
HAL Id: hal-00759668
https://hal.science/hal-00759668v2

Submitted on 2 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Force Distributions in Dense Two-Dimensional Granular
Systems

Farhang Radjai, Michel Jean, Jean Jacques Moreau, Stéphane Roux

To cite this version:
Farhang Radjai, Michel Jean, Jean Jacques Moreau, Stéphane Roux. Force Distributions in Dense
Two-Dimensional Granular Systems. Physical Review Letters, 1996, 77, pp.274 - 277. �10.1103/Phys-
RevLett.77.274�. �hal-00759668v2�

https://hal.science/hal-00759668v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Force Distributions in Dense Two-Dimensional Granular Systems

Farhang Radjai,1 Michel Jean,2 Jean-Jacques Moreau,2 and Stéphane Roux3

1HLRZ, Forschungszentrum, 52425 Jülich, Germany
2LMGC, Université de Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France 

3LPMMH-ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 05, France

Relying on contact dynamics simulations, we study the statistical distribution of contact forces inside 
a confined packing of circular rigid disks with solid friction. We find the following: (1) The number 
of normal and tangential forces lower than their respective mean value decays as a power law. (2) The 
number of normal and tangential forces higher than their respective mean value decays exponentially.
(3) The ratio of friction to normal force is uniformly distributed and is uncorrelated with normal force.
(4) When normalized with respect to their mean values, these distributions are independent of sample 
size and particle size distribution.

Despite the highly uniform density of a random pack-
ing of noncohesive particles, photoelastic visualizations
provide a striking evidence of the heterogeneous distribu-
tion of contact forces on a scale definitely larger than the
typical particle size [1–3]. A quantitative characteriza-
tion of these distributions is relevant both to mechanical
processing (compression, compaction, flow, grinding) and
fundamental understanding (mesoscopic scales, instability
thresholds) of granular media [4–7].

This Letter is concerned with a numerical study of
this problem in confined two-dimensional packings at
static equilibrium. We are interested in the statistical
distributionsPN and PT of normal forces and (absolute
values of) friction forcesN and T , independently of
contact orientations. We also study the distributionPh

of the dimensionless variableh ­ TyN, which is a
measure of friction “mobilization” within the Coulomb
rangef0, mg, wherem is the coefficient of friction between
disks. Scaling with sample size and relation among the
three distributions will be considered too.

Numerical results will be presented here for four
samples of500, 1200, 4025, and1024 particles, referred
to as samples A, B, C, and D, respectively. Particle
radii are uniformly distributed between3.8 and7.5 mm in
samples A and B, and between1.5 and7.5 mm in sample
C. Sample D contains192 particles of radius1.6 mm,320

particles of radius1.05 mm, and512 particles of radius
0.65 mm. Particles are contained in a rectangular frame
composed of one planar base, two immobile walls, and
one horizontal plane (the lid) free to move vertically and
on which a downward force of6600 N is applied. The
acceleration of gravity is set to zero in order to avoid force
gradients in the sample. Particle-particle and particle-base
coefficients of friction are0.2 and0.5, respectively. All
other coefficients of friction are zero.

For this investigation, we have relied on the contact
dynamics (CD) approach to the dynamics of perfectly
rigid particles with unilateral contacts. Since particles
cannot interpenetrate, the allowed configurations of the

system, characterized by a set of inequalities, define
a region in the configuration space presenting a large
number of edges and corners. Moreover, the basic
Coulomb’s law of friction, relevant to most of the granular
media of interest, is anonsmoothlaw in the sense that
friction force and sliding velocity at a contact are not
related together as a function. Finally, in the case of
collisions velocity jumps occur, so that the evolution is
not globally governed by differential equations in the
classical sense.

The most commonly used algorithms are based on reg-
ularization schemes. In this way, impenetrability is ap-
proximated by a steep repulsive potential and Coulomb’s
law by a viscous friction law, to which smooth compu-
tational methods can be applied. The dominant feature
of the CD method is that the conditions ofperfect rigid-
ity andexact Coulombian frictionare implemented, with
no resort to any regularization. At a given step of evo-
lution, all kinematic constraints implied by lasting in-
terparticular contacts and the possible rolling of some
particles over others aresimultaneouslytaken into ac-
count, together with the equations of dynamics, in order
to determine all contact forces in the system. The method
is thus able to deal properly with thenonlocal character
of the momentum transfers—resulting from the perfect
rigidity of particles in contact.

