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Abstract

In this paper we study the flux through a finite Markov chain of a quantity, that we will call mass,
which moves through the states of the chain according to the Markov transition probabilities. Mass is
supplied by an external source and accumulates in the absorbing states of the chain. We believe that
studying how this conserved quantity evolves through the transient (non-absorbing) states of the chain
could be useful for the modelization of open systems whose dynamics has a Markov property.

1 Introduction
Markov chains, [1], [2], [3], [4], are probably the most popular models for stochastic dynamics. They
have a huge range of applications, going from physics and chemistry, [5], [6], [7], to social science, [8], [9],
including also informatics, [10], [11] or engineering, [13], [14], and biology [15], [16], [17]. In this paper,
we are interested in the problem of a flux through a Markov chain.

The time evolution of a probability distribution in a conventional Markov chain may be seen as a
redistribution of the probability among the states of the chain at any time step. From the point of view
of dynamical systems this is a closed system. Likewise, it is natural to consider the case of an open
system where we allow for a continue inflow as well as an associated outflow of a quantity that has the
property of moving through the states of the chain according to the Markov transition probabilities. To
describe the properties of this flow through the states of the chain is the main subject of our analysis. We
believe that this could be interesting for the modelization of open physical or biological systems, where
energy, mass or population is constantly injected from the outside, and is then dissipated or eliminated.

We consider a Markov Chain with a finite number of states {1, 2, . . . , N} in discrete time t. We note
P be the corresponding N ×N stochastic matrix of transition probabilities between states.

We will focus on a positive quantity µ, that we will call "mass". This quantity has the property of
being transported in time from a state i to any state j according to the transition probability Pij , and
to be additive. More explicitly, let µit be the mass present in state i at time t; when time passes from t
to t+ 1 a fraction µit Pij of µit is transferred to state j. The total mass present in state j at time t+ 1 is
the sum of the masses arriving from any state. This conservation law is encoded in the following Markov
recurrence:

µt+1 = µtP (1)

where µ is the row vector with positive entries representing the mass distribution, which is not necessarily
normalized (

∑N
i=1 µ

i
t can be different from one).

We also suppose that mass is injected in the system from an external source at every instant of time
t with (positive) distribution σt = (σ1

t , . . . , σ
N
t ) on the states of the chain.

We consider the case where some of the states of the chain are absorbing: once the system gets in
these states, the probability of going back to any other state is zero. We will name any such state a sink.
This guarantees that the incoming mass accumulates in the end in the absorbing states.

As a consequence, contrary to the case of usual absorbing Markov chains, we are concerned with a
double open system since there is a continuous access as well as a departure of mass from the system
itself.

A framework where similar issues are considered is the one of dynamics of populations modelled by
branching processes, [19], [20]. In this context, other individuals can eventually come from the outside
(branching processes with migration), but since they give birth at each time step to a random number
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of individuals there is no conservation of "mass" in this case. This kind of phenomena have of course
a Markov property, since the random future evolution depends on the past only through the state of
the process in the present. The eventual formalisation in terms of Markov chains can be done either
considering that the states of the Markov chain are defined by the number of individuals itself, or, in the
case of multi-type branching processes, by the type of individuals (in this case the mean matrix plays
the role of the Markov transition matrix).

Another context where these ideas could be applied is the modelization of traffic flow in transport
networks. The incoming vehicles represent the source of mass, the outgoing roads play the role of sink
states, the Markov transition probabilities apply to the road junctions or to the road destinations. This
example is presented in section 6.

Let us now define more precisely how the injection and transport of mass in the chain take place,
in order to compute the mass distribution µt = (µ1

t , . . . , µ
N
t ) as a function of the source σ and of the

Markov transition probabilities.
When time is incremented from t to t + 1 two operations take place, in a definite order: first, the

total mass in each state is redistributed according to the transition probability matrix P; second, the
external source injects the mass σit in each state i of the chain, and this mass sums up with the quantity
µit already present in state i (if we had chosen to perform these operations in the inverse order, formulas
would change a little, but the results would remain the same).

