2.7 is now an immediate consequence of Theorem 2.2 and Theorem 4.1. The only apparent problem is that in Theorem 4.1 the global estimate (4.1) is required, whereas in Theorem 2.7 the local estimate (H 1 ) in (2.11) holds. But this is not really a problem, since it can be handled as already done for Theorem 2.7 (see Remark 3.8).

and this implies d * (x, y) ≤ C x √ R.

C.