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The fundamental theorem of arithmetic states that any composite natural integer can be expressed
in one and only one way as a product of prime numbers. This sets the understanding of the
organization of prime numbers at the core of number theory. In this work we present a simple,
self-consistent and deterministic scheme allowing to investigate further the intrinsic organization
of prime numbers. Using this scheme, we establish an algorithm that yields the complete list of
prime numbers below any preassigned limit x. Counting the latter yields π(x), the number of prime
numbers below x. Based on preliminary tests on computing clusters available, a considerable gain
in computational speed and algorithmic simplicity towards producing complete lists of large prime
numbers is observed. At the core of the new scheme lays its ability to provide, in a deterministic
way, complete lists of consecutive and composite odd numbers below any preassigned limit x. The
complete list of prime numbers below x is deduced from the latter. The two key ingredients of the
scheme are a set of eleven generic tables, coupled with a three-criteria test applied on the differences
between pairs of the consecutive composite odd numbers initially obtained. Since it leads to counting
all the elements of a complete list of prime numbers up to x, our deterministic scheme provides a
new approach to the long standing problem of “how many prime numbers are there below any
preassigned limit x”. The said scheme therefore potentially contributes towards studies aimed at
unveiling the organization of prime numbers. We illustrate the latter in a follow-up paper, Paper II
[3], where we propose a new perspective on the Riemann hypothesis.

Keywords: Number Theory, Composite Odd Numbers, Prime Numbers

I. INTRODUCTION

Some numbers have the special property that they cannot be expressed as the product of two or more smaller
numbers, e.g. 2, 3, 5, 7, etc. Such numbers are called prime numbers, and they play an important role, both in pure
mathematics and its applications. Prime numbers occur in a very irregular way within the sequences of natural
numbers. In particular, the distribution of prime numbers exhibits a local irregularity but a global regularity. One of
the best existing results illustrating that global regularity is the prime number theorem giving the number of prime
number, π(x), not exceeding an upper limit x. In epoch-marking works published in the late nineteenth century, it
was shown that π(x) behaves asymptotically as x

lnx
[2, 7]. Prime numbers derive most of their peculiar importance

from the fundamental theorem of arithmetic stating that any composite natural integer can be expressed in one
and only one way as a product of prime number [1]. Given the importance of primes in the construction of all
natural numbers, a problem that presents itself at the very roots of mathematics is therefore the organization of
the primes among the integers.Formulated in other terms, a fundamental tool for number theory would be a scheme
allowing to obtain, at a relatively low computational cost - when compared to existing approaches, the complete list of
primes below any upper limit n. In the present work (Paper I), we propose a simple and self-consistent deterministic
scheme allowing us to investigate further the intrinsic organization of prime numbers. From the said scheme, we have
established an algorithm that systematically yields the complete list of prime numbers below any preassigned limit x
at a relatively low computational cost. The reader might wish to test our scheme online for values of x ≤ 109, on this
website http://univgandhi-guinee.com/algo/public/home/nombres-premiers1. In Paper II ([3]), based on our
deterministic scheme, we offer a new perspective on Riemann hypothesis.

1 The datafiles also provided on this database come with minimal copyright requirements specified onsite. Feel free to contact the authors

for more.
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II. A NEW AND DETERMINISTIC SCHEME YIELDING THE COMPLETE LIST OF PRIMES UP TO

A PREASSIGNED LIMIT x, WITHOUT ANY PRIMALITY TEST

Towards clarifying our approach, let us first make clear our terminology with a few definitions.

Definition 1. N
∗ = N− {0}

Definition 2. ∀ p ∈ N, p is a composite odd number if and only if

(1) p is an odd number;

(2) p is not a prime number.

Definition 3. For any n and p elements of N, n and p are consecutive composite odd numbers if and only if there
exists no other composite odd number k such that n < k < p.

Our deterministic scheme is built upon the set of composite odd numbers. From these, and as explained below, we
deduce non-composite odd numbers i.e prime numbers.
Except 2 and 5, any prime number (PN) has to end with 1 or 3 or 7 or 9. The trivial proof relies on realizing that

all other cases are excluded by definition of prime numbers. From the result above we deduce that except 2 and 5,
any prime number can be written as

Theorem II.1. (i) PN1 ≡ 10n+ 1, ∀n ∈ N, for all primes ending with 1;

(ii) PN3 ≡ 10n+ 3, ∀n ∈ N, for all primes ending with 3;

(iii) PN7 ≡ 10n+ 7, ∀n ∈ N, for all primes ending with 7;

(iv) PN9 ≡ 10n+ 9, ∀n ∈ N, for all primes ending with 9;

Including trivial prime numbers ({2, 3, 5, 7}), the results above states that all prime numbers are also odd numbers.
More precisely, all prime numbers are non-composite odd numbers (nocoon in short). For convenience, we will ignore
{2, 3, 5, 7} , the trivial prime numbers. We are dominantly interested in the prime numbers greater or equal to 9. Let
us therefore introduce the set Ωnocoon of all non-composite odd numbers (i.e prime numbers) greater or equal to 9.