At time t = 0, let us note µt=0 = µ0 the row vector giving the mass initially present in the chain.
When time passes from t = 0 to t = 1 the total mass is redistributed and then the mass σt=0 = σ0
injected in the chain, so that we have at t = 1:

µt=1 = σ0 + µ0 P (2)

Similarly, when time passes from t− 1 to t we have the relation

µt = σt−1 + µt−1 P (3)

which gives

µt = σt−1 + σt−2 P + · · ·+ σ0 Pt−1 + µ0 Pt =
t−1∑
k=0

σt−1−kPk + µ0 Pt (4)

Without loss of generality, we will identify the absorbing states with the last states of the chain: if n
is the number of absorbing states, we label them {N − n+ 1, N − n+ 2, . . . , N}.

We also notice that the generalization of this approach to the case of infinite countable number of
states is possible ([18]) with only minor modifications.

In the following, we will study the behavior of the mass distribution µt. We determine analytical
expressions for it, in the cases where the source term is constant or periodic in time. We work out all
calculations explicitly for a 3 states system, and finally discuss the case of random sources.
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2 Constant source
We will study the special case where the same amount of mass is injected in the chain at every time step,
namely

σt = σ0 = (σ1
0, . . . , σ

N
0 ) ∀ t (5)

From now on, we will suppose that the chain is initially empty, µ0 = 0. This assumption has no
influence on the asymptotic distribution of mass, since when t� 1 the additional term µ0Qt that would
appear below in equation (10) following the term µ0Pt in equation (4) tends to zero.

Equation (4) gives in this case

µt = σ0 (1 + P + P2 + · · ·+ Pt−1) (6)

One could be tempted to use the formulas of the geometric series to compute the recurrence as:

µt = σ0 (1−Pt)(1−P)−1 (7)

but this is incorrect because, due to the Perron-Frobenius maximal eigenvalue λ0 = 1 of P, the matrix
(1 − P) is not invertible. Of course the reason for this is the accumulation of mass in the sink states,
since by definition for these states j we have Pjj = 1 (and Pji = 0 ∀i 6= j).

Therefore, as in the case of classical absorbing chains, we shall separate the sinks from the other
states in order to analyse the flow of mass in the system. Let us then define the matrix Q as the
(N − n)× (N − n) submatrix of P restricted to the non-absorbing states {1, 2, . . . , N − n}:

P =
(

Q R
0 1

)
(8)

Here R is the (N −n)×n submatrix of the fractions of mass transfers from the non-absorbing states
to the sinks and 1 is the n× n identity matrix. A simple algebraic computation gives:

Pj =
(

Qj (Qj−1 + Qj−2 + · · ·+ 1)R
0 1

)
(9)

And finally:

1 + P + · · ·+ Pt−1 =
(

1 + Q + · · ·+ Qt−1 R + (Q + 1)R + · · ·+ (Qt−2 + · · ·+ 1)R
0 t1

)
(10)

We conclude from (10) that the time evolution of the mass distribution restricted to the non-absorbing
states, denoted µ, is given by:

µt = σ0(1 + Q + Q2 + · · ·+ Qt−1) (11)

where σ0 = (σ1
0, . . . , σ

N−n
0 ).

If R 6= 0, the matrix Q is a substochastic matrix with all eigenvalues with modulus strictly less than
1 insuring that the geometric series converges. We get:

µt = σ0(1−Qt)(1−Q)−1 (12)

so that
lim
t→∞

µt = σ0(1−Q)−1 (13)
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As a direct consequence of (13) we have:

Fixed Point Theorem: There is an invariant distribution µ of the non-absorbing part of the system
that reads:

µ = σ0(1−Q)−1 (14)

We can also remark that the fixed point (14) equation can be written as

σ0 + µQ = µ (15)

which clearly shows that µ is a fixed point of an affine transformation contrary to the usual iteration of
Markov chains which is instead a linear transformation.

Mass balance: Equation (15) has a clear physical meaning. Each component of

σ0 = µ(1−Q) (16)

corresponds to the mass balance of a non-absorbing state. The left hand side represents the incoming
of the external mass at each time step. The right hand side gives the internal balance of the state with
each of the others as well as with the sinks.

If the matrix Q is diagonalisable, the computation of the invariant distribution (14) may be done
using the (non-ortoghonal) basis of eigenvectors ϕi of Q. By computing first the components αi of σ0
on this basis:

σ0 =
N−n∑
i=1

αiϕi (17)

and then using the linearity of Q we get:

µ =
N−n∑
i=1

αi
1

1− λi
ϕi (18)

where the λi are the eigenvalues of Q. Notice that the fixed point relation (15) also allows the computation
of the stationary distribution by solving a system of N −n linear equations. In the next section we shall
use both formulas to compute the stationary distribution in a simple example.

