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Abstract

We go back to the question of the regularity of the “velocity average”
∫
f(x, v)ψ(v) dµ(v)

when f and v · ∇xf both belong to L2, and the variable v lies in a discrete subset of RD.
First of all, we provide a rate, depending on the number of velocities, to the defect of H1/2

regularity. Second of all, we show that the H1/2 regularity holds in expectation when the set
of velocities is chosen randomly. We apply this statement to investigate the consistency with
the diffusion asymptotics of a Monte–Carlo–like discrete velocity model.

1 Introduction

Averaging lemma is now a classical tool for the analysis of kinetic equations. Roughly speaking
it can be explained as follows. Let V ⊂ RD, endowed with a measure dµ. We consider a
sequence of functions fn : RD × V → R. We assume that

a)
(
fn
)
n∈N is bounded in L2(RD × V ),

b)
(
v · ∇xfn

)
n∈N is bounded in L2(RD × V ).

Given ψ ∈ C∞c (RD), we are interested in the velocity average

ρn[ψ](x) =

∫
V

fn(x, v)ψ(v) dµ(v).

Of course, a) already tells us that
(
ρn[ψ]

)
n∈N is bounded in L2(RD). We wish to obtain further

regularity or compactness properties, as a consequence of the additional assumption b), and
the fact that we are averaging with respect to the variable v. The first result in that direction
dates back to [3] (see also [1]); it asserts that

(
ρn[ψ]

)
n∈N is bounded in the Sobolev space

H1/2(RD) and it is thus relatively compact in L2
loc(RD), by virtue of the standard Rellich’s

theorem. This basic result has been improved in many directions: L2 can be replaced by the
Lp framework, at least with 1 < p < ∞, and we can relax b) by allowing derivatives with
respect to v and certain loss of regularity with respect to x; see, among others, [13, 16, 26].
Time derivative or force terms can be considered as well, see, additionally to the above-
mentionned references, [5]. Such an argument plays a crucial role in the stunning theory of
“renormalized solutions” of the Boltzmann equation [12], and more generally for proving the
existence of solutions to non linear kinetic models like in [11]. It is equally a crucial ingredient
for the analysis of hydrodynamic regimes, which establish the connection between microscopic
models and fluid mechanics systems; for the asymptotic of the Boltzmann equation to the
incompressible Navier–Stokes system, which needs a suitable L1 version of the average lemma
[17], we refer the reader to [18, 27, 29]. Finally, it is worth pointing that averaging lemma can
be used to investigate the regularizing effects of certain PDE (convection-diffusion and elliptic
equations, nonlinear conservation laws, etc) [28].

In order to illustrate our purpose, let us consider the following simple model which can be
motivated from radiative transfer theory:

ε∂tfε + v · ∇xfε =
1

ε
σ(ρε)(ρε − fε) (1.1)
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where

ρε(t, x) =

∫
V

fε(t, x, v) dµ(v),

and σ : [0,∞)→ [0,∞) is a given smooth function. The parameter 0 < ε� 1 is defined from
physical quantities. As it tends to 0, both fε(t, x, v) and ρε(t, x) converge to ρ(t, x), which
satisfies the non linear diffusion equation

∂tρ = ∇x ·
(
A∇xF (ρ)

)
, A =

∫
V

v ⊗ v dµ(v), F (ρ) =

∫ ρ

0

dz

σ(z)
. (1.2)

The averaging lemma is an efficient tool to deal with the nonlinearity of such a problem, as
discussed in [3].

However the discussion above hides the fact that we need some assumptions on the mea-
sured set of velocities (V , dµ) in order to obtain the regularization property of the velocity
averaging. Roughly speaking, we need “enough” directions v when we consider the derivatives
in b). More technically, the compactness statement holds provided for any 0 < R <∞ we can
find CR > 0, δ0 > 0, γ > 0 such that for 0 < δ < δ0 and ξ ∈ SN−1, we have

meas
({
v ∈ V ∩B(0, R), |v · ξ| ≤ δ

})
≤ CRδγ .

This assumption appears in many statements about regularity of the velocity averages; as
far as we are only interested in compactness issue, it can be replaced by the more intuitive
assumption (see e. g. [14, Th. 1 in Lect. 3]): for any ξ ∈ SN−1 we have

meas
({
v ∈ V ∩B(0, R), v · ξ = 0

})
= 0. (1.3)

Clearly these assumptions are satisfied when the measure dµ is absolutely continuous with
respect to the Lebesgue measure (with, for the sake of concreteness, V = RD or V = SD−1).
However, they fail for models based on a discrete set of velocities. For instance let V =
{v1, ..., vN}, with vj ∈ RD, and dµ(v) = 1

N

∑N
j=1 δ(v = vj); it suffices to pick ξ ∈ SN−1

orthogonal to one of the vj ’s to contradicts (1.3). (Note that alternative proofs based on com-
pensated compactness techniques have been proposed to justify the asymptotic regime from
(1.1) to (1.2), that apply to certain discrete velocity models, see [10, 20, 23].) Nevertheless,
when the discrete velocities come from a discretization grid of the whole space, the averag-
ing lemma can be recovered asymptotically letting the mesh step go to 0, as shown in [25],
motivated by the convergence analysis of numerical schemes for the Boltzmann equation.

This paper aims at investigating further these issues. To be more specific, in Section 2 we
revisit the averaging lemma for discrete velocities in two directions. First of all, we make more
precise the analysis of [25], obtaining a rate on the defect to the H1/2 regularity of the velocity
average, depending on the mesh size. Second of all, we establish a stochastic version of the
averaging lemma. We are still working with a finite number of velocities on bounded sets;
however, choosing the velocities randomly, the “compactifying” property of assumption b) can
be restored by dealing with the expectation of ρn[ψ]. This is a natural way to involve “enough
velocities”, by looking at a large set of realization of the discrete velocity grid. The analysis
is completed in Section 3 by going back to the asymptotic problem ε → 0 in (1.1), with a
random discretization of the velocity variable, in the spirit of the Monte–Carlo approach.

2 Discrete Velocity Averaging Lemmas

2.1 Deterministic case: evaluation of the defect

As mentioned above, it is a well known fact that, in the deterministic context, the averaging
lemma fails for discrete velocity models. However, as mentioned by S. Mischler in [25], the
compactness of velocity averages is recovered asymptotically when we refine a velocity grid
in order to recover a continuous velocity model. Here, we wish to quantify the defect of
compactness when the number of velocities is finite and fixed. This is the aim of the following
claim which shows that the macroscopic density ρ[ψ] “belongs to H1/2(RD)+O( 1√

N
)L2(RD)”.
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Proposition 2.1. Let N ∈ N \ {0} and define

AN =

(
1

N
Z
)D
∩ [−0.5, 0.5]D.

