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A B S T R A C T

Hypoxia-inducing pathologies as cancer develop pathologic and inefficient angiogenesis which rules tumor
facilitating microenvironment, a key target for therapy. As such, the putative ability of endothelial pre-
cursor cells (EPCs) to specifically home to hypoxic sites of neovascularization prompted to design optimized,
site-specific, cell-mediated, drug-/gene-targeting approach. Thus, EPC lines were established from aorta–
gonad–mesonephros (AGM) of murine 10.5 dpc and 11.5 dpc embryo when endothelial repertoire is
completed. Lines representing early endothelial differentiation steps were selected: MAgEC10.5 and
MagEC11.5. Distinct in maturation, they differently express VEGF receptors, VE-cadherin and chemokine/
receptors. MAgEC11.5, more differentiated than MAgEC 10.5, displayed faster angiogenesis in vitro, different
response to hypoxia and chemokines. Both MAgEC lines cooperated to tube-like formation with mature
endothelial cells and invaded tumor spheroids through a vasculogenesis-like process. In vivo, both MAgEC-
formed vessels established blood flow. Intravenously injected, both MAgECs invaded MatrigelTM-plugs
and targeted tumors. Here we show that EPCs (MAgEC11.5) target tumor angiogenesis and allow local
overexpression of hypoxia-driven soluble VEGF-receptor2 enabling drastic tumor growth reduction. We
propose that such EPCs, able to target tumor angiogenesis, could act as therapeutic gene vehicles to inhibit
tumor growth by vessel normalization resulting from tumor hypoxia alleviation.

© 2015 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-
NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Angiogenesis, the fundamental process of tissue vasculariza-
tion, is induced by hypoxia in pathological contexts as cancer. Hypoxia
occurs in the growing tumor and, to provide oxygen and nutrients

to the tumor, angiogenesis proceeds by not only recruiting vicinal
endothelial cells (ECs) but also circulating endothelial progenitor-
like cells (EPCs) [1] thus achieving neo-vasculogenesis. Involved in
tissue regeneration, these cells provide a potential therapeutic tool
[2]. Despite controversies about the definition, characterization and
classification of EPCs [3–6], cells presenting endothelial precursor
features appeared to be involved in physiological and pathological
processes in adults [7–12]. To clarify the definition, works about EPCs
report the identification and characterization of new cell popula-
tions by describing increasingly complex EPC markers. They include
VEGF receptors (VEGFR2, KDR, Flk-1), VE-cadherin, CD34, platelet
endothelial cell adhesion molecule (PECAM; CD31), von Willebrand
factor (VWF), the receptors for acetylated low-density lipoprotein
(AcLDL) and for lectins as Bandeiraea simplicifolia-1 (BsA-1) and
Ulex europaeus agglutinin-1 (UeA-1) [3,13–17].
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As such, EPCs have been found to be recruited and incorporat-
ed into neoangiogenic sites [18]; thus, they might participate to the
proangiogenic effect of the bone marrow recruited cells and be well-
suited tool to target pathologic sites [19]. The use of EPCs for
therapeutic applications has been elaborated as a strategy to enhance
endothelium regeneration [20–24], and EPCs were hypothesized to
operate as vehicles to reach developing tumors for local therapies
[25].

To study and optimize such strategies, an EPC model was needed.
The use of well-defined and characterized cells was to provide a
clear-cut answer to the question of tumor angiogenesis-mediated
recruitment. In this line, such a well-defined EPC model should also
be suitable as gene carrier to treat locally the tumor site via in situ
incorporation in the vessels allowing the expression of the chosen
gene in the local microenvironment.

In this purpose, we undertook to build a cell model of imma-
ture endothelial cells, characterize and define the best suited cell
phenotype for tumor targeting and test their ability to express our
previously described therapeutic gene for VEGF trap, i.e. the hypoxia-
conditioned soluble receptor-2 for VEGF [26], which was shown to
normalize the tumor vasculature. As the first cells committed to the
endothelial lineage appear in aorta–gonad–mesonephros (AGM)
[27,28], cells were isolated from this region at 10.5 and 11.5 days
post conception (dpc), at which time cells diverge from the
hemangioblast; the populations of the endothelial repertoire are po-
tentially expressing the distinct degrees of endothelial maturation
and are active, as described for hematopoietic cell production [29].
It has been reported that these cells express differentially CD34 [30],
CD31, VEGFR2 (also known as Flk-1 and KDR) [31] and Tie-2 (also
known as TEK and CD202) [32]. This total repertoire was expected
for further establishment of cell lines allowing the determination
of the proper phenotype of angiogenesis recruited EPCs.

Cell lines (patent pending) could be established; two of them
were chosen as representing distinct endothelial differentiation steps
at 10.5 dpc and 11.5 dpc. They were selected on the basis of their
differentiation characteristics and called MAgECs (mouse aorta–
gonad–mesonephros endothelial cells) 10.5 and 11.5. We used these
lines to find out whether properly defined EPCs at precise differ-
entiation step are able or not to target an angiogenic site. In such
case, the present progress in induced pluripotent stem cell (iPS) [33]
manipulation offers the potential to reach the proper EPC differ-
entiation level [34] efficient for angiogenesis targeting [35]. iPS-
derived EPCs can actively home in the tumor and metastasis sites,
and upon genetic modification by a T cell costimulatory molecule,
they reduce the numbers of metastatic sites as shown recently with
CD40L-expressing cells [36].

We show here that the cell lines established from the AGM display
endothelial precursor characteristics in terms of phenotype and an-
giogenic properties, depending on their maturation stage. Their
potential to provide an effective cell model of EPC in vivo is proven
by their ability to reach neoangiogenic sites and to cooperate with
mature endothelial cells in the formation of angiogenesis function-
al network, thus participating to normal neovessel formation inside
the tumor. Moreover, isolated, immortalized and characterized, en-
dothelial precursor cell lines permitted to establish the proof of
concept that an efficient cell-mediated gene therapy can be achieved
with EPCs as vehicles. This is demonstrated in this work with MAgECs
carrying a hypoxia-conditioned therapeutic gene which were able
to target a tumor and reduce its growth. We show that gene therapy
can be addressed by defined EPCs to hypoxia-developing diseases
which, as cancer, set pathologic angiogenesis for their develop-
ment. Differing from VEGF traps, this method brings the means to
get a natural cell-mediated targeting of hypoxia-conditioned and
reversible msVEGFR2 gene expression. It may meet the challenge
of alleviating hypoxia instead of starving tumors to potentiate new
anti-tumor strategies [37,38].

Materials and methods

Ethics statement

All animal related experiments were conducted in accordance with the ap-
proved guidelines and regulations. Experimental protocols were approved by the
French Ethics Committee for Animal Experimentation CNRS Orleans Campus CNREEA
03 Ethics Committee, authorization number CLE CCO 2010-004.