Definition 4. Ωnocoon = {p = 10n+ k with n ∈ N
∗, p non-composite odd number, and k ∈ {1, 3, 7, 9}}.

Within Ω = {p ∈ N, p ≥ 9 and p is a odd number} , the set that is complementary to Ωnocoon is Ωcoon =
{p ≥ 9 is a composite odd number}, the set comprising all composite odd numbers greater or equal to 9. Hence

Corollary II.2. Ω = Ωcoon

⋃
Ωnocoon with Ωcoon

⋂
Ωnocoon = Ø.

Corollary II.3. All odd numbers are either

i Composite or;

ii Prime (non-composite).

From corollary II.2, we read that any odd number that is not composite is therefore a prime number (i.e a non-
composite odd number). By construction, the organization of prime numbers (non-composite odd numbers) is therefore
directly correlated to the organization of composite odd numbers. The set Ωcoon of composite odd number is at the
core of the present work: we deduce all complete list of prime numbers below any preassigned limit s from complete
list of composite odd numbers below x.

Lemma 1. Given C, the complete list of all consecutive composite odd numbers below any integer x, any odd number
not listed in C is a non-composite odd number i.e. a prime number.

Our deterministic scheme consists therefore in

(1) Constructing the complete and ordered list of all composite odd numbers below any preassigned limit x. The
tables in corollary II.9 are the backbone of this task;

(2) Based on the test(s) laid down in Theorem II.10 applied to the list obtained in (1) above, one deduces the complete
and ordered list of all non-composite odd numbers (i.e prime numbers) smaller than x.
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With these preliminaries set, and as a way to illustrate the establishment of our deterministic scheme, let us briefly
and momentarily focus on all non-trivial prime numbers (≥ 10) ending with 7 and below any preassigned x, i.e. all
prime numbers that can be written as PN7 and that are smaller than any preassigned limit x. The same reasoning
will be applied to all prime numbers that can be written as PN1, PN3, PN9 since we established earlier that except
2 and 5, primes have to end with 1 or 3 or 7 or 9. For practical convenience, in all the subsequent sections, 2, 3, 5, 7
will be regarded as trivial prime numbers. The census will therefore be done for all prime numbers larger than 10 and
smaller than any preassigned limit x.
We wanted to start by the general problem of listing all the odd numbers ending with 7.

Theorem II.4. Any composite odd number ending with 7

1. is of the form 10n+ 7, for n ∈ N;

2. can only be written either as

(i) 10n+ 7 = (10n1 + 7) (10n2 + 1);

(ii) or as or as 10n+ 7 = (10n3 + 3) (10n4 + 9) ,

where n, n1, n3, n4 are all elements of N and n2 ∈ N
∗.

Proof. It is trivial to prove that any odd number (ON) ends with 1 or 3 or 5 or 7 or 9, since the excluded cases
(0 or 2 or 4 or 6 or 8) lead to even numbers. Hence

(i) For any odd number ON1 ending with 1, ON1 = 10n1 + 1, for n1 ∈ N;

(ii) For any odd number ON3 ending with 3, ON3 = 10n3 + 3, for n3 ∈ N;

(iii) For any odd number ON5 ending with 5, ON5 = 10n5 + 5, for n5 ∈ N;

(iv) For any odd number ON7 ending with 7, ON7 = 10n7 + 7, for n7 ∈ N;

(v) For any odd number ON9 ending with 9, ON9 = 10n9 + 9, for n9 ∈ N.

Clearly, any odd number ending with 7 can only be written as 10n+ 7 where n ∈ N.
Equally trivial is the proof that any composite odd number can only be written as a product of odd numbers

(composite or not). If not one ends up with the absurd situation of having the existence of odd numbers also equal to
some even number. A straightforward reasoning by the absurd also proves that any finite product of composite odd
numbers yields a composite odd number.

Lemma 2. ∀ p ∈ Ωcoon, ∃ s1, s2, ...., sn each in Ωcoon such that p = s1 ∗ s2 ∗ ... ∗ sn. By consequence, one can
always write p = k ∗ l ∗m where l and m are each one a composite odd number and k ∈ N

The latter result is a consequence of the fundamental theorem of arithmetic. Let us therefore list all possible
products ONi ∗ONj for i, j ∈ {1, 3, 5, 7, 9} , of composite odd numbers, since these underlie the decomposition of any

composite odd number. There are C2
5 = 5!

(5−2)!2! such products i.e. fifteen of these products that we list below.
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Lemma 3.

