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The correlation between contact forces and the texture of a packing of rigid particles subject to biaxial compression is
analyzed by means of numerical simulations. Four different aspects are investigated: stress tensor, dissipation due to
friction, angular distribution of forces, and fabric tensor characterizing the anisotropy of the texture. All of them provide
evidence that the contact network can be decomposed unambiguously into two subnetworks with complementary mechanical
properties.

The plasticity of a packing of rigid spheres is maybe
the simplest example in which the dynamics is dominated
by topological constraints: Forces are transmitted only
through the interparticle contacts. This leads to strong in-
homogeneities of the forces [1–4]. Moreover, an initially
isotropic packing develops an anisotropic contact net-
work under shear, because new contacts are formed along
the major principal axis of the strain-rate tensor, while
some are lost perpendicular to it [5–7]. This geometri-
cal anisotropy leads in turn to a mechanical anisotropy of
the contact forces. Both the geometrical and the mechani-
cal anisotropy enter the expression of the stress tensor and
are thus essential for the resistance of a granular medium
to shear [8,9].

In this Letter, we analyze the transmission of stress in a
two-dimensional dense packing of rigid spheres by taking
for the first time both the inhomogeneity of the forces
and the anisotropy of the texture into account. It will be
shown that the forces belong to two distinct classes which
contribute differently to anisotropy, stress, and dissipation.
This bimodal character of the force network is quite natu-
rally suggested by the observation of the “buckling” of
strong force chains supported by weak lateral forces during
shear [10]. The results presented in this Letter provide an
unambiguous demonstration of this intuitive picture for all
the aspects considered.

The main idea of our analysis is to evaluate internal
variables such as the geometrical anisotropy for subsets of
contacts with a given absolute value of the force. Thereby
important aspects of the inhomogeneity of the system can
be taken into account. For example, the contribution of
contact chains with strong forces may be evaluated sepa-
rately from the rest of the packing. This is, however, not
practical because of the bad statistics of contacts within
a small force interval. Instead, we consider the subset
of contacts which carry a force lower than a given cutoff
j. We shall refer to this subset as the “j-network.” The
variation of a quantity evaluated for the j-network as j is
varied from 0 to the maximal force in the system allows us
then to estimate its correlation with the contact force.

For the numerical simulations, we used the relatively
new method of contact dynamics. This method allows us
to integrate the equations of motion for multicontact sys-
tems composed of rigid bodies with Coulombian friction.
The method tackles the nonsmooth character of the inter-
actions with no resort to regularization schemes often used
in numerical algorithms for granular systems. An account
of the mathematical basis and the discretization procedure
of this approach can be found in [11].

The simulation was carried out for a two-dimensional
system with 4012 circular particles contained in a frame of
four rigid walls. The radii were uniformly distributed be-
tween 3.8 and 7.5 mm. The particle-particle and particle-
wall coefficients of friction were 0.5 and zero, respectively.
No gravity acted on the particles. The sample was biaxi-
ally compressed (see Fig. 1) by imposing a constant ve-
locity of 1 cm!s on the upper wall. The left wall was free
to move under a horizontal confining force of 500 N. The
initial sample was prepared with an isotropic contact net-
work. As a consequence of compression the amplitude
of anisotropy and the stress ratio Q ! "s1 2 s2#!"s1 1
s2# increased, where s1 and s2 are the principal values of
the stress tensor. We investigate below several quantities
as a function of j at Q ! 0.18.

The texture is characterized by the probability density
E"u, j# of finding a contact with direction u in the j-
network. In general the first deviatoric component in the
Fourier expansion of E provides an adequate measure of
geometrical anisotropy [12]:

E"u, j# $
1

2p
%1 1 Ac"j# cos 2&u 2 uc"j#'( . (1)

The parameter Ac defines the amplitude of anisotropy, and
uc is its principal direction. For the calculation of these
parameters from the numerical data, it is convenient to use
the “fabric tensor” defined by fij ! )ninj*, where ni is the
i component of the unit vector along the contact direction
and the average is taken over all contacts in the j-network.
Using (1) to evaluate the average of ninj , it is easy to see
that f1 2 f2 ! Ac!2, where f1 and f2 ! 1 2 f1 are
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FIG. 1. Velocity field in the center-of-mass frame during the
biaxial compression.

the eigenvalues of the fabric tensor. uc and uc 1 p!2 are
the directions of the corresponding eigenvectors.

