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2 Universitat Politècnica de Catalunya, Barcelona (Spain)
jcarmona@cs.upc.edu

3 LSV, ENS Cachan, CNRS, INRIA, Universit Paris-Saclay, Cachan (France)
chatain@lsv.ens-cachan.fr

Abstract. The holy grail in process mining is an algorithm that, given an event
log, produces fitting, precise, properly generalizing and simple process models.
While there is consensus on the existence of solid metrics for fitness and simplic-
ity, current metrics for precision and generalization have important flaws, which
hamper their applicability in a general setting. In this paper, a novel approach to
measure precision and generalization is presented, which relies on the notion of
anti-alignments. An anti-alignment describes highly deviating model traces with
respect to observed behavior. We propose metrics for precision and generaliza-
tion that resemble the leave-one-out cross-validation techniques, where individ-
ual traces of the log are removed and the computed anti-alignment assess the
model’s capability to describe precisely or generalize the observed behavior.

1 Introduction

The goal of process mining is to gain insights into the behavior of operational informa-
tion systems by analyzing event logs. Often, process mining is considered synonymous
to process discovery, which aims at describing observed behavior of a business process
in the form of an (executable) process model. The behavior used as input is considered
to be given in the form of an event log [1].

Traditionally, event logs are considered to be accurate representations of the behav-
ior of a system in such as way that each event refers to an activity that was executed
in the context of a case. By deriving a process model from such an event log, process
discovery algorithms give insights into the underlying system. There has been always
a discussion on how to interpret process discovery results, i.e. how does the produced
model relate to the actual, but unknown, system in four quality dimensions [2]:

Fitness quantifies how much of the observed behavior is captured by the model,
Generalization quantifies how well the model explains unobserved system behavior,
Precision quantifies how much behavior exists in the model that was not observed, and
Simplicity quantifies the complexity of the model.

In recent years, many metrics have been developed to measure fitness, precision
and generalization by comparing the event log with the generated model. For fitness,



the state-of-the-art is in alignments, a technique that given a trace and a model produces
the most likely explanation for that trace [3]. As the focus of this paper is not on fitness,
we assume our models to be perfectly fitting. If a trace in an event log does not fit the
model, we use the alignment-based explanation of that trace instead.

Measuring precision is typically done by projecting the observed traces onto the
model and then count the number of ways to “escape” from the observed behavior [4].
The more “escaping edges” there are, the lower the precision. The downside of such an
approach is that precision only considers the behavior of the model that is very close to
the event log.

For generalization, only few metrics exist [5,6]. Some of them are again based on
the projection of the log onto the model. For instance, the approach in [6] considers
“frequency of use”, where models are assumed to generalize if all parts of the model
are used equally frequently when reproducing the event log.

In this paper, we take a fresh look at precision and generalization by using the con-
cept of an anti-alignment [7]. An anti-alignment of a model with respect to a log is an
execution of a model which is as different as possible from the observed log. We in-
struct and adapt cross-validation-based techniques in combination with anti-alignments
to derive solid metrics that show a better estimation with respect to the state-of-the-art
metrics. The following example illustrates this.

1.1 Motivating Example

Table 1. An example event log
Trace Frequency
〈A,B,D,E, I〉 1207
〈A,C,D,G,H, F, I〉 145
〈A,C,G,D,H, F, I〉 56
〈A,C,H,D, F, I〉 23
〈A,C,D,H, F, I〉 28

Throughout the paper, we use an example of a
log and several models. The example we use is
taken from page 64 of [8] and consists of the sim-
ple event log shown in Table 1. The log consists
of only five different traces, with various frequen-
cies. The models in Figures 1 through 4 are four
examples of models often used to show the differ-
ences between fitness, precision and generaliza-
tion. The models in Figure 5 to Figure 8 are models over the same set of activities with
varying loop and/or parallel constructs.

The model in Figure 1 shows the “ideal” process discovery result, i.e. the model that
is fitting, fairly precise and properly generalizing. The other models are chosen such that
they score poorly on at least one of the dimensions fitness, precision or generalization.

Table 2 compares some conformance metrics for the models in Figure 1 to Figure 8
with the metrics proposed in this paper: P (computed as the average of two metrics
Pt and Pl) and G (average of Gt and Gl)4. The fitness value F is measured using the
alignment based technique of [9] and from the same author are the values of Pa and
Ga which are defined in [3]. The precision values in PET and PETC are defined in
[10]. Finally, the values Pne and Gne denote the precision and generalization metrics
from [5], respectively. Clearly, the existing metrics do not agree on all models and do
not always agree with the intuition behind precision and generalization. For example,

4 Throughout the paper, we will use P and G letters to denote precision and generalization
metrics, respectively.



Fig. 1. The ideal model. Fitting, fairly pre-
cise and properly generalizing.

Fig. 2. Most frequent trace. Precise, but not
fitting or generalizing.

Fig. 3. The flower model. Fitting and
generalizing, but very imprecise. Fig. 4. All traces separate. Fitting, precise, but not gener-

alizing.