P1 = (10n1 + 1)(10n1 + 1) ⇔ P1 = 10(10n2
1 + 2n1) + 1, n1 ∈ N

∗

P2 = (10n1 + 1)(10n2 + 3) ⇔ P2 = 10(10n1n2 + 3n1 + n2) + 3, n2 ∈ N

P3 = (10n1 + 1)(10n3 + 5) ⇔ P3 = 10(10n1n3 + 5n1 + n3) + 5, n3 ∈ N

P4 = (10n1 + 1)(10n4 + 7) ⇔ P4 = 10(10n1n4 + 7n1 + n4) + 7, n4 ∈ N

P5 = (10n1 + 1)(10n5 + 9) ⇔ P5 = 10(10n1n5 + 9n1 + n3) + 9, n5 ∈ N

P6 = (10n2 + 3)(10n2 + 3) ⇔ P6 = 10(10n2
2 + 6n2) + 9, n2 ∈ N

P7 = (10n2 + 3)(10n3 + 5) ⇔ P7 = 10(10n2n3 + 5n2 + 3n3 + 1) + 5, n1 ∈ N

P8 = (10n2 + 3)(10n4 + 7) ⇔ P8 = 10(10n2n4 + 7n2 + 3n4 + 2) + 1, n4 ∈ N

P9 = (10n2 + 3)(10n5 + 9) ⇔ P9 = 10(10n2n5 + 9n2 + 3n5 + 2) + 7, n5 ∈ N

P10 = (10n3 + 5)(10n3 + 5) ⇔ P10 = 10(10n2
3 + 10n3 + 2) + 5, n3 ∈ N

P11 = (10n3 + 5)(10n4 + 7) ⇔ P11 = 10(10n3n4 + 7n3 + 5n3 + 3) + 5, n4 ∈ N

P12 = (10n3 + 5)(10n5 + 9) ⇔ P12 = 10(10n3n5 + 9n3 + 5n5 + 4) + 5, n5 ∈ N

P13 = (10n4 + 7)(10n4 + 7) ⇔ P13 = 10(10n2
4 + 14n4 + 4) + 9, n4 ∈ N

P14 = (10n4 + 7)(10n5 + 9) ⇔ P14 = 10(10n4n5 + 9n4 + 7n5 + 6) + 3, n5 ∈ N

P15 = (10n5 + 9)(10n5 + 9) ⇔ P15 = 10(10n2
5 + 18n5 + 80) + 1, n5 ∈ N

The fifteen (15) expressions in Lemma 3 define all the possible forms for any composite odd number. We also
know that any composite odd number always ends with 1 or 3 or 5 or 7 or 9. We then deduce from these that
all composite odd numbers of the 10n + 7 i.e. ending with 7 are all and only of the type P4 or P9. In other
words, Any composite odd number ending with 7 can only be written either as 10n+ 7 = (10k1 + 1) (10k2 + 7) or as
10n+ 7 = (10k3 + 3) (10k4 + 9) , where k2, k3, k4 are all elements of N and k1 ∈ N

∗

Similarly, the set of 15 equations in Lemma 3 yields the following results.
Equations P1 and P15 are special cases of the generic forms for any composite odd number ending with 1. Since

we are only interested in the last digit (1), P1 and P15 can therefore be extended into P̃1 and P̃15 defined by

P̃1 = (10k1 + 1)(10k2 + 1) and P̃15 = (10k3 + 9)(10k4 + 9) where k1, k2, k3, and k4 are all elements of N and
k1, k2 ∈ N

∗. Coupled with P8 we therefore get that

Theorem II.5. All composite odd numbers of the form 10n+ 1 i.e. ending with 1 are all and only of the type P̃1 or
P8 or P̃15. In other words, any composite odd number ending with 1 (i.e. of the form 10n+ 1) can only be written
either as 10n+1 = (10k1 + 3) (10k2 + 7) or as 10n+1 = (10k3 + 9) (10k4 + 9) , or as 10n+1 = (10k5 + 1) (10k6 + 1) ,
where k1, k2, k3, k4 are all elements of N and k5, k6 ∈ N

∗. Generalization of P1 and P15 may lead to counting more
then once some composite odd number ending with 9. This does not fundamentally alter or affect the fact that we
will get final lists made of all consecutive composite odd numbers ending with 1. The same applies to all subsequent
situations where duplicates are included in the final lists. We are interested in the final complete list with or without
duplicate. Only the fact to it is complete matters.

Theorem II.6. Any composite odd number ending with 3 (i.e. of the form 10n + 3) can only be written either as
10n + 3 = (10k1 + 3) (10k2 + 1) or as 10n+ 3 = (10k3 + 7) (10k4 + 9) , where k1, k3, k4 are all elements of N and
k2 ∈ N

∗.

