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Introduction.

Let Ω be a domain of R 3 with Lipschitz-continuous boundary ∂Ω and consider u : Ω → R and u : Ω → R 3 solving the following first-order homogeneous boundary valued problems

β•∇u + µu = s a.e. in Ω, (1a) 
u = 0 a.e. on ∂Ω -,

and

∇(β•u) + (∇×u)×β + µu = s a.e. in Ω, (2a) 
u = 0 a.e. on ∂Ω -.

In this paper, β denotes a Lipschitz-continuous R 3 -valued vector field on Ω, and µ and µ denote two bounded reaction coefficients taking R and R 3×3 values, respectively. The inflow boundary ∂Ω -is defined as ∂Ω -= {x ∈ ∂Ω | β(x)•n(x) < 0}, with n the exterior unit normal of ∂Ω. These problems (or variants) have been studied several times in the literature. We mention in particular the pioneering work of [START_REF] Bardos | Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation; application à l'équation de transport[END_REF] and Beirão da [START_REF] Beirão Da Veiga | Boundary-value problems for a class of first order partial differential equations in Sobolev spaces and applications to the Euler flow[END_REF] for the well-posedness analysis in smooth domains with regular model parameters and also the work of [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF] when the problem is expressed in unbounded domains with irregular model parameters. More recently, [START_REF] Girault | L p and W 1,p regularity of the solution of a steady transport equation[END_REF] proved (using a viscous and a Yosida regularization) the well-posedness of these problem in L p (Ω) for all p > 2 under the assumption β ∈ W 1,2 (Ω), and also the W 1,p (Ω)-regularity of solution of (1) if s ∈ W 1,p (Ω) and if β ∈ W 1,∞ (Ω) is sufficiently small.

In this paper, we analyze the well-posedness of problems ( 1) and (2) in Banach graph spaces of power p ∈ (1, ∞). Observing that these problems define two Friedrichs systems, it is well-known (see Ern & Guermond (2006a) or [START_REF] Ern | An intrinsic criterion for the bijectivity of Hilbert operators related to Friedrichs' systems[END_REF]) that the well-posedness is a consequence of the positivity of the R-valued Friedrichs tensor σ β,µ;p := µ -

1 p ∇•β, (3) 
for the first problem (1) and of the positivity of the lowest eigenvalue of the R 3×3 -valued Friedrichs tensor

σ β,µ;p := µ + µ T 2 + ∇β + ∇β T 2 - 1 p (∇•β) Id, (4) 
for the second problem (2). The first contribution of this work concerns the well-posedness in Banach graph spaces. Following the analysis of Friedrichs system in Hilbert space proposed in the aforementioned works, we establish the well-posedness of these two problems for positive (in the above sense) Friedrichs tensors (3) and ( 4). The second part of this work is devoted to the analysis when these assumptions are not satisfied. Introducing a so-called potential (whose existence follows from the regularity and the trajectory of the vector field in Ω, see [START_REF] Devinatz | The asymptotic behavior of the first real eigenvalue of second order elliptic operators with a small parameter in the highest derivatives[END_REF], we prove that one may extend the Friedrichs positivity assumptions so as to consider null or reasonably negative tensors. This paper is organized as follows. First, some notations are introduced and we recall the classical statement of the Banach-Nečas-Babuška (BNB) theorem. Section 2 is concerned with the scalar problem (1); we prove that this problem is well-posed in the Banach graph space of power p ∈ (1, ∞) if the infimum of the Friedrichs tensor (3) takes positive values and we extend this result to consider null or reasonably negative values. In Section 3, we extend these results to prove the well-posedness of the vector problem (2) under similar assumptions on the Friedrichs tensor (4).

1.1. Notations. In this paper, p denotes any real number in (1, ∞) with p its conjuguate number such that 1 p + 1 p = 1. The inner, the cross and the tensor products in R 3 are denoted by •, × and ⊗ respectively. To alleviate the notation, |•| denotes either the Lebesgue measure of a set, the absolute value of a real number, the Euclidean norm of a vector or the Frobenius norm of a tensor. As usual, the Banach space L p (Ω) collects all measurable functions v : Ω → R whose the absolute value raised to the power p is Lebesgue integrable, i.e., ||v||

L p (Ω) = ( Ω |v| p ) 1 p < ∞.
Similarly, the Banach space L p (Ω) collects all measurable functions v : Ω → R 3 whose the Euclidean norm raised to the power p is Lebesgue integrable, i.e., ||v||

L p (Ω) = ( Ω |v| p ) 1 p < ∞. We denote C ∞ (Ω) (resp. C ∞ (Ω)) the space of infinitely differentiable R-valued functions (resp. R 3 -valued) on Ω and C ∞ c (Ω) (resp. C ∞ c (Ω)
) the subspace of those that are compactly supported in Ω.