Fig. 5. A model with G and H in parallel.
Fig. 6. A model with G and H in self-loops

Fig. 7. A model with D in a self-loop

Fig. 8. A model with all transitions in paral-
lel.



Table 2. Precision and Generalization for all models

Model PET PETC Pa Ga Pne Gne F Pt Pl P Gt Gl G
Figure 1 Generating model 0.992 0.994 0.982 0.585 0.995 0.594 1.000 0.886 0.857 0.871 0.270 0.143 0.206
Figure 2 Single trace 1.000 1.000 1.000 0.900 0.893 0.000 0.915 1.000 1.000 1.000 0.000 0.000 0.000
Figure 3 Flower model 0.136 0.119 0.142 0.903 0.117 1.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000
Figure 4 Separate traces 1.000 0.359 1.000 0.145 0.985 0.114 1.000 1.000 1.000 1.000 0.000 0.000 0.000
Figure 5 G,H in parallel 0.894 0.936 0.947 0.511 0.950 0.615 1.000 0.800 0.800 0.800 0.268 0.183 0.225
Figure 6 G,H as self-loops 0.884 0.889 0.947 0.722 0,874 0.615 1.000 0.819 0.357 0.588 0.290 0.643 0.466
Figure 7 D as self-loop 0.763 0.760 0.797 0.728 0.720 0.619 1.000 0.688 0.357 0.523 0.485 0.643 0.564
Figure 8 All parallel 0.273 0.170 0.336 0.178 0.158 0.972 0.739 0.067 0.000 0.033 0.417 0.500 0.459
Figure 11 C,F equal loop 0.820 0.589 0.839 0.585 0.600 0.594 1.000 0.490 0.429 0.459 0.259 0.341 0.300
Figure 12 Round-robin 0.579 0.185 0.889 0.400 0.194 0.118 0.616 0.000 0.000 0.000 0.000 0.000 0.000

the very precise model of Figure 4 is considered to have a precision of 0.359 by the
PETC metric. Furthermore, the model in Figure 2 is considered to be very generalizing
by the Ga metric, while this model clearly does not generalize the observed behavior.
Also, the model of Figure 6 scores very high in PET -PETC-Pa, although a trace with
a thousand G’s is possible in the model. One can see that the metrics presented in this
paper are free from the aforementioned problems.

The paper is structured as follows: in the next section a brief description of related
work is provided. Preliminaries are presented in Section 3. The core of the paper is
provided in Sections 4 and 5, where techniques for precision and generalization are
presented, respectively. Evaluation with further examples and tool support is reported
in Section 6, and Section 7 concludes the paper.

2 Related Work

The seminal work in [2] was the first one in relating observed behavior (in form of a set
of traces), and a process model. In order to asses how far can the model deviate from
the log, the follows and precedes relations for both model and log are computed, storing
for each relation whereas it always holds or only sometimes. In case of the former, it
means that there is more variability. Then, log and model follows/precedes matrices are
compared, and in those matrix cells where the model has a sometimes relation whilst the
log has an always relation indicate that the model allows for more behavior, i.e., a lack
of precision. This technique has important drawbacks: first, it is not general since in the
presence of loops in the model the characterization of the relations is not accurate [2].
Second, the method requires a full state-space exploration of the model in order to
compute the relations, a stringent limitation for models with large or even infinite state
spaces.

In order to overcome the limitations of the aforementioned technique, a different
approach was proposed in [4]. The idea is to find escaping arcs, denoting those situa-
tions where the model starts to deviate from the log behavior, i.e., events allowed by the
model not observed in the corresponding trace in the log. The exploration of escaping
arcs is restricted by the log behavior, and hence the complexity of the method is always
bounded. By counting how many escaping arcs a pair (model, log) has, one can estimate
the precision of a model. Although being a practical and fast estimation for precision,
it may underestimate precision when escaping arcs lead to highly deviating behavior.



In [5] the notion of weighted artificial negative events from a log is proposed. Given
a log L, an artificial negative event is a trace σ′ = σ · a where σ ∈ L, but σ′ /∈ L.
Algorithms are proposed to weight the confidence of an artificial negative event, and
they can be used to estimate the precision and generalization of a process model by
computing four sets of events: i) positive events which could be replayed without error
(TP), ii) negative events which could be replayed and thus erroneously permitted by
the process model (FP), iii) generalized events (negative events with low confidence)
which could be replayed without error and confirm model’s ability to generalize (AG),
and iv) generalized events which could not be replayed by the process model (DG). The
formula TP

TP+FP provides a metric for precision, whilst AG
AG+DG provides a metric for

generalization. Like in [4], by only considering one step ahead of log/model’s behavior,
these metrics may underestimate precision/generalization considerably. For instance,
the very high generalization provided by this metric to the model of Figure 8 (0.972, i.e.,
almost perfect generalization) contrast with the value provided by our metric (0.459),
the latter being more in line with the real generalization of this model with respect to
the log of Table 1. Furthermore, the model used to generate the log is considered more
precise (0.995) than a model that only allows for a single trace (0.893), while a model
with only one possible trace is as precise as it can be.