The mass distribution µt at time t can also easily be expressed as a function of the eigenvalues and
eigenvectors of Q. Equations (12) and (14) give

µt = µ (1−Qt) (19)

so that

µt = µ−
N−n∑
i=1

αi
λti

1− λi
ϕi (20)

which shows how µt tends exponentially to µ as time grows.

Notice that the eigenvectors ϕ of Q can be computed independently from the complete eigenvectors
ϕ of P. In effect, thanks to the particular form of P the equation ϕP = λϕ for the eigenvalues and
eigenvectors of (8) becomes:
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(ϕ1, . . . , ϕN−n)Q = λ(ϕ1, . . . , ϕN−n) (21)

(ϕ1, . . . , ϕN−n)R + (ϕN−n+1, . . . , ϕN ) = λ(ϕN−n+1, . . . , ϕN ) (22)

The system (21) of N−n equations determines the eigenvectors of Q, ϕ = (ϕ1, . . . , ϕN−n). Once these
are solved, the n remaining equations (22) allow to compute the other components (ϕN−n+1, . . . , ϕN ) of
the eigenvectors of P.

The n eigenvectors relative to the absorbing states are such that their first N − n components are
equal to zero: ϕ = (0, 0, . . . , 0, ϕN−n+1, . . . , ϕN ). Equations (22) then imply that the corresponding
eigenvalues are equal to one, as it should be.

In the case where Q is not diagonalisable, i.e., it does not possess N − n linearly independent eigen-
vectors, one can use a Jordan base to compute the invariant mass distribution through equation (12).
Let λ1, . . . , λm (m < N − n in this case) be the eigenvalues of Q, and k1, . . . , km their respective mul-
tiplicities. Let {ϕi,1, . . . , ϕi,ki

} be the Jordan vectors generating the subspace relative to the eigenvalue
λi, that satisfy:

ϕi,jQ = λiϕi,j if j = 1 , ϕi,jQ = λiϕi,j + ϕi,j−1 if j = 2, . . . , ki (23)

(notice that with this definition, the Jordan blocks have ones below the diagonal). Let

σ0 =
m∑
i=1

ki∑
j=1

αi,jϕi,j and µt =
m∑
i=1

ki∑
j=1

βti,jϕi,j (24)

be the decompositions of the source and the mass distribution at time t on this basis. Starting from
equation (12), that we may rewrite as

µt − µtQ = σ0 − σ0Qt (25)

the coefficients βti,j can be expressed as functions of the αi,j in the following way, for all i = 1, . . . ,m:

(1− λi)
ki∑
j=1

βti,jϕi,j −
ki∑
j=2

βti,jϕi,j−1 = (26)

=
ki∑
j=1

αi,jϕi,j −
t∑
l=0

(
t

l

)
λt−li

ki∑
j=l+1

αi,jϕi,j−l

where by definition any sum
∑n2
j=n1

is zero if n1 > n2. Expression (26) allows then to compute the βti,j
by identifying the coefficients of the independent base vectors ϕi,j .

We will now explicitly give the expression of the asymptotic mass distribution in the Jordan base.
Let us first remark that the double sum on l, j on the right-hand-side of equation (26) goes to zero
exponentially as time goes to infinity, since its terms vanish for l ≥ ki , and thus the index l is bounded as
t grows. After a straightforward calculation, we get for the coefficients β∞i,j of the asymptotic distribution
µ:

β∞i,j =
ki∑
l=j

1
(1− λi)l−j+1 αi,l i = 1, . . . ,m (27)
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which coincides with expression (18) in the diagonalisable case ki = 1 ∀ i.
There is an interesting difference between the quasi stationary distribution, [18] [25], associated to

the linear Markov case corresponding to the recurrence

µt = µt−1Q (28)

and the asymptotic distribution µ of our affine model. In the linear case the limit of the distribution
(28) is zero and the conditioned distribution (to the trajectories staying in the internal system) converges
to the direction of the eigenvector ϕ1. The logharitm of λ1 plays the role of a pressure in the Gibbs
formalism of statistical mechanics, [25].