1.2. Banach-Nečas-Babuška (BNB) theorem. Consider the following abstract variation- nal problem Find u ∈ U s.t. a(u, v) = f, v V ,V , ∀v ∈ V, (5) 
where U and V are two Banach spaces equipped with ||•|| U and ||•|| V , respectively, V is reflexive, a ∈ L(U ×V ; R), f ∈ V and •, • V ,V is the duality pairing between V ≡ L(V ; R) and V . A necessary and sufficient condition for (5) to be well-posed is given by the (BNB) theorem, see e.g., [START_REF] Ern | Theory and practice of finite elements[END_REF].

Theorem 1 (Banach-Nečas-Babuška). The abstract problem (5) is well-posed if and only if:

(BNB1) There exists C bnb > 0 such that

C bnb ||v|| U ≤ sup w∈V \{0} a(v, w) ||w|| V , ∀v ∈ U. (BNB2) For all w ∈ V , (∀v ∈ U, a(v, w) = 0) =⇒ (w = 0).
2. Scalar advection-reaction problem. This section analyzes the well-posedness of the continuous problem (1) in Banach graph spaces and generalized the sign condition on the Friedrichs tensor σ β,µ;p defined by (3).

2.1. The graph space. The Banach graph space of power p associated with (1) is defined by

V β;p (Ω) := {v ∈ L p (Ω) | β•∇v ∈ L p (Ω)} , (6) 
and is equipped with the norm ||v||

V β;p (Ω) := (||v|| p L p (Ω) + ||β•∇v|| p L p (Ω) )
1 p for all v ∈ V β;p (Ω). This space defines a reflexive Banach space owing to the first and the second Clarkson inequalities (see [START_REF] Brezis | Analyse fonctionelle; théorie et applications[END_REF]) where for all v ∈ V β;p (Ω), β•∇v ∈ L p (Ω) means that the linear form

C ∞ c (Ω) ϕ → - Ω v ∇•(βϕ), (7) 
is bounded in L p (Ω), so that β•∇v is the Riesz representative of (7) in L p (Ω). To specify the meaning of the trace of a function in V β;p (Ω), we introduce the space L p (|β•n| ; ∂Ω) given by

L p (|β•n| ; ∂Ω) := v : ∂Ω → R is Lebesgue measurable on ∂Ω | ∂Ω |β•n| |v| p < ∞ , (8) 
which is a Banach space when equipped with the norm

||v|| L p (|β•n|;∂Ω) = ( ∂Ω |β•n| |v| p )
1 p for all v ∈ L p (|β•n| ; ∂Ω). As observed by Ern & Guermond (2006a), the existence of traces in L 2 (|β•n| ; ∂Ω) for function in V β;2 (Ω) is not always guaranteed. A necessary and sufficient condition is the wellseparation of the boundary ∂Ω with respect to the vector field β, i.e., dist(∂Ω -, ∂Ω + ) > 0 with

∂Ω ± = {x ∈ ∂Ω | ± β(x)•n(x) > 0} . (9) 
In this following, we always assume that this condition is satisfied. Let us adapt the proof of (Ern & Guermond, 2006a, Lemma 3.1) to the general case p ∈ (1, ∞) to prove the existence of such traces.

Lemma 1 (Trace in L p (|β•n| ; ∂Ω)). The trace map γ : C ∞ (Ω) → L p (|β•n| ; ∂Ω) with γ(ϕ) = ϕ |∂Ω for all ϕ ∈ C ∞ (Ω), extends continuously to V β;p (Ω), i.e., there exists C γ > 0 such that ||γ(v)|| L p (|β•n|;∂Ω) ≤ C γ ||v|| V β;p (Ω) , ∀v ∈ V β;p (Ω).
Proof. Owing to the separation of the boundary from assumption ( 9), there exist

ψ + , ψ -∈ C ∞ (Ω) such that ψ + + ψ -≡ 1 on ∂Ω, ψ ± ≥ 0, ψ + |∂Ω -≡ 0 and ψ - |∂Ω + ≡ 0. Proceeding as in Ern & Guermond (2006a), we infer that ∂Ω |β•n| |ϕ| p = ∂Ω (β•n)|ϕ| p (ψ + -ψ -) = Ω ∇•(β|ϕ| p (ψ + -ψ -)), ∀ϕ ∈ C ∞ (Ω),
where we have used the partition of the unity on the boundary and the Stokes formula. Applying now the Leibniz product rule and recalling that ∇|ϕ| p = pϕ|ϕ| p-2 ∇ϕ, we obtain