Theorem II.7. Combining P3, P7, P10, P11, and P15 we obtain the trivial result that any composite odd number
ending with 5 (i.e. of the form 10n+ 5) can only be written as 10n+ 5 = 5 (2k + 1) where k ∈ N.

Theorem II.8. Equations P6 and P13 are special cases of the generic forms for any composite odd number ending
with 9. Since we are only interested in the last digit (9), P6 and P13 can therefore be extended into P̃6 and P̃13 defined

by P̃6 = (10k3+3)(10k4+3) and P̃13 = (10k5+7)(10k6+7) where k3, k4, k5, k6 are all elements of N. Coupled with
P5 we therefore get that any composite odd number ending with 9 i.e. of the form 10n+9 can only be written either as
10n+ 9 = (10k1 + 1) (10k2 + 9) or as 10n+ 9 = (10k3 + 3) (10k4 + 3) , or as 10n+ 9 = (10k5 + 7) (10k6 + 7) , where
k2, k3, k4, k5, and k6 are all elements of N and k1 ∈ N

∗.
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The results in theorems II.4, II.5, II.6, II.7 and II.8 define all the possible forms for any composite odd number
greater or equal to 10. They can all be summarized in the form of eleven (11) tables given below. Three (03), two (02),
one (01), two (02) and three (03) tables are needed for all composite odd numbers ending with 1 or 3 or 5or 7 or 9,
respectively. As implicit in corollary II.9, all complete lists of consecutive prime numbers larger or equal to 9 (always
ending with 1 or 3 or 7 or 9 ) and below any pre-assigned limit x will be deduced from trivial and systematic operations
on elements of these tables, coupled with a test that we establish in Theorem II.10. The reason why some elements
above and in the tables are taken in N

∗ is because we are looking for composite odd numbers and the first one of
these is 9.

Corollary II.9. Based on the fifteen equations in Lemma 3 and since 5 is the only prime number ending with
5, ten (10 = 11 − 1) of the eleven (11) tables given in Appendix A will be effectively used in our deterministic
scheme to deduce the complete list of consecutive prime numbers larger than 10 and smaller than any pre-assigned
limit x. The ten tables III, IV, V, VI, VII, VIII, IX, X, XI and XII given in Appendix A constitute the numerical
backbone of our deterministic scheme. These eleven Tables yield the complete list of all consecutive composite odd
numbers greater or equal to 9 and smaller than any pre-assigned limit x. In each table, for each computation p =
(10k +m) (10l+ q) , k,m, l, q ∈ N, the constrain is that each product p has to be smaller than x.

How then do we deduce, from the previous, the complete list of all consecutive prime numbers below any pre-assigned
limit x? The following theorem yields an answer.

Theorem II.10 (Main Theorem). ∀ N1 and N2 two consecutive composite odd numbers each larger than 9,

(1) N2 −N1 = 2 or N2 −N1 = 4 or N2 −N1 = 6,

(2) If N2 −N1 = 2 then there is no prime number between N1 and N2,

(3) If N2 −N1 = 4 then there is one prime numbers between N1 and N2,

(4) If N2 −N1 = 6 then there are two prime numbers between N1 and N2.

Proof. (1) We prove item (1) in Theorem II.10. The result is immediate for any composite odd number
from 1, 3, 5, 7. Let us introduce the ordered set Ω (x) of all composite odd numbers smaller or equal

to than x ∈ N. By construction, 9 is the first element of Ω (x) . Ω (x) =

m⋃

k=1, k∈N

Ωk and Ωk =

{p ∈ N, p is a composite odd number and 3 (2k + 1) ≤ p ≤ 3 (2k + 3) , k ∈ N
∗ } ⊆ N Ω (x) can be visualized as

the line of integers (consecutive composite odd numbers) shown in Figure 1.

∀ k ∈ N
∗, Ωk ⊆ N is the interval whose extremities are consecutive and composite odd numbers that are each a

multiple of 3. It is trivial to prove that pairs of consecutive odd numbers that are multiple of 3 are separated by
a distance of 6. Of all the elements of Ω (x) , those making up Ωk are between pairs of consecutive composite odd
numbers that are separated by the smallest distance of all (equal to 6). By construction, any pair of consecutive
composite odd numbers within any union of at least two Ωk is separated by a distance strictly larger than 6. As
illustrated in Figure 1, intervals of length 6, from any Ωk can be understood as a “unit interval”, U : Any interval
larger than Ωk has a length that is a multiple of the length of U .

(a) We are interested in the length of all intervals between pairs of consecutive composite odd numbers within
Ω (x);

(b) Ωk constitutes the shortest interval of integers between pairs of consecutive composite odd numbers within
Ω (x) , so it matters;

(c) As illustrated in Figure 1, whatever happens with odd numbers within any Ωk will be mirrored within larger
intervals of Ω (x);

(d) As illustrated in Figure 1 and expressed in Lemma 4 below, any number from Ω (x) i.e. any composite odd
number will appear within one “ unit interval”, Ωk.