3 Preliminaries

In this paper we choose Petri nets as process modeling notation, although the theory
presented is valid for any other formalism that has replay semantics.

3.1 Petri nets and Process Mining

Definition 1 ((Labeled) Petri net). A (labeled) Petri Net [11] is a tupleN = 〈P, T,F ,
m0,mf , Σ, λ〉, where P is the set of places, T is the set of transitions (with P ∩T = ∅),
F : (P × T ) ∪ (T × P )→ {0, 1} is the flow relation, m0 is the initial marking, mf is
the final marking,

Σ is an alphabet of actions and λ : T → Σ labels every transition by an action.

A marking is an assignment of a non-negative integer to each place. If k is assigned
to place p by marking m (denoted m(p) = k), we say that p is marked with k tokens.
Given a node x ∈ P ∪T , its pre-set and post-set are denoted by •x and x• respectively.

A transition t is enabled in a marking m when all places in •t are marked. When
a transition t is enabled, it can fire by removing a token from each place in •t and
putting a token to each place in t•. A marking m′ is reachable from m if there is a se-
quence of firings t1t2 . . . tn that transforms m into m′, denoted by m[t1t2 . . . tn〉m′. A
sequence of actions a1a2 . . . an is a feasible sequence (or run) if there exists a sequence
of transitions t1t2 . . . tn firable from m0 and such that for i = 1 . . . n, ai = λ(ti).
Let L(N) be the set of feasible sequences of Petri net N . The set of reachable mark-
ings from m0 is denoted by [m0〉, and form a graph called reachability graph. Let
Ln(N) ⊆ L(N) be the set of complete traces of N with length n or shorter, i.e.
Ln(N) = {σ ∈ L(N) |m0[σ〉mf ∧ |σ| ≤ n}.



An event log is a collection of traces, where a trace may appear more than once.
Formally:

Definition 2 (Event Log). An event log (L, φ) is a set of traces L ⊆ Σ∗ and function
denoting the occurrence frequency of each trace denoted by φ : L → N, i.e. φ(t) = 1
implies that trace t was observed once in the log. If for all t ∈ L holds φ(t) = 1, we
omit φ from the notation. The number of traces in a log is denoted by |L|.

Quality Dimensions. Process mining techniques aim at extracting from a log L a pro-
cess model N (e.g., a Petri net) with the goal to elicit the process underlying in S .
By relating the behaviors of L, L(N) and S, particular concepts can be defined [6]. A
modelN fits log L if L ⊆ L(N). A model is precise in describing a log L if L(N)\L is
small. A modelN represents a generalization of log L with respect to system S if some
behavior in S\L exists in L(N). Finally, a model N is simple when it has the minimal
complexity in representing L(N), i.e., the well-known Occam’s razor principle.

3.2 Anti-Alignments

Anti-alignments were introduced in [7]. An anti-alignment is a run of a model which
differs sufficiently from all the observed traces in a log. In order to measure how much a
run differs from an observed trace, one needs a notion of distance; actually, a mapping
d : Σ∗ × Σ∗ → [0..1] is sufficient to define anti-alignments: the other axioms of
distance functions (symmetry, triangle inequality. . . ) are not required for the definition
of anti-alignments. For a log L, we write d(σ, L) = mint∈L d(σ, t). If L = ∅, then
d(σ, L) = 1.

Definition 3 (Anti-alignment). A (n, δ)-anti-alignment of a model N w.r.t. a log L
and a distance function d is a run σ ∈ L(N) such that |σ| = n and d(σ, L) ≥ δ.

Choice of the distance function. A simple choice of a distance function, used in [7],
can be constructed using the Hamming distance after truncating or padding γ to the
length of σ, it simply counts the number of mismatches between the actions in the two
words, i.e. the number of indices i such that σi 6= γi divided by the length of σi. But
concerning the application to process mining, Hamming distance is usually too rigid:
indeed, every symbol σi is compared only to the exact corresponding symbol γi. This
puts for instance the word ababababab at distance 1 from bababababa. In process min-
ing techniques, other distances are usually preferred (see for instance [3]), typically
Levenshtein’s distance (or edit distance) which counts how many replacements, dele-
tions and insertions of symbols are needed to obtain γ projected to labeled transitions
starting from σ, divided by the length of the longest trace. Unless explicitly stated oth-
erwise, all examples in this paper use the edit distance function with equal costs for
remove, replace and insert operations.

Example 1. Consider the Petri net shown in Figure 1, and the log of Table 1. The trace
〈A,C,G,H,D, F, I〉 is a (7, 17 ) anti-alignment when considering edit-distance as a dis-
tance metric: it can be obtained by inserting G in the observed trace 〈A,C,H,D, F, I〉;



and the length of the longest trace is 7. Notice that for δ > 1
7 there are no anti-

alignments for this example. When considering Hamming distance, the same trace is
a (7, 27 ) anti-alignment.