∂Ω |β•n| |ϕ| p = p Ω (ψ + -ψ -)(β•∇ϕ)ϕ|ϕ| p-2 + Ω |ϕ| p ∇•(β(ψ + -ψ -)).
Next, Hölder's and Young's inequalities together with the identity

||ϕ|ϕ| p-2 || p L p (Ω) = ||ϕ|| p L p (Ω) yield Ω (β•∇ϕ)ϕ|ϕ| p-2 ≤ ||β•∇ϕ|| L p (Ω) ||ϕ|| p/p L p (Ω) ≤ 1 p ||β•∇ϕ|| p L p (Ω) + 1 p ||ϕ|| p L p (Ω) . It follows that ||ϕ|| L p (|β•n|;∂Ω) ≤ C (||β•∇ϕ|| p L p (Ω) + p||ϕ|| p L p (Ω) ) 1 p with the constant C = 2 1 p (||ψ + - ψ -|| L ∞ (Ω) + ||∇•(β(ψ + -ψ -))|| L ∞ (Ω) ) 1 p . Then, observing that p 1 p ≤ e p-1 p
≤ e, we obtain [START_REF] Jensen | Discontinuous Galerkin methods for Friedrichs Systems with irregular solutions[END_REF], Theorem 2)), this inequality holds as well for any function in V β;p (Ω).

||ϕ|| L p (|β•n|;∂Ω) ≤ C γ ||ϕ|| V β;p (Ω) , ∀ϕ ∈ C ∞ (Ω), with C γ = eC . Finally, recalling that C ∞ (Ω) is dense in V β;p (Ω) for all p ∈ (1, ∞) (see
Owing to the existence of traces in L p (|β•n| ; ∂Ω), the following integration by parts formulae hold.

Lemma 2 (Integration by parts). For all v ∈ V β;p (Ω) and for all w ∈ V β;p (Ω),

Ω (β•∇v) w + Ω (β•∇w) v + Ω (∇•β) vw = ∂Ω (β•n) vw. ( 10a 
)
In addition, for all v ∈ V β;p (Ω) and for all z ∈ W 1,∞ (Ω),

Ω (β•∇v) v|v| p-2 z + 1 p Ω (∇•β) |v| p z + 1 p Ω β•∇z |v| p = 1 p ∂Ω (β•n)|v| p z. (10b) 
Proof. These formulae follow from the density of C ∞ (Ω) in V β;p (Ω) for all p ∈ (1, ∞). The first one results from the Leibniz product rule while the second one is a consequence of the identity

β•∇(ϕ|ϕ| p-2 z) = ϕ|ϕ| p-2 β•∇z + (p -1)|ϕ| p-2 z β•∇ϕ, (11) 
for all ϕ ∈ C ∞ (Ω) and for all z ∈ W 1,∞ (Ω).

Weak formulation.

To examine the well-posedness of (1), we introduce the bilinear form a β,µ;p ∈ L(V 0 β;p (Ω)×L p (Ω); R), where V 0 β;p (Ω) := {w ∈ V β;p (Ω) | w |∂Ω -= 0}, and such that for all v ∈ V 0 β;p (Ω) and all w ∈ L p (Ω),

a β,µ;p (v, w) := Ω (β•∇v) w + Ω µ v w. ( 12 
)
Observe that, for all p ∈ (1, ∞), V 0 β;p (Ω) is a closed subspace of V β;p (Ω) owing to Lemma 1. Assuming that s ∈ L p (Ω), the weak formulation of (1) in the graph space V 0 β;p (Ω) is:

Find u ∈ V 0 β;p (Ω) s.t. a β,µ;p (u, v) = Ω s v, ∀v ∈ L p (Ω). ( 13 
)
It is readily seen that if u ∈ V 0 β;p (Ω) solves ( 13), the equation (1a) holds in L p (Ω) and the boundary condition (1b) holds in L p (|β•n| ; ∂Ω). Note that the boundary conditions are strongly enforced in (13).