Let f, g ∈ L2(RD ×AN ) satisfy for all k ∈ Z,

vk · ∇xf(x, vk) = g(x, vk). (2.1)

We suppose that the L2 norm of f and g is bounded uniformly with respect to N . Then, for
all ψ ∈ C∞c (RD), the macroscopic quantity

ρ[ψ](x) =
1

(N + 1)D

∑
k

f(x, vk)ψ(vk)

can be split as ρ[ψ](x) = Θ[ψ](x) + 1√
N

∆̃[ψ](x) where Θ[ψ] and ∆̃[ψ] are bounded uniformly

with respect to N in H1/2(RD) and L2(RD) respectively.

Remark 2.1. Note that in this statement N is the number of grid points per axis. Accordingly,
there are N = (N+1)D velocities in the set AN . Therefore the defect of H1/2 regularity decays
like N 1/2D, depending on the dimension.

Proof. As usual, we start by applying the Fourier transform to (2.1). Then for all k ∈ Z and
ξ ∈ RD, we get

ξ · vk f̂(ξ, vk) = (−i)ĝ(ξ, vk).

Let us set

F (ξ) :=

(
1

(N + 1)D

∑
k

|f̂(ξ, vk)|2
)1/2

, G(ξ) :=

(
1

(N + 1)D

∑
k

|ĝ(ξ, vk)|2
)1/2

.

By assumption, we have F,G ∈ L2
ξ. Still following the standard arguments, we pick δ > 0 and

we split

ρ̂[ψ](ξ) =
1

(N + 1)D

∑
k

f̂(ξ, vk)ψ(vk)

=
1

(N + 1)D

∑
|ξ·vk|<δ|ξ|

f̂(ξ, vk)ψ(vk) +
1

(N + 1)D

∑
|ξ·vk|≥δ|ξ|

f̂(ξ, vk)ψ(vk).

The Cauchy–Schwarz inequality permits us to dominate the first term as follows∣∣∣∣∣∣ 1

(N + 1)D

∑
|ξ·vk|<δ|ξ|

f̂(ξ, vk)ψ(vk)

∣∣∣∣∣∣
≤ ‖ψ‖∞

(
1

(N + 1)D

∑
k

|f̂(ξ, vk)|2
)1/2

 1

(N + 1)D

∑
|ξ·vk|<δ|ξ|

1

1/2

.

(2.2)

For the second term, we use the information in (2.1); it yields∣∣∣∣∣∣ 1

(N + 1)D

∑
|ξ·vk|≥δ|ξ|

f̂(ξ, vk)ψ(vk)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1

(N + 1)D

∑
|ξ·vk|≥δ|ξ|

(−i)ĝ(ξ, vk)

ξ · vk
ψ(vk)

∣∣∣∣∣∣
≤ ‖ψ‖∞

(
1

(N + 1)D

∑
k

|ĝ(ξ, vk)|2
)1/2

 1

(N + 1)D

∑
|ξ·vk|≥δ|ξ|

1

|ξ · vk|2

1/2

.

(2.3)

From now on we assume ξ 6= 0. Let (e1, .., , eD) stand for the canonical basis of RD so that
ξ =

∑D
j=1 αjej with αj ∈ R. We distinguish the following two cases:

i) either ξ is aligned with an axis: all αj ’s vanish but one,

ii) or ξ is generated by at least two vectors of the basis.

We start with the case i) assuming for instance ξ = αe1. Then ξ · vk = αv1
k, where v1

k is the
first component of the vector vk.
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(−0.5,−0.5)
•

(0.5, 0.5)
•

δ

Figure 1: The delimited area corresponds to |ξ · vk| < δ|ξ| for ξ colinear to e1.

We refer the reader to Fig. 1 for completing the discussion. On each horizontal line we find
2bδNc+ 1 velocities such that |ξ · vk| < δ|ξ|, where bsc stands for the integer part of s. Thus,
since there is (N + 1)D−1 such lines on the domain AN , we obtain∑

|ξ·vk|<δ|ξ|

1 = (2bδNc+ 1)(N + 1)D−1 = 2

(
δ +

1

N

)
(N + 1)D.

Coming back to (2.2), we arrive at∣∣∣∣∣∣ 1

(N + 1)D

∑
|ξ·vk|<δ|ξ|

f̂(ξ, vk)ψ(vk)

∣∣∣∣∣∣ ≤ C F (ξ)

√
δ +

1

N
.

where C > 0 is a generic constant which does not depend on N and ξ.

(−0.5,−0.5)
•

(0.5, 0.5)
•

δ

Figure 2: Splitting of the velocity space in strips of width δ. This space being
symmetric, we only deal with the part corresponding to positive abscissae.

Next, we cover the set of velocities such that |vk · ξ| ≥ δ|ξ| by strips of width δ, see Fig. 2
in dimension D = 2. We denote by Sp the p-th strip delimited by the straight lines x = pδ
and x = (p+ 1)δ. Each velocity on the strip Sp satisfies pδ ≤ v1

k ≤ (p+ 1)δ. Moreover, given
a strip Sp, we cannot find more than bδNc+ 1 abscissae in the strip and there is (N + 1)D−1
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lines in the domain. It follows that∑
|ξ·vk|≥δ|ξ|

1

|ξ · vk|2
=

∑
|ξ·vk|≥δ|ξ|

1

|ξ|2
1

| ξ|ξ| .vk|2

≤ 1

|ξ|2 2

∑
p≥1

1

(pδ)2

 (δN + 1)(N + 1)D−1

≤ 1

|ξ|2 2

∑
p≥1

1

p2

 1

δ

(
1 +

1

δN

)
(N + 1)D.

Thus, we deduce from (2.3) that∣∣∣∣∣∣ 1

(N + 1)D

∑
|ξ·vk|≥δ|ξ|

f̂(ξ, vk)ψ(vk)

∣∣∣∣∣∣ ≤ C G(ξ)
1

|ξ|
√
δ

(
1 +

1

δN

)1/2

.

We conclude that

|ρ̂[ψ](ξ)| ≤ C

(
F (ξ)

√
δ +

1

N
+G(ξ)

1

|ξ|
√
δ

(
1 +

1

δN

)1/2
)
. (2.4)

holds when ξ is aligned to the axis.

We turn to the general case ii). As illustrated in Fig. 3, we can assume that the angle θ
between ξ and one of the axis (say e1) lies in ]0, π/4[, the other cases follow by a symmetry
argument.

(0.5, 0.5)
•

ξ
θ

(0.5, 0.5)
•

θ

ξ

Figure 3: Representation of ξ ∈ R2 with θ ∈]0, π4 ] and θ ∈]π4 ,
π
2 ] with

cos(θ)|ξ| = ξ · e1.

The reasoning still consists in counting velocities in strips appropriately defined. As said above,
without loss of generality we can assume that θ ∈]0, π

4
], where we have set cos(θ)|ξ| = ξ · e1.

We set `1 := δ
cos θ

. On a given strip, we can find at most (b`1Nc+ 1)× (N + 1)D−1 velocities,
see Fig. 5.