Example 2. Consider the Petri net shown in Figure 2, and the log of Table 1. The trace
〈A,B〉 is a (2, 35 ) anti-alignment for this model when considering either edit-distance
or Hamming distance as a distance metric: in both case, the closest observed trace is
〈A,B,D,E, I〉.

Example 3. Consider the Petri net shown in Figure 3, and the log of Table 1. The
trace 〈A,B,D,E, I,A,A,A,A〉 is a (9, 49 ) anti-alignment for either edit or Hamming
distance. Given n = 9, the trace 〈τi, B,A,A,A,A,A,A,A,A, τf 〉 is a (9, 1) anti-
alignment when considering either edit-distance or Hamming distance as a distance
metric. Notice that for any 0 ≤ n and 0 ≤ δ ≤ 1 an (n, δ) anti-alignment exists.

Example 4. Consider the Petri net shown in Figure 4, and the log of Table 1. The trace
〈A,C,D,G,H, F, I〉 is a (7, 0) anti-alignment when considering any distance metric.

In the context of process mining, discovered models typically consist of a model
and an initial and final marking (where the latter is often implicit), i.e. each execution
of the underlying system is assumed to be a sequence in the model from the initial to the
final marking. Therefore, we define the concept of a maximal, complete anti-alignment
as follows:

Definition 4 (Maximal, Complete Anti-alignments,Γ d,mx
n (N,L)). LetN be a model.

We define Γ d,mxn (N,L) ⊆ Ln(N) as the set of maximal, complete anti-alignments,
such that for all σ ∈ Γ d,mxn (N,L) holds that 6 ∃σ′ ∈ Ln(N) \ Γ d,mxn (N,L) with
d(σ′, L) > d(σ, L).

In the remainder of this paper, we write γd,mxn (N,L) whenever we need an arbitrary
element from the set Γ d,mxn (N,L).

Note that the set of maximal complete anti-alignments can be empty in case there
is no trace in the model with length less than n. Furthermore, in this paper, we use a
representative γd,mxn (N,L) ∈ Γ d,mxn (N,L) in case there are more maximal complete
anti-alignments. One could argue that an average over the entire (by definition finite) set
could be used as well. However, this is computationally expensive and for the examples
covered in this paper does not add to the qualitative results.

4 Measuring Precision

As stated earlier, a model N is precise in describing a log L if L(N) \L is small, i.e. if
the language of the discovered model is not much larger than the observed behavior. As
the behavior of model N is often infinite (when loops are present in the model) and the
log L is by definition finite, directly comparing L(N) with L is meaningless. There-
fore, classical precision metrics [4] estimate precision by analyzing so-called “escaping
edges”, i.e. the points where the model allows to deviate from observed behavior. The
more deviation points there are, the lower the precision. Existing metrics however rely



on an abstraction mechanism to decide how to count the deviation points and in [4] a
number of abstraction mechanisms is presented, each with their own pro’s and cons.
Each of the abstraction mechanisms works well in one example, but not in the other
and vice versa.

In this paper, we suggest a fresh view on precision, using anti-alignments. The in-
tuition behind our metric is as follows. A very precise process model allows for exactly
the observed traces to be executed and not more. Hence, if one trace is removed from
the log, this trace becomes the anti-alignment for the remaining log as it is the only
execution of the model that is not in the log. We use this property to estimate precision.

Definition 5 (Trace-based Precision). Let (L, φ) be an event log and N a model. We
define trace-based precision as follows:

Pt(N,L) = 1− 1

|L|
·
∑
σ∈L

d(σ, γd,mx|σ| (N,L \ {σ})).

We assume a perfectly fitting log, i.e. σ ∈ L|σ|(N) and hence γd,mx|σ| (N,L \ {σ}) exists.

For each trace σ in the log, we compute a maximal anti-alignment γ for the model
N and the log without that trace L \ {σ}. This anti-alignment is guaranteed to reach
the final marking mf and hence represents an element of L(N). Then, we compute the
distance between σ and γ which we average over the log, not taking into account the
relative frequencies of the traces in the log. If the language of the model equals the log,
then the anti-alignments γ will be equal to σ for every σ, hence the precision is 1. If for
every trace σ, an anti-alignment can be produced which has maximal distance from σ,
the precision is 0.

Frequencies of traces are not considered as the comparison is between the language
of the model and the observed traces. Observing one trace more frequently than another
should not influence the precision of the model as the amount of unobserved behavior
does not change. This contrasts with current metrics for precision (e.g., [4]).

In trace-based precision, the length of the anti-alignment considered is bounded by
the length of the removed trace σ. This guarantees that an anti-alignment exists in the
log without trace σ, but also limits the possibility to see imprecise executions of the
model that are much longer than the lengths of the observed traces. Therefore, we also
define a log-based precision metric, which uses an anti-alignment of the model with
respect to the entire log of a much greater length than the longest trace observed in the
log.