Here µ depends of σ0 and has contributions depending on the λi from all the eigenvectors of Q. In
particular, as a fixed point of an affine transformation, µ is not zero. In our case, the role of the largest
eigenvalue λ1 is to give the dominant exponential rate at which µt approaches µ at large times, the gap
µt − µ being approximately in the direction of the corresponding eigenvector ϕ1.

3 Periodic source
Until now, we have considered the case of a source that is constant in time: σt = σ0. We will now treat
the case of a source that is periodic in time. In the case of period T = 2 we will have:

σt = σ0 = (σ1
0, . . . , σ

N
0 ) t = 0, 2, 4, . . . (29)

σt = σ1 = (σ1
1, . . . , σ

N
1 ) t = 1, 3, 5, . . .

Expression (4) is still valid and gives in this case (always supposing that the chain is initially empty,
µ0 = 0):

µt = σ0 Pt−1 + σ1Pt−2 + σ0Pt−3 + σ1Pt−4 + · · ·+ σt−1 (30)
where σt−1 = σ0 if t is odd and σt−1 = σ1 if t is even. The distribution of mass for the non-absorbing
states µt at time t is then given by

µt=1 = σ0 (31)
µt = (σ0Q + σ1)(1−Qt)(1−Q2)−1 t = 2, 4, 6, . . . (32)
µt = σ0(1−Qt+1)(1−Q2)−1 + σ1Q(1−Qt−1)(1−Q2)−1 t = 3, 5, 7, . . . (33)

So, as t grows, the mass distribution oscillates with the same period as the source between the two
asymptotic values:

µeven = (σ0Q + σ1) (1−Q2)−1 and µodd = (σ0 + σ1Q) (1−Q2)−1 (34)

The generalization to a source of any other period is straightforward. For a source of period T , the
asymptotic mass distribution oscillates with the same period as the source between the T asymptotic
values:

µ(T ) = (σ0QT−1 + σ1QT−2 + · · ·+ σT−2Q + σT−1) (1−QT )−1

µ(T+1) = (σ0 + σ1QT−1 + · · ·+ σT−2Q2 + σT−1Q) (1−QT )−1 (35)
· · ·

µ(2T−1) = (σ0QT−2 + σ1QT−3 + · · ·+ σT−2 + σT−1QT−1) (1−QT )−1
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The asymptotic periodic orbit (35) is therefore made of the fixed point of the system corresponding
to QT driven by a constant source, and of its iterates, as prescribed by equation (14).

4 The 3-states model
We will now discuss the simplest but non trivial case where all the quantities of interest are easily
and analytically computable. We consider the case of a three states Markov chain (N = 3), with one
absorbing state (n = 1). Moreover, we suppose that only one of the two transient states is directly
connected to the sink. The transition matrix reads then:

P =

(1− p) p 0
q (1− q − r) r
0 0 1

 (36)

where 0 < p, q < 1 and r < (1− q) so that the matrix P is stochastic.
The matrix Q which is the restriction of P to the transient states is:

Q =
(

(1− p) p
q (1− q − r)

)
(37)

whose eigenvalues λ1, λ2 are:

λ1 = 1
2

[
2− p− q − r +

√
p2 + 2p(q − r) + (q + r)2

]
(38)

λ2 = 1
2

[
2− p− q − r −

√
p2 + 2p(q − r) + (q + r)2

]
(39)

The two eigenvalues coincide in the case q = 0, p = r. Here we will rather discuss the non-degenerate
case λ1 6= λ2. The eigenvectors ϕ1, ϕ2 (that we take to be normalized) are then:

ϕ1 = 1√(
q

λ1+p−1

)2
+ 1

(
q

λ1 + p− 1 , 1
)

(40)

ϕ2 = 1√(
q

λ2+p−1

)2
+ 1

(
q

λ2 + p− 1 , 1
)

(41)

We want to compute the asymptotic distribution of mass µ given by equation (14) corresponding to
a general constant source σ0 = (γa, γb), that we can express as a linear combination of the elementary
sources σ0,a = (1, 0) (mass is injected only in the first state of the chain) and σ0,b = (0, 1) (mass is
injected only in the second state of the chain) : σ0 = γaσ0,a + γbσ0,b. If µa, µb are the asymptotic
distributions corresponding to σ0,a, σ0,b we have by linearity:

µ = γaµa + γbµb (42)

To compute µa, one possibility is to use directly equation (16):

(1, 0) = (µ1
a, µ

2
a)
(
p −p
−q (q + r)

)
(43)
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which gives
µa =

(
q + r

rp
,
1
r

)
(44)

The same result can of course be obtained by decomposing the source σ0,a on the eigenvectors (40)
and (41) of Q. As in the case of the standard Markov chains this computation allows a geometrical
interpretation of the time evolution of the mass distribution µt as it will be seen below.

