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Well-posedness of the scalar and the vector
advection-reaction problems in Banach graph spaces.

Pierre Cantin

Abstract

An extension of the well-posedness analysis of the scalar and the vector advection-reaction
problem in Banach graph spaces of power p ∈ (1,∞) is proposed. This analysis is based on
the sign of the associated Friedrichs tensor, taking positive, null or reasonably negative values.

1. Introduction. Let Ω be a domain of R3 with Lipschitz-continuous boundary ∂Ω and
consider u : Ω → R and u : Ω → R3 solving the following first-order homogeneous boundary
valued problems

β·∇u+ µu = s a.e. in Ω, (1a)
u = 0 a.e. on ∂Ω−, (1b)

and

∇(β·u) + (∇×u)×β + µu = s a.e. in Ω, (2a)
u = 0 a.e. on ∂Ω−. (2b)

In this paper, β denotes a Lipschitz-continuous R3-valued vector field on Ω, and µ and µ denote
two bounded reaction coefficients taking R and R3×3 values, respectively. The inflow boundary
∂Ω− is defined as ∂Ω− = {x ∈ ∂Ω | β(x)·n(x) < 0}, with n the exterior unit normal of ∂Ω.

These problems (or variants) have been studied several times in the literature. We mention in
particular the pioneering work of Bardos (1970) and Beirão da Veiga (1988) for the well-posedness
analysis in smooth domains with regular model parameters and also the work of DiPerna & Lions
(1989) when the problem is expressed in unbounded domains with irregular model parameters.
More recently, Girault & Tartar (2010) proved (using a viscous and a Yosida regularization) the
well-posedness of these problem in Lp(Ω) for all p > 2 under the assumption β ∈W 1,2(Ω), and
also the W 1,p(Ω)-regularity of solution of (1) if s ∈ W 1,p(Ω) and if β ∈W 1,∞(Ω) is sufficiently
small.

In this paper, we analyze the well-posedness of problems (1) and (2) in Banach graph spaces of
power p ∈ (1,∞). Observing that these problems define two Friedrichs systems, it is well-known
(see Ern & Guermond (2006a) or Ern et al. (2007)) that the well-posedness is a consequence of
the positivity of the R-valued Friedrichs tensor

σβ,µ;p := µ− 1

p
∇·β, (3)

for the first problem (1) and of the positivity of the lowest eigenvalue of the R3×3-valued Friedrichs
tensor

σβ,µ;p :=
µ+ µT

2
+
∇β +∇β T

2
− 1

p
(∇·β) Id, (4)

for the second problem (2). The first contribution of this work concerns the well-posedness in
Banach graph spaces. Following the analysis of Friedrichs system in Hilbert space proposed in
the aforementioned works, we establish the well-posedness of these two problems for positive
(in the above sense) Friedrichs tensors (3) and (4). The second part of this work is devoted to
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the analysis when these assumptions are not satisfied. Introducing a so-called potential (whose
existence follows from the regularity and the trajectory of the vector field in Ω, see Devinatz et al.
(1974)), we prove that one may extend the Friedrichs positivity assumptions so as to consider
null or reasonably negative tensors.

This paper is organized as follows. First, some notations are introduced and we recall the
classical statement of the Banach-Nečas-Babuška (BNB) theorem. Section 2 is concerned with
the scalar problem (1); we prove that this problem is well-posed in the Banach graph space of
power p ∈ (1,∞) if the infimum of the Friedrichs tensor (3) takes positive values and we extend
this result to consider null or reasonably negative values. In Section 3, we extend these results to
prove the well-posedness of the vector problem (2) under similar assumptions on the Friedrichs
tensor (4).

1.1. Notations. In this paper, p denotes any real number in (1,∞) with p′ its conjuguate
number such that 1

p + 1
p′ = 1. The inner, the cross and the tensor products in R3 are denoted by

·, × and ⊗ respectively. To alleviate the notation, |·| denotes either the Lebesgue measure of a
set, the absolute value of a real number, the Euclidean norm of a vector or the Frobenius norm
of a tensor. As usual, the Banach space Lp(Ω) collects all measurable functions v : Ω→ R whose
the absolute value raised to the power p is Lebesgue integrable, i.e., ||v||Lp(Ω) = (

∫
Ω |v|

p)
1
p < ∞.

Similarly, the Banach space Lp(Ω) collects all measurable functions v : Ω → R3 whose the
Euclidean norm raised to the power p is Lebesgue integrable, i.e., ||v||Lp(Ω) = (

∫
Ω |v|

p)
1
p < ∞.