Let us therefore investigate what happens with numbers within any “unit interval” Ωk.

Lemma 4. ∀p1 and p2 ∈ N, two consecutive and composite odd numbers multiple of 3, there always exist two
and only two odd numbers between p1 and p2.
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FIG. 1: Partially illustrated here is the ordered set of all composite odd numbers multiple of 3 and smaller or equal
to some x ∈ N (upper ticks in black). By construction, 9 is the first (smallest) composite odd number. Ωcoon (x)

is the set of all consecutive composite odd numbers smaller or equal to x. Ωcoon (x) =

m⋃

k=1, k∈N

Ωk and Ωk =

{p ∈ N, p is a composite odd number and 3 (2k + 1) ≤ p ≤ 3 (2k + 3) , k ∈ N
∗ } ⊆ N is ordered. Any pair of consecutive com-

posite odd numbers within any union of at least two Ωk is separated by a distance strictly larger than 6. As illustrated here,
any Ωk is an interval of consecutive composite odd numbers. Each Ωk has a length equal to 6 and can be understood as a “unit
interval” of consecutive composite odd numbers. Whatever happens with consecutive composite odd numbers within any Ωk

will be mirrored within larger intervals of Ωcoon (x) . Hence the importance of Ωk in quantifying the maximal distance between
any pair of consecutive composite odd numbers, since any of these composite odd number will fall within one Ωk.: illustrated
here as some of the integers in blue.

We prove it. Let p1 and p2 be any two two consecutive and composite odd numbers multiple of 3 :

p1 = 3 (2n+ 1) , n ∈ N (1)

= 6n+ 3

and

p2 = 3 (2n+ 3) , n ∈ N (2)

= 6n+ 9.

We have

p1 + 2 = 3 (2n+ 1) + 2, n ∈ N (3)

= 6n+ 5.

= p11
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and

p1 + 4 = 3 (2n+ 1) + 4, n ∈ N (4)

= 6n+ 7

= p12.

p11 and p12 both between p1 and p2 are uniquely defined and are both odd numbers. There are three possibilities
for p11 and p12:

(i) p11 and p12 are both composite odd numbers;

(ii) one of the two is a prime and the other is a composite number.

(iii) p11 and p12 are both prime numbers;

Lemma 5. The three options above encompass all possibilities for any pair of composite odd numbers appearing
in the ordered set Ω (x) and as illustrated in Figure 1. Let us sum it up.

(a) If p11 = 6n + 5 is a composite odd number (and p12 = 6n + 7 is a composite odd number) then p1 = 6n + 3
and p11 are consecutive composite odd numbers and their difference is equal to 2;

(b) If p12 = 6n + 7 is a composite odd number and p11 = 6n + 5 is a prime number then p1 = 6n + 3 and
p12 = 6n+ 7 are consecutive composite odd numbers and their difference equal to 4;

(c) p11 = 6n+5 and p12 = 6n+7 are prime numbers with p1 = 6n+3 and p2 = 6n+9 consecutive and composite
odd number. The difference p2 − p1 = 6.

This all happens within every “unit interval” Ωk. Given that Ω (x) =

m⋃

k=1 k∈N

Ωk. Lemma 5 encapsulates the

description of the way Ω (x) is systematically populated. Having listed, in Lemma 5, all possible occurrences of
pairs of consecutive composite odd numbers within Ω (x) , the constrain emerging is that for any pair (p1, p2)
of consecutive composite odd numbers, their difference is always smaller or equal to 6. In other words, we have
established that

∀ p1 and p2 two consecutive composite odd numbers with p1 < p2, one has p2 − p1 ≤ 6.

On the other hand p1 and p2 being consecutive, p2 − p1 > 0. This proves the item (1) in Theorem II.10.

(2) Here we prove item (2) in Theorem II.10. We look at all of the only six possibilities. ∀ N1 ≥ 9 and N2 ≥ 9 two
consecutive composite odd numbers, such that N2 −N1 = 2,

(i) if N1 ends with 1 therefore N2 only ends with 3 and there is no prime number between N1 and N2 since the
only integer between both will be an even number ending with 2.

(ii) if N1 ends with 3 therefore N2 only ends with 5 and there is no prime number between N1 and N2 since the
only integer between both will be an even number ending with 4.

(iii) if N1 ends with 5 therefore N2 only ends with 7 and there is no prime number between N1 and N2 since the
only integer between both will be an even number ending with 6.

(iv) if N1 ends with 7 therefore N2 only ends with 9 and there is no prime number between N1 and N2 since the
only integer between both will be an even number ending with 8.