Isolation of mouse aorta–gonad–mesonephros embryonic cells (MAgECs)

Animal care and experimental procedures were approved by the CNREEA 03 Ethics
Committee. Embryos were taken from 10.5 dpc and 11.5 dpc pregnant FVB mice
(TAAM CNRS, Orléans). Aorta–gonad–mesonephros (AGM) regions were isolated and
washed extremely gently in RPMI (Gibco Invitrogen) supplemented with FBS 15%
(PAA, Austria) and 40 μg/mL gentamicin (Gibco Invitrogen). Then the AGM derived
tissues were cut into very small pieces and cell cultures were started at 37 °C in a
5% CO2/95% air atmosphere in plastic culture plates (Falcon, Becton Dickinson, USA)
using OptiMEM (Gibco Invitrogen) supplemented with 2% FBS, 40 μg/mL gentami-
cin (Gibco Invitrogen) and 0.5 μg/mL fungizone (Gibco Invitrogen). Cells were further
immortalized and cultured as indicated in the Supplementary methods.

Cell culture in hypoxia

Cells were placed in a humidified atmosphere containing 1% oxygen. This con-
trolled oxygen pressure was obtained by introducing 95% N2/5% CO2 gas mixture (Air
Liquide, Paris, France) in an automated PROOX in vitro chamber (C-174, BioSpherix)
under the control of a PROOX sensor-model 110 (BioSpherix). For larger scale culture
and spheroid settings, hypoxia was established in the H35 HypOxystation (HypOxygen)
using the various substrates and the media were kept for at least 10 h in hypoxia
before use to enable the equilibrium between liquids and the atmosphere.

Quantitative PCR

Extraction of cellular mRNA was performed using the RNeasy Plus mini kit
(Qiagen) according to the manufacturer’s instructions. The hypoxia stimulation of
MAgECs 10.5 and 11.5 was stopped after 24 hours with RNA isolation. All ex-
tracted mRNAs were eluted in RNase-free water. Absorption spectra were measured
on an ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE) before
being stored at −80 °C. RNAs were reverse-transcribed to cDNA using “Maxima First
Strand cDNA Synthesis kit for RT-qPCR” (Fermentas). All reactions were completed
in triplicate and reported as the average. For reference, 7 housekeeping genes were
tested. Mean and standard deviation were calculated and the gene which had the
lowest standard deviation was chosen for reference. For each target gene, mean and
standard deviation were calculated by cell line (10.5 or 11.5) and condition (normoxia
or hypoxia), then normalized by the corresponding value for reference gene (PPIA)
to obtain the ΔCp which is expressed as 2−ΔCt. In the second step, the same method
was used to compare hypoxia to normoxia and obtain the ΔΔCp.

Characterization at the protein expression level was assessed by immunochem-
istry, cytometry, and ELISA (Supplementary methods).

In vitro pseudo tube formation assay

Pseudo tube formation was performed on 96-well plates coated with 50 μL of
Matrigel™ (BD Biosciences, San José, CA) diluted at ½ in OptiMEM. After polymer-
ization at 37 °C, 8 × 103 cells/well were seeded in OptiMEM and the plate was
introduced into the incubation chamber of the video microscope station. Con-
trolled time-lapse acquisitions each 30 minutes were performed over 24 h with a
Zeiss Axiovert 200M fluorescence inverted microscope (Zeiss) equipped with an
Axiocam high-resolution numeric camera linked to a computer driving the acqui-
sition software Axiovision (Zeiss). Tube-like and network structures were documented
after 12 hours of culture. Each MAgEC cell line was studied independently and mixed
together with mature endothelial cells to study hybrid angiogenesis.

In vivo vascularization

All animal experiments were approved by the CNREEA 03 Ethics Committee. 8
to 10-week-old female C57Bl/6 mice (Janvier S.A.S, Le Genest-St-Isle, France) were
used for the studies. Mice were anesthetized by 2.5 vol % isoflurane (Aerrane®,
Maurepas, France)/air mixture injected at 2 L/min. After site disinfection with 70%
ethanol, 250 μL of MatrigelTM (BD Biosciences, Matrigel matrix phenol red free,
356237) supplemented with 500 ng/mL bFGF (R&D Systems) was mixed with cell
culture medium (OptiMEM) 1:1 vol containing 105 cells, MAgEC 10.5 or MAgEC 11.5.
The mixture was introduced subcutaneously in the abdominal region using a 21-
gauge needle. Control was a cell free plug bearing mouse. Matrigel plug was imaged
10 days after by ultrasound imaging, macroscopic evaluation of vessel structures
and surgical removal. 100 μL of a TRITC–dextran (MW 2,000,000, FD2000S, Sigma)
solution at 10 mg/mL in saline was intravenously injected in the tail vein for an-
giogenesis visualization using a Nikon AZ100 Multizoom, equipped with an EMCCD
Evolve 512 photometric camera and driven by the Nikon NIS Element BR software.
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Acquisitions were done on reversed skin of the sacrificed mice. For epi fluores-
cence imaging Intensilight HGFIE HG, pre-centered fiber illuminator (130 W mercury)
was used. Fluorescence channels filter (Semrock, Rochester, New York, USA) com-
binations for FITC: λex 482/35 nm, beam splitter 506 nm, λem 536/40 nm; for TRITC:
λex 543/22 nm, beam splitter 562 nm, λem LP561 nm.

Ultrasound imaging

Plug images were acquired using a VisualSonics Vevo® 2100 Imaging System
(VisualSonics Inc., Toronto, Ontario, Canada) connected to MS500D ultrasound trans-
ducers (22–55 MHz). Before imaging, the region of interest was depilated by a cream
(Veet). Imaging was performed under anesthesia. A medical ultrasound acoustic gel
was used as a coupling fluid between the transducer and the skin. Biological pa-
rameters were constantly monitored with the VisualSonics integrated rail system
with physiological monitoring unit to assess the electrocardiograms (ECGs) of the
animals and respiratory rate. Body temperature was maintained at 37.5 °C.

Ultrasound imaging was performed with B-mode to locate the MatrigelTM plug
and to position the transducer perpendicularly to the body. Then blood flow (vein
and artery) was measured using color Doppler mode and fitting it with B-mode
imaging.

The imaging was driven and computed with VisualSonics Vevo® 2100 software.

GFP+ MAgEC cell line establishment

Both MAgEC cells, 10.5 and 11.5, were transfected with a GFP coding vector
(pdAAV-CMV-GFP, 4994 bp, J. Stepniewski). Transfections were performed using the
jetPEITM (Polyplus Transfection, France) as DNA complexing agent according to the
manufacturer’s instructions with the ratio: 1 μg DNA/1 μL of jet-PEI solution. After
recovery, transfected cells were cloned by a MoFlo™ cell sorter (MoFlo™, Beckman
Coulter, Miami, FL, USA). The higher stably GFP expressing clones, for each MAgECs
10.5 and 11.5, were selected and expanded.