The relation
σ0,a = (1, 0) = αaϕ1 + βaϕ2 (45)

gives

αa = ϕ2
2

ϕ1
1ϕ

2
2 − ϕ2

1ϕ
1
2
, βa = − ϕ2

1
ϕ1

1ϕ
2
2 − ϕ2

1ϕ
1
2

(46)

Therefore
µa = αa

1
1− λ1

ϕ1 + βa
1

1− λ2
ϕ2 (47)

where λ1 and λ2 are the eigenvalues (38) and (39) of Q.
The same kind of computation for the source σ0,b = (0, 1) gives, for its decomposition on the eigen-

vectors of Q:

αb = ϕ1
2

ϕ2
1ϕ

1
2 − ϕ1

1ϕ
2
2
, βb = − ϕ1

1
ϕ2

1ϕ
1
2 − ϕ1

1ϕ
2
2

(48)

and for the fixed point distribution:

µb = αb
1

1− λ1
ϕ1 + βb

1
1− λ2

ϕ2 =
(
q

rp
,
1
r

)
(49)

For a general input distribution σ0 = (γa, γb) we have then:

µ =
(

(γa + γb)
q

rp
+ γa

1
p
, (γa + γb)

1
r

)
(50)

The mass distribution µt tends exponentially in time to (50) in the way expressed by equation (20).
Figure 1 gives a geometrical picture of the situation. There we see two trajectories represented in the
two-dimensional phase space: one corresponding to the source σ0,a: Figure 1(a), the other to σ0,b:
Figure 1(b). They are essentially driven by ϕ1 but with a smaller component on the direction ϕ2. The
combination of these two dynamical components sums up to the two different asymptotes according to
(47) and (49).

Any asymptotic mass distribution expressed by equation (50) can be rapidly reached by the chain,
thanks to the exponential convergence properties. If we suppose that the transition probabilities (i.e.,
the parameters p, q, r) are fixed this can be done by choosing a suitable source (γa, γb). In a situation
where, on the contrary, the source is imposed but the structure of the Markov chain can be modified,
any mass distribution can be reached by varying the parameters p, q, r.

In Figure 2, we show a numerical simulation of the time evolution of the mass distribution µt in a
case where a unit of mass is injected in the second state of the Markov chain at every time step (i.e.,
the constant source term is σ0 = (0, 1)), and the transition probabilities are modified when the system
has almost attained the asymptotic regime corresponding to the initial value of the parameters p = 1/2,
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(a)

φ1
φ2

σ0a

µa

0.0

0.5

1.0

1.5

2.0

-1 0 1 2

(b)

φ1
φ2
σ0b

µb

0.0

0.5

1.0

1.5

2.0

-1 0 1 2

Figure 1: The trajectories of µt (dots) in time corresponding to the sources σ0,a (Figure (a)) and σ0,b (Figure
(b)), represented in the two-dimensional phase space. Here (p, q, r) = (0.5, 0.1, 0.5).

q = 1/2, r = 1/3 (µ = (3, 3)). To reach a situation where the second state contains 1.5 times more mass
than the first, the transition probability p = 1/2 is changed to p′ = 3/4 at t = 51. The effect of this is to
decrease the asymptotic quantity of mass in the first state by a factor 2/3, as given by formula (49): at
t = 60 the mass distribution in the chain has reached the new asymptotic value µ ′ = (2, 3). Notice that
the memory of the mass µ present in the chain at the moment when p is changed is rapidly lost, since
its contribution after t times steps is µQt, which again goes exponentially to zero as t grows.