2.3. Well-posedness for positive Friedrichs tensor. To examine the uniqueness of the weak solution u of (13) in the graph space V β;p (Ω), we recall the R-valued Friedrichs tensor

σ β,µ;p := µ - 1 p ∇•β. (14) 
Hereafter, we assume that this tensor satisfies the so-called Friedrichs positivity assumption (H p ):

(H p ) ess inf Ω σ β,µ;p > 0. We define the reference time τ = (ess inf Ω σ β,µ;p ) -1 .

Proposition 1 (Uniqueness under (H p )). Assume that (H p ) holds. Then,

a β,µ;p (v, v|v| p-2 ) ≥ τ -1 ||v|| p L p (Ω) , ∀v ∈ V 0 β;p (Ω). (15) 
Proof. Let v ∈ V 0 β;p (Ω). Observing that v|v| p-2 ∈ L p (Ω), the quantity a β,µ;p (v, v|v| p-2 ) is welldefined. Owing to the integration by parts formula (10b) with z ≡ 1 on Ω (so that β•∇z ≡ 0), we infer that

a β,µ;p (v, v|v| p-2 ) = Ω µ - 1 p ∇•β |v| p + 1 p ∂Ω (β•n)|v| p ,
whence, using the definition ( 14) of the Friedrichs tensor σ β,µ;p and the fact that

v |∂Ω -= 0, we obtain a β,µ;p (v, v|v| p-2 ) = Ω σ β,µ;p |v| p + 1 p ∂Ω + (β•n)|v| p .
The desired bound then follows from (H p ) and the definition of ∂Ω + .

In the proof of the well-posedness of (13) under the assumption (H p ), we need to introduce the two following Lipschitz spaces

Lip 0 (Ω) := v : Ω → R | v ∈ Lip(Ω) and v |∂Ω -≡ 0 , (16) 
and

Lip c (∂Ω + ) := v : ∂Ω → R | v ∈ Lip(∂Ω) and v is compactly supported on ∂Ω + , (17) 
which satisfy the following Proposition.

Proposition 2 (Surjectivity of traces). For all v ∈ Lip c (∂Ω + ), there is w ∈ Lip 0 (Ω) such that w |∂Ω = v.

Proof. In order to stay general, we denote d = 3 the dimension of Ω. Let v ∈ Lip c (∂Ω + ) and denote K its compact support on ∂Ω + . Owing to the Borel-Lebesgue property, we define

{B i } 1≤i≤N the finite family of open sets in R d covering K, i.e., K ⊂ 1≤i≤N (B i ∩ ∂Ω + ) ∂Ω + , (18) 
and we denote {θ i } 1≤i≤N the partition of the unity subordinate to this covering, i.e., for all

1 ≤ i ≤ N , we have 0 ≤ θ i ≤ 1, θ i ∈ C ∞ c (B i
) and 1≤i≤N θ i|K ≡ 1. Recalling that the boundary ∂Ω is assumed to be Lipschitz-continuous, we introduce, for all

1 ≤ i ≤ N , the local bi-Lipschitz charts ψ i : Q → B i where Q := {(x , x d ) ∈ R d-1 ×R | |x | < 1 and |x d | < 1}, such that ψ i (Q + ) = B i ∩ Ω with Q + = {(x , x d ) ∈ R d-1 ×R | |x | < 1 and 0 < x d < 1} and ψ i (Q 0 ) = B i ∩ ∂Ω + with Q 0 = {(x , 0) ∈ R d-1 ×R | |x | < 1}. Denoting v i = v |B i ∩∂Ω + , we introduce the function ṽi : Q + → R defined as the extrusion of v i • ψ i in Q + , i.e., for all (x , x d ) ∈ Q + , ṽi (x , x d ) = v i • ψ i (x , 0). Next, mapping back to Ω, we consider w i : Ω → R such that w i (x) = ṽi • ψ -1 i (x) for all x ∈ B i ∩ Ω and w i (x) = 0 for all x ∈ Ω\B i ∩ Ω.
Finally, collecting these functions {w i } 1≤i≤N , we observe that the function w = 1≤i≤N θ i w i satisfies the desired conditions.

Theorem 2 (Well-posedness under (H p )). Assume that (H p ) holds. Then the problem (13) is well-posed.