Definition 6 (Log-based Precision). Let (L, φ) be an event log and N a model. We
define Log-based precision as follows:

Pnl (N,L) = 1− d(γd,mxn (N,L), L).

where n represents the maximal length of the anti-alignment, typically in the order of
several times the length of the longest trace in the log.

The log-based precision metric uses a single anti-alignment of considerable max-
imum length to determine the amount of behavior allowed by the model, but not ob-
served in the event log. Our final precision metric is a weighted sum of log- and trace-
based precision.



Definition 7 (Precision). Let (L, φ) be an event log and N a model. We define anti-
alignment based precision as follows:

P (N,L) = αPt(N,L) + (1− α)Pnl (N,L)

This definition is parameterized by α and n. In the remainder of the paper, we
choose α = 0.5 and n = 2 ·max

σ∈L
|σ|.

Our precision metric has two parameters, α, indicating the relative importance of
the trace-based vs. the log-based part and n indicating the maximum length of the log-
based anti-alignment. In this paper, we use α = 0.5 and n equal to twice the length
of the longest observed trace. Allowing for longer anti-alignments could lower the log-
based precision if there are loops in the model (in the limit, log-based precision in a
model with loops goes to 0). Striking the right balance between α and n in the context
of real-life process discovery is beyond the scope of this paper. Instead, we focus on the
qualitative aspects of our metrics more than the quantitative ones.

Example 5. Let’s consider the Petri net shown in Figure 1 again, with the log of Ta-
ble 1. Earlier, we identified the trace 〈A,C,G,H,D, F, I〉 as a (7, 17 ) anti-alignment.
Furthermore, when leaving one trace out, we get the following anti-alignments5:

σ γd,mx|σ| (N,L \ {σ}) γ projected d(γ, σ)

〈A,B,D,E, I〉 〈A,B,D,E, I〉 〈A,B,D,E, I〉 0
〈A,C,D,G,H, F, I〉 〈A,C,G,H,D, F, I〉 〈A,C,G,H,D, F, I〉 2

7
〈A,C,G,D,H, F, I〉 〈A,C,G,H,D, F, I〉 〈A,C,G,H,D, F, I〉 2

7
〈A,C,H,D, F, I〉 〈A,C, τ,H,D, F, I〉 〈A,C,H,D, F, I〉 0
〈A,C,D,H, F, I〉 〈A,C, τ,D,H, F, I〉 〈A,C,D,H, F, I〉 0

The trace-based precision Pt(N,L) =
1 + 5

7 + 5
7 + 1 + 1

5
= 31

35 = 0.886 and the

log-based precision is Pl(N,L) = 1 − 1
7 = 6

7 = 0.857, hence overall precision with
α = 0.5 for this model and log is P (N,L) = 0.5 · 3135 + 0.5 · 67 = 0.871.

Besides precision, we can also use anti-alignments for measuring generalization.

5 Measuring Generalization

In contrast to precision, which relates the log and the model, generalization relates the
system to the log and the model. Generalization aims to estimate the extent to which
unobserved, but likely possible behavior, is explained by the model. In terms of process
modeling, generalization is often obtained by introducing parallel structures or loops
into a model when the log suggests this to be the case. Unfortunately, we do not have
any knowledge of the system other than that the log forms a representation of the most
common behavior in it.

In order to quantify generalizations, we consider not only the sequential behavior
that is actually allowed by the model, but we also quantify how different this behavior is

5 Note that for the edit distance between the anti-alignment and the removed trace, the trace is
first projected onto labeled elements, i.e. the τ transition is removed first.



when considering the state space of the model. (Structured) loops and parallel structures
which are most commonly used to achieve generalization when modeling a system
have the tendency to allow for many different sequential traces while introducing fewer
states as for structured loops, the number of states does not increase with the number
of executions of the loop, while for parallel transitions, the number of states 2n grows
slower than the number of sequences (n!). Therefore, in our generalization metric, we
consider the notion of a recovery distance for an anti-alignment.

Definition 8 (Recovery distance). Let (L, φ) be an event log and N a model. Let γ =
γmaxn (N,L) be an anti-alignment of length n. LetMγ = 〈m0, . . . ,mn〉 be the sequence
of states visited by γ, i.e.m0 is the initial marking of the model,mn is the final marking
of the model and for all 0 ≤ i < n holds mi[γi〉mi+1. Let S ⊆ [m0〉 = {m | ∃ σ · σ′ ∈
L s.t. m0[σ〉m} be the set of states reached by L. The recovery distance is defined as:

drec(γ) =
1

|γ| − 1
·maxm∈Mγminσ∈Σ∗,m[σ〉s∈S |σ|

i.e. the recovery distance is the maximum distance between any of the states reached in
the anti-alignment and the states visited by the log.

Fig. 9. Positioning of examples
for trace-based generalization.

Fig. 10. Positioning of examples
for log-based generalization.