Therefore, bearing in mind that 0 < θ < π
4

, we obtain∑
|ξ·vk|≥δ|ξ|

1

|ξ · vk|2
=

∑
|ξ·vk|≥δ|ξ|

1

|ξ|2
1

| ξ|ξ| · vk|2

≤ 1

|ξ|2 × 2
∑
p≥1

1

(pδ)2

( δ

cos θ
N + 1

)
(N + 1)D−1

≤ 1

|ξ|2 × 2
∑
p≥1

1

(pδ)2

1

δ cos θ

(
1 +

1

δN

)
(N + 1)D

≤ 2
√

2
1

|ξ|2
1

δ

(
1 +

1

δN

)
(N + 1)D
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(−0.5,−0.5)
•

(0.5, 0.5)
•

ξ

Figure 4: The area corresponding to |ξ · vk| ≤ δ|ξ| is delimited as previously.
The complementary set is split into strips of width δ.

(0.5, 0.5)
•

`1

δ

ξ

Figure 5: Representation of the parameter `1.

and ∑
|ξ·vk|<δ|ξ|

1 = (2b`1Nc+ 1)(N + 1)D−1

≤ 2

(
δ

cos θ
N + 1

)
(N + 1)D−1

≤ 2
√

2

(
δ +

1

N

)
(N + 1)D.

Thus, we deduce exactly like in case i) that (2.4) holds for any ξ 6= 0.
Therefore, we have established that for all ξ 6= 0, we get (2.4) for all δ > 0. We take

δ =
1

|ξ|1{N≥|ξ|} +
1

N
1{N<|ξ|}

and we denote

ΘN (ξ) := ρ̂[ψ](ξ)1{N≥|ξ|}, ∆N (ξ) := ρ̂[ψ](ξ)1{N<|ξ|}.
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Then, we have

ΘN (ξ) ≤ C

F (ξ)

√
1

|ξ| +
1

N
+G(ξ)

1

|ξ|
√

1
|ξ|

(
1 +

1
N
|ξ|

)1/2
1{N≥|ξ|}

≤ C (F (ξ) +G(ξ))
1√
|ξ|
.

It implies that
|ξ|ΘN (ξ)2 ≤ C(G2(ξ) + F 2(ξ)),

which equally holds true for ξ = 0. Then by assumption on f and g, we deduce that ΘN ∈
H1/2(RD). Finally, we evaluate the remainder as follows

∆N (ξ) ≤ C

F (ξ)

√
2

N
+G(ξ)

1

|ξ|
√

1
N

(
1 +

1
1
N
N

)1{N<|ξ|}

≤ C√
N

(F (ξ) +G(ξ)).

We conclude that

∆2
N (ξ) ≤ C

N

(
F 2(ξ) +G2(ξ)

)
,

which is also satisfied when ξ = 0. Thus, by assumption on f and g, ‖∆N‖L2 is dominated by
1√
N

, an observation which finishes the proof.

2.2 A stochastic discrete velocity averaging lemma

Dealing with random discrete velocities we can expect to make the defect vanish when taking
the expectation of the velocity averages. This is indeed the case as shown in the following
statement.

Theorem 2.2. Let (Ω,A,P) be a probability space. Let V1, ..., VN be i.i.d. random variables,
distributed according to the continuous uniform distribution on [−0.5, 0.5]D. We set

dµ =
1

N

N∑
k=1

δ(v = Vk).

Let f, g ∈ L2(RD × RD × Ω, dxdµ(v) dP) satisfy for all x ∈ RD, ω ∈ Ω, and k ∈ {1, ...,N }

Vk · ∇xf(x, Vk) = g(x, Vk). (2.5)

Then, for all ψ ∈ C∞c (RD), the macroscopic quantity

ρ[ψ](x) :=
1

N

N∑
k=1

f(x, Vk)ψ(Vk) =

∫
RD

f(x, v)ψ(v) dµ(v)

satisfies Eρ[ψ] ∈ H1/2(RD) (and it is bounded in this space if the L2 norm of f and g is
bounded uniformly with respect to N ).

Remark 2.2. We point out that this statement has a different nature form the stochastic
averaging lemma devised in [8, 9], where the velocity set still satisfies an assumption like (1.3)
but the equation for v · ∇xfn involves a stochastic term. Our analysis is closer in spirit to the
results in [22] where the velocity variable is deterministic but is is multiplied by a Brownian
motion.

Proof. We apply the Fourier transform to (2.5). Then, for all k, we get

ξ · Vkf̂(ξ, Vk) = (−i)ĝ(ξ, Vk).

We set

F (ξ) :=

(
1

N
E
∑
k

|f̂(ξ, Vk)|2
)1/2

, G(ξ) :=

(
1

N
E
∑
k

|ĝ(ξ, Vk)|2
)1/2

.
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Let us split

Eρ̂[ψ](ξ) = E

[
1

N

∑
k

f̂(ξ, Vk)ψ(Vk)

]

= E

 1

N

∑
|ξ·Vk|<δ|ξ|

f̂(ξ, Vk)ψ(Vk)

+ E

 1

N

∑
|ξ·Vk|≥δ|ξ|

f̂(ξ, Vk)ψ(Vk)

.
for δ > 0. The Cauchy–Schwarz inequality leads to the following estimate: on the one hand∣∣∣∣∣∣E

 1

N

∑
|ξ·Vk|<δ|ξ|

f̂(ξ, Vk)ψ(Vk)

∣∣∣∣∣∣
≤ ‖ψ‖∞

(
1

N
E
∑
k

|f̂(ξ, Vk)|2
)1/2

 1

N
E

∑
|ξ·Vk|<δ|ξ|

1

1/2

,

and, on the other hand∣∣∣∣∣∣E
 1

N

∑
|ξ·vk|≥δ|ξ|

f̂(ξ, Vk)ψ(Vk)

∣∣∣∣∣∣ =

∣∣∣∣∣∣E
 1

N

∑
|ξ·Vk|≥δ|ξ|

(−i)ĝ(ξ, Vk)

ξ · Vk
ψ(Vk)

∣∣∣∣∣∣
≤ ‖ψ‖∞

(
1

N
E
∑
k

|ĝ(ξ, Vk)|2
)1/2

 1

N
E

∑
|ξ·vk|≥δ|ξ|

1

|ξ · Vk|2

1/2

.

We only detail the case where ξ = αe1, α ∈ R, the other cases being deduced by adapting the
reasoning of the proof of Proposition 2.1. We have

E

 ∑
|ξ·Vk|≥δ|ξ|

1

|ξ · Vk|2

 = E

 ∑
|ξ·Vk|≥δ|ξ|

1

|ξ|2
1

| ξ|ξ| · Vk|2


≤ E

 1

|ξ|2 2

∑
p≥1

1

(pδ)2

Mp


where Mp is the number of velocities in the p-th strip (see Fig. 2). We bear in mind that Mp

is a random variable: since the Vi’s are distributed according to the uniform law, we have

P(Vi ∈ Sp) = δ

and, the variables V1, . . . , VN being independent, Mp follows a binomial distribution of pa-
rameters N and δ. Therefore, we are led to

E

 ∑
|ξ·Vk|≥δ|ξ|

1

|ξ · Vk|2

 ≤ 1

|ξ|2 2

∑
p≥1

1

(pδ)2

E [Mp]

≤ C
1

|ξ|2δN ,

(2.6)

which yields ∣∣∣∣∣∣E
 1

N

∑
|ξ·Vk|≥δ|ξ|

f̂(ξ, Vk)ψ(Vk)

∣∣∣∣∣∣ ≤ CG(ξ)
1

|ξ|
√
δ
.