Proof. We apply Theorem 1. Adapting the proof of [START_REF] Ern | Theory and practice of finite elements[END_REF], Theorem 5.7), the condition (BNB1) follows from Proposition 1 with the constant

C bnb = (τ p + (1 + ||µ|| L ∞ (Ω) τ ) p ) 1 p .
Let us prove the second condition (BNB2). Consider w ∈ L p (Ω) such that a β,µ;p (v, w) = 0 for all v ∈ V 0 β;p (Ω). Owing to the inclusion C ∞ c (Ω) ⊂ V 0 β;p (Ω), it follows that µw -∇•(βw) = 0 a.e. in Ω, so that the dense inclusion C ∞ c (Ω) ⊂ L p (Ω) implies that β•∇w = (µ -∇•β)w ∈ L p (Ω), whence w ∈ V β;p (Ω). Applying now the integration by part formula (10a), we observe that

∂Ω (β•n) vw = a β,µ;p (v, w) - Ω (µ -∇•β) vw + Ω (β•∇w) v = 0, for all v ∈ V 0 β;p (Ω).
In particular, observing that Lip 0 (Ω) ⊂ V 0 β;p (Ω) for all p ∈ (1, ∞), and owing to Proposition 2, we have

∂Ω + (β•n) vw = 0, ∀v ∈ Lip c (∂Ω + ).
Owing to the vanishing integral property (see [START_REF] Brezis | Analyse fonctionelle; théorie et applications[END_REF], Lemma IV.2)), this identity yields w |∂Ω + = 0. Now, testing the identity µw -∇•(βw) = 0 by an arbitrary y ∈ L p (Ω) and using the chain rule ∇

•(βw) = β•∇w + (∇•β)w, we infer that 0 = Ω (µw -∇•(βw)) y = Ω (µ -∇•β)wy - Ω β•∇w y.
Hence, the particular choice y = w |w| p -2 along with the identity (10b) with p replaced by p and with z ≡ 1 yields

0 = Ω (µ -∇•β) |w| p + 1 p Ω (∇•β) |w| p - 1 p ∂Ω (β•n) |w| p = Ω σ β,µ;p |w| p - 1 p ∂Ω (β•n) |w| p ≥ τ -1 ||w|| p L p (Ω)
, where we have used that w |∂Ω + = 0 and the assumption (H p ). As a result, w = 0 a.e. in Ω, so that the condition (BNB2) is satisfied. Owing to Theorem 1, there exists a unique solution solving the problem (13).

2.4. Well-posedness for non-positive Friedrichs tensor. Summarizing the results obtained so far, we have proved under assumption (H p ) the well-posed of (1) in the graph space V 0 β;p (Ω). This section aims to extend this result under the new assumption (H p ) so as to include the situation where the infimum of the Friedrichs tensor σ β,µ;p takes null or slightly negative values.

(H p ) ess inf Ω σ β,µ;p ≤ 0 and there exists a non-dimensional function ζ ∈ Lip(Ω) such that

ess inf Ω e ζ σ β,µ;p - 1 p β•∇ζ > 0. ( 19 
)
We define the reference time τ = ess inf Ω e ζ σ β,µ;p -1 p β•∇ζ -1

.

Proposition 3 (Uniqueness under (H p )). Assume that (H p ) holds. Then,

a β,µ;p (v, e ζ v|v| p-2 ) ≥ τ -1 ||v|| p L p (Ω) , ∀v ∈ V 0 β;p (Ω). ( 20 
) Proof. Let v ∈ V 0 β;p (Ω). Observing that a β,µ;p (v, e ζ v|v| p-2 ) = a β, µ;p (v, v|v| p-2 ),
where we have denoted β = e ζ β and µ = e ζ µ, the identity (20) follows from Proposition 1 if ess inf Ω σ β, µ;p > 0, i.e., if (H p ) holds since we have

σ β, µ;p = e ζ σ β,µ;p - 1 p β•∇ζ .
Remark 1 (Using integration by parts). Instead of using Proposition 1 in the proof of Proposition 3, it is also possible to obtain this result by applying the general integration by part formula (10b) with z = e ζ v|v| p-2 .

Example 1. Assumption (H p ) indeed generalizes the assumption (H p ) since it is now possible to consider situations that cannot be handled under (H p ). For example, considering the rotating field β = (y, -x, z + 1) expressed in the Cartesian coordinates of R 3 and a reaction coefficient µ ∈ R, we have σ β,µ;p = µ -1 p . If µ ≤ 1 p , this Friedrichs tensor does not satisfy (H p ), whereas (H p ) does, for example with the potential ζ(x) = α(1 + z) 2 for all α ∈ R such that 8α < µp -1.

