Automatic search for optimal models using Levenberg-Marquardt algorithm

Sébastien Deheuvels¹ & Yveline Lebreton²

¹ IRAP, Observatoire de Midi-Pyrénées, France ; ² GEPI, Paris Observatory, France

23 May 2016

Numerical codes

Internal structure and evolution code

- Cesam2k (Morel & Lebreton, 2008)

if rotation: cestam (Marques et al., 2013), not used in H&H

- options for input physics and parameters, e.g. Lebreton & Goupil (2014)
 - solar mixture: GN93 (Grevesse & Noels 93), AGSS09 (Asplund et al. 09)
 - EoS: OPAL 2005 (update of Rogers & Nayfonov 02)
 - opacities: OPAL96 (Iglesias & Rogers 96), Wichita (Ferguson et al. 05)
 - nuclear rates: NACRE (Angulo et al. 99), LUNA (Formicola et al. 04, for e.g. ${}^{14}N(p,\gamma){}^{15}O$)
 - convection: MLT (Böhm-Vitense, 65), CGM (Canuto et al. 96)
 - atomic diffusion: Michaud & Profitt 93, Burgers 69
 - overshooting $d_{ov} = min(\alpha_{ov} \times H_p, \alpha_{ov} \times R_{cc})$
 - atmosphere: $T(\tau)$ laws; Eddington (grey), Hopf, Kurucz, MARCS, etc.
 - conduction: Pothekin et al. 05
- compared to ASTEC, CLES, GARSTEC, STARROX by the ESTA CoRoT team (Monteiro et al. 06, Lebreton et al. 08a,b).

イロト イヨト イヨト イヨト

Numerical codes

Oscillation codes (adiabatic)

- LOSC (Scuflaire et al., 2008)
- GYRE (Townsend & Teitler, 2014)

▶ < ∃ ▶</p>

The Levenberg-Marquardt method

Newton algorithm

- Based on a 2nd-order Taylor expansion of χ^2 around current location
- Exact for quadratic functions
- Efficient to find a close minimum, inefficient to approach a distant one

 $\mathbf{a} = \text{set of free parameters}$

• Gradient-descent method

- Steepest descent opposite to the gradient: $\delta a_k = -\gamma_k \nabla_k \chi^2$

- Optimal step: $\gamma_k = 1/H_{kk}$
- Efficient to approach the minimum, but often slow to converge

<ロ> (四) (四) (三) (三) (三) (三)

The Levenberg-Marquardt method

$$\begin{split} \delta \mathbf{a} &= -\mathbf{M}^{-1} \cdot \nabla \chi^2 \\ \hline \\ \textbf{Newton algorithm} & \textbf{Gradient-search method} \\ M_{kl} &= H_{kl} & M_{kl} = H_{kl} \times \delta_{k,l} \end{split}$$

(ロ) (部) (注) (注) (注)

Levenberg-Marquardt method

- Combine both methods:

$$\boldsymbol{\delta \mathbf{a}} = -\mathbf{M}^{-1} \cdot \nabla \chi^2 \quad \text{with} \quad \begin{cases} M_{kk} &= H_{kk}(1+\lambda) \\ M_{kl} &= H_{kl} \text{ if } k \neq l \end{cases}$$

- $\lambda >> 1$: Gradient-search method (approach)
- $\lambda \ll 1$: Newton method (convergence)
- Initialize λ to a "large" value
- Decrease λ as the function to be minimized decreases
- Typically only ~ 10 iterations needed to converge

Model optimization

Levenberg-Marquardt method, Miglio & Montalbán (2005)

- Choose a set of observational constraints $x_{i,obs}$ non seismic: T_{eff} , L, $[Fe/H]_{surf}$, $\log g$, radius, etc. seismic: frequencies $\nu_{n,l}$, frequency separations or ratios
- Adjust unknown star properties

age, mass, initial helium abundance Y_0 , initial metallicity $[Fe/H]_0$ mixing-length parameter $\alpha_{\rm conv}$, overshooting parameter $\alpha_{\rm ov}$, etc.

- Other properties are outputs of the optimized model (R, internal properties)
- Need at least as many constraints as unknown parameters

 $\chi^2\text{-minimization, accounting for correlations}$

$$\chi^{2} = \sum_{i=1}^{N_{obs}} (x_{i,mod} - x_{i,obs})^{T} \cdot C^{-1} \cdot (x_{i,mod} - x_{i,obs})$$

・ 何 ト ・ ヨ ト ・ ヨ ト

Model optimization

Sets of seismic parameters

Individual frequencies: $\nu_{n,l}$

- whole observed range
- truncated range: keep modes with orders close to ν_{max} ; drop high order modes (large freq. uncertainties)

Frequency separations: $\langle \Delta \nu \rangle$, $\Delta \nu_l$, $\langle d_{02/01/10} \rangle$, $d_{02/01/10}(n)$