We denote C∞(Ω) (resp. C∞(Ω)) the space of infinitely differentiable R-valued functions (resp.
R3-valued) on Ω and C∞c (Ω) (resp. C∞c (Ω)) the subspace of those that are compactly supported
in Ω.

1.2. Banach-Nečas-Babuška (BNB) theorem. Consider the following abstract variation-
nal problem

Find u ∈ U s.t. a(u, v) = 〈f, v〉V ′,V , ∀v ∈ V, (5)

where U and V are two Banach spaces equipped with ||·||U and ||·||V , respectively, V is reflexive,
a ∈ L(U×V ;R), f ∈ V ′ and 〈·, ·〉V ′,V is the duality pairing between V ′ ≡ L(V ;R) and V . A
necessary and sufficient condition for (5) to be well-posed is given by the (BNB) theorem, see
e.g., Ern & Guermond (2004).

Theorem 1 (Banach-Nečas-Babuška). The abstract problem (5) is well-posed if and only if:

(BNB1) There exists Cbnb > 0 such that

Cbnb||v||U ≤ sup
w∈V \{0}

a(v, w)

||w||V
, ∀v ∈ U.

(BNB2) For all w ∈ V , (∀v ∈ U, a(v, w) = 0) =⇒ (w = 0).

2. Scalar advection-reaction problem. This section analyzes the well-posedness of the
continuous problem (1) in Banach graph spaces and generalized the sign condition on the Friedrichs
tensor σβ,µ;p defined by (3).

2.1. The graph space. The Banach graph space of power p associated with (1) is defined
by

Vβ;p(Ω) := {v ∈ Lp(Ω) | β·∇v ∈ Lp(Ω)} , (6)

and is equipped with the norm ||v||Vβ;p(Ω) := (||v||pLp(Ω) + ||β·∇v||pLp(Ω))
1
p for all v ∈ Vβ;p(Ω). This

space defines a reflexive Banach space owing to the first and the second Clarkson inequalities
(see Brezis (1983)) where for all v ∈ Vβ;p(Ω), β·∇v ∈ Lp(Ω) means that the linear form

C∞c (Ω) 3 ϕ 7→ −
∫

Ω
v∇·(βϕ), (7)
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is bounded in Lp′(Ω), so that β·∇v is the Riesz representative of (7) in Lp(Ω). To specify the
meaning of the trace of a function in Vβ;p(Ω), we introduce the space Lp (|β·n| ; ∂Ω) given by

Lp (|β·n| ; ∂Ω) :=

{
v : ∂Ω→ R is Lebesgue measurable on ∂Ω |

∫
∂Ω
|β·n| |v|p <∞

}
, (8)

which is a Banach space when equipped with the norm ||v||Lp(|β·n|;∂Ω) = (
∫
∂Ω |β·n| |v|

p)
1
p for all v ∈

Lp (|β·n| ; ∂Ω). As observed by Ern & Guermond (2006a), the existence of traces in L2 (|β·n| ; ∂Ω)
for function in Vβ;2(Ω) is not always guaranteed. A necessary and sufficient condition is the well-
separation of the boundary ∂Ω with respect to the vector field β, i.e.,

dist(∂Ω−, ∂Ω+) > 0 with ∂Ω± = {x ∈ ∂Ω | ± β(x)·n(x) > 0} . (9)

In this following, we always assume that this condition is satisfied. Let us adapt the proof of (Ern
& Guermond, 2006a, Lemma 3.1) to the general case p ∈ (1,∞) to prove the existence of such
traces.

Lemma 1 (Trace in Lp (|β·n| ; ∂Ω)). The trace map γ : C∞(Ω) → Lp (|β·n| ; ∂Ω) with γ(ϕ) =
ϕ|∂Ω for all ϕ ∈ C∞(Ω), extends continuously to Vβ;p(Ω), i.e., there exists Cγ > 0 such that

||γ(v)||Lp(|β·n|;∂Ω) ≤ Cγ||v||Vβ;p(Ω), ∀v ∈ Vβ;p(Ω).

Proof. Owing to the separation of the boundary from assumption (9), there exist ψ+, ψ− ∈ C∞(Ω)
such that ψ+ + ψ− ≡ 1 on ∂Ω, ψ± ≥ 0, ψ+

|∂Ω− ≡ 0 and ψ−|∂Ω+ ≡ 0. Proceeding as in Ern &
Guermond (2006a), we infer that∫

∂Ω
|β·n| |ϕ|p =

∫
∂Ω

(β·n)|ϕ|p(ψ+ − ψ−) =

∫
Ω
∇·(β|ϕ|p(ψ+ − ψ−)), ∀ϕ ∈ C∞(Ω),

where we have used the partition of the unity on the boundary and the Stokes formula. Applying
now the Leibniz product rule and recalling that ∇|ϕ|p = pϕ|ϕ|p−2∇ϕ, we obtain∫

∂Ω
|β·n| |ϕ|p = p

∫
Ω

(ψ+ − ψ−)(β·∇ϕ)ϕ|ϕ|p−2 +

∫
Ω
|ϕ|p∇·(β(ψ+ − ψ−)).