Remark 2 (Existence of ζ). Following [START_REF] Devinatz | The asymptotic behavior of the first real eigenvalue of second order elliptic operators with a small parameter in the highest derivatives[END_REF] and considering a continuously differentiable field β ∈ C 1 (R d ), the existence of the potential ζ relies on the assumption that every solution of the Cauchy problem d t x(t) = β(x(t)), x(0) = x 0 ∈ Ω remains in the domain Ω for a finite time only. Observing that the proof in this reference is based on the flow box theorem, the extension to a less regular field (e.g. β ∈ Lip(Ω)) is a priori not obvious.

We are now in a position to state the well-posedness of (13) under assumption (H p ).

Theorem 3 (Well-posedness under (H p )). Assume that (H p ) holds. Then the problem (13) is well-posed.

Proof. We follow the same ideas as in the proof of Theorem 2. The condition (BNB1) is inferred from Proposition 3 with

C bnb = (||e ζ || p L ∞ (Ω) τ p + (1 + ||µ|| L ∞ (Ω) τ ||e ζ || L ∞ (Ω) ) p ) 1 p .
Turning to the second condition (BNB2), we consider w ∈ L p (Ω) such that a 0 β,µ;p (v, w) = 0 for all v ∈ V 0 β;p (Ω). Proceeding as in the proof of Theorem 2, this implies that w belongs to the graph space V β;p (Ω) and that it satisfies µw -∇•(βw) = 0 a.e. in Ω and w |∂Ω + ≡ 0. Let us prove that w ≡ 0 a.e. in Ω. First, we observe that replacing p by p and choosing z = e ζ(1-p ) in (10b) yields

Ω (β•∇w) w |w| p -2 e ζ(1-p ) = 1 p ∂Ω (β•n) |w| p e ζ(1-p ) - 1 p Ω (∇•β) |w| p e ζ(1-p ) - 1 -p p Ω (β•∇ζ) |w| p e ζ(1-p ) .
Hence, testing the identity µw -∇•(βw) = 0 with the function w |w| p -2 e ζ(1-p ) , we infer that

0 = Ω (µ -∇•β) |w| p e ζ(1-p ) - Ω (β•∇w) w |w| p -2 e ζ(1-p ) = Ω (µ -∇•β) |w| p e ζ(1-p ) + 1 p Ω (∇•β) |w| p e ζ(1-p ) - 1 p Ω (β•∇ζ) |w| p e ζ(1-p ) - 1 p ∂Ω (β•n) |w| p e ζ(1-p ) .
Then, collecting these terms and using the fact that w |∂Ω + = 0, we obtain

0 = Ω e ζ(1-p ) σ β,µ;p - 1 p β•∇ζ |w| p - 1 p ∂Ω (β•n) |w| p e ζ(1-p ) ≥ Ω e ζ(1-p ) σ β,µ;p - 1 p β•∇ζ |w| p .
As a result, owing to (H p ) and the fact that w |∂Ω + ≡ 0, it follows that w ≡ 0 a.e. in Ω. Owing to Theorem 1, we conclude that ( 13) is well-posed under assumption (H p ).

3. Vector advection-reaction problem. In this section, we apply similar ideas to analyze the well-posedness of the vector-valued problem (2) in Banach graph spaces where we generalize the assumption of the sign of the Friedrichs tensor σ β,µ;p defined by (4). For the sake of brevity, the proofs are omitted if they are straightforwardly adapted from those of the scalar case in Section 2.

3.1. The graph space. Let us introduce the graph space

V β;p (Ω) := {v ∈ L p (Ω) | (β•∇)v ∈ L p (Ω)} , (21) 
where the i-th component in the Cartesian basis of (β•∇)v is given by β j ∂ j v i (where repeated indices are summed) and where (β•∇)v ∈ L p (Ω) means that the linear form

C ∞ c (Ω) ϕ → - Ω ∇•(β⊗ϕ)•v, (22) 
is bounded in L p (Ω), so that (β•∇)v is the Riesz representative of (22) in L p (Ω). Equipped with the norm ||v|| V β;p (Ω) := (||v|| p L p (Ω) + ||(β•∇)v|| p L p (Ω) )
1 p for all v ∈ V β;p (Ω), this space defines a reflexive Banach space. The following proposition states that the problem (2) is well-defined in the graph space V β;p (Ω).

Proposition 4 (Equivalent definition of V β;p (Ω)).

V β;p (Ω) = {v ∈ L p (Ω) | ∇(β•v) + (∇×v)×β ∈ L p (Ω)} , where ∇(β•v) + (∇×v)×β ∈ L p (Ω) means that the linear form C ∞ c (Ω) ϕ → - Ω (β ∇•ϕ + ∇×(ϕ×β)) •v, (23) 
is bounded in L p (Ω).