Both cases need to be corrected from surface effects Treatment of surface effects: several options

Kjeldsen et al. 2008, Brandão et al. 2011 Ball & Gizon, 2014 Sonoi et al. 2015

► < Ξ >

Model optimization

Sets of seismic parameters

Frequency separation ratios: $r_{02/01/10}(n)$

- définitions: Roxburgh & Vorontsov (2003)
- model ratios interpolated to observed freq. (Roxburgh & Vorontsov, 13)
- data are correlated: need to evaluate the covariance matrix

Case of correlated observables

• Correlated observables (e.g. large, small separations, ratios...):

$$\chi^2 = [\mathbf{y} - \mathbf{y}(\mathbf{a})]^T \cdot \mathbf{C}^{-1} \cdot [\mathbf{y} - \mathbf{y}(\mathbf{a})]$$

- where C is the covariance matrix between the observables
- can be calculated analytically for linear combinations of frequencies, or else numerically through Monte Carlo simulations

◆□▶ ◆□▶ ◆注≯ ◆注≯ ─ 注

Conditioning of covariance matrix

Conditioning of covariance matrix can be very poor!

 <u>Example</u>: fit of a 2nd-order polynomial to r₀₁₀ ratios

> $det(\mathbf{C}) \sim 10^{-100}$ $cond(\mathbf{C}) \sim 10^{6}$

 <u>Solution</u>: project onto the subspace corresponding to the N highest eigenvalues to improve the conditioning of C

$$\chi^{2} = \left[\mathbf{P}(\nu) - \mathbf{r}_{010}\right]^{T} \cdot \left(\mathbf{M}^{T}\mathbf{W}\mathbf{M}\right) \cdot \left[\mathbf{P}(\nu) - \mathbf{r}_{010}\right]$$

ヘロト ヘヨト ヘヨト ヘ

Model initialization

Levenberg-Marquardt method

 \rightarrow occurence of secondary minima Other problem: helium-mass degeneracy

Optimization in 3 steps

- Optimization (O1), no seismic constraints
 - 3 observational constraints: $T_{\rm eff},~L,~{\rm [Fe/H]_{surf}}$
 - take Y_0 from $(\Delta Y/\Delta Z)_{\odot}$, $\alpha_{\rm conv} = \alpha_{{\rm conv},\odot}$
 - fit age A, mass M, ${\rm [Fe/H]}_0$
- Optimization (O2), seismic constraints
 - 5 constraints: $T_{
 m eff}$, L, $[{
 m Fe}/{
 m H}]_{
 m surf}$ + $\langle \Delta
 u
 angle$, $u_{
 m max}$
 - use scaling relations $(M, R) \Longrightarrow (\langle \Delta \nu \rangle, \nu_{\max})$
 - fit A, M, $[Fe/H]_0$, Y_0 , α_{conv}
- Further optimizations: approach from O1 or/and O2 parameters

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Model initialization: HH2a case

ld	constraints	optimized	fixed
01	${\cal T}_{ m eff}$, L, [Fe/H] $_{ m surf}$	A, M, [Fe/H] ₀	$(\Delta Y / \Delta Z)_{\odot}, \alpha_{\mathrm{conv},\odot}$
02	$O1 + \langle \Delta u angle$, $ u_{ m max}$	$O1 + Y_0, \alpha_{\rm conv}$	-
<i>O</i> 3	$O1 + r_{02}(n) + r_{010}(n) + \nu_{n_{min},l}$	<i>O</i> 2	-

ld	A (Myr)	M/M_{\odot}	<i>Y</i> ₀	$\alpha_{ m conv}$	R/R_{\odot}	$\chi^2/N_{ m obs}$
Exact	3216	1.182	0.250	0.50	1.335	-
<i>O</i> 1	5436 ± 1505	1.145 ± 0.038	0.266	0.60	1.386	3. 10 ⁻⁶
<i>O</i> 2	4398 ± 1343	1.201 ± 0.020	0.242 ± 0.022	0.60 ± 0.10	1.338	1.5
<i>O</i> 3 ₂	3685 ± 195	1.153 ± 0.008	0.266 ± 0.006	0.49 ± 0.02	1.329	1.6
<i>O</i> 3 ₁₂	3299 ± 131	1.182 ± 0.008	0.260 ± 0.005	0.50 ± 0.01	1.338	1.2
<i>O</i> 31	3502 ± 152	1.216 ± 0.009	0.247 ± 0.005	0.53 ± 0.02	1.355	1.3

Models $O3_{1,12,2}$

- different starting parameters
- similar fit to seismic constraints
- \bullet different (Y, M) combinations \rightarrow degeneracy

Model optimization: helium-mass degeneracy

A range of solutions for different (Y_0, M)

The better the global parameters, the narrower the range.