Note that in a process mining setting, we assume
that there is a single reachable final marking and that
the anti-alignment guarantees to reach this final mark-
ing. Hence the length of the firing sequence to reach
a previously visited marking is bounded by the length
of the anti-alignment minus 1. Using the recovery dis-
tance, we define a generalization metric in a similar
fashion as we did for precision, i.e. we remove one
trace from the log and compute an anti-alignment for
which we obtain the minimum distance to the log and
the maximum recovery distance.

Figures 9 and 10 show the positioning of the mod-
els discussed earlier with respect to the anti-alignment
distance and the recovery distance, both for the trace-
based and log-based metric. Our generalization score is
defined such that it favors only models that have a high
anti-alignment distance and low recovery distance, i.e.
models that introduce new traces without introducing
new states. Recall that generalization typically occurs
in structures that add fewer states than traces. If a model
is properly generalizing, it is likely that the behavior
observed in the log covers a significant part of the state
space introduced by the generalizing structure, hence
a previously unobserved trace will not introduce new
states, but rather new paths between existing states,
even if the introduced trace is completely different from
anything observed in the log.



Like for precision, we first consider trace-based generalization following the same
leave-one-out procedure. This way, the model is guaranteed to contain an anti-alignment
of some distance (i.e. the removed trace). Not using trace-based generalization would
lead us to consider all models non-generalizing if the log equals the language of the
model.

Definition 9 (Trace-based Generalization). Let (L, φ) be an event log andN a model.
We define the trace-based generalization metric for each trace. First, for every trace
σ ∈ L, we define:

Gσt (N, (L, φ), σ) = 1− ||1− d(γσ, L \ {σ}), drec(γσ)||,

where γσ = γd,mx|σ| (N,L \ {σ}) and ||a, b|| = min(1,
√
a2 + b2), i.e. the Euclidean

distance from (0, 0), bound by 1.
Second, we define trace-based generalization as the weighted average:

Gt(N, (L, φ)) =
1∑

σ∈L
φ(σ)

·
∑
σ∈L

φ(σ) ·Gσt (N, (L, φ), σ).

Definition 9 uses the Euclidean distance from the perfectly generalizing model to
compute a generalization score, where the perfectly generalizing model has maximally
different anti-alignments without introducing new states, such as the model in Figure 3.

Similar to precision, we also define a log-based generalization metric which identi-
fies an anti-alignment much longer than the longest trace in the log in order to detect if
there is a part of the state space which can only be reached through longer traces.

Definition 10 (Log-based Generalization). Let (L, φ) be an event log andN a model.
Referring to Figure 10, we define log-based generalization as follows:

Gnl (N, (L, φ)) = 1− ||1− d(γ, L), drec(γ)||,

where γ = γd,mxn (N,L) and n represents the maximal length of the anti-alignment,
typically in the order of several times the length of the longest trace in the log. Again,
we assume ||a, b|| = min(1,

√
a2 + b2)

Notice that both in the two previous definitions, the frequency of traces in the log is
considered. Finally, combining the trace-based and the log-based generalization metric
yields our final generalization metric:

Definition 11 (Generalization). Let (L, φ) be an event log and N a model. We define
anti-alignment based generalization as follows:

G(N, (L, φ)) = αGt(N, (L, φ)) + (1− α)Gnl (N, (L, φ)).

This definition is parameterized by α and n. In the remainder of the paper, we choose
α = 0.5 and n = 2 ·max

σ∈L
|σ|.



Example 6. Let’s once again consider the Petri net shown in Figure 1, with the log of
Table 1. Earlier, we identified the trace 〈A,C,G,H,D, F, I〉 as a (7, 17 ) anti-alignment
for the whole log and we measured precision to be P (N,L) = 0.871. The recov-
ery distance for the trace 〈A,C,G,H,D, F, I〉 is 0 as it does not visit new states in
the state space as this anti-alignment visits exactly the same set of states as the trace
〈A,C, τ,H,D, F, I〉 which is in the log when correctly aligning the log to the model.
When leaving one trace out, we got the following anti-alignments:

σ freq. γd,mx|σ| (N,L \ {σ}) d(γ, L \ {σ}) drec(γ)
〈A,B,D,E, I〉 1207 〈A,B,D,E, I〉 3

6
2
4

〈A,C,D,G,H, F, I〉 145 〈A,C,G,H,D, F, I〉 1
7 0

〈A,C,G,D,H, F, I〉 56 〈A,C,G,H,D, F, I〉 1
7 0

〈A,C,H,D, F, I〉 23 〈A,C, τ,H,D, F, I〉 2
6

1
6

〈A,C,D,H, F, I〉 28 〈A,C, τ,D,H, F, I〉 1
6 0

The trace-based generalization Gt(N, (L, φ)) = (1207 · (1 −
√

9
36 + 4

16 ) + 145 ·

(1−
√

36
49 )+56·(1−

√
36
49 )+23·(1−

√
16
36 + 1

36 )+28·(1−
√

25
36 ))/1459 = 0.270. The

log-based precision isGl(N, (L, φ)) = 1−
√

36
49 = 0.143, hence overall generalization

with α = 0.5 for this model and log isG(n, (L, φ)) = 0.5 ·0.270+0.5 ·0.143 = 0.206.