Proof. Let v ∈ V β;p (Ω). By definition, we have

Ω (β•∇)v•ϕ = - Ω ∇•(β⊗ϕ)•v, ∀ϕ ∈ C ∞ c (Ω). Now, recalling the identity ∇•(β⊗ϕ) = β ∇•ϕ + ∇×(ϕ×β) + (ϕ•∇)β for all β ∈ Lip(Ω) and for all ϕ ∈ C ∞ c (Ω), it follows that Ω (β•∇)v•ϕ = - Ω (β ∇•ϕ + ∇×(ϕ×β)) •v - Ω ((ϕ•∇)β) •v, ∀ϕ ∈ C ∞ c (Ω).
Hence, observing that

((ϕ•∇)β)•v = ((∇β)ϕ)•v, we obtain Ω ((β•∇)v + (∇β) T v) •ϕ = - Ω (β ∇•ϕ + ∇×(ϕ×β)) •v, ∀ϕ ∈ C ∞ c (Ω).
Hence, the linear form ( 23) is bounded, yielding ∇(β•v) + (∇×v)×β ∈ L p (Ω), so that the inclusion holds. Note that we have the identity

(β•∇)v + (∇β) T v = ∇(β•v) + (∇×v)×β a.e. in Ω.
Since the proof of the converse inclusion is similar, the proof is completed.

Recalling now that the boundary ∂Ω is well-separated in the sense of ( 9), functions in the graph space V β;p (Ω) have a trace in the space Proposition 5 (Integration by parts). For all v ∈ V β;p (Ω) and for all w ∈ V β;p (Ω),

L p (|β•n| ; ∂Ω) := v : ∂Ω → R 3 is Lebesgue measurable | ∂Ω |β•n| |v| p < ∞ . (24) 
Ω w•(β•∇)v + Ω v•(β•∇)w + Ω (∇•β)v•w = ∂Ω (β•n) v•w. (25a) 
In addition, for all v ∈ V β;p (Ω) and for all z ∈ W 1,∞ (Ω),

Ω |v| p-2 z v•(β•∇)v + 1 p Ω (∇•β)|v| p z + 1 p Ω β•∇z |v| p = 1 p ∂Ω (β•n)|v| p . ( 25b 
)
3.2. Weak formulation. Similarly to Section 2, we introduce the bilinear form a β,µ;p ∈ L(V 0

β;p (Ω)×L p (Ω); R) with V 0 β;p (Ω) = {w ∈ V β;p (Ω) | w |∂Ω -= 0} such that for all v ∈ V β;p (Ω) and for all w ∈ L p (Ω), a β,µ;p (v, w) := Ω (∇(β•v) + (∇×v)×β) •w + Ω µv•w, (26) 
with µ : Ω → R 3×3 the reaction tensor. Following the proof of Proposition 4, we observe that the bilinear form (26) can be reformulated as

a β,µ;p (v, w) = Ω w•(β•∇)v + Ω w•(∇β T + µ)v, (27) 
and the writing µ = ∇β T + µ yields µ ∈ L ∞ (Ω) and

a β,µ;p (v, w) := Ω (β•∇)v•w + Ω µ v•w. (28) 
Assuming now that s ∈ L p (Ω), the weak formulation of (2) in the graph space V 0 β;p (Ω) is:

Find u ∈ V 0 β;p (Ω) s.t. a β,µ;p (u, v) = Ω s•v, ∀v ∈ L p (Ω). (29) 
We readily see that if u ∈ V 0 β;p (Ω) solves ( 29), the problem (2a) holds in L p (Ω) and the boundary condition (2b) holds in L p (|β•n| ; ∂Ω). 

:= µ + µ T 2 + ∇β + ∇β T 2 - 1 p (∇•β) Id. (30) 
For all x ∈ Ω, this lowest eigenvalue is denoted by ℵ p (x) and is defined as

ℵ p (x) = min (σ β,µ;p (x)y, y) | y ∈ R 3 s.t. |y| = 1 ,
where (•, •) denotes the classical Euclidean inner product in R 3 . Hereafter, we assume that this eigenvalue satisfies the following assumption.

(H p ) ess inf Ω ℵ p > 0. We define τ = (ess inf Ω ℵ p ) -1 .