In vivo MAgEC recruitment at angiogenic sites

To assess the recruitment of MAgEC cells to newly forming blood vessels, a neo-
angiogenic site was induced by Matrigel plug into adult female C57Bl/6 mice (6–8
weeks old) (Janvier, France). Briefly, 500 μL of Matrigel containing 500 ng/mL
VEGF + bFGF was implanted by subcutaneous injection in the abdominal region. After
Matrigel polymerization, 2 × 106 GFP+-MAgECs 10.5 and 11.5 into 100 μL of saline
were intravenously injected in the tail vein. After 10 days following the GFP+-
MAgEC injection, the mice were sacrificed and peripheral blood was collected by
cardiac punction with citrate syringe (citrate-dextrose solution, Sigma, C3821). After
RBC lysis, single-cell suspensions were filtered using a 70 μm cell strainer (BD Falcon,
352350) just before flow cytometer analysis. Single cell suspensions were pre-
pared from the plugs, lungs, and bone marrows by collagenase digestion of 1–3 mm3

fragments (1.0 mg/mL (Invitrogen) in PBS–FBS 10% for 2 hours at 37 °C). Then, cells
were filtered using the 70 μm cell strainer (BD Falcon, 352350) and washed twice
before analysis and analyzed with a BD LSR-I flow cytometer (Becton and Dickin-
son). The proportion of GFP+ cells was investigated in each sample collecting 106

events. For histochemistry plugs were analyzed at day 7 after MAgEC injection.

MAgEC transfection by msVEGFR2 hypoxia dependent gene expressing vector

Vectors (pHREmsVEGFR2, pIFP1.4-HREmsVEGFR2, and IFP1.4_pcDNA3.1H.ape)
were introduced into MAgECs to establish stable cell lines as described [26] by the
cationic lipid “lipofectin” and “lipofectamine” (Invitrogen, Carlsbad, CA) methods.
Transfected cells were selected by hygromycin, and resistant colonies were single-
cell cloned by a FACS DIVA cell sorter (Becton and Dickinson, Sunnyvale, USA) and
expanded. Clones were screened on the basis of their msVEGFR2 secretion in hypoxia
(1% O2) using ELISA method (R&D DY1558B).

MAgECs targeting of tumors and therapeutic gene expression

Transfected MAgEC clones were selected on the basis of msVEGFR2 expression
in hypoxia (Supplementary results), were DiD-labeled and were used to be i.v. in-
jected (106) to B16 tumor carrying mice, 9 days after tumor development (104 B16
cells per mouse). After 7 days the various organs and the tumors were isolated,
weighed and analyzed for the MAgEC cell content by flow cytometry analysis on
the FACS DiVa flow cytometer (Becton and Dickinson). As representative, statisti-
cal data were collected upon accumulation of 106 cells. Controls were obtained upon
similar injection of PFA (3%)-fixed DiD-labeled MAgEC cells and MAgEC cells car-
rying the msVEGFR2 expression vector.

Spheroid formation

Spheroids were generated as described by Korff et al. [39]. From trypsinized con-
fluent monolayer, 106 cells were labeled with 5 μL of the fluorescent Vybrant® Dye
(Life Technologies, V-22889) in 1 mL of serum free medium and incubated 10 minutes
at 37 °C. Then 1000 B16F10 cells were mixed with 0.25% (w/v) methylcellulose (Sigma)
solution in culture medium (100 μL) and seeded in non-tissue culture treated 96-

well plate V-shaped (Nunc, 277143). After 48 h of incubation at 37 °C in a 5% CO2/
95% air atmosphere, a single spheroid per well was obtained. Where noticed, to mimic
tumor angiogenesis the fluorescent tumor cells were mixed in a 100/1 ratio with
mature endothelial cells (MLuMEC) to form the spheroids.

For further introduction into a 3D matrix, spheroids were taken from the 96-well
plate, washed by sedimentation, and mixed with non-polymerized collagen-based
matrix together with the additional cells for further study. The matrix composi-
tion was: 1.6 mg/mL collagen type I (BD Biosciences, rat tail high concentration,
354249), 1.12% of methylcellulose (R&D System, HSC001) and 10% SVF. In a 1.5 cm
diameter well, 225 μL of the matrix mixed with 30 spheroids and 105 Vybrant Dye
labeled MAgEC10.5 or MAgEC11.5 or MLuMECs cells was deposited. After matrix po-
lymerization at 37 °C, the plate was introduced into the incubation chamber of the
video Zeiss Axio Observer Z1 fluorescence inverted microscope (Zeiss) equipped with
an ORCA-R2 high-resolution CCD camera linked to a computer driven-acquisition
software Axiovision (Zeiss) to control time-lapse acquisitions (30 min) over 24 h.

Cell recruitment toward spheroids was analyzed with the RG2B colocalization
plug in with the NIH ImageJ software. Integrated density of colocalized pixels is used
for the analysis.

Magnetic resonance imaging

10 days before the imaging, mice were injected subcutaneously with 5 × 105

B16F10 wt melanoma in 0.9% NaCl (w/v) in 10 × 106 cells/mL and mixed 1:1 (v:v)
with Matrigel before the injection.

For magnetic resonance imaging, cells were labeled with Anionic Magnetic
NanoParticles (AMNP) kindly provided by Dr Florence Gazeau (MSC laboratory, CNRS/
University Paris Diderot, Paris France). After rinsing with OptiMEM, 5 mM sodium
citrate containing 2 mM AMNP was added and cells were incubated in 37 °C, 5% CO2

for 15–20 minutes, then the medium was changed to complete OptiMEM. Cells were
used for intravenous injections 24 h after labeling at a 10 × 106 cells/mL concen-
tration. 100 μL of cell suspension was injected intravenously to B16F10 tumor
harboring mice. Control were mice injected with 1 × 106 4% PFA killed labeled
MAgEC11.5 and mice injected with 100 μL of 0.9% NaCl (w/v). Mice were imaged
with Bruker BioSpin 9.4 T spectroscope before and 24 h after the intravenous injections.

MR experiments were performed on an imaging spectrometer equipped with
a 9.4 T horizontal shielded magnet (94/20 Ultra Shielded Refrigerated (USR), Bruker
Biospec), a B-G06 gradient system (950 mT/m maximum gradient strength and 60 mm
inner diameter), a BLAH1000 RF power amplifier and the Paravision 4.0 software
(Bruker Biospin MRI, Wissembourg, France). The anesthetized mice were placed in
a linear homogeneous coil (inner diameter: 35 mm) under gaseous anesthesia during
MRI experiments (50% N2O, 0.7 L/min–50% O2, 0.7 L/min–isoflurane, 1.5%). The body
temperature (36 °C) was maintained constant by a warm water circulation heating
bed. Breathing rate was monitored by an air pillow placed on the mouse chest to
adjust the anesthetic output.

FLASH pulse sequence was used. Total duration: 12 min, NS = 4, 63 axial slices
were acquired (slice thickness: 0.5 mm), FOV: 3.0 × 3.0 cm, 256 × 256 matrix, reso-
lution: 117 × 117 μm, TE = 4.34 ms, TR = 700 ms, Hermitian pulse (1.0 ms).