for the CoRoT target HD52265: $Y_0 \simeq -0.58 \times M/M_\odot + 1.00$ Lebreton & Goupil 14

Sensitivity to model input physics & constraints Case of HD 52265

Fit with individual frequencies :

surface effect corrections: $A=2.17\pm0.02$ Gyr; $M=1.27\pm0.02\,M_\odot$ no surface effects: $A=3.15\pm0.03$ Gyr; $M=1.30\pm0.02\,M_\odot$ Lebreton & Goupil 14

э

< □ > < □ > < □ > < □ > < □ > < □ >

Estimation of errors

- Estimating errors for the fitted parameters:
 - Errors given by the diagonal coefficients of the inverse of the Hessian matrix
 - Hessian matrix obtained numerically by setting $\lambda = 0$ after convergence
 - Results may depend on the choice of steps that used to estimate the derivatives $\partial y_i(\mathbf{a})/\partial a_k$ for the Hessian
- Estimating errors for other parameters (e.g. radius):
 - No direct estimate provided through the fit
 - For a parameter π which is not a free parameter of the fit, $\pi(a_j)$

$$\sigma_{\pi} = \sqrt{\sum_{i,j=1}^{N} \left(C_{ij} \right) \left(\frac{\partial \pi}{\partial a_i} \right) \left(\frac{\partial \pi}{\partial a_j} \right)}$$

Covariance matrix = inverse of Hessian

Estimation of errors

- · Testing the errors produced by LM algorithm
 - Input model close to HH2a
 - Use of classical (T $_{\rm eff}, \rm Z/X_{\rm surf}, \rm L/L_{\odot})$ and seismic constraints
 - Add random normally-distributed noise to all observables according to the statistical errors of their measurements
 - Series of ~ 50 optimizations performed using LM algorithm (low precision)

	True value	Average of fitted values	RMS of fitted values	LM errors
Mass (M _☉)	1.22	1.223	0.038	0.029
Age (Myr)	3000	3007	149	75
Y_0	0.28	0.278	0.019	0.012
(Z/X)0	0.0215	0.0214	0.0020	0.0012
$\alpha_{\rm conv}$	0.60	0.612	0.023	0.022
R (R ₀)	1.487	1.482	0.042	0.028

Using	individual	frequencies	$(\ell$	= 0,	1,	2)	
			· ·				

Estimation of errors

- · Testing the errors produced by LM algorithm
 - Input model close to HH2a
 - Use of classical ($T_{eff}, Z/X_{surf}, L/L_{\odot}$) and seismic constraints
 - Add random normally-distributed noise to all observables according to the statistical errors of their measurements
 - Series of ~ 50 optimizations performed using LM algorithm (low precision)

	True value	Average of fitted values	RMS of fitted values	LM errors
Mass (M _☉)	1.22	1.227	0.026	0.019
Age (Myr)	3000	3068	194	44
Y ₀	0.28	0.275	0.014	0.010
(Z/X)0	0.0215	0.0220	0.002	0.001
$\alpha_{\rm conv}$	0.60	0.592	0.04	0.02
R (R ₀)	1.487	1.491	0.011	0.009

Using combinations of frequencies $(\delta v_{01}, \delta v_{10}, \delta v_{02}, v_0)$

Examples of the use of LM algorithm

• Main sequence stars:

- Detailed seismic modeling of specific targets (e.g. HD49933 Goupil et al. 2011, HD52265 Lebreton et al. 2014)
- Test case of HD52265 to estimate the influence of seismic constraints in modeling (Lebreton et al. 2014)
- Measuring the size of convective cores (Deheuvels et al. 2010, 2016)

- ...

- Subgiants with mixed modes:
 - Classical Levenberg-Marquardt procedure fails because of the fast evolution of g-mode frequencies (core contraction)

<ロト <四ト <注入 <注下 <注下 <

– Bijection between (Mass, age) and ($\Delta\nu,\nu_{\rm cross})$ for a given set of other parameters

Examples of the use of LM algorithm

• Subgiants with mixed modes:

Levenberg-Marquardt optimization

Advantages

- No restrictions on the number of unknown parameters to be estimated provided there are enough observational constraints
 - \rightarrow no necessary a priori assumption on Y, ($\Delta Y/\Delta Z$), $\alpha_{\rm conv/ov}$
 - \rightarrow easy to modify/add physical processes and refit parameters
- Errors on the fitted parameters easily obtained via the Hessian matrix
- the procedure is adaptable to use other stellar evolution codes (MESA), oscillation codes (ADIPLS, GYRE, LOSC)

Caveats

- Secondary minima
- Error estimates for parameters that are not fitted (ex. radius, convection zone boundaries, etc.) have to be evaluated a posteriori.
- The order of magnitude of the error bars is correct but rather imprecise (work to be done)

< □ > < □ > < □ > < □ > < □ > < □ >