Consider again our example. The model presented in Figure 3 (the Flower model)
clearly generalizes as it allows for very different traces (high anti-alignment distance),
but all within the same state space (low recovery distance).

A model like Figure 4 (separate traces) does not generalize. If we consider the log
as a whole, each anti-alignment will have distance 0 from the log and will have recovery
distance 0. If we remove one trace from the log, the maximal anti-alignment found will
be the removed trace, with some distance from the rest of the log, but with maximal
recovery distance.

Now consider the model in Figure 11 (CF Equal loop). This model requires tran-
sitions C and F to fire equally often in order to reach the intended final marking of
one token in the sink place. This model is similar to the original, but will show a high
recovery distance as the number of executions of C and F determine the part of the
state space which is visited by the anti-alignment, but likely not by the rest of the log.

The models in Figure 2 (Single trace) and Figure 12 (Round-robin) show exam-
ples of non-fitting models which also do not generalize. After making the log fit using
alignment techniques [9], Figure 2 will have both minimal anti-alignment distance and
minimal recovery distance (both 0), while the model in Figure 12 will have maximal
anti-alignment distance and maximal recovery distance. Both models however are not
generalizing.

6 Evaluation and Implementation

In this section, we first consider our example log of Table 1 and the models presented
in Figures 1 through 8. Furthermore, we introduce two new models for our example log
of Table 1, depicted in Figure 11 and Figure 12.



Fig. 11. A model where C and F
are in a loop, but need to be ex-
ecuted equally often to reach the
final marking.

Fig. 12. Round-robin model. The
outer loop can be started at any
point and then exited one transi-
tion before completing the loop.

Table 2 shows the fitness, precision and general-
ization values for all models. For our precision and
generalization metrics, we present both the trace-
based values as well as the log-based values. The
trace-based values are computed using the leave-one-
out procedure presented earlier. The log-based val-
ues are computed by taking a maximal anti-alignment
given the model and the entire log with maximum
length equal to three times the length of the longest
trace in the log.

For the models that are not fitting (Figure 2, Fig-
ure 8 and Figure 12) the log is aligned to the model
and then the aligned event log is used for comput-
ing precision and generalization. In case of Figure 2
this implies that all traces in the log are equal as the
model only allows for one trace and therefore, the pre-
cision is always 1 and the generalization is always
0. Figure 12 is more interesting, as this model has
both poor precision and poor generalization. No mat-
ter which trace is removed from the log, there is al-
ways an anti-alignment that does not look anything
like the removed trace, hence precision is 0. Further-
more, as each of the starting points of the loops gener-
ates a completely distinct subgraph in the state space,
the recovery distance for an anti-alignment is always
very high and hence generalization is poor, despite the
fact that the model allows for many different traces.

The model of Figure 1 has results as expected. The fitness is 1, and precision is fairly
high. Furthermore, generalization is not so high as this model does not actually allow
for much more behavior than observed. In fact, only the trace 〈A,C,G,H,D, F, I〉
is possible in the model, but not observed in the log. Figures 2, 3 and 4 indeed show
extreme values for precision and/or generalization. As expected the self-loop model of
Figure 3 has precision 0 as it allows for many different traces, but since the recovery
distance is always 0 the generalization is maximal. Figure 4 is the opposite as it does
not allow for any trace not in the log, and has a maximal recovery distance.

Now consider the models in Figure 11 and Figure 12. For Figure 11 we consider
the relaxed-sound semantics of this model as it was translated from a causal net as
introduced in [12]. The model is constructed in such a way that transitions C and F can
be executed multiple times, but equally often. This model should be considered fairly
imprecise as there is a lot of behavior in the model that is not in the log. However, the
automaton-based metrics for precision are unable to capture this long-term dependency
and they will penalize for the fact that C can be executed multiple times, but not for the
fact that F may have to be executed multiple times.

Figure 12 is a model that allows for a loop over transitions A through I to be started
at any point. However, when starting the loop at a given point, the model needs to



terminate after executing 8 + n × 9 transitions. This model again should be consid-
ered imprecise as the language of the model is very different from the language of the
(aligned) log. Only the PET captures this, the others consider this model very precise.

Some differences stand out between existing metrics and our anti-alignment based
metrics. Consider for example the model in Figure 12. This model has minimal pre-
cision as it allows for much more behavior than observed in the log. However, both
the PET and the Pa metric are unable to capture this since these metrics only consider
behavior directly adjacent to the observed behavior with respect to a specific abstrac-
tion. Interestingly, the PETC metric considers the model of Figure 4 to be imprecise,
while this model allows for exactly the observed behavior and nothing more. Again, the
chosen abstraction causes this effect.

Due to the nice monotonicity property of anti-alignments shown in [7], our precision
metric is the only one that consistently ranks models in such a way that a model with
more possible traces (of a given maximal length) is always considered less precise.