Results

Establishment of immortalized cell lines from AGM region of murine
10.5 dpc and 11.5 dpc embryos

From the AGM region of murine 10.5 and 11.5 dpc embryos, we
immortalized as described and obtained many cloned cell lines. Two
representative lines were selected and called MAgEC 10.5 and MAgEC
11.5 respectively. Their doubling time was approximately 24 hours.
As reported in Fig. 1A, their morphologies were different. MAgEC
10.5 displayed a more dendritic/mesenchymal aspect than MAgEC
11.5 cells which were less elongated and had square shapes. Con-
fluence was reached at a cell density close to 8 × 104 cells/cm2 when
MAgEC 10.5 take a more cobblestone-like aspect than at weaker con-
centration (Fig. 1A).

MAgECs 10.5 and 11.5 express endothelial stem cell markers and
angiogenesis regulation factors

Immortalized cells (Fig. 1A) were extensively characterized for
stem (Fig. 1B), endothelial (Fig. 1B, C) and mesenchymal markers
(Fig. 1B). MAgECs are both highly expressing the Sca-1 stem cell
marker and the CD34 as well. CD133 was not expressed on any of
the lines. Mesenchymal stem cell combination of markers CD90 and
CD105 was detected and CD29 and CD49e integrins were highly
expressed.
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Fig. 1. MAgEC characterization of endothelial precursor phenotype. (A) Murine AGM-derived progenitor endothelial cells, MAgEC 10.5 and MAgEC 11.5, cultured as mono-
layers. Scale bars = 100 μm. (B) MAgEC lines 10.5 and 11.5 cell surface receptor expression analyzed by flow cytometry. Table results represent the difference of the mean
cell fluorescence intensity upon binding of the selected antibodies as described in the Materials and methods vs their isotype controls. Results are expressed in ΔIF. (C)
Immunocytochemical staining of MAgECs 10.5 and 11.5 by endothelial cell markers antibodies: anti-vWF, anti-ACE, anti-CD31 and anti-VE-cadherin antibodies (green). Scale
bare = 20 μm. (D, E) mRNA gene expression by EPCs, histogram D represents the normalized qPCR mRNA expression for endothelial adhesion molecules, endothelial cytokines
and their receptors. Histogram E represents expression of mRNAs for chemokines and chemokine receptors. Results are normalized using the house keeping PPIA gene
(peptidylprolyl isomerase A/cyclophilin A) and expressed as 2−ΔCt. Values are mean ± SD (n = 3). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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The absence of CD45 excluded a commitment toward the he-
matopoietic lineage. As stem cell marker was detected at the surface
of EPCs, c-kit is poorly expressed on MAgEC 10.5 but is present on
MAgEC 11.5. Interestingly, both MAgEC lines also express EPCs/
mature endothelial cell markers such as PECAM (CD31), von
Willebrand factor (vWF), angiotensin converting enzyme (ACE) and
the L-selectin ligand, Podocalyxin-like protein 1 (PODXL), while ex-
pression of EphB4 indicates a venous vessel commitment.

These markers are indicative but not exclusively typical for en-
dothelial cells and their precursors. EPC markers like VEGFR2 (KDR)
are poorly expressed or not detected like the prominin (CD133) and
Tie-2, the receptor for angiopoietins 1 and 2.

Differences in the expression of the endothelial differentiation
markers appear between MAgEC10.5 and 11.5 indicating a more ad-
vanced differentiation of the MAgEC11.5 toward the endothelial
lineage. Indeed, Fig. 1C shows the presence of endothelial intracel-
lular markers: ACE, vWF and PECAM-1 (CD31) in both cell lines, but
VE-cadherin (CD144) expression is restricted to MAgEC 11.5 cells
which express also higher levels of PODXL protein than MAgEC 10.5
(Fig. 1B).

These data were confirmed at the mRNA expression level mea-
sured by qPCR and reported in Fig. 1D. All detected markers for stem
(Sca-1, CD34), mesenchymal (CD29, CD49, CD90 and CD105) and
endothelial lineage (CD117, CD31, vWF, ACE) had a high mRNA ex-
pression. Distinctions appeared in CD309, CD133 and CD202 as their
mRNAs are highly expressed while the protein was not detected.
The endothelial factors were assessed showing that mRNAs for the
main pro-angiogenic and regulatory molecules (VEGF-A, -B, -C and-
D, Angiopoietin 1 and 2, PDGF-A and -B) were expressed by both
cell lines.

MAgEC10.5 and MAgEC11.5 functional characteristics in
chemoattraction and response to hypoxia

Angiogenic process depends on parameters as chemoattraction
and hypoxia.

Chemoattraction potential was analyzed through the expres-
sion of mRNAs for a set of chemokines and their receptors. Fig. 1E
shows the expression of the chemokine receptors involved in the
cell invasion as CXCR4 and CCR7 as well as their ligands. CXCL12
is produced by both cells but it is remarkable that, as opposed to
CCL21b, CCL21a is detected in MAgEC10.5 only. Moreover, MAgEC
11.5 differ from 10.5 by their higher level of expression of CX3CL1and
CCL17 chemokines.

As hypoxia is a feature important in embryonic development,
stem cell niches and tumor environment where cancer stem cells
and endothelial precursors play crucial interactions, the pheno-
type of MAgECs was analyzed both in normoxic and hypoxic
conditions, with regards to the functional markers of endothelial
precursors. Fig. 2A reports the differential expression of the genes
in hypoxia vs normoxia. The genes as CD143(ACE) and VEGF-A, which
were differentially expressed upon hypoxia (Fig. 2A), confirmed a
more advanced differentiation of MAgEC 11.5 toward the endothe-
lial lineage as compared to MAgEC10.5. This was corroborated by
Sca-1 expression which increased upon hypoxia, in MAgEC10.5 only.
Importantly, hypoxia induced a clear increase in Ang2 in both lines,
which was accompanied by a reduced expression of Ang1 upon
hypoxic treatment.

Hypoxia had a direct impact on the chemokines and chemokine
receptor pattern of expression (Fig. 2B). Mostly modulated are the
CCL21, a and b, that are involved in the recruitment of CCR7+ cells,
while CCR10 overexpression indicates a response to CCL28. CXCL17
(also called VEGF co-regulated chemokine-1) increase corre-
sponds to VEGF co-regulatory effect in hypoxia. The CX3CR1
expression increase reflects a possible modulatory effect on

non-mature MAgEC10.5 and the CXCL12 (SDF1-α)/CXCR4 in-
crease on both lines in hypoxia similarly to the CCL27 (CTACK)/
CCR10 suggests a role of these two strong chemoattraction axes for
endothelial precursor cell-mediated tissue invasion.