On the same token, we get

E

 ∑
|ξ·Vk|<δ|ξ|

1

 = 2δN (2.7)

so that ∣∣∣∣∣∣E
 1

N

∑
|ξ·Vk|<δ|ξ|

f̂(ξ, Vk)ψ(Vk)

∣∣∣∣∣∣ ≤ CF (ξ)
√
δ.
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Finally, we arrive at

|Eρ̂[ψ](ξ)| ≤ C

(
F (ξ)

√
δ +

G(ξ)

|ξ|
√
δ

)
.

We apply this inequality with δ = G(ξ)
|ξ|F (ξ)

, which leads to

|Eρ̂[ψ](ξ)| ≤ C
√
F (ξ)G(ξ)

1√
|ξ|
.

It concludes the proof by using the assumptions on f and g.

Remark 2.3. We can readily extend the result to non uniform laws: we assume that the Vi’s
are identically and independently distributed in RD according to a continuous and bounded
density of probability Φ. The number Mp of velocities in the strip Sp still follows a binomial
law but now the expectation value depends on Φ and Mp can be shown to be dominated by
N ‖Φ‖∞δ.

For certain applications, the variable v lies on the sphere. This is the case for the kinetic
models arising in radiative transfer theory where v represents the direction of flight of photons,
which, of course, all travel with the speed of light. We can adapt the stochastic averaging
lemma to this situation.

Theorem 2.3. Let (Ω,A,P) be a probability space. Let V1, ..., VN be i.i.d. random variables,
distributed according to the continuous uniform distribution on SD−1. We set

dµ =
1

N

N∑
k=1

δ(v = Vk).

Let f, g ∈ L2(RD × RD × Ω, dxdµ(v) dP) satisfy for all x ∈ RD, ω ∈ Ω, and k ∈ {1, ...,N }

Vk · ∇xf(x, Vk) = g(x, Vk).

Then, for all ψ ∈ C∞c (SD−1), the macroscopic quantity

ρ[ψ](x) :=
1

N

N∑
k=1

f(x, Vk)ψ(Vk) =

∫
RD

f(x, v)ψ(v) dµ(v)

satisfies Eρ[ψ] ∈ H1/2(RD).

Proof. The proof follows the same arguments as for Theorem 2.2; we only indicate the main
changes. The proof still relies in counting the velocities produced by the random sampling in
the domain

Sp =
{
v ∈ SD−1, δp|ξ| ≤ |v · ξ| ≤ δ(p+ 1)|ξ|

}
,

for given ξ ∈ RD \ {0}, δ > 0 and p ∈ Z. We define θ ∈ [0, 2π] such that

v · ξ|ξ| = cos(θ) ∈ [−1,+1].

Considering the random vectors Vk, the associated variable θk is randomly distributed on
[0, 2π]. For symmetry reasons, P(Vk ∈ Sp) is thus proportional to

P
(
δ|p| ≤ cos(θk) ≤ δ(|p|+ 1)

)
.

We start with the specific case of dimension D = 2, and we refer the reader to Fig. 6. In this
case, θ is uniformly distributed on [0, 2π]. Therefore, for any p ∈ N, P(δp ≤ cos(θ) ≤ δ(p+ 1))
is proportional to

Πδ,p =

∫ arccos(δp)

arccos(δ(p+1))

dθ = arccos(δp)− arccos(δ(p+ 1))

and Mp = #{Vk ∈ Sp} is driven by the binomial law with parameters N and αΠδ,p for a
certain constant α > 0. Hence, the analog of (2.7) is dominated, up to some constant, by

N Πδ,0 = N
(π

2
− arccos(δ)

)
= N

∫ δ

0

dx√
1− x2

≤ CN δ

9



as far as 0 < δ ≤ δ0 < 1. Similarly, the analog of (2.6) involves the sum∑
p≥1

N

δ2p2
Πδ,p

that we split into

I =
∑

1≤p≤1/2δ

..., II =
∑

1/2δ<p≤1/δ

...

For I, we can still use the fact that x 7→ 1√
1−x2

is non increasing and bounded far away from

x = 1 and we are led to the estimate

I =
∑

1≤p≤1/2δ

N

δ2p2

∫ δp

δ(p+1)

dx√
1− x2

≤
∑

1≤p≤1/2δ

N

δ2p2

δ√
1− δ2(p+ 1)2

≤ CN

δ
.

For II, we use a summation by parts which yields

II =
∑

1/2δ<p≤1/δ

N arccos(δp)

δ2

( 1

(p− 1)2
− 1

p2

)
≤

∑
1/2δ<p≤1/δ

N arccos(δp)

δ2

2

p(p− 1)2
≤ 4δ

δ2
πN

∑
p≥1

1

p2
≤ CN

δ
.

Having these estimates at hand, we can repeat the same arguments as in the proof of Theo-
rem 2.2.

For higher dimension, the situation is actually simpler since θ is now distributed on
[0, π/2] according to the law with density sin(θ)D−2 dθ. Thus (with the simple estimate
0 ≤ sin(θ)D−2 ≤ sin(θ)) we obtain directly the analog of estimates (2.6) and (2.7).

δp δ(p+ 1)

Sp

Figure 6: Velocities on the sphere S1, domain Sp.

The result can be extended to the Lp cases for 1 < p < ∞ by using an interpolation
argument as in [16, Theorem 2].

Corollary 2.4. In Theorems 2.2 and 2.3, we assume that f and g belong to Lp(RD × V ×
Ω, dxdµ(v) dP) for some 1 < p < ∞, with V either RD or SD−1. Then Eρ[ψ] lies in the
Sobolev space W s,p(RD) with 0 < s < min(1/p, 1− 1/p) < 1.

Proof. We readily adapt the interpolation argument in [16]. Let T be the operator

T : h 7−→ E
∫
f(x, v)ψ(v) dµ(v),

where
f(x, Vk) + Vk · ∇xf(x, Vk) = h(x, Vk).

10



Clearly T maps continuously Lr(RD × V × Ω, dxdµ(v) dP) into Lr(RD), for any 1 < r <
∞. Moreover, Theorems 2.2 and 2.3 tell us that T is a continuous operator from L2(RD ×
V × Ω, dxdµ(v) dP) to H1/2(RD). We conclude by interpreting the Sobolev space W s,p by
interpolation, as being an intermediate space between Lr = W 0,r and H1/2 = W 1/2,2 [4,
Theorem 6.4.5, relation (7)], and Lp as being interpolated between Lr and L2.

We can equally extend the compactness statement to the L1 framework, by following [17].