When comparing our generalization metric with the existing ones, we see a big
difference in the model of Figure 2. The behavior of this model consists of a single trace
and is considered generalizing by the metric Ga since the aligned event log (the event
log where non-fitting traces have been adapted to fit the model) shows great evidence of
this model being the correct one for that log. In our metric however, a model that allows
for only one trace will always be considered to have minimal generalization.

Interestingly, the model in Figure 8 is considered more generalizing by our metric
than by most existing ones. This is due to the fact that we consider the recovery dis-
tance as important. This model allows for more behavior than observed, but does not
introduce too many new states, i.e. the recovery distance is low while the distance of
the anti-alignment to the log is large. This is what we consider to be generalization.
The Gne metric finds this model to be almost perfectly generalizing since any label is
allowed to appear at almost any position, but this metric fails to recognize that labels
can only appear once in each trace.

Again, consider Figure 11 and Figure 12. In both cases, the various parts of the
language of the models are represented by completely separated parts of the state space.
In Figure 11, the number of tokens in the place between C and F determines which part
of the state space the middle part is executed, and in Figure 12, the initial decision where
to start the loop does. In both cases, once a particular part of the state space is reached
which is not covered by traces observed in the log, the recovery distance is maximal, i.e.
only after emptying the place between C and F in Figure 11 or terminating the model
in case of Figure 12, a state is reached which is covered by the observed log. Therefore,
these models should not be considered generalizing.

6.1 Models found in literature

Rather than only considering our example models, we used models found in [6] for
further comparison with our approach. In [6], several process mining results are pre-
sented to illustrate the importance of fitness, precision, generalization and simplicity in
process mining. The paper introduces a precision and a generalization metric which are
specific for process trees, or block-structured process models. The precision metric is
comparable to the Pa metric used earlier. The generalization metric however focuses



on the frequency with which each transition is executed in relation to the number of
transitions in the model. Generalization is considered low if some parts of the model
are infrequent in the log.

Fig. 13. Figure 9 from [6]

Fig. 14. Figure 5 from [6]

We compared our generalization and preci-
sion metrics with these models and there are some
interesting observations. One of the models, de-
picted in Figure 13 contains an inclusive OR block
of three activities B, C and D, implying that the
model allows for 15 different traces. The log used
contains 10 different traces in which B, C and D
are executed in parallel, but D can be skipped and
in [6] the model with the OR block is considered
to be the fairly precise (precision 0.830). Our pre-
cision metric however identifies anti-alignments
that have maximum distance of 0.5 from the re-
moved trace or the log and therefore, our precision
metric yields 0.477, which is what you would ex-
pect from a model that contains a large OR block to explain (almost) parallel behavior.

Another interesting model is model in Figure 14 which removed the option to skip
D. This model has only one trace that is not observed in the original log and this trace,
when executed, does not visit any new states compared to the rest of the log. Therefore,
both trace- and log-based generalization are considered low and hence our generaliza-
tion metric is 0.172 while the metric used in the paper reports a generalization of 0.889.
A low generalization value is in line with the intuition behind generalization, i.e. the
ability of the model to predict possible but unobserved behavior. As almost all behavior
of this model has been observed before, generalization should not be high.

6.2 Implementation

The authors of [7] have shown that the problem of finding a (n, δ)-anti-alignment w.r.t.
Hamming-distance is NP-complete. They have presented a way to convert this problem
into a SAT problem and implemented an efficient tool in OCaml, available at http:
//www.lsv.ens-cachan.fr/˜chatain/darksider/).

But, as discussed in Section 3.2, concerning the application to process mining, Ham-
ming distance is usually too rigid. This is why, for the examples in this paper, we have
chosen Levenshtein’s edit distance, in spite of the higher complexity of finding anti-
alignments for this distance. We have used a brute-force, depth-first search algorithm to
find the anti-alignments. Since the maximum length of the anti-alignment is bounded,
the size of the search space is finite which allows us to use a brute-force approach. This
approach is implemented in the ProM package “anti-alignments” which can be installed
through the ProM package manager available on http://www.promtools.org/.
The package is included in the nightly build and in ProM 6.6.

In future work, we plan to improve the efficiency of the presented approach using
heuristic implementations. Furthermore, we plan to integrate more distance metrics.



7 Conclusions

In this paper, we presented new metrics for measuring precision and generalization of a
process model with respect to an event log. Both metrics rely on the concept of an anti-
alignment, which is a trace of the model which is as different as possible from the event
log given a certain distance function. The anti-alignments are applied using a cross-
validation strategy to obtain measurements for precision. Furthermore, we introduce
the notion of recovery distance which is included in the generalization metric, basically
expressing the ability of the model to recover from any deviation.

We have compared both metrics with the state-of-the-art metrics for precision and
generalization on well-known examples, and the results clearly position the proposal
of this paper as a significant improvement in terms of the quality of the estimations
provided, albeit at the expense of a higher computational complexity.
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