Fractional spaces and conservation laws - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Fractional spaces and conservation laws

Résumé

In 1994, Lions, Perthame and Tadmor conjectured the maximal smoothing effect for multidimensional scalar conservation laws in Sobolev spaces. For strictly smooth convex flux and the one-dimensional case we detail the proof of this conjecture in the framework of Sobolev fractional spaces $W^{ s,1}$ , and in fractional $BV$ spaces: $BV^s$. The $BV^s$ smoothing effect is more precise and optimal. It implies the optimal Sobolev smoothing effect in $W^{ s,1}$ and also in $W^{ s,p}$ with the optimal $ p = 1/s$. Moreover, the proof expounded does not use the Lax-Oleinik formula but a generalized one-sided Oleinik condition.
Fichier principal
Vignette du fichier
Castelli-Jabin-Junca.pdf (129.32 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01407099 , version 1 (01-12-2016)

Identifiants

Citer

Pierre Castelli, Pierre-Emmanuel Jabin, Stéphane Junca. Fractional spaces and conservation laws. XVI International Conference on Hyperbolic Problems: Theory, Numerics, Applications: Hyp2016, Klingenberg C.; Westdickenberg M., Aug 2016, Aachen, Germany. pp.285-293, ⟨10.1007/978-3-319-91545-6_23⟩. ⟨hal-01407099⟩
819 Consultations
454 Téléchargements

Altmetric

Partager

More