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Multiband Image Fusion Based
on Spectral Unmixing

Qi Wei, Member, IEEE, José Bioucas-Dias, Senior Member, IEEE, Nicolas Dobigeon, Senior Member, IEEE,
Jean-Yves Tourneret, Senior Member, IEEE, Marcus Chen, and Simon Godsill, Member, IEEE

Abstract—This paper presents a multiband image fusion algo-
rithm based on unsupervised spectral unmixing for combining a
high-spatial–low-spectral-resolution image and a low-spatial–
high-spectral-resolution image. The widely used linear observa-
tion model (with additive Gaussian noise) is combined with the
linear spectral mixture model to form the likelihoods of the obser-
vations. The nonnegativity and sum-to-one constraints resulting
from the intrinsic physical properties of the abundances are intro-
duced as prior information to regularize this ill-posed problem.
The joint fusion and unmixing problem is then formulated as
maximizing the joint posterior distribution with respect to the
endmember signatures and abundance maps. This optimization
problem is attacked with an alternating optimization strategy. The
two resulting subproblems are convex and are solved efficiently
using the alternating direction method of multipliers. Experiments
are conducted for both synthetic and semi-real data. Simulation
results show that the proposed unmixing-based fusion scheme im-
proves both the abundance and endmember estimation compared
with the state-of-the-art joint fusion and unmixing algorithms.

Index Terms—Alternating direction method of multipliers,
Bayesian estimation, block circulant matrix, block coordinate de-
scent (BCD), multiband image fusion, Sylvester equation.

I. INTRODUCTION

FUSING multiple multiband images enables a synergetic
exploitation of complementary information obtained by

sensors of different spectral ranges and different spatial reso-
lutions. In general, a multiband image can be represented as a
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3-D data cube indexed by three exploratory variables (x, y, λ),
where x and y are the two spatial dimensions of the scene, and
λ is the spectral dimension (covering a range of wavelengths).
Typical examples of multiband images include hyperspectral
(HS) images [2], multispectral (MS) images [3], integral field
spectrographs [4], and magnetic resonance spectroscopy im-
ages [5]. However, multiband images with high spectral res-
olution generally suffer from the limited spatial resolution
of the data acquisition devices, mainly due to physical and
technological reasons. These limitations make it infeasible
to acquire a high-spectral-resolution multiband image with a
spatial resolution comparable to those of MS and panchromatic
(PAN) images (which are acquired in much fewer bands) [6].
For example, HS images benefit from excellent spectroscopic
properties with several hundreds or thousands of contiguous
bands but are limited by their relatively low spatial resolu-
tion [7]. As a consequence, reconstructing a high-spatial–high-
spectral multiband image from multiple and complementary
observed images, although challenging, is a crucial inverse
problem that has been addressed in various scenarios. In par-
ticular, fusing a high-spatial–low-spectral-resolution image and
a low-spatial–high-spectral-resolution image is an archetypal
instance of multiband image reconstruction, such as pansharp-
ening (MS+PAN) [8] or HS pansharpening (HS+PAN) [9].
The interested reader is invited to consult [8] and [9] for an
overview of the HS pansharpening problems and the corre-
sponding fusion algorithms. Note that in this paper, we focus
on image fusion at the pixel level instead of at the feature or
decision level. The estimated image, with high spatial and high
spectral resolutions may then be used in many applications,
such as material unmixing, visualization, image interpretation
and analysis, regression, classification, and change detection.

In general, the degradation mechanisms in HS, MS, and PAN
imaging, with respect to the target high-spatial–high-spectral
image can be summarized as spatial and spectral transfor-
mations. Thus, the multiband image fusion problem can be
interpreted as restoring a 3-D data cube from two degraded data
cubes, which is an inverse problem. As this inverse problem is
generally ill-posed, introducing prior distributions (regularizers
in the regularization framework) to regularize the target image
has been wid ely explored [10]–[12]. Regarding regularization,
the usual high spectral and spatial correlations of the target im-
ages imply that they admit sparse or low-rank representations,
which has in fact been exploited in, for example, [10]–[17].

In [14], a maximum a posteriori (MAP) estimator incorpo-
rating a stochastic mixing model has been designed for the
fusion of HS and MS images. In [18], a nonnegative sparse



promoting algorithm for fusing HS and RGB images has
been developed by using an alternating optimization algorithm.
However, both approaches developed in [14] and [18] require
a very basic assumption that a low-spatial-resolution pixel is
obtained by averaging the high-resolution pixels belonging
to the same area, whose size depends on the downsampling
ratio. This nontrivial assumption, which is also referred to as
pixel aggregation, implies that the fusion of two multiband
images can be divided into fusing small blocks, which greatly
decreases the complexity of the overall problem. Note that this
assumption has also been used in [17], [19], and [20]. However,
this averaging assumption can be violated easily as the area in a
high-resolution image corresponding to a low-resolution pixel
can be arbitrarily large (depending on the spatial blurring) and
the downsampling ratio is generally fixed (depending on the
sensor physical characteristics).

To overcome this limitation, a more general forward model,
which formulates the blurring and downsampling as two sep-
arate operations, has been recently developed and widely used
[9], [10], [12], [15], [21], [22]. Based on this model, a nonnega-
tive matrix factorization (NMF) pansharpening of an HS image
has been proposed in [21]. Similar studies have been developed
independently in [16], [23], and [24]. Later, Yokoya et al. have
proposed to use a coupled NMF (CNMF) unmixing for the
fusion of low-spatial-resolution HS and high-spatial-resolution
MS data, where both HS and MS data are alternately unmixed
into endmember and abundance matrices by the CNMF al-
gorithm [15]. A similar fusion and unmixing framework was
recently introduced in [25], in which the alternating NMF
steps in CNMF were replaced by alternating proximal forward–
backward steps. The common point of these works is to learn
endmembers from the HS image and abundances from the MS
image alternatively instead of using both HS and MS jointly,
leading to simple update rules. More specifically, this approx-
imation helps to circumvent the need for a deconvolution,
upsampling, and linear regression all embedded in the proposed
joint fusion method. While that approximation simplifies the
fusion process, it does not use the abundances estimated from
the HS image and the endmember signatures estimated from
the MS image, thus not fully exploiting the spectral and spatial
information in both images. To fully exploit the spatial and
spectral information contained in HS and MS data pairs, we
retain the above degradation model but propose to minimize
the cost function associated with the two data terms directly
instead of decoupling the HS and MS terms (fusing approxi-
mately). The associated minimization problem will be solved
in a solid mathematical framework using recently developed
optimization tools.