Next, Hölder’s and Young’s inequalities together with the identity ||ϕ|ϕ|p−2||p
′

Lp′ (Ω)
= ||ϕ||pLp(Ω)

yield ∫
Ω

∣∣(β·∇ϕ)ϕ|ϕ|p−2
∣∣ ≤ ||β·∇ϕ||Lp(Ω)||ϕ||

p/p′

Lp(Ω) ≤
1

p
||β·∇ϕ||pLp(Ω) +

1

p′
||ϕ||pLp(Ω).

It follows that ||ϕ||Lp(|β·n|;∂Ω) ≤ C′(||β·∇ϕ||pLp(Ω) + p||ϕ||pLp(Ω))
1
p with the constant C′ = 2

1
p (||ψ+ −

ψ−||L∞(Ω) + ||∇·(β(ψ+ − ψ−))||L∞(Ω))
1
p . Then, observing that p

1
p ≤ e

p−1
p ≤ e, we obtain

||ϕ||Lp(|β·n|;∂Ω) ≤ Cγ||ϕ||Vβ;p(Ω), ∀ϕ ∈ C∞(Ω),

with Cγ = eC′. Finally, recalling that C∞(Ω) is dense in Vβ;p(Ω) for all p ∈ (1,∞) (see (Jensen,
2004, Theorem 2)), this inequality holds as well for any function in Vβ;p(Ω).

Owing to the existence of traces in Lp (|β·n| ; ∂Ω), the following integration by parts formulae
hold.

Lemma 2 (Integration by parts). For all v ∈ Vβ;p(Ω) and for all w ∈ Vβ;p′(Ω),∫
Ω

(β·∇v)w +

∫
Ω

(β·∇w) v +

∫
Ω

(∇·β) vw =

∫
∂Ω

(β·n) vw. (10a)

In addition, for all v ∈ Vβ;p(Ω) and for all z ∈W 1,∞(Ω),∫
Ω

(β·∇v) v|v|p−2z +
1

p

∫
Ω

(∇·β) |v|pz +
1

p

∫
Ω
β·∇z |v|p =

1

p

∫
∂Ω

(β·n)|v|pz. (10b)
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Proof. These formulae follow from the density of C∞(Ω) in Vβ;p(Ω) for all p ∈ (1,∞). The first
one results from the Leibniz product rule while the second one is a consequence of the identity

β·∇(ϕ|ϕ|p−2z) = ϕ|ϕ|p−2β·∇z + (p− 1)|ϕ|p−2z β·∇ϕ, (11)

for all ϕ ∈ C∞(Ω) and for all z ∈W 1,∞(Ω).

2.2. Weak formulation. To examine the well-posedness of (1), we introduce the bilinear
form aβ,µ;p ∈ L(V 0

β;p(Ω)×Lp′(Ω);R), where V 0
β;p(Ω) := {w ∈ Vβ;p(Ω) | w|∂Ω− = 0}, and such that

for all v ∈ V 0
β;p(Ω) and all w ∈ Lp′(Ω),

aβ,µ;p(v, w) :=

∫
Ω

(β·∇v)w +

∫
Ω
µ v w. (12)

Observe that, for all p ∈ (1,∞), V 0
β;p(Ω) is a closed subspace of Vβ;p(Ω) owing to Lemma 1.

Assuming that s ∈ Lp(Ω), the weak formulation of (1) in the graph space V 0
β;p(Ω) is:

Find u ∈ V 0
β;p(Ω) s.t. aβ,µ;p(u, v) =

∫
Ω
s v, ∀v ∈ Lp′(Ω). (13)

It is readily seen that if u ∈ V 0
β;p(Ω) solves (13), the equation (1a) holds in Lp(Ω) and the

boundary condition (1b) holds in Lp(|β·n| ; ∂Ω). Note that the boundary conditions are strongly
enforced in (13).

2.3. Well-posedness for positive Friedrichs tensor. To examine the uniqueness of the
weak solution u of (13) in the graph space Vβ;p(Ω), we recall the R-valued Friedrichs tensor

σβ,µ;p := µ− 1

p
∇·β. (14)

Hereafter, we assume that this tensor satisfies the so-called Friedrichs positivity assumption (Hp):

(Hp) ess infΩ σβ,µ;p > 0. We define the reference time τ = (ess infΩ σβ,µ;p)
−1.