Corollary 2.5. We consider a random set of velocities defined as inTheorem 2.2 or 2.3. Let(
fn
)
n∈N and

(
gn
)
n∈N be two sequences of functions defined on RD × V × Ω such that

i)
{
fn, n ∈ N

}
is a relatively weakly compact set in L1(RD × V × Ω, dxdµ(v) dP),

ii)
{
gn, n ∈ N

}
is bounded in L1(RD × V × Ω, dxdµ(v) dP),

iii) we have Vk · ∇xfn(x, Vk) = gn(x, Vk).

Then Eρn[ψ](x) = E
∫
fn(x, v)ψ(v) dµ(v) lies in a relatively compact set of L1(B(0, R)), for

any 0 < R <∞ (for the strong topology).

Proof. The proof follows closely [17]; we sketch the arguments for the sake of completeness.
For ψ ∈ C∞c (V ), we denote by A the operator

A : f 7−→ E
∫
f(x, v)ψ(v) dµ(v).

For λ > 0, we also introduce the operator

Rλ : h 7−→
∫ ∞

0

e−λth(x− vt, v) dt

which returns the solution f = Rλh of (λ + v · ∇x)f = h. It is a continuous operator on
Lp(RD × V , dxdµ(v)) spaces and we have

‖Rλh‖Lp ≤ ‖h‖L
p

λ
. (2.8)

Let us temporarily assume that the compactness statement holds for ARλgn, for any λ > 0,
when i)-ii) is strengthened into

ii’)
{
gn, n ∈ N

}
is a relatively weakly compact set in L1(RD × V × Ω, dxdµ(v) dP).

Therefore, writing (λ + v · ∇x)Rλfn = fn, we deduce from i) that
(
ARλfn

)
n∈N is relatively

compact in L1(B(0, R)) for any λ > 0 and 0 < R < ∞. Next, we write fn = λRλfn +
Rλ(v · ∇xfn) so that, owing to (2.8), A fn = λARλfn + ARλ(v · ∇xfn) appears as the
sum of a sequence which is compact in L1(B(0, R)) and a sequence the norm of which is
dominated by 1/λ, uniformly with respect to n. Consequently,

(
A fn

)
b∈N is relatively compact

in L1(B(0, R)).
We are thus left with the task of justifying the gain of compactness for ARλgn when i)-ii)

is replaced by ii’), see [16, Proposition 3]. To this end, for λ,M > 0 we set Rλgn = γn and we
split

γn = γn,M + γMn

where
(λ+ Vk · ∇x)γn,M (x, Vk) = gn(x, Vk)1gn(x,Vk)≤M ,
(λ+ Vk · ∇x)γM,ωn (x, Vk) = gn(x, Vk)1gn(x,Vk)>M .

Since for any fixed M > 0, the set
{
gn1hn≤M , n ∈ N

}
is bounded in L1 ∩ L∞ ⊂ L2, we can

apply Theorems 2.2 or 2.3 which imply that
(
A γn,M

)
n∈N is compact in L1(B(0, R)) for any

finite R. We can conclude by showing that γMn can be made arbitrarily small, in L1 norm,
uniformly with respect to n ∈ N, for a suitable choice of M > 0. This is indeed the case
because ii’) implies

lim
M→∞

{
sup
n

∫
|gn|1gn>M dµ(v) dx dP(ω)

}
= 0.

by virtue of the Dunford-Pettis theorem, see [19, Sect. 7.3.2]. Going back to (2.8) finishes the
proof.
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3 Application to the Rosseland Approximation

Let us go back to the asymptotic behavior of the solutions of (1.1). The problem (1.1) is
completed with the initial condition

fε

∣∣∣
t=0

= f0
ε .

It satisfies f0
ε ≥ 0 and f0

ε ∈ L1(RD×V ), as it is physically relevant, fε being a particle density.
For the set (V , dµ), in what follows we suppose at least that V is a bounded subset in RD
and ∫

V

dµ(v) = 1,

∫
V

v dµ(v) = 0.

These assumptions are crucial for the analysis of the diffusion regime. Then, the connection
to (1.2) can be established as follows.

Theorem 3.1. We assume that (1.3) is fulfilled. Let σ be a function such that σ(ρ) = ργΣ(ρ)
with |γ| < 1 and 0 < σ∗ ≤ Σ(ρ) ≤ σ∗ <∞. Let

(
f0
ε

)
ε>0

satisfy

sup
ε>0

(∫
Rd

∫
V

(
1 + ϕ(x) + | ln f0

ε |f0
ε

)
dµ(v) dx+ ‖f0

ε ‖L∞(Rd×V )

)
= M0 < +∞

for a certain weight function such that lim|x|→+∞ ϕ(x) = +∞. Then (up to a subsequence)
the solution fε of (1.1) and ρε converge to ρ(t, x) in Lp((0, T )×Rd × V ) and Lp((0, T )×Rd)
respectively, for any 1 ≤ p <∞, 0 < T <∞ where ρ is a solution to (1.2) with the initial data
ρ
∣∣
t=0

given by the weak limit in Lp(Rd) of
∫

V
f0
ε dµ(v) as ε→ 0.

For instance this statement holds with V = SD−1 endowed with the Lebesgue measure.
We refer the reader to [3] for a detailed proof, where the velocity averaging lemma is used to
manage the passage to the limit in the nonlinearity. Assumption (1.3) can be replaced by

for any ξ 6= 0, meas
({
v ∈ V ∩B(0, R), v · ξ 6= 0

})
> 0

which allows us to deal with certain discrete velocity models. Then, the asymptotic regime
can be analyzed with a compensated compactness argument, that relies on the structure of
the system satisfied by the zeroth and first moments of fε, as pointed out in [10, 20, 23], see
also [24]. The question can be addressed of the relation between the diffusion equation that
correspond to a discretization of the velocity set (discrete ordinate equation) and the diffusion
equation that corresponds to the continuous model. For the simple collision operator in (1.1),
velocity grids, which differ from the simplest uniform mesh, can be constructed that lead to
the exact diffusion coefficient (namely 1

N

∑N
k=1 vk ⊗ vk =

∫
SD−1 v ⊗ v dv = 1

D
I); we refer the

reader to [7, 15, 21] for further discussion on this issue. However, for more general collision
operators, it might happen that the equilibrium functions that make the collision operator
vanish or the diffusion coefficient are not explicitly known, see [6, 10].

We wish to revisit this question by means of a Monte–Carlo approach: instead of the
discrete ordinate viewpoint where a discrete velocity grid is adopted once for all, we deal with
a random set of velocities and we wonder whether it can provide, in expectation, a consistent
approximation of the diffusion regime. The consistency analysis we propose uses Theorem 2.2
or Theorem 2.3 to justify the following claim.

Theorem 3.2. Let (Ω,A,P) be a probability space. Let V1, ..., VN be i.i.d. random variables
distributed according to the continuous uniform law on V . Then, we obtain a set VN of 2N
velocities in V by setting VN +j = −Vj, for all j ∈ {1, ...,N }. We denote the associated
discrete measure on V by

dµN (v) =
1

2N

2N∑
k=1

δ(v = Vk).