More specifically, we formulate the unmixing-based multi-
band image fusion problem as an inverse problem in which
the regularization is implicitly imposed by a low-rank repre-
sentation inherent to the linear spectral mixture model and by
nonnegativity and sum-to-one constraints resulting from the
intrinsic physical properties of the abundances. In the proposed
approach, the endmember signatures and abundances are jointly
estimated from the observed multiband images. Note again that
the use of both data sources for estimating endmembers or
abundances is the main difference from current state-of-the-art

methods. The optimization with respect to the endmember
signatures and the abundances are both constrained linear
regression problems, which can be solved efficiently by the
alternating direction method of multipliers (ADMM).

The remainder of this paper is organized as follows.
Section II gives a short introduction of the widely used lin-
ear mixture model and forward model for multiband images.
Section III formulates the unmixing-based fusion problem as
an optimization problem, which is solved using the Bayesian
framework by introducing the popular constraints associated
with the endmembers and abundances. The proposed fast al-
ternating optimization algorithm is presented in Section IV.
Section V presents experimental results assessing the accuracy
and the numerical efficiency of the proposed method. Conclu-
sion are finally reported in Section VI.

II. PROBLEM STATEMENT

To better distinguish spectral and spatial properties, the pix-
els of the target multiband image, which is of high spatial and
high spectral resolutions, can be rearranged to build an mλ × n
matrix X, where mλ is the number of spectral bands, and
n = nr × nc is the number of pixels in each band (nr and nc

represent the numbers of rows and columns, respectively). In
other words, each column of the matrix X consists of a mλ-
valued pixel, and each row gathers all the pixel values in a given
spectral band.

A. Linear Mixture Model

This work exploits an intrinsic property of multiband images,
according to which each spectral vector of an image can be
represented by a linear mixture of several spectral signatures,
which is referred to as endmembers. Mathematically, we have

X = MA (1)

where M ∈ Rmλ×p is the endmember matrix whose columns
are spectral signatures, and A ∈ Rp×n is the corresponding
abundance matrix whose columns are abundance fractions. This
linear mixture model has been widely used in HS unmixing (see
[26] for a detailed review).

B. Forward Model

Based on the pixel ordering introduced at the beginning
of Section II, any linear operation applied to the left (right)
side of X describes a spectral (spatial) degradation action. In
this paper, we assume that two complementary images of high
spectral or high spatial resolutions, respectively, are available
to reconstruct the target high-spectral–high-spatial-resolution
target image. These images result from linear spectral and
spatial degradations of the full resolution image X, according
to the popular models

YM =RX+NM

YH =XBS+NH (2)

where

• X ∈ R
mλ×n is the full-resolution target image as de-

scribed in Section II-A;



• YM ∈ Rnλ×n and YH ∈ Rmλ×m are the observed
spectrally degraded and spatially degraded images,
respectively;

• R ∈ Rnλ×mλ is the spectral response of the MS sensor,
which can be a priori known or estimated by cross-
calibration [27];

• B ∈ Rn×n is a cyclic convolution operator acting on the
bands;

• S ∈ Rn×m is a d uniform downsampling operator (it has
m = n/d ones and zeros elsewhere), which satisfies
STS = Im;

• NM and NH are additive terms that include both model-
ing errors and sensor noise.

The noise matrices are assumed distributed according to the
following matrix normal distributions1

NM ∼ MNmλ,m (0mλ,m,ΛM, Im)
NH ∼ MNnλ,n (0nλ,n,ΛH, In)

where 0a,b is an a× b matrix of zeros, and Ia is the a× a
identity matrix. The column covariance matrices are assumed
the identity matrix to reflect the fact that the noise is pixel
independent. The row covariance matrices ΛM and ΛH are
assumed diagonal matrices, whose diagonal elements can
vary depending on the noise power in the different bands.
More specifically, ΛH = diag[s2H,1, . . . , s

2
H,mλ

] and ΛM =

diag[s2M,1, . . . , s
2
M,nλ

], where diag is an operator transforming
a vector into a diagonal matrix, whose diagonal terms are the
elements of this vector.

The matrix (2) has been widely advocated for the pansharp-
ening and HS pansharpening problems, which consist of fusing
a PAN image with an MS or an HS image [9], [28], [29].
Similarly, most of the techniques developed to fuse MS and HS
images also rely on a similar linear model [11], [15], [30]–[34].
From an application point of view, this model is also important
as motivated by recent national programs, e.g., the Japanese
next-generation spaceborne HS image suite (HISUI), which
acquires and fuses the coregistered HS and MS images for the
same scene under the same conditions, following this linear
model [35].

C. Composite Fusion Model

Combining the linear mixture model (1) and the forward
model (2) leads to

YM =RMA+NM

YH =MABS+NH (3)

where all matrix dimensions and their respective relations are
summarized in Table I.

1The probability density function p(X|M,Σr ,Σc) of a matrix normal
distribution MN r,c(M,Σr ,Σc) is defined by

p(X|M,Σr ,Σc) =
exp

(
− 1

2
tr

[
Σ−1

c (X−M)TΣ−1
r (X −M)

])

(2π)
rc
2 |Σc|

r
2 |Σr |

c
2

where M ∈ Rr×c is the mean matrix, Σr ∈ Rr×r is the row covariance
matrix, and Σc ∈ Rc×c is the column covariance matrix.

TABLE I
MATRIX DIMENSION SUMMARY

Note that the matrix M can be selected from a known
spectral library [36] or estimated a priori from the HS data [37].
Moreover, it can be estimated jointly with the abundance
matrix A [38]–[40], which will be the case in this work.