(v) if N1 ends with 9 therefore N2 only ends with 1 and there is no prime number between N1 and N2 since the
only integer between both will be an even number ending with 0.

Hence, ∀ N1 ≥ 9 and N2 ≥ 9 two consecutive composite odd numbers, If N2 − N1 = 2 then there is no prime
number between N1 and N2. This also proves that:

Lemma 6. ∀ N1 ≥ 9 and N2 ≥ 9 two consecutive composite odd numbers, If N2 −N1 = 2 then there is one and
only one integer between N1 and N2 and that integer is even.

(3) Here we prove item (3) in Theorem II.10. Let N1 ≥ 9 and N2 ≥ 9 be any two consecutive composite odd numbers
such that N2 −N1 = 4.
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(i)

N2 = N1 + 4 (5)

= (N1 + 2) + 2

= Ñ1 + 2 with Ñ1 = N1 + 2.

N2 = Ñ1 + 2 and Ñ1 = N1 + 2 yields

Ñ1 =
N1 +N2

2
.

So,

Ñ1 =
N1 +N2

2
(6)

= 2 +N1

= 2 + (2k1 + 1) with k1 ∈ N since N1 is an odd number

= 2k̃1 + 1.

In other words, Ñ1 is also an odd integer. Ñ1 and N2 are therefore two consecutive odd numbers of difference
2. The same goes for N1 and Ñ1. From Lemma 6, we deduce that ∃ ! p1, p2 ∈ N all even integers and such
that N1 ≤ p2 ≤ Ñ1 and Ñ1 ≤ p1 ≤ N2. We also have N1 ≤ Ñ1 ≤ N2. In other words there exist three and
only three uniquely defined integers p1, Ñ1 and p2 in the interval [N1, N2].

Since N1(6= Ñ1) and N2(6= Ñ1) are consecutive composite odd numbers and there are only three options for

N2 −N1 via item (1) in Theorem II.10. We therefore deduce that Ñ1 is a non-composite odd number, otherwise

N1 and N2 would not be consecutive composite odd numbers as given in Definition 3. We conclude then that Ñ1

is a prime number. This also proves that:

Lemma 7. ∀ N1 ≥ 9 and N2 ≥ 9 two consecutive composite odd numbers. If N2 −N1 = 4 then there exists one
and only one prime number p1 between N1 and N2. That prime number is given by p1 = N1+N2

2 .

(4) Here we prove item (4) in Theorem II.10. Let N1 ≥ 9 and N2 ≥ 9 be any two consecutive composite odd numbers
such that N2 −N1 = 6 ⇔ N2 −N1 = 4 + 2 ⇔ N2 = N1 + 4 + 2 Here we take advantage of the previous results.

(a)

N2 = (N1 + 4) + 2, (7)

= Ñ1 + 2 with Ñ1 = N1 + 4,

N2 = Ñ2 with Ñ2 = Ñ1 + 2.

It is trivial to prove that Ñ1 is an odd integer, as is N1. Therefore Lemma 7 states that there exists one and

only one prime number p1 between N1 and Ñ1, given by p1 = N1+Ñ1

2 ⇔ p1 = N1+N2

2 − 1.

(b) Similarly,

N2 −N1 = 4 + 2 ⇔ N1 −N2 = −4− 2.

In other words,

N1 = N2 − 4− 2 (8)

= N̄2 − 2 with N̄2 = N2 − 4,

= N̄1 with N̄1 = N̄2 − 2.

It is trivial to prove that N̄2 is an odd integer, as is N2. Therefore Lemma 7 states that there exists one and

only one prime number p2 between N̄2 and N2, given by p2 = N̄2+N2

2 ⇔ p2 = N1+N2

2 + 1.



9

This also proves that:

Lemma 8. ∀ N1 ≥ 9 and N2 ≥ 9 two consecutive composite odd numbers. If N2 −N1 = 6 then there exists two
and only two prime numbers p1 and p2 between N1 and N2. These prime numbers given by p1 = N1+N2

2 − 1 and

p1 = N1+N2

2 + 1.

Corollary II.9 and Theorem II.10 thus constitute the two foundational components of our deterministic scheme for
establishing the complete list of prime numbers up to any preassigned limit x. As evidenced in the results above, no
single known primality test is performed. Our scheme operates much like a “compositeness” test. The dramatic gain
in computational speed and algorithmic simplicity in obtaining complete lists of small or large prime numbers up to
any preassigned limit x opens up unexpected avenues of fertile research on the intrinsic organization of prime numbers
and associated. New conceptual developments in the field of number theory are naturally to follow. In Paper II [3],
a follow-up paper to the present one, we illustrate the immense potential attached to our new deterministic scheme
by using its key components to offer a new perspective on Riemann Hypothesis.