Let fε
∣∣
t=0

= f0
ε ≥ 0 satisfy

sup
ε>0, N ∈N

(
E
∫
RD

∫
V

(1 + ϕ(x) + | ln f0
ε |)f0

ε dµN (v) dx+ ‖f0
ε ‖L∞(Ω×Rd×V )

)
= M0 < +∞.

(3.1)
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Let fε be a solution of the following equation

∂tfε(t, x, Vj) +
1

ε
Vj · ∇xfε(t, x, Vj) =

1

ε2
σ(ρε,N ) [ρε,N (t, x)− fε(t, x, Vj)] , (3.2)

with ρε,N (t, x) := 1
2N

∑2N
i=1 fε(t, x, Vj). We suppose that ρ ∈ [0,∞) 7→ σ(ρ) is a nonnegative

function such that for any 0 < R < ∞, there exists σ?(R) > 0 verifying 0 < 1/σ?(R) ≤
σ(ρ) ≤ σ?(R) and |σ′(ρ)| ≤ σ?(R) for any 0 ≤ ρ ≤ R. Then Eρε,N converges to EρN in
L2((0, T )× RD) as ε goes to 0 with 0 < T <∞ where EρN is solution of

∂tEρN + div(JN ) = 0,

σ(EρN )JN = −EAN ∇xEρN +O

(
1√
N

)
,

with AN the D ×D matrix with random components defined by

AN :=
1

2N

2N∑
j=1

Vj ⊗ Vj ,

and EρN

∣∣
t=0

is the weak limit of
∫
Ef0

ε dµ(v).

Note that the construction of the set VN ensures that the null flux condition
∫
v dµN (v) = 0

is fulfilled, but the elements of VN are not independent. Nevertheless, the stochastic averaging
lemma still applies to this situation, with a straightforward adaptation of the proof. It is likely
that the assumptions on σ can be substantially weakened, but this not our aim here to seek
refinements in this direction. We will make precise in the proof in which sense the consistency

error O
(

1√
N

)
should be understood.

3.1 Entropy estimates

In order to prove Theorem 3.2, the first step consists in establishing some a priori estimates,
uniform with respect to the parameters ε and N . We will then deduce the compactness needed
to obtain the result. These estimates are quite classical; the proof that we sketch for the sake
of completeness follows directly from [3, 20, 23].

Proposition 3.3. Let f0
ε satisfy (3.1) with ϕ(x) = (1 + x2)β, 0 < β < 1. Let 0 < T < ∞.

There exists a constant C(T ) which only depends on T such that

sup
ε>0, N ∈N

{
sup

0≤t≤T
E
∫
RD

∫
V

(1 + ϕ(x) + | ln fε|)fε dµN (v) dx

+‖fε‖L∞(Ω×(0,T )×RD×V )

}
= C(T ) < +∞

(3.3)

and, furthermore,

sup
ε>0, N ∈N

E
∫ T

0

∫
RD

∫
V

σ(ρε,N )

ε2
(fε − ρε,N ) ln

(
fε
ρε,N

)
dµN (v) dx dt ≤ C(T ). (3.4)

Proof. As said above we crucially use the fact that∫
V

dµN (v) = 1,

∫
V

v dµN (v) = 0.

As a matter of fact, the collision operator is mass–conserving in the sense that∫
V

σ(ρ)(f − ρ) dµN (v) = 0.

Accordingly, integrating immediately leads to

d

dt
E
∫
RD

∫
V

fε dµN (v) dx = 0. (3.5)

13



More generally, let G : [0,∞)→ R be a convex function. We get

d

dt
E
∫
RD

∫
V

G(fε) dµN (v) dx

= − 1

ε2
E
∫
RD

∫
V

σ(ρε,N )(ρε,N − fε)(G′(ρε,N )−G′(fε)) dµN (v) dx ≤ 0.

With G(z) = zp, p ≥ 1, it gives an estimate on the Lp norm of the solution. Similarly, with
G(z) = [z − ‖f0

ε ‖∞]2+, we conclude that

‖fε‖L∞(Ω×(0,T )×RD×V ) ≤ ‖f
0
ε ‖∞.

Finally, with G(z) = z ln(z) we have

d

dt
E
∫
RD

∫
V

fε ln fε dµN (v) dx

= − 1

ε2
E
∫
RD

∫
V

σ(ρε,N ) [ρε,N − fε] ln (fε/ρε,N ) dµN (v) dx ≤ 0.
(3.6)

Let us focus on the following quantity obtained by multiplying (3.2) by ϕ and integrating

d

dt
E
∫
RD

∫
V

ϕ(x)fε dµN (v) dx = −1

ε
E
∫
RD

∫
V

ϕ(x)v · ∇xfε dµN (v) dx

=
1

ε
E
∫
RD

∫
V

fεv · ∇xϕ(x) dµN (v) dx

= E
∫
RD

∫
V

v · ∇xϕ(x)
fε − ρε,N

ε
dµN (v) dx.

Note that we have used
∫
v dN (v) = 0. By Cauchy-Schwarz inequality, we know that

|
√
b−
√
a|2 =

∣∣∣∣∫ b

a

ds

2
√
s

∣∣∣∣2 ≤ ∣∣∣∣∫ b

a

ds

4s

∣∣∣∣ ∣∣∣∣∫ b

a

ds

∣∣∣∣ =
1

4
(b− a) ln(b− a).

Thus, we get∫
V

|fε − ρε,N | dµN (v) =

∫
V

(
√
fε +

√
ρε,N )

∣∣∣√fε −√ρε,N ∣∣∣ dµN (v)

≤
(∫

V

(
√
fε +

√
ρε,N )2 dµN (v)

)1/2(∫
V

(
√
fε −

√
ρε,N )2 dµN (v)

)1/2

≤ C√ρε,N
(∫

V

(fε − ρε,N ) ln(fε/ρε,N ) dµN (v)

)1/2

and we finally obtain the following bound

d

dt
E
∫
RD

∫
V

ϕfε dµN (v) dx ≤ ‖v‖L∞(Ω×S)E
∫
RD

∫
V

|∇xϕ
|fε − ρε,N |

ε
dµN (v) dx

≤ C E
∫
RD

|∇xϕ|
√

ρε,N
σ(ρε,N )

(∫
V

σ(ρε,N )

ε2
(fε − ρε,N ) ln(fε/ρε,N ) dµN (v)

)1/2

dx

≤ CE
(∫

RD

|∇xϕ|2
ρε,N

σ(ρε,N )
dx

)1/2

×
(
E
∫
RD

∫
V

σ(ρε,N )

ε2
(fε − ρε,N ) ln(fε/ρε,N ) dµN (v) dx

)1/2

.