D. Statistical Methods

To summarize, the problem of fusing and unmixing high-
spectral and high-spatial resolution images can be formulated
as estimating the unknown matrices M and A from (3), which
can be regarded as a joint NMF problem. As is well known, the
NMF problem is nonconvex and has no unique solution, leading
to an ill-posed problem. Thus, it is necessary to incorporate
some intrinsic constraints or prior information to regularize this
problem, improving the conditioning of the problem.

Various priors have been already advocated to regularize the
multiband image fusion problem, such as Gaussian priors [10],
[41], sparse representations [11], or total variation (TV) priors
[12]. The choice of the prior usually depends on the information
resulting from previous experiments or from a subjective view
of constraints affecting the unknown model parameters [42],
[43]. The inference of M and A (whatever the form chosen for
the prior) is a challenging task, mainly due to the large size of
X and to the presence of the downsampling operator S, which
prevents any direct use of the Fourier transform to diagonalize
the spatial degradation operator BS. To overcome this diffi-
culty, several computational strategies, including Markov chain
Monte Carlo (MCMC) [10], block coordinate descent method
(BCD) [44], and tailored variable splitting under the ADMM
framework [12], have been proposed and applied to different
kinds of priors, e.g., the empirical Gaussian prior [10], [41],
the sparse-representation-based prior [11], or the TV prior [12].
More recently, contrary to the algorithms described above, a
much more efficient method, named Robust Fast fUsion based
on Sylvester Equation (R-FUSE) has been proposed to solve
explicitly an underlying Sylvester equation associated with the
fusion problem derived from (3) [45], [60]. This solution can
be implemented per se to compute the maximum-likelihood
estimator in a computationally efficient manner, which also
has the great advantage of being easily generalizable within a
Bayesian framework when considering various priors.

In this paper, we propose to form priors by exploiting the
intrinsic physical properties of abundances and endmembers,
which is widely used in conventional unmixing, to infer A and
M from the observed data YM and YH. More details are given
in the following.

III. PROBLEM FORMULATION

Following the Bayes rule, the posterior distribution of the
unknown parameters M and A can be obtained by the product



of their likelihoods and prior distributions, which are detailed
in what follows.

A. Likelihoods (Data Fidelity Term)

Using the statistical properties of the noise matrices NM and
NH, YM, and YH have matrix normal distributions, i.e.,

p(YM|M,A) =MNnλ,n(RMA,ΛM, In)

p(YH|M,A) =MNmλ,m(MABS,ΛH, Im). (4)

As the collected measurementsYM and YH have been acquired
by different (possibly heterogeneous) sensors, the noise matri-
ces NM and NH are sensor dependent and can be generally
assumed statistically independent. Therefore, YM and YH are
independent conditionally upon the unobserved scene X =
MA. As a consequence, the joint likelihood function of the
observed data is

p(YM,YH|M,A) = p(YM|M,A)p(YH|M,A). (5)

The negative logarithm of the likelihood is

− log p(YM,YH|M,A)

= − log p(YM|M,A)− log p(YH|M,A) + C

=
1

2

∥∥∥Λ− 1
2

H (YH −MABS)
∥∥∥2

F

+
1

2

∥∥∥Λ− 1
2

M (YM −RMA)
∥∥∥2

F
+ C

where ‖X‖F =
√

trace(XTX) is the Frobenius norm of X,
and C is a constant.

B. Priors (Regularization Term)

1) Abundances: As the mixing coefficient ai,j (the element
located in the ith row and jth column of A) represents the
proportion (or probability of occurrence) of the ith endmember
in the jth measurement [26], [46], the abundance vectors satisfy
the following abundance nonnegativity constraint (ANC) and
abundance sum-to-one constraint (ASC):

aj ≥ 0 1T
p aj = 1 ∀ j ∈ {1, . . . , n} (6)

where aj is the jth column of A, ≥ means “element-wise
greater than,” and 1T

p is a p× 1 vector with all ones. Account-
ing for all the image pixels, the constraints (6) can be rewritten
in matrix form

A ≥ 0 1T
p A = 1T

n . (7)

Moreover, the ANC and ASC constraints can be converted into
a uniform distribution for A on the feasible region A, i.e.,

p(A) =

{
cA, if A ∈ A
0, elsewhere

(8)

where A = {A|A ≥ 0,1T
pA = 1T

n}, cA = 1/vol(A), and
vol(A) =

∫
A∈A dA is the volume of the set A.

2) Endmembers: As the endmember signatures represent the
reflectances of different materials, each element of the matrix
M should be between 0 and 1. Thus, the constraints for M can
be written as

0 ≤ M ≤ 1. (9)

Similarly, these constraints for the matrix M can be converted
into a uniform distribution on the feasible region M

p(M) =

{
cM, if M ∈ M
0, elsewhere

where M = {M|0 ≤ M ≤ 1} and cM = 1/vol(M).

C. Posterior (Constrained Optimization)

Combining the likelihoods (5) and the priors p(M) and
p(A), the Bayes theorem provides the posterior distribution of
M and A

p(M,A|YH,YM) ∝ p(YH|M,A)p(YM|M,A)p(M)p(A)

where ∝ means “proportional to.” Thus, the unmixing-based
fusion problem can be interpreted as maximizing the joint
posterior distribution of A and M. Moreover, by taking the
negative logarithm of p(M,A|YH,YM), the MAP estimator of
(A,M) can be obtained by solving the following minimization:

min
M,A

L(M,A) s.t. A ≥ 0 and 1T
p A = 1T

n

0 ≤ M ≤ 1 (10)

where

L(M,A) =
1

2

∥∥∥Λ− 1
2

H (YH −MABS)
∥∥∥2
F

+
1

2

∥∥∥Λ− 1
2

M (YM −RMA)
∥∥∥2

F
.

In this formulation, the fusion problem can be regarded
as a generalized unmixing problem, which includes two data
fidelity terms. Thus, both images contribute to the estimation
of the endmember signatures (endmember extraction step) and
the high-resolution abundance maps (inversion step). For the
endmember estimation, a popular strategy is to use a subspace
transformation as a preprocessing step, such as in [39], [47]. In
general, the subspace transformation is learned a priori from
the high-spectral-resolution image empirically, e.g., from the
HS data. This empirical subspace transformation alleviates the
computational burden greatly and can be incorporated in our
framework easily.