Modulation of protein expression by hypoxia had to be com-
pared to the mRNA modulation. Fig. 2C indicates that MAgEc11.5
only were able to secrete the growth, permeabilizing and
chemottractant factor VEGF-A which was induced by hypoxia.
These cells also produced and secreted CX3CL1 (Fractalkine), CCL17
(TARC) and CXCL12 (SDF1-α). Hypoxia upregulated CXCL12 and
downregulated CX3CL1. Both lines produced CCL27 (CTACK);
CCL5 was produced mainly by MAgEC 10.5. Fig. 2D shows the
cytofluometric detection of the corresponding chemokine recep-
tors on MAgECs. CX3CR1 upregulation suggests a possible endocrine
type of action on MAgEC 11.5 only. CXCR4, present on both lines
in normoxia, was downregulated upon hypoxia in MAgEC 10.5.
CCR10, clearly present only on MAgEC11.5 in normoxia, disap-
peared upon hypoxia treatment. CCR5, as opposed to its ligand, is
restricted to MAgEC 11.5 excluding an autocrine activation by RANTES
(CCL5). CCR4 expression appeared hypoxia-dependent in both lines
and is not related to CCL17 expression. CCR7, although present on
both lines, was downregulated by hypoxia and secretion of its ligand
CCL21 was not detected. Although both cell lines present features
of non-hematopoietic mesenchymal like stem cells and endothe-
lial precursor cells, they do not strictly belong to a defined category.
The protein expression data confirm distinct maturation steps of
the MAgEC lines.

MAgEC10.5 and MAgEC11.5 functional characterization by
angiogenic properties

The angiogenic potential of MAgEC10.5 and 11.5 cells was in-
vestigated in a Matrigel assay. Fig. 3A shows that MAgEC11.5
generated tube-like structures and networks within 12 h, starting
the tube-like organization as early as 4 h. MAgEC10.5 cells did not
form such networks. They did not make closed structures or pseudo-
vessels; only cell-to-cell contacts were detected. This is in favor of
an immature phenotype of MAgEC10.5 cells and confirms that
MAgEC11.5 are more advanced toward the endothelial differenti-
ation as they form pseudo-tubes in conditions where MAgEC 10.5
did not, in the absence of proangiogenic factors (Fig. 3A).

The differential distribution of chemokines/receptors and the en-
hanced selective hypoxia-dependent induction of expression among
the two MAgEC cell lines prompted us to precise their effects on
the early precursor-like cells that MAgEC10.5 putatively repre-
sent. Fig. 3B demonstrates that both CX3CL1 and CCL21 acted as
maturation factors for MAgEC10.5 by inducing them to achieve tube
like formation in vitro. This suggests that MAgECs could be re-
cruited under the effect of such chemoattractants into angiogenic
sites where neovascularization occurs. This was tested in co-
culturing MAgEC lines with mature endothelial cells and assessing
for pseudo tube formation. Fig. 3C reports the efficient coopera-
tion of both MAgEC lines with each other and with the mature
MLuMEC lung microvascular cells to produce pseudo vessels indi-
cating that although MAgEC10.5 cells alone are not able to make
vessels, both endothelial precursor cell types could participate to
the neovascularization as occurs in the developing tumors.

This was confirmed in vivo by the demonstration of MAgEC cells’
ability to form functional vessels in an artificially-induced angio-
genic site. Matrigel plugs are known to serve as angiogenesis
inducers. Fig. 3D shows that ultrasound detection of blood flow inside
and around the Matrigel plug indicated a faint angiogenic network
in the plug (Fig. 3Da), as confirmed by the fluorescence macroscop-
ic detection (Fig. 3Dg). When the MAgEC cells were incorporated
in the Matrigel, angiogenesis was clearly increased as can be
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Fig. 2. Modulation of MAgEC gene expression in response to hypoxia. (A) Fold change of endothelial adhesion molecules, differentiation antigens and endothelial function
molecules and cytokines and their receptors estimated by qPCR of their mRNA expression in hypoxia vs normoxia. MAgEC 10.5 and 11.5 lines were cultured in 21% O2 (normoxia)
and 1% O2 (hypoxia). Values are mean ± SD (n = 3). (B) Differential expression of the mRNA estimated by qPCR for various chemokines and chemokine receptors. All results
expressed as fold change as in (A). Values are mean ± SD (n = 3). (C) CCR7, CCR 4, CCR 10, 5 CCR, CX3CR1, and CXCR4 chemokine cell surface receptors expression assessed
by flow cytometry on MAgEC 10.5 and 11.5 cells cultured for 24 hours under normoxia (21% O2) and hypoxia (1% O2). Values are mean ± SD (n = 3). (D) VEGF-A, CX3CL1,
CCL17, CCL27, CCL5, and CXCL12 production by MAgEC 10.5 and 11.5 cells cultured for 24 hours in normoxia (21% O2) and hypoxia (1% O2). Production was measured by
ELISA. Results are reported to 106 cells and per hour (h). Values are mean ± SD (n = 3).

350 G. Collet et al./Cancer Letters 370 (2016) 345–357



Fig. 3. MAgEC line activity in the angiogenesis process. (A) Representative pictures of tube-like structure formation by Matrigel-plated MAgEC 10.5 and 11.5 cells, incu-
bated for up to 12 h. Scale bars represent 50 μm. (B) MAgEC 10.5 angiogenic response to stimulation by chemokines CX3CL1 and CCL21 in Matrigel assay after 24 h of incubation
with chemokines. Scale bars represent 50 μm. (C) Cooperation between MAgEC 10.5, 11.5 and MLuMEC,FVB cell lines in the pseudo tube network formation on Matrigel.
The MAgEC 10.5 (green) and MAgEC 11.5 (red) were DiO and DiI labeled, respectively, while MLuMEC remained unlabeled. Pictures represent the networks formed after
24 h of incubation. Scale bars represent 50 μm. (D) Vessel formation in vivo and blood flow establishment in functional vessels by MAgEC 10.5 and MAgEC 11.5 in Matrigel
plugs evidenced by ultrasonography imaging (echography) combined with Doppler mode (a, b, c). The red and blue colors allow flow direction discrimination: inward and
outward flow from the transducer respectively. Representative pictures of control plug (d), or plug mixed with MAgEC 10.5 (e) or 11.5 (f), in vivo, one week after grafting in
mice. d, e, f: Macroscopic pictures of the corresponding plugs isolated from the mice. Scale bars represent 0.5 cm. Angiogenesis in the control Matrigel plug (g) compared
to MAgEC 10.5 cells (h) and MAgEC 11.5 (i) mixed Matrigel plugs and after TRITC-dextran injection and detection by fluorescence macroscopy (n) and (o) are control skin
vessels from (h) and (i); bars represent 100 μm. λex 543/22 nm, beam splitter 562 nm, λem LP561 nm were used for TRITC observation as in (j) and (k); bars represent 40 μm.
Cell level detection in the FITC channel: λex 482/35 nm, beam splitter 506 nm, λem 536/40 nm for MAgEC10.5 mixed plugs (l) and MAgEC11.5 (m); bar represents 20 μm.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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observed from isolated plugs containing MAgEC10.5 (Fig. 3De) and
MAgEC11.5 (Fig. 3Df) compared to control plug (Fig. 3Dd), 10 days
after implantation, and the formed vessels were functional since an
efficient blood flow was established by both MAgEC10.5 (Fig. 3Db)
and MAgEC11.5 (Fig. 3Dc) inside the plug compared to the control
plug (Fig. 3Da). Structure and function of vessels were assessed by
fluorescence macroscopy imaging after i.v. injection of high mo-
lecular weight TRITC-labeled dextran. Fig. 3D presents the vessel
network formed in plugs containing MAgEC10.5 (Fig. 3Dh) and
MAgEC11.5 cells (Fig. 3Di). The detailed structures formed in plugs
containing MAgEC10.5 and MAgEC11.5 are presented in Fig. 3Dj and
3Dk, showing the fluorescence of vessels containing TRITC–Dextran
and the observation by FITC channel displayed the vessel walls in
the case of MAgEC10.5 (Fig. 4Dl) and MAgEC11.5 (Fig. 3Dm). The
structure of the vasculature in normal skin tissue is shown in Fig. 3Dn
and Do for mice that have been implanted with plugs containing
MAgEC10.5 and MagEC11.5 respectively. A general view of the plug
vascularization is given in Supplementary Fig. S1a together with a
detailed structure of vessels which contain the FITC–dextran
(Supplementary Fig. S1b, c).