III. BRIEF NUMERICAL ILLUSTRATIONS AND CONSIDERATIONS

A forthcoming publication will delve further into a few relevant numerical applications of our deterministic scheme.
Tables I and II provide a few outputs and statistics for similar runs performed on a high performance computing
infrastructure, for values of x ≥ 109. All ten tables in corollary II.9 were used for Table II while only Tables V, VI
and VII were used for Table I. The latter highlights how the scheme can be fine-tuned to investigate desired sub-sets
of the ensemble of prime numbers, such as all prime numbers ending with either 1, 3, 7, or 9 and all located below
any preassigned limit x. This approach may prove useful when, for example, targeting large prime numbers.
By construction, Tables in corollary II.9 yield duplicated values. This does not fundamentally affect the robustness

of the final result as these duplicates are easily removed. The final lists typically encompass all the possibilities. The
final list is then ordered. We are left with adding - by hand - the very few trivial ones, which by construction of the
tables, are not listed since the smallest values from each one of the table is set by the product of the two integer
appearing in each factor in the the product (10k + l) (10m+ n) , i.e. the product mn.
Shown in Table I are a few statistics from preliminary runs on facilities hosted by the South African Centre for
High Performance Computing2 in Cape Town, South Africa. The results shown are for composite odd numbers
ending with 1. We now know that within our approach, sets made of consecutive composite odd numbers are the
gateways into prime numbers. Not fully disclosed here is that computational options exists to restrain the search
for both composite and therefore primes within any preassigned interval [x1, x2] with x1, x2 ∈ N. This will figure
in a forthcoming paper. When compared with Table II, the preliminary execution times given in Table I suggests
forthcoming breakthroughs towards computing - much faster and much simpler - prime numbers, small and large,
via a deterministic way. Table II gives a few statistics from preliminary runs on the South African Centre for
High Performance Computing infrastructure. In Figures 2 and 4, we show evolutions of the values of π(x) and

ρ(x) = π(x)
x

for bin [105k, 105(k + 1)], with k = 1, ..., 1000. On Figures 3 and 5, one notes the same trend as the

well-known function ρ̃(x) ≡ 1
log(x) , approximating ρ(x) and that can be deduced from the prime number theorem

[2, 7]. A forthcoming publication will delve further into a few relevant numerical applications of our determinis-
tic scheme. The reader is advised to write us at the email provided to gain access to some of the complete list
mentioned in the tables below. Complete lists of prime numbers up to 109 are freely available on this website
http://univgandhi-guinee.com/algo/public/home/nombres-premiers3.

2 The specifications and world ranking of the South African Centre for High Performance Computing are available at

https://www.top500.org/system/178793 or www.chpc.ac.za .
3 Data provided come with minimal copyright requirements. Contact the authors for more.

http://univgandhi-guinee.com/algo/public/home/nombres-premiers
https://www.top500.org/system/178793
www.chpc.ac.za
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FIG. 2: Shown here is the evolution of the cumulative number of primes over sets of bin [(k − 1) ∗ 105, k ∗ 105] for k ∈ N,
2 ≤ k ≤ 1000.

TABLE I: A few statistics from preliminary runs on a high performance computing infrastructure. Shown below are results
for composite odd numbers ending with 1. When compared with Table II, the preliminary execution times given in this table
suggests potential breakthroughs towards computing - much faster and mush simpler - prime numbers, small and large.

Composite odd number ending with 1 and below x = Execution time on a high performance computing infrastructure

109 01 hour 10 minutes

5 ∗ 109 43 minutes

10 ∗ 109 02 hours

TABLE II: A few statistics from preliminary runs on a high performance computing infrastructure: Shown below are results
for prime numbers below a preassigned limit x. These are all deduced from associated list of composite odd numbers below x.

Prime numbers below x = Number of prime numbers below x Execution time on a high performance computing infrastructure

0.1 ∗ 109 5761455 5 minutes

0.25 ∗ 109 13679318 14 minutes

0.5 ∗ 109 26355867 31 minutes

109 50847534 01 hour 53 minutes

IV. CONCLUSION AND FUTURE WORK

We have established a deterministic scheme that yields the complete list of prime numbers below any preassigned
limit x. We have observed a considerable gain in computational speed and algorithmic simplicity towards obtaining
complete lists of prime numbers both small or large. Our deterministic scheme shines a new and unique light on the
importance of the set of composite odd numbers. From these composite odd numbers, non-composite odd number
i.e prime numbers are deduced. At the core of the deterministic scheme is a set of eleven (11) generic tables fully
characterized and leading to complete lists of ordered composite odd numbers below x. The said tables are coupled
with a three-criteria systematic test applied on differences between pairs of the consecutive composite odd numbers
obtained. Counting all the elements of the obtained list of prime numbers therefore provides a new and fertile approach
in tackling the long standing problem of “how many prime numbers are there below any preassigned limit x. Our
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FIG. 3: Shown here is the density from the cumulative number of primes over sets of bin [(k − 1) ∗ 105, k ∗ 105] for k ∈ N,
2 ≤ k ≤ 1000. Visible here and in Figure 5 is the well-known function ρ̃(x) ∝ 1

log(x)
, approximating ρ(x) that can be deduced

from the prime number theorem [2, 7]
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FIG. 4: Shown here is the evolution of the number of primes per bin number [(k − 1) ∗ 105, k ∗ 105] for k ∈ N, 2 ≤ k ≤ 1000.
Evident here is the well known increased scarcity of prime numbers as the preassigned limit x increases.