IV. ALTERNATING OPTIMIZATION SCHEME

Although problem (10) is convex with respect to A and M
separately, it is nonconvex with respect to these two matrices
jointly and has more than one solution. We propose an opti-
mization technique that alternates optimizations with respect
to A and M, which is also referred to as a BCD algorithm.
The optimization with respect to A (M) conditional on M (A)
can be achieved efficiently with the ADMM algorithm [48],



which converges to a solution of the respective convex opti-
mization under some mild conditions. The resulting alternating
optimization algorithm, referred to as fusion based on unmixing
for multiband images (FUMI), is detailed in Algorithm 1,
where EEA(YH) in line 1 represents an endmember extraction
algorithm (EEA) to estimate endmembers from the HS data.
The optimization steps with respect to A and M are detailed in
the following.

A. Convergence Analysis

To analyze the convergence of Algorithm 1, we recall a con-
vergence criterion for the BCD algorithm stated in [44, pp. 273].

Theorem 1 (Bertsekas, [44]; Proposition 2.7.1): Suppose
that L is continuously differentiable with respect to A and
M over the convex set A×M. Suppose also that for each
{A,M}, L(A,M) viewed as a function of A attains a unique
minimum Ā. The similar uniqueness also holds for M. Let
{A(t),M(t)} be the sequence generated by the BCD method
as in Algorithm 1. Then, every limit point of {A(t),M(t)} is a
stationary point.

The target function defined in (10) is continuously differ-
entiable. Note that it is not guaranteed that the minima with
respect to A or M are unique. We may however argue that
a simple modification of the objective function, consisting in
adding the quadratic term α1‖A‖2F + α2‖M‖2F , where α1 and
α2 are very small, and thus obtaining a strictly convex objective
function, ensures that the minima of (11) and (15) are uniquely
attained; thus, we may invoke Theorem 1. In practice, even
without including the quadratic terms, we have systematically
observed convergence of Algorithm 1.

B. Optimization With Respect to the Abundance
Matrix A (M Fixed)

The minimization of L(M,A) with respect to the abundance
matrix A conditional on M can be formulated as

min
A

1

2

∥∥∥Λ− 1
2

H (YH−MABS)
∥∥∥2

F
+
1

2

∥∥∥Λ− 1
2

M (YM−RMA)
∥∥∥2
F

s.t. A ≥ 0 and 1T
p A = 1T

n . (11)

This constrained minimization problem can be solved by in-
troducing an auxiliary variable to split the objective and the
constraints, which is the spirit of the ADMM algorithm. More
specifically, by introducing the splitting V = A, the optimiza-
tion problem (11) with respect to A can be written as

min
A,V

L1(A) + ιA(V) s.t. V = A

where

L1(A) =
1

2

∥∥∥Λ− 1
2

H (YH −MABS)
∥∥∥2

F

+
1

2

∥∥∥Λ− 1
2

M (YM −RMA)
∥∥∥2

F

ιA(V) =

{
0, if V ∈ A
+∞, otherwise.

Recall that A = {A|A ≥ 0,1T
pA = 1n}.

The augmented Lagrangian associated with the optimization
of A can be written as

L(A,V,G) =
1

2

∥∥∥Λ− 1
2

H (YH −MABS)
∥∥∥2
F
+ ιA(V)

+
1

2

∥∥∥Λ− 1
2

M (YM −RMA)
∥∥∥2
F
+

μ

2
‖A−V −G‖2F (12)

where G is the so-called scaled dual variable, and μ > 0 is
the augmented Lagrange multiplier, weighting the augmented
Lagrangian term [48]. The ADMM summarized in Algorithm 2
consists of an A-minimization step, a V-minimization step,
and a dual variable G update step (see [48] for further details
about ADMM). Note that the operator ΠX (X) in Algorithm 2
represents projecting the variable X onto a set X , which is
defined as

ΠX (X) = argmin
Z∈X

‖Z−X‖2F .

Given that the functions L1(A) and ιA(V) are both closed,
proper, and convex, thus, invoking the Eckstein and Bertsekas
theorem [49, Th. 8], the convergence of Algorithm 2 to a
solution of (11) is guaranteed.

1) Updating A: In order to minimize (12) with respect to
A, we solve the equation ∂L(A,V(k),G(k))/∂A = 0, which
is equivalent to the generalized Sylvester equation

C1A+AC2 = C3 (13)



where

C1 =
(
MTΛ−1

H M
)−1 (

(RM)TΛ−1
M RM+ μIp

)
C2 = BS(BS)T

C3 =
(
MTΛ−1

H M
)−1

×
(
MTΛ−1

H YH(BS)T + (RM)TΛ−1
M YM

+μ
(
V(k) +G(k)

))
.

Equation (13) can be solved analytically by exploiting the
properties of the circulant and downsampling matrices B and
S, as summarized in Algorithm 3 and demonstrated in [45].
Note that the matrix F represents the fast Fourier transform
(FFT) operation, and its conjugate transpose (or Hermitian
transpose)FH represents the inverse FFT operation. The matrix
D ∈ Cn×n is a diagonal matrix, which has eigenvalues of the
matrix B in its diagonal line and can be rewritten as

D =

⎡⎢⎢⎢⎣
D1 0 · · · 0
0 D2 · · · 0
...

...
. . .

...
0 0 · · · Dd

⎤⎥⎥⎥⎦
where Di ∈ Cm×m. Thus, we have D̄HD̄ =

∑d
t=1 D

H
t Dt =∑d

t=1 D
2
t , where D̄ = D(1d ⊗ Im). Similarly, the diagonal

matrix ΛC has eigenvalues of the matrix C1 in its diagonal line
(denoted λ1, . . . , λm̃λ

and λi ≥ 0, ∀ i). The matrix Q contains
eigenvectors of the matrix C1 in its columns. The auxiliary ma-
trix Ā ∈ Cmλ×n is decomposed as Ā = [āT

1 , ā
T
2 , . . . , ā

T
p ]

T
.