Detailed descriptions of the CD method can be found
in the literature [8–10]. In relation with the present in-
vestigation, we would just like to underline the point that
dynamics is an essential ingredient of this approach. It is
well known that a granular system at static equilibrium is
hyperstatic;i.e., for given boundary conditions there is a
continuous set of possible contact forces. This is due both
to the absence of an internal displacement field (because
of perfect rigidity) and to the nonsmooth character of the
friction law [11]. In the CD method, the force network at
static equilibrium is determined through thedynamic pro-
cessesfrom which it relaxed. In other words, as in real
granular systems, the static values of forces are reached
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asymptotically as the kinematic energyof the system is
dissipated in friction and collisions.

Of course, this does not mean that thestatistical dis-
tribution of forces is necessarily dependent on the prepa-
ration process. The most probable force distribution may
well result from the generic disorder of granular systems
[3]. However, density is a major control parameter of the
mechanical properties of granular materials, and only in
the steady state, reached after enough shear-induced vol-
ume change, it acquires a rather well-defined value for a
given confining pressure [12]. That is why we applied the
same procedure to prepare all samples in the same state:
Filling the box with particles under gravity, shearing by
moving the base horizontally (dilation occurs then), stop-
ping shear and applying the confining load on top of the
sample, and, finally, setting the gravity to zero and allow-
ing the system to relax to equilibrium under the load. Al-
though the algorithm is quite efficient compared to other
available techniques, the whole procedure requires hun-
dreds of CPU hours on a fast Unix workstation (Sparc 20)
for each sample.

Figure 1 shows the network of normal forces in sample
D. One can observe both large contact-to-contact fluctu-
ations and a subnetwork of “force chains” that seem to
carry a significant portion of the applied external stress.
Forces range from0.003 to 1127 N, i.e., a range of6 or-
ders of magnitude, which clearly requires a scaling analy-
sis. The mean normal force iskNl ­ 249 N and more
than60% of contacts carry a force lower than the mean.

Figure 2 displays semilogarithmic plots of probability
distributions PN of normal forces in the four samples.
Forces are normalized with respect to their mean in each
sample. The normalized distributions coincide over al-
most the whole range, and the data for forces larger than

FIG. 1. Network of normal forces in sample D; see
Table I. Forces are encodedas the widths of intercenter con-
necting segments.

the mean are well fitted by an exponential decay. In order
to see the behavior at low forces, we have shown in Fig. 3
the normalized log-log plots of the distribution of the
logarithm of the forces. The data for forces lower than
the mean have a power-law distribution. We conclude
that the normalized distribution of normal forces is inde-
pendent of our sample sizes and can be approximated by
a power-law decay with a crossover to an exponential cut-
off,

PN ~

Ω

sNykNlda , N , kNl,
ebs12NykNld, N . kNl.

(1)

We finda ­ 20.3 andb ­ 1.4. It is important to notice
the collapse of normalized data on the same distribution
in spite of the fact that the size dispersity of particles
is not the same in all samples. The mean values seem,
however, to depend on size dispersity since they do not
scale with system size as shown in Table I. On the other
hand, the lack of statistics at low normal forces in sample
D as compared to sample B, giving rise to the fluctuations
observed in Fig. 3, suggests that the “branching process”
generating low forces from the high applied force on the
system is more efficient in systems with a continuous
distribution of particle sizes.

The semilogarithmic and log-log plots of the probabil-
ity distributions of theT are displayed in Figs. 4 and 5.
The data are normalized with respect to the meankT l in
each sample, and, as we see, they nicely collapse on the
same distribution. This is again essentially a power-law
decay with a crossover to an exponential cutoff,

PT ~

Ω

sTykT lda0

T , kT l ,

eb0s12TykTld, T . kT l .
(2)

We finda0
­ 20.5 andb0

­ 1.
We also studied the probability distributionPh of h ­

TyN. This is a uniform distribution except for a small
peak ath ­ m. The uniformity of this distribution may

FIG. 2. Semilogarithmic plots of the probability distributions
of normalized normal forcesNykNl.
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FIG. 3. Log-log plots of the probability distributions of
normalized normal forcesNykNl.

be attributed to the random structure of the contact net-
work. On the other hand, it is likely that the rather weak
singularity ath ­ m is a “signature” of the dynamics of
preparation. Indeed, only atsliding contacts is the fric-
tion force fully mobilized. If a granular assembly relaxes
asymptotically towards static equilibrium, then the set of
the last sliding contacts at the equilibrium threshold might
remain fully mobilized. We checked that when the sys-
tem is sheared by the motion of the basal plane, the peak
at h ­ m can rise to50% of contacts, whereas the dis-
tribution remains uniform withinf0, mf. Finally, we note
that the normal forces for whichh ­ m are much smaller
than the average, so that the peak may well result also
from an imperfect relaxation.