Proposition 1 (Uniqueness under (Hp)). Assume that (Hp) holds. Then,

aβ,µ;p(v, v|v|p−2) ≥ τ−1||v||pLp(Ω), ∀v ∈ V 0
β;p(Ω). (15)

Proof. Let v ∈ V 0
β;p(Ω). Observing that v|v|p−2 ∈ Lp′(Ω), the quantity aβ,µ;p(v, v|v|p−2) is well-

defined. Owing to the integration by parts formula (10b) with z ≡ 1 on Ω (so that β·∇z ≡ 0),
we infer that

aβ,µ;p(v, v|v|p−2) =

∫
Ω

(
µ− 1

p
∇·β

)
|v|p +

1

p

∫
∂Ω

(β·n)|v|p,

whence, using the definition (14) of the Friedrichs tensor σβ,µ;p and the fact that v|∂Ω− = 0, we
obtain

aβ,µ;p(v, v|v|p−2) =

∫
Ω
σβ,µ;p|v|p +

1

p

∫
∂Ω+

(β·n)|v|p.

The desired bound then follows from (Hp) and the definition of ∂Ω+.

In the proof of the well-posedness of (13) under the assumption (Hp), we need to introduce
the two following Lipschitz spaces

Lip0(Ω) :=
{
v : Ω→ R | v ∈ Lip(Ω) and v|∂Ω− ≡ 0

}
, (16)

and

Lipc(∂Ω+) :=
{
v : ∂Ω→ R | v ∈ Lip(∂Ω) and v is compactly supported on ∂Ω+

}
, (17)

which satisfy the following Proposition.
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Proposition 2 (Surjectivity of traces). For all v ∈ Lipc(∂Ω+), there is w ∈ Lip0(Ω) such
that w|∂Ω = v.

Proof. In order to stay general, we denote d = 3 the dimension of Ω. Let v ∈ Lipc(∂Ω+)
and denote K its compact support on ∂Ω+. Owing to the Borel-Lebesgue property, we define
{Bi}1≤i≤N the finite family of open sets in Rd covering K, i.e.,

K ⊂
⋃

1≤i≤N
(Bi ∩ ∂Ω+) ( ∂Ω+, (18)

and we denote {θi}1≤i≤N the partition of the unity subordinate to this covering, i.e., for all
1 ≤ i ≤ N , we have 0 ≤ θi ≤ 1, θi ∈ C∞c (Bi) and

∑
1≤i≤N θi|K ≡ 1.

Recalling that the boundary ∂Ω is assumed to be Lipschitz-continuous, we introduce, for all
1 ≤ i ≤ N , the local bi-Lipschitz charts ψi : Q → Bi where Q := {(x′, xd) ∈ Rd−1×R | |x′| <
1 and |xd| < 1}, such that ψi(Q+) = Bi ∩ Ω with Q+ = {(x′, xd) ∈ Rd−1×R | |x′| < 1 and 0 <
xd < 1} and ψi(Q0) = Bi ∩ ∂Ω+ with Q0 = {(x′, 0) ∈ Rd−1×R | |x′| < 1}. Denoting vi =
v|Bi∩∂Ω+ , we introduce the function ṽi : Q+ → R defined as the extrusion of vi ◦ ψi in Q+, i.e.,
for all (x′, xd) ∈ Q+, ṽi(x′, xd) = vi ◦ψi(x′, 0). Next, mapping back to Ω, we consider wi : Ω→ R
such that wi(x) = ṽi ◦ ψ−1

i (x) for all x ∈ Bi ∩ Ω and wi(x) = 0 for all x ∈ Ω\Bi ∩ Ω. Finally,
collecting these functions {wi}1≤i≤N , we observe that the function w =

∑
1≤i≤N θiwi satisfies the

desired conditions.

Theorem 2 (Well-posedness under (Hp)). Assume that (Hp) holds. Then the problem (13) is
well-posed.

Proof. We apply Theorem 1. Adapting the proof of (Ern & Guermond, 2004, Theorem 5.7), the
condition (BNB1) follows from Proposition 1 with the constant Cbnb = (τp + (1 + ||µ||L∞(Ω)τ)p)

1
p .