By assumption 1/σ(ρε,N ) is uniformly bounded. It follows that

E
∫
RD

|∇xϕ|2
ρε,N

σ(ρε,N )
dx ≤ C

(
E
∫
RD

|∇xϕ|2q dx

)1/q (
E
∫
RD

ρpε,N dx

)1/p

≤ C

(
E
∫
RD

|∇xϕ|2q dx

)1/q (
E
∫
RD

∫
V

|fε|p dµN (v) dx

)1/p

≤ C
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holds provided the Hölder conjugate q of p ≥ 1 satisfies β ≤ 1/2−D/4q.
The Young inequality ab ≤ a2

4θ
+ θb2 yields

d

dt
E
∫
RD

∫
V

ϕ(x)fε(t, x, v) dµN (v) dx

≤ C +
1

2
E
∫
RD

∫
V

σ(ρε,N )

ε2
(fε − ρε,N ) ln(fε/ρε,N ) dµN (v) dx.

Let us set

Dε := E
∫
RD

∫
V

σ(ρε,N )

ε2
(fε − ρε,N ) ln(fε/ρε,N ) dµN (v) dx ≥ 0.

Coming back to (3.6), we get

E
∫
RD

∫
V

fε(t, x, v) ln fε(t, x, v) dµN (v) dx

+E
∫
RD

∫
V

ϕ(x)fε(t, x, v) dµN (v) dx+
1

2

∫ t

0

Dε(s) ds

≤ Ct+ E
∫
RD

∫
V

fω,0ε (x, v) ln fω,0ε (x, v) dµN (v) dx+ E
∫
RD

∫
V

ϕ(x)fω,0ε (x, v) dµN (v) dx.

Since z| ln z| = z ln z − 2z ln z1{0≤z≤1}, we have

0 ≤ −
∫

0≤f≤1

f ln f dy = −
∫

0≤f≤e−ϕ

f ln f dy −
∫
e−ϕ≤f≤1

f ln f dy

≤
∫
ϕf dy +

∫
e−ϕ/2 dy.

Then, we are led to

E
∫
RD

∫
V

fε| ln fε| dµN (v) dx+
1

2

∫ t

0

Dε(s) ds+
1

2
E
∫
RD

∫
V

ϕfε dµN (v) dx

= E
∫
RD

∫
V

fε ln fε dµN (v) dx− 2E
∫
RD

∫
V

fε ln fε1{0≤fε≤1} dµN (v) dx

+
1

2

∫ t

0

Dε(s)ds+
1

2
E
∫
RD

∫
V

ϕfε dµN (v) dx

≤ E
∫
RD

∫
V

fε ln fε dµN (v) dx+ 2E
∫
RD

∫
V

ϕ

4
fε dµN (v) dx

+2E
∫
RD

∫
V

e−ϕ/8 dµN (v) dx+
1

2

∫ t

0

Dε(s)ds+
1

2
E
∫
RD

∫
V

ϕfε dµN (v) dx

≤ C(T )

which ends the proof.

Moreover, we can deduce from above that fε behaves like its macroscopic part ρε,N for
small ε’s.

Corollary 3.4. We set gε,N :=
fε − ρε,N

ε
. Then, we have

sup
ε>0, N

E
∫ T

0

∫
RD

∣∣∣∣∫
V

gε,N dµN (v)

∣∣∣∣2 dxdt ≤ C(T ).

Proof. We write

E
∫ T

0

∫
RD

∣∣∣∣∫
V

gε,N dµN (v)

∣∣∣∣2 dxdt = E
∫ T

0

∫
RD

(∫
V

|fε − ρε,N |
ε

dµN (v)

)2

dxdt

≤ CE
∫ T

0

∫
RD

ρε,N

∫
V

(fε − ρε,N ) ln(fε/ρε,N ) dµN (v) dxdt

≤ CE
∫ T

0

∫
RD

ρε,N
σ(ρε,N )

∫
V

σ(ρε,N )(fε − ρε,N ) ln(fε/ρε,N ) dµN (v) dxdt.

Since by assumption on σ we know that z 7→ z
σ(z)

is bounded on bounded sets and since ρε,N

is bounded in L∞(Ω× (0, T )× RD), we can conclude by using (3.4).
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3.2 Diffusive limit

We can now discuss how to pass to the limit ε→ 0.

Proof of Theorem 3.2. Applying Dunford-Pettis’ theorem, see [19, Sect. 7.3.2] we deduce from
Proposition 3.3 that, possibly at the price of extracting a subsequence,

fε ⇀ fN weakly in L1(Ω× (0, T )× RD × VN ).

Consequently, we also have

ρε,N =

∫
V

fε dµN (v) ⇀ ρN =

∫
V

fN dµN (v) weakly in L1(Ω× (0, T )× RD)

and
Eρε,N ⇀ EρN weakly in L1((0, T )× RD).

Next, we consider the equations satisfied by the moments of fε. To this end, let us set

Jε,N (t, x) :=
1

2N

2N∑
i=1

Vi
ε
fε(t, x, Vi), Pε,N (t, x) :=

1

2N

2N∑
i=1

Vi ⊗ Vifε(t, x, Vi).

Integrating (3.2) with respect to the velocity variable v yields

∂tρε,N + div(Jε,N ) = 0. (3.7)

Similarly, multiplying (3.2) by v and integrating leads to

ε2∂tJε,N + div(Pε,N ) = −σ(ρε,N )Jε,N . (3.8)

Lemma 3.1. The sequence
(
Jε,N

)
ε>0

is bounded in L2(Ω × (0, T ) × RD) and we can write

Pε,N = AN ρε,N + εKε,N with AN = 1
2N

∑2N
j=1 Vj ⊗ Vj and the components of

(
Kε,N

)
ε>0

are bounded in L2(Ω× (0, T )× RD).

Proof. The proof is based on the fact that fε = ρε,N + εgε,N . Since
∑2N
j=1 Vj = 0, it allows

us to write

Jε,N =

∫
vgε,N dµN (v),

and we deduce the bound on Jε,N from Corollary 3.4 since ‖v‖L∞(Ω×S) ≤ C. In addition, we
have

Pε,N =

∫
v ⊗ v dµN (v)ρε,N + ε

∫
v ⊗ vgε,N dµN (v).

We set

Kε,N (t, x) :=

∫
v ⊗ vgε,N (t, x, v) dµN (v).

We conclude by using the estimates in Corollary 3.4 again.

Owing to Lemma 3.1, (3.8) can be recast as

ε
(
ε∂tJε,N + div(Kε,N )

)
+AN ∇xρε,N = −νε,N

with νε,N := σ(ρε,N )Jε,N . Passing to the limit, up to subsequences, we are led to{
∂tρN + div(JN ) = 0,

AN ∇ρN = −νN
(3.9)

where νN is the weak limit as ε→ 0 of νε,N , which is a bounded sequence in L2(Ω× (0, T )×
RD). It remains to establish a relation between νN , ρN and JN , or more precisely the
expectation of these quantities. To this end, we are going to use the strong compactness of
Eρε,N by using the averaging lemma. Indeed, we know that Eρε,N belongs to a bounded set
in L2(0, T ;H1/2(RD)); the proof follows exactly the same argument as for Theorem 2.2 taking
the Fourier transform with respect to both the time and space variables t, x. However, because
of the ε in front of the time derivative, we can not expect a gain of regularity with respect to
the time variable. Then, we need to combine this estimate with another argument as follows:
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(i) by using the Weil-Kolmogorov-Fréchet theorem, see [19, Th. 7.56], we deduce from the
averaging lemma that

lim
|h|→0

(
sup
ε

∫ T

0

∫
RD

|Eρε,N (t, x+ h)− Eρε,N (t, x)|2 dx dt

)
= 0,

(ii) Going back to (3.7), Lemma 3.1 tells us that ∂tEρε,N = −div(EJε,N ) is bounded,
uniformly with respect to ε, in L2(0, T ;H−1(RD)).