0

1

2

3

0 25 50 75 100
Time

M
as

s

Figure 2: Time evolution of the mass distribution µt in the case where the constant source is σ0 = (0, 1), the
chain is initially defined by the parameters p = 1/2, q = 1/2, r = 1/3, and is initially empty. After 50 time
steps, the transition probability p is changed to p′ = 3/4, while q, r keep the same value. Bottom/Blue line:
first component of µt, the amount of mass in the first state of the chain. Top/Red line: second component
of µt, the amount of mass in the second state of the chain.
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Finally, in Figure 3 we illustrate the case of a time dependent source of period two, by a numerical
simulation showing that the mass distribution µt rapidly reaches a period-2 asymptotic state, according
to equation (34).

0

2

4

6

8

0 25 50 75 100
Time

M
as

s

Figure 3: Time evolution of the mass distribution µt for a periodic source defined by σ0 = (0, 1), σ1 = (1, 0).
The values of the transition probabilities are p = 0.8, q = 0.4, r = 0.4. For times larger than t = 25, the
system is in the period-2 asymptotic regime described by equation (34). Top/Blue line: first component of
µt, the amount of mass in the first state of the chain. Bottom/Red line: second component of µt, the amount
of mass in the second state of the chain.

5 Trajectories of individual particles and fluctuating source
The preceding sections are devoted to the dynamics of the mass distribution. Here we take another
viewpoint, describing the trajectories of "individual particles". The individual trajectories are proba-
bilistic realizations of the process and cylinders are the basic sets to be considered in this case, [23]. A
cylinder is a set [s1, s2, . . . sm]t+m−1

t of trajectories having in common a given path of states [s1, s2, . . . sm]
during a fixed time window [t, t+m− 1]. Clearly for an "individual particle" to follow a path during the
interval [t, t + m − 1] it is necessary to be inside the system at time t. The trajectories of the particles
entering the system after this time cannot belong to a cylinder based on [t, t + m − 1]. On the other
hand Markovianity implies that all the information needed to treat trajectories starting before t lies in
the measure µt. Therefore the mass of the cylinder [s1, s2, . . . sm]t+m−1

t is given by :

µ[s1, s2, . . . sm]t+m−1
t = µs1

t Ps1s2Ps2s3 . . .Psm−1sm (51)

Our process is a sum of an infinite sequence of independent Markov chains, one for each starting time.
Some natural questions about the statistics of the individual trajectories have a computational answer
using the fundamental matrix Z of this process, [3], [4]. Not surprisingly, the matrix Z = (1−Q)−1 also
plays a central role in all the analysis before.
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An interesting situation that may be analysed using the notion of cylinders is the one of a time
dependent source whose fluctuations are defined in terms of a random walk on the set of the extremal
distribution sources S = {ei, 1 ≤ i ≤ N − n} with transition probability matrix S that we take ergodic
and with prescribed initial distribution ξi. By definition, the probability that the source injects mass ei
at time t and mass ej at time t + 1 is given by Sij for any t (where ei is the (N − n)-dimensional row
vector with zero entries everywhere except a 1 at position i).

Recall that if the source injects mass ei at time t we get:

µt+1 = ei + µtQ (52)

Therefore to any realisation (ei0 , . . . , eit , . . . ) of this random walk defining the time evolution of the
source will correspond a dynamical trajectory on the space of mass distributions; the trajectory will be
given by the equivalent of equation (4) for the non-absorbing states:

µt = eit−11 + eit−2Q + · · ·+ ei1Qt−2 + ei0Qt−1 (53)

The interesting point is that the probability of a finite section [µ]t+st to be observed is correlated
to the probability of the corresponding cylinder in the random walk on S, in particular the asymptotic
behavior of the system will be an itinerary visiting the fixed point distributions according the equilibrium
distribution of the source process S.

5.1 Contraction Property
Let µ∞,i denote the asymptotic mass distribution corresponding to a constant source ei. We have,
according to equation (14):

µ∞,i = ei(1−Q)−1 (54)

or, equivalently
µ∞,i = ei + µ∞,iQ (55)

Using (52) and (55) we have:
µt+1 − µ∞,it = (µt − µ∞,it) Q (56)

Now, see for example [26], since the spectral radius ρ(Q) is strictly smaller than one, for each suffi-
ciently small positive ε we can choose an appropriate subordinate norm such that there is c ≤ ρ(Q)+ε < 1
and:

‖µt+1 − µ∞,it‖ ≤ ‖µt − µ∞,it‖‖|Q‖| ≤ c‖µt − µ∞,it‖ (57)

Equation (57) means that, if the source switches to the value eit at time t, then the mass distribution
reacts by exponentially approaching to the asymptotic value µ∞,it . The smaller the spectral radius of
Q, the closer µt+1 gets to the asymptotic value µ∞,it corresponding to injection of mass eit at time t+ 1.
Notice that this result, [26], is also true for Jordan block matrixs.