Let us prove the second condition (BNB2). Consider w ∈ Lp′(Ω) such that aβ,µ;p(v, w) = 0 for all
v ∈ V 0

β;p(Ω). Owing to the inclusion C∞c (Ω) ⊂ V 0
β;p(Ω), it follows that µw−∇·(βw) = 0 a.e. in Ω,

so that the dense inclusion C∞c (Ω) ⊂ Lp′(Ω) implies that β·∇w = (µ−∇·β)w ∈ Lp′(Ω), whence
w ∈ Vβ;p′(Ω). Applying now the integration by part formula (10a), we observe that∫

∂Ω
(β·n) vw = aβ,µ;p(v, w)−

∫
Ω

(µ−∇·β) vw +

∫
Ω

(β·∇w) v = 0,

for all v ∈ V 0
β;p(Ω). In particular, observing that Lip0(Ω) ⊂ V 0

β;p(Ω) for all p ∈ (1,∞), and owing
to Proposition 2, we have ∫

∂Ω+

(β·n) vw = 0, ∀v ∈ Lipc(∂Ω+).

Owing to the vanishing integral property (see (Brezis, 1983, Lemma IV.2)), this identity yields
w|∂Ω+ = 0. Now, testing the identity µw −∇·(βw) = 0 by an arbitrary y ∈ Lp(Ω) and using the
chain rule ∇·(βw) = β·∇w + (∇·β)w, we infer that

0 =

∫
Ω

(µw −∇·(βw)) y =

∫
Ω

(µ−∇·β)wy −
∫

Ω
β·∇w y.

Hence, the particular choice y = w |w|p
′−2 along with the identity (10b) with p replaced by p′

and with z ≡ 1 yields

0 =

∫
Ω

(µ−∇·β) |w|p
′
+

1

p′

∫
Ω

(∇·β) |w|p
′
− 1

p′

∫
∂Ω

(β·n) |w|p
′

=

∫
Ω
σβ,µ;p |w|p

′
− 1

p′

∫
∂Ω

(β·n) |w|p
′

≥ τ−1||w||p
′

Lp
′
(Ω)
,

where we have used that w|∂Ω+ = 0 and the assumption (Hp). As a result, w = 0 a.e. in Ω,
so that the condition (BNB2) is satisfied. Owing to Theorem 1, there exists a unique solution
solving the problem (13).
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2.4. Well-posedness for non-positive Friedrichs tensor. Summarizing the results ob-
tained so far, we have proved under assumption (Hp) the well-posed of (1) in the graph space
V 0
β;p(Ω). This section aims to extend this result under the new assumption (H′p) so as to include

the situation where the infimum of the Friedrichs tensor σβ,µ;p takes null or slightly negative
values.

(H′p) ess infΩ σβ,µ;p ≤ 0 and there exists a non-dimensional function ζ ∈ Lip(Ω) such that

ess infΩ eζ
(
σβ,µ;p −

1

p
β·∇ζ

)
> 0. (19)

We define the reference time τ =
(
ess infΩ eζ

(
σβ,µ;p − 1

pβ·∇ζ
))−1

.

Proposition 3 (Uniqueness under (H′p)). Assume that (H′p) holds. Then,

aβ,µ;p(v, e
ζv|v|p−2) ≥ τ−1||v||pLp(Ω), ∀v ∈ V 0

β;p(Ω). (20)

Proof. Let v ∈ V 0
β;p(Ω). Observing that

aβ,µ;p(v, e
ζv|v|p−2) = a

β̃,µ̃;p
(v, v|v|p−2),

where we have denoted β̃ = eζβ and µ̃ = eζµ, the identity (20) follows from Proposition 1 if
ess infΩ σ

β̃,µ̃;p
> 0, i.e., if (H′p) holds since we have

σ
β̃,µ̃;p

= eζ
(
σβ,µ;p −

1

p
β·∇ζ

)
.

Remark 1 (Using integration by parts). Instead of using Proposition 1 in the proof of Propo-
sition 3, it is also possible to obtain this result by applying the general integration by part for-
mula (10b) with z = eζv|v|p−2.

Example 1. Assumption (H′p) indeed generalizes the assumption (Hp) since it is now possible
to consider situations that cannot be handled under (Hp). For example, considering the rotating
field β = (y,−x, z + 1) expressed in the Cartesian coordinates of R3 and a reaction coefficient
µ ∈ R, we have σβ,µ;p = µ − 1

p . If µ ≤ 1
p , this Friedrichs tensor does not satisfy (Hp), whereas

(H′p) does, for example with the potential ζ(x) = α(1 + z)2 for all α ∈ R such that 8α < µp− 1.

Remark 2 (Existence of ζ). Following Devinatz et al. (1974) and considering a continuously
differentiable field β ∈ C1(Rd), the existence of the potential ζ relies on the assumption that every
solution of the Cauchy problem dtx(t) = β(x(t)), x(0) = x0 ∈ Ω remains in the domain Ω for a
finite time only. Observing that the proof in this reference is based on the flow box theorem, the
extension to a less regular field (e.g. β ∈ Lip(Ω)) is a priori not obvious.