Another important result regarding friction mobilization
is the statistical independence ofh with respect to
N . Whatever the value ofN , friction is indifferently
mobilized within the Coulomb rangef0, mNg (apart from
the above discussed small peak). Such an assumption
allows one to relate in a simple wayPN to PT . Let
PsN , Td be the joint probability distribution of normal and
friction forces. Sinceh is statistically independent ofN ,
we may writePsN , Td as a product ofPN andPh times
the Jacobian of the transformationsN, T d ! sN, hd,

PsN, T d dN dT ­

1

N
PN sNdPhshd dN dT . (3)

TABLE I. Number ofparticlesp, number of contactsc, width
L, mean normal forcekNl, and mean friction forcekT l in our
samples A, B, C, and D.

Sample p c L (mm) kNl sNd kT l sNd

A 500 806 260 592 51
B 1200 1969 389 213 18
C 4025 6293 620 219 21
D 1024 1498 65 249 23

FIG. 4. Semilogarithmic plots of the probability distributions
of normalized friction forcesTykTl.

One may check that integration of the two members
of Eq. (3) with respect toN and T over f0, 1`g, with
the substitutionT ­ hN in the right-hand side together
with the constrainth [ f0, mg, implies a normalizedPh

over the Coulomb rangef0, mg. Introducing the uniform
distributionPhshd ­ 1sf0, mgd in Eq. (3) and integrating
with respect toN over f0, 1`g with the substitution
N ­ Tyh in the right side, we get the following relation
betweenPN andPT :

PT sT d ­

1

m

Z 1`

1ym

PN sxT d
dx

x
. (4)

This equation implies that theinitial power law of the
two distributionsPN and PT should be the same:a ­

a0. Moreover, an exponential upper cutoff of normal
forces yields an exponential-integral cutoff for friction
forces, i.e., essentially an exponential decay times a
slowly varying function. Going back to Figs. 2–5, we
see that such refinements are out of reach within the

FIG. 5. Log-log plots of the probability distributions of
normalized friction forcesTykT l.
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statistical precision. On one hand, thecutoff may well
be an exponential-integral function. On the other hand,
the equality of exponents is consistent with therough
determination of these exponents.

Equation (4) can, however, be directly checked from
the data. In Fig. 6 we have plotted bothPT and the
probability distribution obtained fromPN via Eq. (4) for
sample C. They are almost the same with a very good
precision, although we assumed a uniform distribution of
h with no additional peak on the edgeh ­ m. This
validation of Eq. (4) is also an indirect check of the
statistical independence ofh with respect toN.

Finally, integration of Eq. (4) with respect toT yields
the following relation between the mean values:

kT l ­

m

2
kNl. (5)

This relation is approximately satisfied forour samples, as
can be seen in Table I.

In view of these findings, we would like to underline
some salient aspects of the problem. One important
point concerns the scale of statistical homogeneity of
granular systems. Despite local force fluctuations, the
present study shows that for a sample as small as
1200 particles the force distributions are clearly defined
over several decades. An increase in sample size does
nothing but improve statistics. Hence, as far as stress
is concerned, the linear scale of statistical homogeneity
in a 2D assembly is a few tens of particle diameters.
This is what comes out also from the study of anisotropy
in angular distributions of contact forces [13,14]. This
observation is crucial for a continuum approach to the
mechanics of granular media, needed in most of the usual
technological problems.

Another point is that only the exponential tail of the
distribution of normal forces, comprising nearly40%

of contacts in our simulations, has been observed in

FIG. 6. Log-log plots of the distributionPT of normalized
friction forces and the oneobtained by applying Eq. (4) toPN

in sample C.

experiments [3]. Weaker forces are technically difficult
to measure, and their distribution has not been observed.
The exponential tail has also been obtained through the
usual simulation methods [15], and, what is more, a recent
theoretical model provides plausible statistical arguments
in favor of it [3]. This statistical model is likely to
apply only to the subnetwork of force chains, which
carries in effect most of the applied external load and
in our simulations belongs to the exponential tail. The
characteristic force at this scale is essentially imposed by
the external load and the ratio of the system size to the
largest particle size. On the other hand, the power-law
decay of weak forces, if confirmed by other investigators,
indicates the self-similar nature ofweakcontacts that do
not belong to the subnetwork of large forces. Indeed,
such contacts do notfeel the external load, and hence
their distribution can give rise to a power law through
a self-similar branching process with no intrinsic scale.
This observation also suggests that the exponentsa and
a0 depend on the interparticular friction coefficientm.
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