We found that the principal directions of the fabric
tensor in the j-network coincide with those of the strain-
rate tensor irrespective of the value of j. Therefore
we set uc"j# ! uc"`# ! 0, i.e., the direction of the axis
of compression in (1). Then a positive Ac indicates
that the direction of anisotropy is parallel to the axis of
compression, whereas a negative Ac corresponds to the
orthogonal direction. Figure 2 shows the amplitude of
geometrical anisotropy Ac in the j-network as a function
of j. For large j it approaches the geometrical anisotropy

FIG. 2. Amplitude of geometrical anisotropy Ac in the j-
network as a function of j normalized with respect to the
average force )F*; see text. The inset shows the polar diagrams
of the probability density E of contact directions for “weak”
contacts (F , )F*) and for “strong” contacts (F . )F*).

of the whole system. The anisotropy of the network
complementary to the j-network is given by Ac"`# 2
Ac"j# and can be obtained from Fig. 2.

Surprisingly, the direction of anisotropy is orthogonal to
the axis of compression (Ac , 0) for weak forces (small
j). The anisotropy becomes more pronounced as j in-
creases, and reaches a maximum for j ! )F*, where )F*
is the average force in the system. When j is increased
beyond )F*, Ac becomes less negative and finally changes
sign. This shows that contacts which carry a force larger
than the average force (“strong contacts”) are preferen-
tially oriented parallel to the axis of compression. Al-
though these are less than 40% of all contacts, their positive
contribution to Ac overcompensates the negative contribu-
tion of the contacts with a force lower than the average
force (“weak contacts”). This means that the strong net-
work (composed of strong contacts) is more anisotropic
than the weak network (composed of weak contacts), as
shown in the inset of Fig. 2.

The orthogonal anisotropy of the weak network cannot
be simply understood as a result of the process of loss and
gain of contacts induced by the deformation. The latter
predicts only a positive anisotropy, i.e., parallel to the axis
of compression. Our result, Fig. 2, proves that a sheared
granular packing is not only inhomogeneous with respect
to the forces, but also with respect to the geometrical
anisotropy, and that these inhomogeneities are correlated.

A similar analysis can now be applied to investigate
the mechanical anisotropy of the average normal force
Fn"u, j# and the average friction force Ft"u, j# as a
function of the contact direction. As for E, a second order
Fourier expansion provides an adequate representation:

Fn"u, j# ! ")F*!2p# %1 1 An"j# cos 2&u 2 uf"j#'( ,

Ft"u, j# ! ")F*!2p#At"j# sin 2&u 2 uf "j#' ,
(2)

where An and At are the magnitudes of mechanical
anisotropy. The analytical form of Ft results from the
fact that the spherical component of Ft is zero due to
static equilibrium and its principle axes are rotated to
those of Fn by an angle of p!4. Again we found that the
principal directions are independent of j, so that we shall
set uf ! 0 in the following.

For the calculation of An and At we introduce two ten-
sors x

"n#
ij ! "1!)F*# )Fnninj* and x

"t#
ij ! "1!)F*# )Fttinj*,

where ti is the i component of the unit vector t orthogo-
nal to n and such that "n, t# preserves the same parity for
all contacts. It can then be shown that "x "n#

1 2 x
"n#
2 #!

"x "n#
1 1 x

"n#
2 # ! "1!2# "Ac 1 An# and "x1 2 x2#!"x1 1

x2# ! "1!2# "Ac 1 An 1 At#, where x
"n#
1 and x

"n#
2 are the

principal values of x "n# and x1 and x2 are those of x !
x "n# 1 x "t#. In Fig. 3, An and At in the j-network are
plotted as a function of j. The two parameters remain
positive, i.e., the mechanical anisotropy is always oriented
along the axis of compression. However, the contribution
of normal forces to the total anisotropy begins to increase
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FIG. 3. Amplitudes of mechanical anisotropy An and At in the
j-network as a function of j!)F*.

significantly only after j ! )F*, where both An and At
have an inflection point.

The physical importance of mechanical anisotropy be-
comes clear when it is considered in connection with the
stress tensor. The stress tensor s for a granular system in
a quasistatic state is given by [13]

sij ! r)Fidj* , (3)
where r is the number of contacts per unit volume, Fi is the
i component of the contact force F ! Fnn 1 Ftt, and dj
is the j component of the intercenter vector joining the cen-
ters of two particles in contact. For spherical particles, we
have d ! dn. Neglecting the weak correlation between
d and F, we get sij ! r)d* )Finj*. Now, introducing the
two components of F into this expression and comparing
with the expression of x , we see that s ! r)d* )F*x , and
accordingly [8]

Q"j# !
1
2

&Ac"j# 1 An"j# 1 At"j#' . (4)

In Fig. 4, both the stress ratio Q and the sum "1!2# "Ac 1
An 1 At# are displayed as a function of j. We see that
Eq. (4) holds for all j with very weak deviations due to a
weak correlation between d and F.