MAgEC10.5 and MAgEC11.5 cells are actively recruited by spheroid
tumor models in vitro and proangiogenic sites in vivo

Future use of EPCs for therapeutic purposes, on the basis of
models of differentiation provided by MAgEC10.5 and/or MAgEC11.5,
requires the determination of their response to tumor mediated
chemoattraction. An in vitro assay was designed to image the in-
teraction and possible recruitment of MAgEC cells by a growing
tumor in a spheroid model. To mimic cell–cell cooperation in a tumor
site, the experiment reported in Fig. 4A was set in a melanoma tumor
model. The B16F10 melanoma model was used as it represents a
hypoxic tumor model which we studied for its answer to blood vessel
normalization by our second strategy using allosteric effector of he-
moglobin [40] and to the expression of hypoxia-conditioned soluble
VEGF receptor 2, in vivo [26]. Fig. 4A shows spheroids resulting from
mixing fluorescent B16F10 with nonlabeled mature MLuMEC as
mature endothelial cells. Green fluorescent MAgEC11.5 cells were
then seeded into the surrounding Matrigel and detected by their
green fluorescence for tracking. They approached the spheroids.
Indeed, spheroids were rapidly surrounded by MAgEC11.5 (Fig. 4A,
white arrows) which, after 24 hours, entered the spheroids (Fig. 4B)
as shown by confocal microscopy, allowing tracking spheroid in-
vasion by MAgEC11.5 cells. Moreover, cells which invaded the
spheroid formed vessel-like structures within 72 hours, in and
around the tumor-like structure (Fig. 4C, white arrows). MAgEC11.5
invasion of the spheroids was also quantified by cell counting in con-
focal microscopy (Fig. 4D) and image analysis to track the MAgEC
cells inside the spheroids. These cells were not attracted by inva-
sion of tumor spheroids is an active process since these cells were
not attracted toward fixed spheroids (Fig. 4E). Mature endothelial
cells, MLuMEC, invaded efficiently the spheroids and the MAgEC11.5
and MAgEC10.5 cells did comparably in normoxia (21% O2). To mimic
the tumor microenvironment, the cell model was incubated in
hypoxia (1% O2, after preconditioning the cells as routinely done for
24 hours in hypoxia), in which conditions we routinely estab-
lished that the hypoxia inducible factor (HIF-1α) protein expression
is stable for 48 hours as measured (Supplementary Fig. S2) and HIF-
dependent genes activated as previously published [40]. Hypoxic
conditions influenced the profile of recruitment for mature endo-
thelial cells (fold increase 1.8) and MAgEC11.5 (fold increase 1.94),
especially pointing to the MAgEC10.5 precursor cells which were
better recruited than in normoxia (fold increase 4.64) compared to
the more differentiated endothelial precursors (MAgEC11.5) and es-
pecially to the mature endothelial cells (Fig. 4E, inset).

MAgEC10.5 and MAgEC11.5 incorporate into proangiogenic sites in
vivo and mediate the targeted expression of a therapeutic gene

MAgEC’s ability to be recruited by tumors was validated in vivo
using an assay that allows cell tracking. GFP-expressing MAgEC10.5
and MAgEC11.5 cells (Fig. 5A) were intravenously injected to mice
implanted with Matrigel plugs containing VEGF and FGF to induce
angiogenesis. Flow cytometry detection and quantification of labeled
cells among various organs and in the Matrigel plug allowed quan-
tification of MAgEC10.5 and MAgEC11.5 present into proangiogenic
sites. Flow cytometry data (Fig. 5B) show a preferential localiza-
tion of the MAgEC10.5 and MAgEC11.5 into the plugs as quantified
10 days after injection, a sufficient time to allow homing and re-
circulation. Moreover the selectivity of endothelial precursor cells
for proangiogenic sites represented by the Matrigel plug is shown
in comparison with mature endothelial cells (inset) after 7 days. To
identify the cells that are present at the vessel formation level and
assess for the participation of MAgEC 10.5 and/or MAgEC 11.5 cells,
the histochemical labeling for CD31 was examined and compared
to the detection of the DiD-labeled MAgEC10.5 and MAgEC11.5 cells.
Fig. 5Ca shows that the DiD labeled MAgEC10.5 cells present a
colocalization with CD31+ cells at the delineation of the vessels, the
same can be observed with MAgEC11.5 cells in Fig. 5Cb where the
DiD labeled cells co-localize with CD31 on vessel-like structures and
in Fig. 5Cc the DiD labeled MAgEC11.5 cells enter the vessel struc-
ture. Moreover expression of VEGFR2 was detected on MAgECs in
the plugs and shown co-localization with the fluorescent DiD label
of MAgEC11.5 in Fig. 5Cd. A more general view of the plugs con-
taining MAgEC10.5 cells (Fig. 5Ce) and MAgEC11.5 cells (Fig. 5Cf)
indicated CD31+ alignment in vessel-like structures. The data were
extended to tumor bearing animals. The tumor progression is linked
to angiogenesis; consequently, MAgECs were tested for their po-
tential recruitment into the tumor site and incorporation into the
tumor vasculature.

MRI detection of AMNP-labeled cells reported in Fig. 5D shows
a hypodense concentration of the label 24 hours after injection of
labeled MAgEC11.5 cells, detected at the tumor site in aligned struc-
tures evoking vessels (Fig. 5D, arrows). MRI signal was detected in
other organs as spleen (not shown). Consequently, in order to rule
out a possible effect of paramagnetic marker, fluorescent lipid-
labeled MAgEC11.5 cells were injected to tumor bearing mice and
tracked by flow cytometry. The cells were quantified on the basis
of their fluorescence by flow cytometry (Fig. 5E) in the tumor
(0.018% ± SD positive) and other organs: spleen (0.008% ± SD pos-
itive), lungs (0.005% ± SD positive), bone marrow (0.02% ± SD positive)
and lymph nodes (almost no fluorescent cell detected), indicating
that the MRI signal indeed corresponds to the injected MAgEC cells.