2) Updating V: The update of V can be made by simply
computing the Euclidean projection of A(t,k+1) −G(k+1) onto
the canonical simplex A, which can be expressed as follows:

V̂ = argmin
V

μ

2

∥∥∥V −
(
A(t,k+1) −G(k+1)

)∥∥∥2

F
+ ιA(V)

= ΠA
(
A(t,k+1) −G(k+1)

)
where ΠA denotes the projection (in the sense of the Euclidean
norm) onto the simplex A. This classical projection problem
has been widely studied and can be achieved by numerous
methods [50]–[53]. In this paper, we adopt the popular strategy
first proposed in [50] and summarized in Algorithm 4. Note
that the above optimization is decoupled with respect to the
columns of V, denoted by (V)1, . . . , (V)n, which accelerates
the projection dramatically.

In practice, the ASC constraint is sometimes criticized for
not being able to account for every material in a pixel or due
to endmember variability [26]. In this case, the sum-to-one
constraint can be simply removed. Thus, the Algorithm 4 will
degenerate to projecting (A−G)i onto the nonnegative half-
space, which simply consists of setting the negative values of
(A−G)i to zeros.

C. Optimization With Respect to the Endmember Matrix M
(A Fixed)

The minimization of (10) with respect to the abundance
matrix M conditional on A can be formulated as

min
M

L1(M) + ιM(M) (14)

where

L1(M) =
1

2

∥∥∥Λ− 1
2

H (YH −MAH)
∥∥∥2

F

+
1

2

∥∥∥Λ− 1
2

M (YM −RMA)
∥∥∥2

F



and AH = ABS. By splitting the quadratic data fidelity term
and the inequality constraints, the augmented Lagrangian for
(15) can be expressed as

L(M,T,G) = L1(M) + ιM

(
Λ

1
2

HT
)

+
μ

2

∥∥∥Λ− 1
2

H M−T−G
∥∥∥2
F
. (15)

The optimization of L(M,T,G) consists of updating M, T,
and G iteratively as summarized in Algorithm 5 and detailed in
the following. As L1(M) and ιM(Λ

1/2
H T) are closed, proper

and convex functions and Λ
1/2
H has a full column rank, the

ADMM is guaranteed to converge to a solution of problem (14).

1) Updating M: Forcing the derivative of (15) with respect
to M to be zero leads to the following Sylvester equation:

H1M+MH2 = H3 (16)

where

H1 = ΛHR
TΛ−1

M R

H2 = (AHA
T
H + μIp)(AAT )

−1

H3 =
[
YHA

T
H +ΛHR

TΛ−1
M YMAT

+μΛ
1
2

H(T+G)
]
(AAT )

−1
.

Note that vec(AXB) = (BT ⊗A)vec (X), where vec (X) de-
notes the vectorization of the matrix X formed by stacking the
columns of X into a single column vector, and ⊗ denotes the
Kronecker product [54]. Thus, vectorizing both sides of (16)
leads to2

Wvec (M) = vec (H3) (17)

where W = (Ip ⊗H1 +HT
2 ⊗ Imλ

). Thus, vec (M̂) =
W−1vec (H3). Note that W−1 can be computed and stored in
advance instead of being computed in each iteration.

2The vectorization of the matrices M, H1, and H2 is easy to do as the size of
these matrices are small, which is not true for matrices A, C1, and C2 in (13).

Alternatively, there exists a more efficient way to calculate
the solution M analytically (avoiding to compute the inverse
of the matrix W). Note that the matrices H1 ∈ Rmλ×mλ and
H2 ∈ Rp×p are both the products of two symmetric positive

definite matrices. According to [55, Lemma 1], H1 and H2 can
be diagonalized by eigendecomposition, i.e., H1 = V1O1V

−1
1

andH2 = V2O2V
−1
2 , where O1 andO2 are diagonal matrices

denoted as

O1 = diag {s1, . . . , smλ
}

O2 = diag{t1, . . . , tp}. (18)

Thus, (16) can be transformed to

O1M̃+ M̃O2 = V−1
1 H3V2 (19)

where M̃ = V−1
1 MV2. Straightforward computations lead to

H̃ ◦ M̃ = V−1
1 H3V2 (20)

where

H̃ =

⎡⎢⎢⎢⎣
s1 + t1 s1 + t2 · · · s1 + tp
s2 + t1 s2 + t2 · · · s2 + tp

...
...

. . .
...

smλ
+ t1 smλ

+ t2 · · · smλ+tp

⎤⎥⎥⎥⎦ (21)

and ◦ represents the Hadamard product, defined as the compo-
nentwise product of two matrices (having the same size). Then,
M̃ can be calculated by componentwise division of V−1

1 H3V2

and H̃. Finally, M can be estimated as M̂ = V1M̃V−1
2 . Note

that the computational complexity of the latter strategy is of
order O(max(m3

λ, p
3)), which is lower than the complexity

order O((mλp)
3)) of solving (17).

2) Updating T: The optimization with respect to T can be
transformed as

argmin
T

1

2

∥∥∥T−Λ
− 1

2

H M +G
∥∥∥+ ιT (T) (22)

where ιT (T) = ιM(Λ
1/2
H T). As Λ−(1/2)

H is a diagonal matrix,
the solution of (22) can be obtained easily by setting

T̂ = Λ
− 1

2

H min
(
max

(
M−Λ

1
2

HG, 0
)
, 1
)

(23)

where min and max are to be understood componentwise.
Remark: If the endmember signatures are fixed a priori,

i.e., M is known, the unsupervised unmixing and fusion will
degenerate to a supervised unmixing and fusion by simply
not updating M. In this case, the alternating scheme is not
necessary since Algorithm 1 reduces to Algorithm 2. Note that
fixing M a priori transforms the nonconvex problem (10) into
a convex one, which can be solved much more efficiently. The
solution produced by the resulting algorithm is also guaranteed
to be the global optimal point instead of a stationary point.

D. Parallelization

We remark that some of the most computationally intensive
steps of the proposed algorithm can be easily parallelized on a
parallel computation platform. More specifically, the estimation
of A in Algorithm 3 can be parallelized in the frequency



domain due to the structure of blurring and downsampling
matrices in the spectral domain. Projection onto the simplex A
can also be parallelized.