We are now in a position to state the well-posedness of (13) under assumption (H′p).

Theorem 3 (Well-posedness under (H′p)). Assume that (H′p) holds. Then the problem (13) is
well-posed.

Proof. We follow the same ideas as in the proof of Theorem 2. The condition (BNB1) is inferred
from Proposition 3 with Cbnb = (||eζ ||pL∞(Ω)τ

p + (1 + ||µ||L∞(Ω)τ ||eζ ||L∞(Ω))
p)

1
p . Turning to the

second condition (BNB2), we consider w ∈ Lp′(Ω) such that a0
β,µ;p(v, w) = 0 for all v ∈ V 0

β;p(Ω).
Proceeding as in the proof of Theorem 2, this implies that w belongs to the graph space Vβ;p′(Ω)
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and that it satisfies µw −∇·(βw) = 0 a.e. in Ω and w|∂Ω+ ≡ 0. Let us prove that w ≡ 0 a.e. in
Ω. First, we observe that replacing p by p′ and choosing z = eζ(1−p

′) in (10b) yields∫
Ω

(β·∇w)w |w|p
′−2 eζ(1−p

′) =
1

p′

∫
∂Ω

(β·n) |w|p
′
eζ(1−p

′) − 1

p′

∫
Ω

(∇·β) |w|p
′
eζ(1−p

′)

− 1− p′

p′

∫
Ω

(β·∇ζ) |w|p
′
eζ(1−p

′).

Hence, testing the identity µw −∇·(βw) = 0 with the function w |w|p
′−2 eζ(1−p

′), we infer that

0 =

∫
Ω

(µ−∇·β) |w|p
′
eζ(1−p

′) −
∫

Ω
(β·∇w)w |w|p

′−2 eζ(1−p
′)

=

∫
Ω

(µ−∇·β) |w|p
′
eζ(1−p

′) +
1

p′

∫
Ω

(∇·β) |w|p
′
eζ(1−p

′) − 1

p

∫
Ω

(β·∇ζ) |w|p
′
eζ(1−p

′)

− 1

p′

∫
∂Ω

(β·n) |w|p
′
eζ(1−p

′).

Then, collecting these terms and using the fact that w|∂Ω+ = 0, we obtain

0 =

∫
Ω
eζ(1−p

′)

(
σβ,µ;p −

1

p
β·∇ζ

)
|w|p

′
− 1

p′

∫
∂Ω

(β·n) |w|p
′
eζ(1−p

′)

≥
∫

Ω
eζ(1−p

′)

(
σβ,µ;p −

1

p
β·∇ζ

)
|w|p

′
.

As a result, owing to (Hp′) and the fact that w|∂Ω+ ≡ 0, it follows that w ≡ 0 a.e. in Ω. Owing
to Theorem 1, we conclude that (13) is well-posed under assumption (Hp′).

3. Vector advection-reaction problem. In this section, we apply similar ideas to analyze
the well-posedness of the vector-valued problem (2) in Banach graph spaces where we generalize
the assumption of the sign of the Friedrichs tensor σβ,µ;p defined by (4). For the sake of brevity,
the proofs are omitted if they are straightforwardly adapted from those of the scalar case in
Section 2.

3.1. The graph space. Let us introduce the graph space

Vβ;p(Ω) := {v ∈ Lp(Ω) | (β·∇)v ∈ Lp(Ω)} , (21)

where the i-th component in the Cartesian basis of (β·∇)v is given by βj∂jvi (where repeated
indices are summed) and where (β·∇)v ∈ Lp(Ω) means that the linear form

C∞c (Ω) 3 ϕ 7→ −
∫

Ω
∇·(β⊗ϕ)·v, (22)

is bounded in Lp
′
(Ω), so that (β·∇)v is the Riesz representative of (22) in Lp(Ω). Equipped

with the norm ||v||Vβ;p(Ω) := (||v||pLp(Ω) + ||(β·∇)v||pLp(Ω))
1
p for all v ∈ Vβ;p(Ω), this space defines a

reflexive Banach space. The following proposition states that the problem (2) is well-defined in
the graph space Vβ;p(Ω).

Proposition 4 (Equivalent definition of Vβ;p(Ω)).

Vβ;p(Ω) = {v ∈ Lp(Ω) | ∇(β·v) + (∇×v)×β ∈ Lp(Ω)} ,

where ∇(β·v) + (∇×v)×β ∈ Lp(Ω) means that the linear form

C∞c (Ω) 3 ϕ 7→ −
∫

Ω
(β∇·ϕ+∇×(ϕ×β)) ·v, (23)

is bounded in Lp
′
(Ω).
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Proof. Let v ∈ Vβ;p(Ω). By definition, we have∫
Ω

(β·∇)v·ϕ = −
∫

Ω
∇·(β⊗ϕ)·v, ∀ϕ ∈ C∞c (Ω).