In these experiments B16F10, 7 day tumor-bearing mice, were
intravenously injected with DiI-labeled-MAgEC11.5, -MAgEC10.5 cells
or mature microvascular endothelial cells from lung (MLuMEC), brain
(MBrMEC), bone marrow (MBMMEC) or spleen (MSplMEC), then cell
homing, recirculation and settlement were allowed for 9 days. The
numbers of DiI-labeled MAgEC cells were assessed in organs and
tumor, after tissue dilaceration and detection by flow cytometry.
Fig. 5F reports the number of MAgEC11.5 cells localized in the various
organs per mass unit of tissue. When reported to the whole organs,
numbers indicate that MAgEC11.5 cells were found preferentially
inside the tumor site (12.5–20% ± SD of the injected cells) and the
bone marrow (3–4% ± SD of the injected cells). The numbers of
MAgEC11.5 found among the other organs ranged from 0.01% ± SD
in thymus, 0.2% + SD in lymph nodes, up to 0.4% ± SD circulating in
the blood. Supplementary Fig. S3 shows that MAgEC10.5 dis-
played similarly a preferential localization in the tumor and the bone
marrow. Other endothelial cell lines were not preferentially re-
cruited inside the tumor. Further similar experiments were
undertaken to assess the effectiveness of endothelial precursor cells
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Fig. 4. 3D models of MAgEC10.5 and MAgEC11.5 cells’ invasive ability toward B16F10 melanoma spheroids. (A) B16F10 melanoma (red) mixed to MLuMEC (from 100 to 1)
spheroids into a collagen/methylcellulose matrix mixed with MAgEC 11.5 cells (green). Left: 6 h of incubation. Right: 24 h of incubation. Scale bar = 250 μm. (B) Confocal
fluorescence microscopy of melanoma spheroid, incubated 24 h with MAgEC 11.5 cells. Scale bar = 50 μm. (C) 3D tube-like organization into the matrix of the fluorescent
green labeled MAgEC 11.5 cells near a B16F10 melanoma spheroid upon incubation in hypoxia (1% O2). Scale bar = 20 μm. (D) Quantification of the spheroid-invading MAgEC
11.5 cells by fluorescence microscopy image analysis. Scale bar = 100 μm. (E) MAgEC10.5, MAgEC 11.5 endothelial precursors cells and MLuMEC,FVB mature endothelial
cells recruited by melanoma spheroids in normoxia (18.75% of O2) compared to hypoxia (1% of O2). Bars represent mean ± SEM. Values significantly different from T = 0 h
were marked with: * p < 0.05; ** p < 0.01; *** p < 0.001. Inset compares relative recruitment of endothelial cells in hypoxia vs normoxia for MLuMEC,FVB (R = 1.87), MAgEC
11.5 (R = 1.94) and MAgEC 10.5 (R = 4.64). Bars represent mean ± SEM. Values significantly different between normoxia and hypoxia were marked with: * p < 0.05; ** p < 0.01.
Graphs report the analysis and quantification obtained with “RG2B colocalization” ImageJ software plug-in. Controls were “fixed” spheroids as opposed to “alive” spheroids
(N > 10). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. In vivo homing abilities of MAgEC cells into tumor bearing mice. (A) GFP expressing stable cell lines of MAgECs10.5 and 11.5, in bright field, fluorescence. Bars = 20 μm.
(B) Flow cytometry data of the percentage of MAgECs-GFP+, 10.5 and 11.5, found in distinct organs of mice bearing Matrigel-plugs (10 days) after dissociation of plugs,
lungs, bone marrow (BM) and in blood. Results are ‰ of total cells from each tissue. Values are mean of 3 examined mice ± SD (n = 3). Inset: Preferential homing of MAgEC10.5
and MAgEC11.5 cells vs mature endothelial cells from brain, 7 days after injection. Values are mean of 3 examined mice ± SD (n = 3). (C) Histochemical detection of MAgEC10.5
and MAgEC11.5 cells invading plugs (7 days post i.v. injection). (a) MAgEC10.5 DiD-labeled cells found in plugs colocalizing with CD31; (b, c) MAgEC11.5 DiD-labeled in-
vading vessel-like structures and (d) displaying VEGFR2 expression. CD31+ cells distribution in plugs containing MAgEC10.5 (e) and MAgEC11.5 cells (f). (D) MAgECs11.5
cells loaded with rhodamine-labeled superparamagnetic beads. (a) Representative picture in fluorescence microscopy. Top: fluorescence, middle: bright field, low: merge.
(E) Magnetic resonance imaging of melanoma bearing mice: before intravenous injection of rhodamine-labeled superparamagnetic beads loaded into MAgEC11.5 cells (b)
and 24 h post injection (c). (E) Flow cytometry quantification of tumor-homing MAgECs. Dot plots evidence the labeled MAgEC11.5 cells found in the 16-day melanoma
tumor after i.v. injection/homing of 106 DiD-labeled MAgEC11.5 cells and recirculation for 7 days (b). Controls are fixed DiD-labeled MAgEC11.5 cells (a). (F) Flow cytometric
quantification of labeled MAgEC11.5 cells among various organs of 16-day melanoma tumor bearing mice, 7 days after intravenous injection of MAgEC11.5 cells. Values are
mean ± SD (n = 3). (G) Weight of 16-day B16 melanoma tumors, 7 days after i.v. injection of 106 MAgEC11.5 cells (wild type and transfected by the msVEGFR2 hypoxia-
dependent expressing vector – msVEGFR2-HRE). Controls were obtained by injection of fixed MAgEC11.5 cells. Reported values are mean ± SD from 5 examined mice. Inset:
histochemical detection of CD49b+ cells (green) invading tumor mass (VEGFR2+) after injection of MAgEC11.5 cells (Bar = 50 μm). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

354 G. Collet et al./Cancer Letters 370 (2016) 345–357



to carry a therapeutic gene as msVEGFR2-HRE which was de-
signed and validated as hypoxia-conditioned for the synthesis of
ms-VEGFR2 and reversible upon hypoxia compensation and vessel
normalization [26]. MAgEC11.5 clone 131 (Supplementary Fig. S4)
was chosen for its high differential expression of msVEGFR2 in
hypoxia vs normoxia (R = 25). smVEGFR2-HRE-MAgEC11.5 cells and
-MAgEC11.5 cells were DiI labeled, injected in B16F10 bearing mice
7 days after tumor implantation and their effect was measured on
the tumor development, 9 days after injection. They displayed a
similar homing pattern and cell recovery confirmed above data
(Supplementary Fig. S5). A better reduction of the tumor size was
observed in mice treated by msVEGFR2-HRE-MAgEC11.5 cells as
compared to the effect observed in mice treated by MAgEC cells
(Supplementary Fig. S5, inset). Fig. 5G confirms these data and also
points to the effect of the non-transfected endothelial precursor cells
in reducing the tumor growth compared to the injection of mature
endothelial cells (Supplementary Fig. S6). As before, this effect is
enhanced with msVEGFR2-HRE-MAgEC11.5 cells, expressing the
therapeutic msVEGFR2 hypoxia-dependent gene (Supplementary
Figs. S5 and S6 and Fig. 5G). MAgEC cell injection and their local-
ization in the tumor vasculature (Supplementary Fig. S6B) might
impact the immune cell recruitment. As previously shown with an-
giogenesis treatment, CD49b+ NK cells are detected inside the tumor
mass [41], as shown by the preliminary data reported in Fig. 5G
(inset), which were not observed in control tumors. When B16F10
spheroids were used as tumor models and the selected clones of
MAgEC11.5 and 10.5 transfected by msVEGFR2-HRE-vector
(Supplementary Fig. S4) were used to treat the tumor bearing mice,
the above data were confirmed (Supplementary Fig. S6) and cor-
roborate our previous findings [26] on therapeutic hypoxia-
conditioned expression of the msVEGFR2 as a VEGF regulator.