E. Relation With Some Similar Algorithms

At this point, we remark that there exist a number of joint
fusion and unmixing algorithms that exhibit some similarity
with ours, namely the methods in [15], [18], and [25].3 Next,
we state differences between those methods and ours. First
of all, the degradation model used in [18] follows the pixel
aggregation assumption. This assumption makes a block-by-
block inversion possible (see [18, (18)]), which significantly
reduces the computational complexity. However, due to the
convolution (matrix B in (2)) plus downsampling (matrix S
in (2)) model used in this paper, this simplification no longer
applies. In [15] and [25], a degradation model and an optimiza-
tion formulation similar to ours were used. The main difference
is that both studies [15] and [25] minimize an approximate
objective function to bypass the difficulty arising from the
entanglement of spectral and spatial information contained in
HS and MS images. More specifically, both studies minimize
only the HS data term and ignore the MS one when updating the
endmembers, and minimize only the MS data term and ignore
the HS one when updating the abundances. On the contrary,
in the proposed method, the exact objective function is mini-
mized directly due to the available Sylvester equation solvers.
Thus, both HS and MS images contribute to the estimation of
endmembers and abundances.

V. EXPERIMENTAL RESULTS

Here, the proposed unmixing-based fusion method is ap-
plied to multiband images associated with both synthetic and
semi-real data. All the algorithms have been implemented using
MATLAB R2014A on a computer with Intel(R) Core(TM) i7-
2600 CPU@3.40 GHz and 8 GB RAM. The MATLAB codes
and all the simulation results are available in the first author’s
homepage.4

A. Quality Metrics

1) Fusion Quality: To evaluate the quality of the fused
image, we use the reconstruction signal-to-noise ratio (RSNR),
the averaged spectral angle mapper (SAM), the universal image
quality index (UIQI), the relative dimensionless global error
in synthesis (ERGAS), and the degree of distortion (DD) as
quantitative measures.

a) RSNR: The RSNR is defined as

RSNR (X, X̂) = 10 log10

(
‖X|2F

‖X− X̂‖2F

)

where X and X̂ denote the actual image and fused image,
respectively. The larger RSNR, the better the fusion quality.

3Note that some other fusion techniques (e.g., [12], [55], and [56]), which
only deal with the fusion problem and do not consider the unmixing constraints,
are not considered in this paper.

4http://sigproc.eng.cam.ac.uk/Main/QW245/

b) SAM: The SAM measures the spectral distortion be-
tween the actual and fused images. The SAM of two spectral
vectors xn and x̂n is defined as

SAM (xn, x̂n) = arccos

(
〈xn, x̂n〉

‖xn‖2‖x̂n‖2

)
.

The overall SAM is obtained by averaging the SAMs computed
from all image pixels. Note that the value of SAM is expressed
in degrees and thus belongs to [0, 180[. The smaller the value
of SAM, the less the spectral distortion.

c) UIQI: The UIQI is related to the correlation, lu-
minance distortion, and contrast distortion of the estimated
image with respect to the reference image. The UIQI be-
tween two single-band images x = [x1, x2, . . . , xN ] and x̂ =
[x̂1, x̂2, . . . , x̂N ] is defined as

UIQI (x, x̂) =
4σ2

xx̂μxμx̂

(σ2
x + σ2

x̂) (μ
2
x + μ2

x̂)

where (μx, μx̂, σ
2
x, σ

2
x̂) are the sample means and variances

of x and x̂, and σ2
xx̂ is the sample covariance of (x, x̂). The

range of UIQI is [−1, 1], and UIQI(x, x̂) = 1 when x = x̂.
For multiband images, the overall UIQI can be computed by
averaging the UIQI computed band by band.

d) ERGAS: The ERGAS calculates the amount of spec-
tral distortion in the image. This measure of fusion quality is
defined as

ERGAS = 100× m

n

√√√√ 1

mλ

mλ∑
i=1

(
RMSE (i)

μi

)2

where m/n is the ratio between the pixel sizes of the MS and
HS images, μi is the mean of the ith band of the HS image,
and mλ is the number of HS bands. The smaller ERGAS, the
smaller the spectral distortion.

e) DD: The DD between two images X and X̂ is
defined as

DD(X, X̂) =
1

nmλ

∥∥∥vec (X)− vec (X̂)
∥∥∥
1

where vec represents the vectorization, and ‖ · ‖1 represents the
�1 norm. The smaller DD, the better the fusion.

2) Unmixing Quality: To analyze the quality of the un-
mixing results, we consider the normalized mean square error
(NMSE) for both endmember and abundance matrices, i.e.,

NMSEM =
‖M̂−M‖2F

‖M‖2F

NMSEA =
‖Â−A‖2F

‖A‖2F
.

The smaller NMSE, the better the quality of the unmixing. The
SAM between the actual and estimated endmembers (different
from SAM defined previously for pixel vectors) is a measure of
spectral distortion defined as

SAMM(mn, m̂n) = arccos

(
〈mn, m̂n〉

‖mn‖2‖m̂n‖2

)
.

The overall SAM is finally obtained by averaging the SAMs
computed from all endmembers.



Fig. 1. Endmember signatures for synthetic data.

B. Synthetic Data

Here, the proposed FUMI method is applied to the synthetic
data and is then compared with the joint unmixing and fusion
methods investigated in [15], [21], and [25].

To simulate high-resolution HS images, natural spatial pat-
terns have been used for abundance distributions as in [57].
There is one vector of abundance per pixel, i.e., A ∈ Rp×1002 ,
for the considered image of size 100 × 100 pixels in [57]. The
reference endmembers, shown in Fig. 1, are m reflectance spec-
tra selected randomly from the U.S. Geological Survey digital
spectral library.5 Each reflectance spectrum consists of L = 221
spectral bands from 400 to 2508 nm. In this simulation, the
number of endmembers is fixed to p = 9. The synthetic image is
then generated by the product of endmembers and abundances,
i.e., X = MA. Considering the different distributions of abun-
dances, five patterns in [57] have been used as the ground-truth
abundances, and all the results in the following sections have
been obtained by averaging these five patterns results.