5.2 Asymptotic Distribution Average
We can also give the time average µav of the mass distribution, that we can compute using the ergodic
properties of the transition matrix S. µav is obtained by summing on all the possible µt, weighted by
the corresponding probability, and taking the limit t → ∞. Recall that to each cylinder [ei0 , . . . , eit−1 ]
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(having measure ξi0Si0i1Si1i2 . . . Sit−2it−1) corresponds by (53) a given µt. Also ξi0 = 1 in our model since
the initial distribution of the source is set with probability 1 in one of the states ei0 of the system.

Therefore,

µav = lim
t→∞

∑
i1...it−1

Sii1Si1i2 . . . Sit−2it−1(eit−11 + eit−2Q + · · ·+ eiQt−1) (58)

Equation (58) says that µav is the i-th row of the matrix Γ∞ = limt→∞ Γ(t), where we have defined:

Γ(t) =
t−1∑
k=0

SkQt−k−1 (59)

Proof: ∑
i1...it−1

Sii1Si1i2 . . . Sik−1ikSikik+1 . . . Sit−2it−1eikQt−k−1 =
∑
i1...ik

Sii1Si1i2 . . . Sik−1ikeikQt−k−1 (60)

since ∑
ik+1...it−1

Sikik+1 . . . Sit−2it−1 = 1 (61)

From the definition of Γ(t), equation (59), it follows that :

Γ(t+ 1) = Γ(t)Q + St (62)

which implies
Γ∞ = S∞(1−Q)−1 (63)

where S∞ = limt→∞ St is the matrix whose identical rows are the stationary distribution s = (s1, . . . , sN−n)
of the Markov chain described by S, which give the long-run fraction of time of presence of the system
in the different states. Notice that Γ∞ inherited from S∞ the property of having all the rows identical
and here equal to µav. As expected,

µav =
N−n∑
i=1

si µ∞,i (64)

Equation (64) says that µav is simply the barycentre of the µ∞,i’s weighted by the fraction of time
during which the source is equal to ei. This also implies that µav coincides with the asymptotic mass
distribution corresponding to a constant average source σ = (s1, . . . , sN−n).

Let us remark that in the case where the source varies periodically in time instead of randomly,
the time average of the mass distribution is still given by an expression equivalent to (64). Indeed, for
a source of period T , the time average of the asymptotic mass distribution is, using the notations of
equation (35):

µav = 1
T

(
µ(T ) + µ(T+1) + · · ·+ µ(2T−1)

)
(65)

Equation (35) gives then

µav = 1
T

(σ0 + σ1 + · · ·+ σT−1) (1 + Q + · · ·+ QT−1) (1−QT )−1 = 1
T

T−1∑
i=0

σi (1−Q)−1 (66)
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which is again the barycentre of the asymptotic mass distributions corresponding to the T constant
sources σi, weighted by the fraction of time during which the source is equal to each σi, that is, 1/T for
all i = 1, . . . , T − 1.

Once the average is known it is tempting to search for bounds of the fluctuations around the mean.
However, at each time step the source adds a quantity eit which is always of order one and independent
of the eigendirections of Q ; therefore, as it will be clear in section 6, the fluctuation size in the long run
is of the order of the inverse of the asymptotic masses. Despite of that we shall see that the average
dynamics may be an useful indicator in many cases.

Let us illustrate these ideas through the 3-state model. Here:

S =
(

(1− a) a
b (1− b)

)
, Q =

(
(1− p) p
q (1− q − r)

)
(67)

Therefore:
S∞ = 1

(a+ b)

(
b a
b a

)
(68)

and

rows of S∞(1−Q)−1 =
(
q

rp
+ b

(a+ b) p,
1
r

)
= lim

t→∞

1
t

t∑
t′=1

µt′ (69)

0
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M
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Figure 4: System with a fluctuating source driven by a Markov chain. Bottom/Blue line: first component of
µt, the amount of mass in the first state of the chain. Top/Red line: second component of µt, the amount of
mass in the second state of the chain.