Discussion

This work proves the feasibility of using properly defined en-
dothelial precursor cells as a tool for tumor targeting because of their
ability to be naturally and specifically recruited to sites where active
angiogenesis takes place, namely in solid tumors [42], and the pos-
sibility to make them carry therapeutic drugs or genes [25,36].

Our purpose, in selecting a good cellular candidate, was to obtain
the early precursor committed to endothelial phenotype during em-
bryonic development which will be the appropriate cell to
incorporate a proangiogenic site. This was supposed to allow the
determination of the maturation step at which endothelial precur-
sor cell represents the best cells to control vasculogenesis.

The first cells restricted to the endothelial lineage appear in aorta–
gonad–mesonephros (AGM) during mouse embryogenesis [28]. In
the mouse embryo they diverge from hemangioblasts at 10.5 and
11.5 days post conception (dpc) [27]. From AGM, two cell lines were
established, called MAgEC 10.5 and MAgEC 11.5, to allow their use
as cell models because of the phenotypic stability reached upon im-
mortalization [43,44] as compared to isolated primary EPCs.

Characterization indicated that such early precursors could be
classified as EPCs, although they did not share all described EPC fea-
tures. They were distinctly committed toward the endothelial
phenotype. Indeed, the two lines displayed progenitor endothelial
characteristics reflecting distinct maturation stages in terms of phe-
notype and angiogenic properties. Moreover, they cooperated with
mature endothelial cells in the formation of angiogenic network
which corresponds to a hallmark of recruited EPCs.

Historically, endothelial precursor cells were initially identi-
fied and isolated on the basis of vascular endothelial growth factor
receptor-2 (VEGFR2) and CD34 co-expression [1]. Since this brief
cell description, which is still debated and, in the light of the ongoing
knowledge on stem cells combined to the emergence of specific
surface markers, numerous distinct populations of stem and

progenitor cell populations were identified at various steps of dif-
ferentiation, making cell populations overlap along the differentiation
continuum. However, “specific” markers are chosen to facilitate the
isolation and purification of these cells but the increasing number
of markers makes it more complex the definition of “true” EPCs
among EPC-like cells. Generally admitted, the term ‘‘EPC’’ may en-
compass a group of cells existing in a variety of stages ranging from
primitive hemangioblasts to fully differentiated ECs.

EPC cells should express several markers (Fig. 6) including VEGF
receptor-2 (VEGFR2, KDR, Flk-1), VE-cadherin, CD34, platelet en-
dothelial cell adhesion molecule (PECAM; CD31) and von Willebrand
factor (VWF). They should also be able to bind acetylated low-
density lipoprotein (AcLDL) and lectins such as bandeiraea simplicifolia
agglutinin-1 (BSA-1) and ulex europaeus agglutinin-1 (UEA-1) which
are usually considered as endothelial-specific markers [2,45]. Thus,
characterization of EPCs remains complex. Despite controversial data
on the EPC identity and classification [3–6], circulating endothe-
lial precursors’ involvement in physiological and pathological
processes was shown [7–12].

Considering the characteristics of the MAgEC lines and accord-
ing to the data obtained by in vitro and in vivo investigations which
show their ability to home specifically into neoangiogenic sites, they
should provide an effective cell model of EPC in vivo. Moreover, en-
dothelial precursors, at this step of differentiation, represent good
candidates for cell transplantation due to their low expression of
histocompatibility antigens [46] and thus for the delivery of ther-
apeutic genes [2,26,47]. This is corroborated by their sensitivity to
B16F10 melanoma-secreted signals as observed in vitro in a model
of micro-tumor inducing an active migration of these cells toward
the tumor site. This was confirmed by the ability of MAgEC cells
to home, in vivo, into a B16F10 tumor site and to be a good cell carrier
for tumor cell-based gene therapy.

Indeed, EPCs appear to be a tool of choice for angiogenesis tar-
geting in view of tumor therapy (Fig. 6). Due to their quiescent
character in normal conditions circulating EPCs, upon incorporat-
ing into the endothelium, should allow long-term expression of
therapeutic genes, making them the mean for the so-called “Trojan
Horse” approaches [48]. Their use to reach the tumor site should
prevent the lack of specificity observed with classical therapies and
consequently should reduce potential side effects.

The numerous approaches to target angiogenesis were de-
signed first to destroy this pathologic process, while it is now aimed
to normalize vessels in order to make them efficient for treatment
delivery [49]. Normalization is by now recognized as an alterna-
tive to the antiangiogenesis strategies and long term normalization
is the key to adjuvant anticancer strategies [50].

We have designed five complementary approaches toward tumor
vessel normalization for treatments based on hypoxia compensa-
tion [40], microRNA regulation [47,51], hypoxia-regulated gene
therapy [26], plasma-mediated blood flow increase [52] and normal
endothelial cells recruitment to help recover normal vessel func-
tionality. Such therapies present advantages over classical ones by
improving the ratio benefits/side effects and give the possibility to
be introduced into conventional protocols involving chemo and/
or radiotherapy [49] and act synergistically [40].

As presented in this manuscript, by providing a model cell line
for EPCs, our work helps to design improved cell therapies and pro-
vides tools for new normalization-based strategies. This model allows
bringing together the tumor natural targeting and therapeutic gene
of which expression is microenvironment conditioned. This com-
bined strategy is able to reduce the tumor growth by alleviating
tumor hypoxia thus deeply changing the microenvironment of the
tumor cells [38] to such an extent that the immune response is con-
siderably boosted. Our data on NK cell recruitment indicate that
treating tumor angiogenesis by endothelial precursor cell target-
ing participates to this effect. It represents a good model to shape
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the induced pluripotent stem cell iPS differentiation into endothe-
lial precursor cells [36,53] or take advantage of the endothelial to
mesenchymal transition [54] to obtain the cell phenotype en-
abling an efficient targeting.
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Fig. 6. MAgEC characterization scheme by specific marker expression. Tumor targeting cells including endothelial precursor cells (EPCs), mesenchymal stem cells (MSCs),
early endothelial cells, hematopoietic stem cells and hemangioblast to identify the markers shared by MAgEC cells and point out their possible use as tumor targeting cells
as compared to EPCs.
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