1) HS and MS Image Fusion: Here, we consider the fusion
of HS and MS images. The HS image YH has been generated
by applying a 11 × 11 Gaussian filter (with zero mean and
standard deviation σB = 1.7) and then by downsampling every
four pixels in both vertical and horizontal directions for each
band of the reference image. A 4-band MS image YM has been
obtained by filtering X with the LANDSAT-like reflectance
spectral responses. The HS and MS images are both contam-
inated by zero-mean additive Gaussian noise. Considering that
the methods in [15], [21], and [25] did not consider weighting
the cost function with the noise covariance knowledge, we have
added noise with identical power to all HS and MS bands to
guarantee a fair comparison. The power of the noise s2 is set to
SNR = 40 dB, where SNR = 10 log(‖XBS‖2F /mλms2).

Before comparing different methods, several implementation
issues are explained in the following.

• Initialization: As shown in Algorithm 1, the proposed al-
gorithm only requires the initialization of the endmember
matrix M. Theoretically, any EEA can be used to initial-
ize M. In this paper, we have used the vertex component

5http://speclab.cr.usgs.gov/spectral.lib06/

analysis (VCA) method [38], which is a state-of-the-art
method that does not require the presence of pure pixels
in the image.

• Subspace Identification: For the endmember estimation,
a popular strategy is to use subspace transformation as a
preprocessing step, such as in [39] and [47]. In general,
the subspace transformation is estimated a priori from the
high-spectral-resolution image, e.g., from the HS data. In
this paper, the projection matrix denoted as E has been
learned by computing the singular value decomposition
(SVD) of YH and retaining the left-singular vectors asso-
ciated with the largest eigenvalues. Then, the input HS
data YH, the HS noise covariance matrix ΛH, and the
spectral responseR in Algorithm 1 are replaced with their
projections onto the learned subspace as YH ← ETYH,
ΛH ← ETΛHE, and R ← RE, where E ∈ Rmλ×m̃λ is
the estimated orthogonal basis using SVD and m̃λ � mλ.
Given that the formulation using the transformed entities
is equivalent to the original one but the matrix dimension
is now much smaller, the subspace transformation brings
huge numerical advantage.

• Parameters in ADMM: The value of μ adopted in all the
experiments is fixed to the average of the noise power
of HS and MS images, which is motivated by balancing
the data term and regularization term. As ADMM is
used to solve subproblems, it is not necessary to use
complicated stopping rule to run ADMM exhaustively.
Thus, the number of ADMM iterations has been fixed
to 30. Experiments have demonstrated that varying these
parameters do not affect much the convergence of the
whole algorithm.

• Stopping rule: The stopping rule for Algorithm 1 is that
the relative difference for the successive updates of the
objective L(M,A) is less than 10−4, i.e.,∣∣L (

M(t+1),A(t+1)
)
− L

(
M(t),A(t)

)∣∣∣∣L (
M(t),A(t)

)∣∣ ≤ 10−4.

• Parameter setting for compared algorithms: The origi-
nal implementation of three state-of-the-art methods in
[15], [21], and [25] was used as baseline. The respec-
tive parameters were tuned for best performance. For
all the algorithms, we use the same initial endmembers
and abundances. For [15] and [21], the threshold for the
convergence condition of NMF was set at 10−4 as the
authors suggested.

The fusion and unmixing results using different methods are
reported in Tables II and III, respectively. Both matrices A and
M have been estimated. For fusion performance, the proposed
FUMI method outperforms the other three methods, with a
price of high time complexity. Berne’s method uses the least
CPU time. Regarding unmixing, Lanaras’ method and FUMI
perform similarly and are both much better than the other two
methods.

Robustness to Endmember Initialization: As the joint fusion
and unmixing problem is nonconvex, owing to the matrix
factorization term, the initialization is crucial. An inappropriate
initialization may induce a convergence to a point which is far



TABLE II
FUSION PERFORMANCE FOR SYNTHETIC HS+MS DATA SET: RSNR (IN DECIBELS), UIQI,

SAM (IN DEGREES), ERGAS, DD (IN 10−2 ), AND TIME (IN SECONDS)

TABLE III
UNMIXING PERFORMANCE FOR SYNTHETIC HS+MS DATA SET: SAMM

(IN DEGREES), NMSEM (IN DECIBELS), AND NMSEA (IN DECIBELS)

TABLE IV
FUSION PERFORMANCE OF FUMI FOR ONE HS+MS DATA SET: RSNR

(IN DECIBELS), UIQI, SAM (IN DEGREES), ERGAS, AND DD (IN 10−2)

TABLE V
UNMIXING PERFORMANCE OF FUMI FOR ONE HS+MS DATA SET:
SAMM (IN DEGREES), NMSEM (IN DECIBELS), AND NMSEA (IN

DECIBELS)

TABLE VI
FUSION PERFORMANCE FOR SYNTHETIC HS+PAN DATA SET: RSNR (IN

DECIBELS), UIQI, SAM (IN DEGREES), ERGAS, DD (IN 10−2 ), AND
TIME (IN SECONDS)

from the desired endmembers and abundances. To illustrate this
point, we have tested the proposed algorithm by initializing the
endmembers M0 using different EEAs, e.g., N-FINDR [58],
VCA [38], and SVMAX [59]. The fusion and unmixing results
with these different initializations have been given in Tables IV
and V. With these popular initialization methods, the fusion
and unmixing performances are quite similar and show the
robustness of the proposed method.

2) HS and PAN Image Fusion: When the number of MS
bands degrade to one, the fusion of HS and MS degenerates
to HS pansharpening, which is a more challenging problem.
In this experiment, the PAN image is obtained by averaging
the first 50 bands of the reference image. The quantitative
results for fusion and unmixing are summarized in Tables VI
and VII, respectively. In terms of fusion performance, the
proposed FUMI method outperforms the competitors for all the
quality measures, using, however, the most CPU time, whereas
Lanaras uses the least. Regarding the unmixing performance,
Lanaras’ method and FUMI yield the best estimation result,
outperforming the other two methods.