Now, recalling the identity ∇·(β⊗ϕ) = β∇·ϕ+∇×(ϕ×β) + (ϕ·∇)β for all β ∈ Lip(Ω) and for
all ϕ ∈ C∞c (Ω), it follows that∫

Ω
(β·∇)v·ϕ = −

∫
Ω

(β∇·ϕ+∇×(ϕ×β)) ·v −
∫

Ω
((ϕ·∇)β) ·v, ∀ϕ ∈ C∞c (Ω).

Hence, observing that ((ϕ·∇)β)·v = ((∇β)ϕ)·v, we obtain∫
Ω

((β·∇)v + (∇β)Tv) ·ϕ = −
∫

Ω
(β∇·ϕ+∇×(ϕ×β)) ·v, ∀ϕ ∈ C∞c (Ω).

Hence, the linear form (23) is bounded, yielding ∇(β·v) + (∇×v)×β ∈ Lp(Ω), so that the
inclusion holds. Note that we have the identity (β·∇)v+ (∇β)Tv = ∇(β·v) + (∇×v)×β a.e. in
Ω. Since the proof of the converse inclusion is similar, the proof is completed.

Recalling now that the boundary ∂Ω is well-separated in the sense of (9), functions in the
graph space Vβ;p(Ω) have a trace in the space

Lp(|β·n| ; ∂Ω) :=

{
v : ∂Ω→ R3 is Lebesgue measurable |

∫
∂Ω
|β·n| |v|p <∞

}
. (24)

Equipped with the norm ||v||pLp(|β·n|;∂Ω) :=
∫
∂Ω |β·n| |v|

p for all v ∈ Lp(|β·n| ; ∂Ω), this space
defines a Banach space.

Lemma 3 (Trace inLp(|β·n| ; ∂Ω)). Let p ∈ (1,∞). The trace map γ : C∞(Ω)→ Lp(|β·n| ; ∂Ω)
with γ(ϕ) = ϕ|∂Ω for all ϕ ∈ C∞(Ω) extends continuously to Vβ;p(Ω), i.e., there exists Cγ > 0
such that

||γ(v)||Lp(|β·n|;∂Ω) ≤ Cγ ||v||Vβ;p(Ω), ∀v ∈ Vβ;p(Ω).

Proposition 5 (Integration by parts). For all v ∈ Vβ;p(Ω) and for all w ∈ Vβ;p′(Ω),∫
Ω
w·(β·∇)v +

∫
Ω
v·(β·∇)w +

∫
Ω

(∇·β)v·w =

∫
∂Ω

(β·n)v·w. (25a)

In addition, for all v ∈ Vβ;p(Ω) and for all z ∈W 1,∞(Ω),∫
Ω
|v|p−2z v·(β·∇)v +

1

p

∫
Ω

(∇·β)|v|pz +
1

p

∫
Ω
β·∇z |v|p =

1

p

∫
∂Ω

(β·n)|v|p. (25b)

3.2. Weak formulation. Similarly to Section 2, we introduce the bilinear form aβ,µ;p ∈
L(V 0

β;p(Ω)×Lp′(Ω);R) with V 0
β;p(Ω) = {w ∈ Vβ;p(Ω) | w|∂Ω− = 0} such that for all v ∈ Vβ;p(Ω)

and for all w ∈ Lp′(Ω),

aβ,µ;p(v,w) :=

∫
Ω

(∇(β·v) + (∇×v)×β) ·w +

∫
Ω
µv·w, (26)

with µ : Ω→ R3×3 the reaction tensor. Following the proof of Proposition 4, we observe that the
bilinear form (26) can be reformulated as

aβ,µ;p(v,w) =

∫
Ω
w·(β·∇)v +

∫
Ω
w·(∇β T + µ)v, (27)
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and the writing µ′ = ∇β T + µ yields µ′ ∈ L∞(Ω) and

aβ,µ;p(v,w) :=

∫
Ω

(β·∇)v·w +

∫
Ω
µ′v·w. (28)

Assuming now that s ∈ Lp(Ω), the weak formulation of (2) in the graph space V 0
β;p(Ω) is:

Find u ∈ V 0
β;p(Ω) s.t. aβ,µ;p(u,v) =

∫
Ω
s·v, ∀v ∈ Lp′(Ω). (29)

We readily see that if u ∈ V 0
β;p(Ω) solves (29), the problem (2a) holds in Lp(Ω) and the boundary

condition (2b) holds in Lp(|β·n| ; ∂Ω).