Figure 4 reveals an unexpected property of the stress
tensor: the shear stress Q for all forces lower than the
average force is negligibly small compared to the total
deviatoric load Q"`# sustained by the system. Those
forces contribute only 28% of the average pressure "s1 1
s2#!2 in the medium. This means that the weak network
behaves essentially like an interstitial liquid, whereas the
strong forces carry the whole deviatoric load and in this
respect behave like a solid. Furthermore, Eq. (4) shows
that this property is related to a compensation between the
negative anisotropy of fabric and the positive anisotropy
of forces, so that Ac 1 An 1 At + 0 for forces lower
than the average.

Another aspect of stress transmission in a granular pack-
ing is the appearance of chainlike structures of relatively
strong forces. This observation is suggestive of long-range

FIG. 4. Stress ratio Q and the sum 0.5"Ac 1 An 1 At# in
the j-network as a function of j!)F*. The inset shows the
eigenvalues and the directions of the stress tensor for weak
(F , )F*) and strong (F . )F*) contacts. The orientation of
the weak tensor is irrelevant since its deviatoric component is
nearly zero.

correlations over a scale far larger than the particle size.
In our numerical experiments, we can check these corre-
lations as a function of j in the complementary network
to the j-network. At large values of j, say j . 2)F*,
strong contacts are distributed in the form of relatively iso-
lated clusters. As j is decreased, these clusters grow [see
Fig. 5(a)] and finally at j ! )F* there is directed percola-
tion along the axis of compression [Fig. 5(b)]. The fact
that the whole deviatoric load is supported by a percolat-
ing network of strong chains makes it plausible that buck-
ling of the directed chains under the action of compression
occurs. Their stability then requires lateral forces in the
complementary network. This is the origin of a negative
geometrical anisotropy in the weak network. This mecha-
nism goes with a peculiar scheme of the “mobilization”
of friction, defined by the ratio h ! jFt j!Fn. Figure 6
shows the proportion of sliding contacts to the total num-
ber of contacts in the j-network as a function of j.
At sliding contacts the friction force takes its maximum
mobilized value, h ! m, where m is the coefficient of
friction. At nonsliding contacts, particles roll over one
another and h , m [14]. Almost 8% of contacts are slid-
ing in the whole volume of the system at Q ! 0.18, and
Fig. 6 shows that 96% of them are in the weak network for
j ! )F*. In other words, almost the whole dissipation by
friction occurs at contacts bearing a force lower than the
average force. Almost all contacts with a force larger than
the average, corresponding to the buckling chains, are thus
nonsliding.

In all the cases briefly discussed above, the average force
appears as a characteristic force separating two comple-
mentary networks: a “load-bearing” percolating network of
contacts carrying a force larger than the average force, and
a “dissipative” network of contacts carrying a force smaller
than the average force. The load-bearing network carries
the whole deviatoric load, while the dissipative subnetwork
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FIG. 5. The forces F for (a) F . 1.3)F* and (b) F . )F*,
where )F* is the average force, in the upper halves of the
sample. The line thickness is proportional to the force.

contributes only to the average pressure. All contacts
within the load-bearing network are nonsliding, whereas
nearly the whole dissipation due to sliding takes place in-
side the dissipative network. The load-bearing subnetwork
carries a direct geometrical anisotropy induced by shear,
but it gives rise via buckling to an indirect anisotropy inside
the dissipative network with a preferred direction orthogo-
nal to the major principal direction of the stress tensor.

For all the variables studied here, this distinction be-
tween the two networks disappears in the particular case
where the shear stress is zero. But it still holds for the sta-
tistical distribution PF of forces. PF is a power law with a
weak negative exponent for forces lower than the average
force, and an exponentially decreasing function for forces
larger than the average [3]. The same behavior is observed
in 3D systems as well [15].

The central message is that the inhomogeneous distribu-
tion of forces on the particle scale does not average out at
the macroscopic level. It induces a bimodal behavior for
the macroscopic variables of interest. More particularly,
we find that a more precise description of stress transmis-
sion in a dry granular packing requires two stress tensors

FIG. 6. Proportion rs of sliding contacts to the total number
of contacts in the j-network as a function of j!)F*.

corresponding to two complementary phases. This prop-
erty of a quasistatic granular medium is in contrast to both
liquids and solids.
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discussions with S. Roux and L. Brendel.
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