TABLE VII
UNMIXING PERFORMANCE FOR SYNTHETIC HS+PAN DATA SET: SAMM

(IN DEGREES), NMSEM (IN DECIBELS), AND NMSEA (IN DECIBELS)

Fig. 2. HS and MS fusion results (Moffett data set): (Top 1) HS image.
(Top 2) MS image. (Top 3) Reference image. (Bottom 1) Berne’s method.
(Bottom 2) Yokoya’s method. (Bottom 3) Lanaras’ method (Bottom 4) Pro-
posed FUMI.

TABLE VIII
FUSION PERFORMANCE FOR MOFFETT HS+PAN DATA SET: RSNR (IN

DECIBELS), UIQI, SAM (IN DEGREES), ERGAS, DD (IN 10−2), AND

TIME (IN SECONDS)

C. Semi-real Data

Here, we test the proposed FUMI algorithm on semi-real data
sets, for which we have the real HS image as the reference im-
age and have simulated the degraded images from the reference
image.

In this experiment, the reference image is an HS image
of size 200× 100× 176 acquired over Moffett field, CA,
in 1994 by the JPL/NASA airborne visible/infrared imaging
spectrometer (AVIRIS). This image was initially composed of



Fig. 3. Unmixed endmembers for Moffett HS+MS Data Set: (Top bottom left) Estimated three endmembers and ground truth. (Bottom right) Sum of absolute
values of all endmember errors as a function of wavelength.

224 bands that have been reduced to 176 bands after removing
the water absorption bands. A composite color image of the
scene of interest is shown in the top right of Fig. 2. As
there is no ground truth for endmembers and abundances for
the reference image, we have first unmixed this image (with
any unsupervised unmixing method) and then reconstructed
the reference image X with the estimated endmembers and
abundances (after appropriate normalization). The number of
endmembers has been fixed to p = 5.

1) HS and MS Image Fusion: The observed HS image
has been generated by applying a 7 × 7 Gaussian filter with
zero mean and standard deviation σB = 1.7 and by down-
sampling every four pixels in both vertical and horizontal
directions for each band of X, as done in Section V-B1. Then, a
4-band MS image YM has been obtained by filtering X with

the LANDSAT-like reflectance spectral responses. The HS and
MS images are both contaminated by additive Gaussian noise,
whose SNRs are 40 dB for all the bands. The reference imageX
is to be reconstructed from the coregistered HS and MS images.

The proposed FUMI algorithm and other state-of-the-art
methods have been implemented to fuse the two observed
images and to unmix the HS image. The fusion results are
shown in Fig. 2. Visually, FUMI give better fused images than
the other methods. Furthermore, the quantitative fusion results
reported in Table VIII are consistent with this conclusion as
FUMI outperforms the other methods for all the fusion metrics.
Regarding the computation time, FUMI costs more than the
other three methods, mainly due to the alternating update of
the endmembers and abundances and also the ADMM updates
within the alternating updates.



Fig. 4. Unmixed abundance maps for Moffett HS+MS Data Set: Estimated
abundance maps using (Row 1) Berne’s method, (Row 2) Yokoya’s method,
(Row 3) Lanaras’ method, and (Row 4) proposed FUMI. (Row 5) Reference
abundance maps. Note that abundances are linearly stretched between 0 (black)
and 1 (white).

The unmixed endmembers and abundance maps are dis-
played in Figs. 3 and 4, whereas quantitative unmixing results
are reported in Table IX. For endmember estimation, compared
with the estimation used for initialization, all the methods
have improved the accuracy of endmembers. FUMI offers the
best endmember and abundance estimation results. This gives
evidence that the estimation of endmembers benefits from being
updated jointly with abundances, due to the complementary
spectral and spatial information contained in the HS and high-
resolution MS images.

2) HS and PAN Image Fusion: Here, we test the proposed
algorithm on HS and PAN image fusion. The PAN image

TABLE IX
UNMIXING PERFORMANCE FOR MOFFETT HS+PAN DATA SET: SAMM

(IN DEGREES), NMSEM (IN DECIBELS) AND NMSEA (IN DECIBELS)

TABLE X
FUSION PERFORMANCE FOR PAVIA HS+PAN DATA SET: RSNR

(IN DECIBELS), UIQI, SAM (IN DEGREES), ERGAS, DD (IN 10−2),
AND TIME (IN SECONDS)

TABLE XI
UNMIXING PERFORMANCE FOR PAVIA HS+PAN DATA SET: SAMM

(IN DEGREES), NMSEM (IN DECIBELS), AND NMSEA (IN DECIBELS)

is obtained by averaging the first 50 bands of the reference
image plus Gaussian noise (SNR is 40 dB). Due to the space
limitation, the corresponding quantitative fusion and unmixing
results are reported in Tables X and XI, and the visual results
have been omitted. These results are consistent with the analy-
sis associated with the Moffet HS+MS data set. For fusion,
FUMI outperforms the other methods with respect to all quality
measures. In terms of unmixing, FUMI also outperforms the
others for both endmember and abundance estimations, due to
the alternating update of endmembers and abundances.

VI. CONCLUSION

This paper proposed a new algorithm based on spectral un-
mixing for fusing multiband images. Instead of solving the as-
sociated problem approximately by decoupling two data terms,
an algorithm to directly minimize the associated objective func-
tion has been designed. In this algorithm, the endmembers and
abundances were updated alternatively, both using an ADMM.
The updates for abundances consisted of solving a Sylvester
matrix equation and projecting onto a simplex. Due to the
recently developed R-FUSE algorithm, this Sylvester equation
was solved analytically and thus efficiently, requiring no iter-
ative update. The endmember updating was divided into two
steps: least squares regression and thresholding, which are both
not computationally intensive. Numerical experiments showed
that the proposed joint fusion and unmixing algorithm com-
pared competitively with three state-of-the-art methods, with
the advantage of improving the performance for both fusion
and unmixing. Future work will consist of incorporating the
spatial and spectral degradation into the estimation framework.
Extending the proposed method to other feature- or decision-
level fusion will also be relevant.
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