Proposition 6 (Uniqueness under (H p )). Assume that (H p ) holds. Then,

a β,µ;p (v, v |v| p-2 ) ≥ τ -1 ||v|| p L p (Ω) , ∀v ∈ V 0 β;p (Ω).
Proof. Let v ∈ V 0 β;p (Ω) and consider a β,µ;p (v, v |v| p-2 ) (since v |v| p-2 ∈ L p (Ω)). Owing to the identity (27), we infer that

a β,µ;p (v, v |v| p-2 ) = Ω |v| p-2 v•(β•∇)v + Ω |v| p-2 v• (∇β T + µ) v.
Using now the integration by parts formula (25b) with z ≡ 1, we obtain

a β,µ;p (v, v |v| p-2 ) = Ω |v| p-2 v•σ β,µ;p •v + 1 p ∂Ω (β•n) |v| p , (31) 
whence the result follows using (H p ) and recalling that v |∂Ω -= 0.

To take into account the situation where the smallest eigenvalue ℵ p takes null or slightly negative values in Ω, we consider the new assumption (H p ). Finally, the well-posedness of (2) holds under assumption (H p ) or (H p ). The proof follows the same ideas used to prove Theorems 2 and 3, this time using Propositions 6 and 7, respectively.

Theorem 4 (Well-posedness). Assume that (H p ) or (H p ) holds. Then the problem (29) is well-posed.

Conclusion.

In this paper, we have extended the well-posedness of problems ( 1) and ( 2), not only in Banach graph space of exponent p ∈ (1, ∞), but also under new assumptions regarding the classical Friedrichs tensor, so as to consider the situation when it takes positive, null or slightly negative values. Observing that equations (1a) and (2a) are the proxy of the Lie derivative in R 3 of a 0-and a 1-form respectively, the present analysis could be extended in a future work within the more general framework proposed by [START_REF] Heumann | Eulerian en semi-Lagrangian methods for advection-diffusion of differential forms[END_REF] to treat the advection of a differential k-form within a manifold of R d . However, the question of the existence of the potential ζ in such a more general context is still open. Another extension of this work concerns the case of non-homogeneous Dirichlet boundary condition, requiring to establish the surjectivity of the trace maps in these Banach graph spaces.

  Equipped with the norm ||v|| p L p (|β•n|;∂Ω) := ∂Ω |β•n| |v| p for all v ∈ L p (|β•n| ; ∂Ω), this space defines a Banach space. Lemma 3 (Trace in L p (|β•n| ; ∂Ω)). Let p ∈ (1, ∞). The trace map γ : C ∞ (Ω) → L p (|β•n| ; ∂Ω) with γ(ϕ) = ϕ |∂Ω for all ϕ ∈ C ∞ (Ω) extends continuously to V β;p (Ω), i.e., there exists C γ > 0 such that ||γ(v)|| L p (|β•n|;∂Ω) ≤ C γ ||v|| V β;p (Ω) , ∀v ∈ V β;p (Ω).

  3.3. Well-posedness for positive and non-positive Friedrichs tensor. The uniqueness of the solution of problem (29) relies on the sign of the lowest eigenvalue of the R 3×3 -valued Friedrichs tensor σ β,µ;p

(

  H p ) ess inf Ω ℵ p ≤ 0 and there exists a non-dimensional function ζ ∈ Lip(Ω) such thatess inf Ω e ζ ℵ p -1 p β•∇ζ > 0.We define τ -1 = ess inf Ω e ζ ℵ p -1 p β•∇ζ .Proposition 7 (Uniqueness under (H p )). Assume that (H p ) holds. Then,a β,µ;p (v, e ζ v |v| p-2 ) ≥ τ -1 ||v|| p L p (Ω) , ∀v ∈ V 0 β;p (Ω). Proof. Let v ∈ V 0 β;p (Ω). Denoting β = e ζ β, µ = e ζ µ and observing that ∇( β•v) = e ζ (∇(β•v) + (∇ζ⊗β)v) a.e. in Ω,we infer that a β,µ;p (v, e ζ v |v| p-2 ) = a β, µ;p (v, v |v| p-2 ) -a 0,∇ζ⊗β;p (v, e ζ v |v| p-2 ). Owing to (31), this identity yieldsa β,µ;p (v, e ζ v |v| p-2 ) ≥ Ω |v| p-2 v•σ β, µ;p •v -Ω e ζ |v| p-2 v• ∇ζ⊗β + β⊗∇ζ 2 •v.In addition, observing thatσ β, µ;p = e ζ σ β,µ;p -1 p (β•∇ζ)Id + e ζ ∇ζ⊗β + β⊗∇ζ 2 ,the expected result follows from assumption (H p ).
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