scheme presented here suggests a solution to that problem in a simple, coherent and deterministic way. In a follow-up
paper [3], we propose - based on our scheme - a new perspective on Riemann hypothesis. Thus highlighting the
immense potential, for number theory and related fields, embedded in the new approach presented in this work.
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FIG. 5: Shown here is the evolution of the number of primes per bin number [(k − 1) ∗ 105, k ∗ 105] for k ∈ N, 2 ≤ k ≤ 1000.
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Appendix A: The Eleven Generic Tables for Our Deterministic Scheme

In each table and for each computation of p = (10k +m) (10l+ q) , k,m, l, q ∈ N, the constrain is that each product
p has to be smaller than x, the preassigned limit.
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TABLE III: Simplifying representation in table for {(10k1 + 1) (10k2 + 7) , k2 ∈ N and k1 ∈ N
∗} leading to composite odd

numbers ending with 7

k1 k2 (10k1 + 1) (10k2 + 7)

1 0 11 7

2 1 21 17

.. ... ... ...

∞ ∞ ∞ ∞

TABLE IV: Simplifying representation in table for {(10k3 + 3) (10k4 + 9) , k3, k4 ∈ N} leading to composite odd numbers
ending with 7

k3, k4 (10k3 + 3) (10k4 + 9)

0 3 9

1 13 19

2 23 29

... ... ...

∞ ∞ ∞

TABLE V: Simplifying representation in table for {(10k1 + 3) (10k2 + 7) , k1, k2 ∈ N} leading to composite odd numbers
ending with 1

k1, k2 (10k1 + 3) (10k2 + 7)

0 3 7

1 13 17

2 23 27

... ... ...

∞ ∞ ∞
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TABLE VI: Simplifying representation in table for {(10k3 + 9) (10k4 + 9) , k3, k4 ∈ N} leading to composite odd numbers
ending with 1

k3, k4 (10k3 + 9) (10k4 + 9)

0 9 9

1 19 19

2 29 29

... ... ...

∞ ∞ ∞

TABLE VII: Simplifying representation in table for {(10k5 + 1) (10k6 + 1) , k5, k6 ∈ N
∗} leading to composite odd numbers

ending with 1

k5, k6 (10k5 + 1) (10k6 + 1)

1 11 11

2 21 21

... ... ...

∞ ∞ ∞

TABLE VIII: Simplifying representation in table for {(10k1 + 3) (10k2 + 1) , k1, k2 ∈ N and k2 ∈ N
∗} leading to composite

odd numbers ending with 3

k1 k2 (10k1 + 3) (10k2 + 1)

0 1 3 11

1 2 13 21

.. . ... ... ...

∞ ∞ ∞ ∞

TABLE IX: Simplifying representation in table for {(10k3 + 7) (10k4 + 9) , k3, k4 ∈ N} leading to composite odd numbers
ending with 3

k3, k4 (10k3 + 7) (10k4 + 9)

0 7 9

1 17 19

... ... ...

∞ ∞ ∞

TABLE X: Simplifying representation in table for {(10k1 + 1) (10k2 + 9) , k1, k2 ∈ N and k1 ∈ N
∗} leading to composite odd

numbers ending with 9

k1 k2 (10k1 + 1) (10k2 + 9)

1 0 11 9

2 1 21 19

... ... ... ...

∞ ∞ ∞ ∞

TABLE XI: Simplifying representation in table for {(10k3 + 3) (10k4 + 3) , k3, k4 ∈ N} leading to composite odd numbers
ending with 9

k3, k4 (10k3 + 3) (10k4 + 3)

0 3 3

1 13 13

... ... ...

∞ ∞ ∞
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TABLE XII: Simplifying representation in table for {(10k5 + 7) (10k6 + 7) , k5, k6 ∈ N} leading to composite odd numbers
ending with 9

k5, k6 (10k5 + 7) (10k6 + 7)

0 7 7

1 17 17

... ... ...

∞ ∞ ∞

TABLE XIII: Simplifying representation in table for {5 (2k + 1) , k ∈ N} leading to composite odd numbers ending with 5

k 5 (2k + 1)

0 5

1 15

2 25

... ...

∞ ∞
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