Then, this is enough to deduce that Eρε,N strongly converges to EρN in L2((0, T )×RD) (see
e.g. [2, Appendix B] for a detailed proof).

Then, we rewrite

EJε,N = E
(

νε,N
σ(ρε,N )

)
=

Eνε,N
σ(Eρε,N )

+ Erε,N ,

rε,N =

[
νε,N

(
1

σ(ρε,N )
− 1

σ(Eρε,N )

)]
.

(3.10)

From the previous discussion, extracting further subsequences if necessary, we know that Eνε,N
converges weakly to EνN in L2((0, T )×RD) while Eρε,N converges strongly in L2((0, T )×RD)
and a.e. to EρN . Since σ is continuous and bounded from below, 1/σ(Eρε,N ) converges to
1/σ(EρN ) a.e. too, and it is bounded in L∞((0, T )× RD). We deduce that

Eνε,N
σ(Eρε,N )

⇀
EνN

σ(EρN )
weakly in L2((0, T )× RD).

We are left with the task of proving that the last term in the right hand side of (3.10) tends
to 0 as N →∞, uniformly with respect to ε. The Cauchy–Schwarz inequality yields

∣∣∣Erε,N ∣∣∣ ≤ (
E
[
(νε,N )2])1/2(E[( 1

σ(ρε,N )
− 1

σ(Eρε,N )

)2
])1/2

≤
(
E
[
(νε,N )2])1/2 (E[(∫ ρε,N

Eρε,N

d

dz

[
1

σ(z)

]
dz

)2])1/2

≤
(
E
[
(νε,N )2])1/2 (E [(ρε,N − Eρε,N )2])1/2

≤
(
E
[
(νε,N )2])1/2 E

( 1

2N

2N∑
i=1

fε(Vi)− Eρε,N

)2
1/2

.

(3.11)

We remind the reader that the 2N velocities are constructed by symmetry from V1, ..., VN

which are i.i.d. velocities in [−0.5, 0.5]D and we write

E

[
1

2N

2N∑
i=1

fε(Vi)− Eρε,N

]2

= E

[
1

4N 2

N∑
i,j=1

{(
fε(Vi) + fε(−Vi)− 2Eρε,N

)(
fε(Vj) + fε(−Vj)− 2Eρε,N

)}]
.

(3.12)

When i 6= j, Vi and Vj are independent, which implies

E [(fε(Vi) + fε(−Vi)− 2Eρε,N ) (fε(Vj) + fε(−Vj)− 2Eρε,N )]

= E [fε(Vi) + fε(−Vi)− 2Eρε,N ]E [fε(Vj) + fε(−Vj)− 2Eρε,N ] .

Now, we use the fact that the Vi’s are identically distributed so that

2Eρε,N = 2E

(
1

2N

2N∑
k=1

fε(Vk)

)
= E

(
1

N

N∑
k=1

(
fε(Vk) + fε(−Vk)

))

=
1

N

N∑
k=1

(
Efε(Vk) + Efε(−Vk)

)
= Efε(Vj) + Efε(−Vj)
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for any j ∈ {1, ...,N }. It follows that

E [(fε(Vi) + fε(−Vi)− 2Eρε,N ) (fε(Vj) + fε(−Vj)− 2Eρε,N )] = 0 when i 6= j.

Going back to (3.12), we obtain

E

[
1

2N

2N∑
i=1

fε(Vi)− Eρε,N

]2

= E

[
1

4N 2

N∑
i=1

(
fε(Vi) + fε(−Vi)− 2Eρε,N

)2
]
.

Since fε and ρε,N are uniformly bounded, we conclude that the estimate

E

[
1

2N

2N∑
i=1

fε(Vi)− Eρε,N

]2

≤ C

N

holds. Inserting this information in (3.11), we arrive at∫ T

0

∫
RD

∣∣Erε,N ∣∣2 dxdt ≤ C

N
E
∫ T

0

∫
RD

ν2
ε,N dxdt,

which is thus of order O(1/N ), uniformly with respect to ε.

Therefore, we can let ε run to 0 in (3.10) and, for a suitable subsequence, we are led to

EJε,N ⇀ EJN =
EνN

σ(EρN )
+rN weakly in L2((0, T )× RD) with ‖rN ‖L2((0,T )×RD) ≤

C√
N

.

Finally, we take the expectation in (3.9) and we get

E (AN ∇xρN ) = −EνN = −σ(EρN )EJN + σ(EρN )rN .

Note that the last term is still of order O(1/
√

N ) in the L2((0, T )×RD) norm. By a reasoning
similar as above, we check that, for any i, j ∈ {1, ..., D},√

E
[(

[AN ]ij − E[AN ]ij
)2
]

= O

(
1√
N

)
(this is the standard result about Monte–Carlo integration). It implies that we can find a
constant C > 0, which only depends on the dimension D, such that for any ξ ∈ RD,

E
[∣∣∣(AN ξ − E[AN ξ]

∣∣∣2] ≤ C|ξ|2

N
.

Then we get
E (AN ∇xρN ) = EAN ∇xEρN + sN ,

sN = E [(AN − EAN )∇xρN ] .

The remainder term should be analyzed in a weak sense, due to a lack of a priori regularity
of ∇xρN (we only know that the product AN ∇xρN lies in L2, but the invertibility of AN

is not guaranteed). We have, for any ϕ ∈ C∞c ((0, T )× RD),

|〈EsN |ϕ〉| =

∣∣∣∣−E∫ T

0

∫
RD

ρN (AN − EAN )∇xϕ dx dt

∣∣∣∣
≤

(
E
∫ T

0

∫
RD

ρ2
N dxdt

)1/2(∫ T

0

∫
RD

|∇xϕ|2 dxdt

)1/2
C√
N

.

Owing to the estimates (3.3) in Proposition 3.3, it means that sN is therefore of order
O(1/

√
N ) in the L2(0, T ;H−1(RD))−norm.

Remark 3.1. The random matrix AN might be singular. However EAN is invertible. Indeed
for any ξ 6= 0, we have EAN ξ ·ξ = 1

2N

∑2N
j=1 E

[
|Vj ·ξ|2

]
≥ 0. This quantity is actually positive

since P(v · ξ = 0) = 0 for the continuous laws we are dealing with.
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20


	Introduction
	Discrete Velocity Averaging Lemmas
	Deterministic case: evaluation of the defect
	A stochastic discrete velocity averaging lemma

	Application to the Rosseland Approximation
	Entropy estimates
	Diffusive limit