3.3. Well-posedness for positive and non-positive Friedrichs tensor. The uniqueness
of the solution of problem (29) relies on the sign of the lowest eigenvalue of the R3×3-valued
Friedrichs tensor

σβ,µ;p :=
µ+ µT

2
+
∇β +∇β T

2
− 1

p
(∇·β) Id. (30)

For all x ∈ Ω, this lowest eigenvalue is denoted by ℵp(x) and is defined as

ℵp(x) = min
{

(σβ,µ;p(x)y,y) | y ∈ R3 s.t. |y| = 1
}
,

where (·, ·) denotes the classical Euclidean inner product in R3. Hereafter, we assume that this
eigenvalue satisfies the following assumption.

(Hp) ess infΩ ℵp > 0. We define τ = (ess infΩ ℵp)−1.

Proposition 6 (Uniqueness under (Hp)). Assume that (Hp) holds. Then,

aβ,µ;p(v,v |v|p−2) ≥ τ−1||v||pLp(Ω), ∀v ∈ V 0
β;p(Ω).

Proof. Let v ∈ V 0
β;p(Ω) and consider aβ,µ;p(v,v |v|p−2) (since v |v|p−2 ∈ Lp′(Ω)). Owing to the

identity (27), we infer that

aβ,µ;p(v,v |v|p−2) =

∫
Ω
|v|p−2 v·(β·∇)v +

∫
Ω
|v|p−2 v· (∇β T + µ)v.

Using now the integration by parts formula (25b) with z ≡ 1, we obtain

aβ,µ;p(v,v |v|p−2) =

∫
Ω
|v|p−2 v·σβ,µ;p·v +

1

p

∫
∂Ω

(β·n) |v|p , (31)

whence the result follows using (Hp) and recalling that v|∂Ω− = 0.

To take into account the situation where the smallest eigenvalue ℵp takes null or slightly negative
values in Ω, we consider the new assumption (H′p).

(H′p) ess infΩ ℵp ≤ 0 and there exists a non-dimensional function ζ ∈ Lip(Ω) such that

ess infΩ eζ
(
ℵp −

1

p
β·∇ζ

)
> 0.

We define τ−1 = ess infΩ eζ
(
ℵp − 1

pβ·∇ζ
)
.

Proposition 7 (Uniqueness under (H′p)). Assume that (H′p) holds. Then,

aβ,µ;p(v, e
ζv |v|p−2) ≥ τ−1||v||pLp(Ω), ∀v ∈ V 0

β;p(Ω).
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Proof. Let v ∈ V 0
β;p(Ω). Denoting β̃ = eζβ, µ̃ = eζµ and observing that

∇(β̃·v) = eζ (∇(β·v) + (∇ζ⊗β)v) a.e. in Ω,

we infer that aβ,µ;p(v, e
ζv |v|p−2) = a

β̃,µ̃;p
(v,v |v|p−2)−a0,∇ζ⊗β;p(v, e

ζv |v|p−2). Owing to (31),
this identity yields

aβ,µ;p(v, e
ζv |v|p−2) ≥

∫
Ω
|v|p−2 v·σ

β̃,µ̃;p
·v −

∫
Ω
eζ |v|p−2 v·

(
∇ζ⊗β + β⊗∇ζ

2

)
·v.

In addition, observing that

σ
β̃,µ̃;p

= eζ
(
σβ,µ;p −

1

p
(β·∇ζ)Id

)
+ eζ

(
∇ζ⊗β + β⊗∇ζ

2

)
,

the expected result follows from assumption (H′p).

Finally, the well-posedness of (2) holds under assumption (Hp) or (H′p). The proof follows the
same ideas used to prove Theorems 2 and 3, this time using Propositions 6 and 7, respectively.

Theorem 4 (Well-posedness). Assume that (Hp) or (H′p) holds. Then the problem (29) is
well-posed.

4. Conclusion. In this paper, we have extended the well-posedness of problems (1) and (2),
not only in Banach graph space of exponent p ∈ (1,∞), but also under new assumptions regarding
the classical Friedrichs tensor, so as to consider the situation when it takes positive, null or slightly
negative values. Observing that equations (1a) and (2a) are the proxy of the Lie derivative in R3

of a 0- and a 1-form respectively, the present analysis could be extended in a future work within
the more general framework proposed by Heumann (2011) to treat the advection of a differential
k-form within a manifold of Rd. However, the question of the existence of the potential ζ in
such a more general context is still open. Another extension of this work concerns the case of
non-homogeneous Dirichlet boundary condition, requiring to establish the surjectivity of the trace
maps in these Banach graph spaces.
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