In Figure 4 we show an example of this situation. The parameters of the system are in this case
(a, b) = (0.6, 0.2), (p, q, r) = (0.1, 0.3, 0.6).
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We observe a random oscillation between the two asymptotic solutions. In this case the convergence
rates are sufficiently fast. Here the maximal eigenvalue of Q is λ1 = 0.9359, the second eigenvalue of S
is ξ2 = 0.2, (see section 5.1), and the diagonal elements sufficiently high to insure visible residence times
close to each equilibrium of the original Q system with constant sources σ0 and σ1. Instead, following
section 3, the trajectory will be close to the periodic asymptotes if S is close to a periodic chain.

6 Application: A Model of Road Network Dynamics
A natural context of application of our model is transport networks where the traffic flow is modelled
by a network representing roads and junctions where cars can move. Recent access to direct recorded
imaging data of the path followed by each single vehicle within the flow or to the collective behavior
when they arrive to a road junction attracts new interest to this type of models. Moreover there is now
a large number of dedicated softwares that can be used to simulate with more or less detail this traffic
situations. One of the most popular of such mobility simulators, SUMO, [27], [28] is a friendly open
source microscopic road traffic simulation package allowing comparison with real or virtual data.

Clearly Markov chains were employed in the past to build simple or sophisticated models representing
vehicular mobility in urban environment, see for example [29] for a documented presentation. However
up to our knowledge, all this models, being standard Markov chains, are closed systems.

Here we modify a known road network Markov model, [30], [31], in order to introduce external sources
and sinks of vehicles. It is out of the scope of this work to develop in detail the comparison of our results
with real data. Instead by comparing our simulations with the ones made in [30], [31], we hope that it
is possible to confirm the relevance of our paradigm.

Figure 5: Dual graph of a road network , [30]: nodes are roads and arrows are junctions. From left to right:
West side (green), nodes 1 − 6, Bridges (blue), nodes 7 − 8 and East side (red), nodes 9 − 16. In black an
additional absorbing external node.

It is natural to introduce in this context a directed graph (G, V, E) where nodes V correspond
to junctions and directed edges to connecting roads. This representation is sometimes called primal
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in contrast with a dual representation where the streets correspond to nodes and junctions to edges.
Following [30], [31], we shall use the second formulation, see [32] for a discussion of this choice.

By adding to the topological information encoded in the dual graph the turning probabilities at each
junction (available for instance from webcam counts), in [30] the authors define a transition stochastic
matrix and therefore a Markov chain in the obvious way. They present a case study with seven nodes in
the primal graph (A,B,C,D,E, F,G) and sixteen in the dual graph, in alphabetic order :
(AB,AC,BA,BC,CA,CB,CD,DC,DE,ED,EF,EG,FE, FG,GE,GF ), hereby denoted 1 to 16, Fig-
ure 5. They study two different versions of the (16 × 16) transition matrix: P0 and Px. The first one,
P0, has all the diagonal elements equal to zero and the non diagonal terms simply correspond to the em-
pirical turning probabilities. The second matrix, Px, takes in account the different travel times to cover
each single road (a node of the graph). In this case the diagonal elements are no more zero and the non
diagonal terms are renormalized accordingly. Notice that there is a slight difference between the classical
De Bruijn graphs, [33], and the dual graph in that some of the arrows of the 2-De Bruijn are missing in
the dual graph because the corresponding turnaround is not possible in the actual configuration of the
real road connections. For instance, there are no direct connections between the bridges CD, (node 7)
and DC, (node 8) in the dual graph of Figure 5.

Starting from P0 and Px, [30], we define the corresponding sub-stochastic matrixs Q0 and Qx in
order to introduce the sinks. They are defined by adding first an absorbing node 17 (the sink) to the Ps
and then deciding that the exit of vehicles from the network to the sink uses only nodes 12 and 16 and
it affects 40% of the vehicles of each of these two roads.

Here we focus on the more realistic case of the matrix Qx where the different travel times to cover
each road is taken in account (the case Q0 can be treated in the same way). The matrix Qx reads:

Qx =



0.168 0 0.083 0.749 0 0 0 0 0 0 0 0 0 0 0 0
0 0.62 0 0 0.038 0.304 0.038 0 0 0 0 0 0 0 0 0

0.041 0.361 0.598 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.35 0.45 0.1 0.1 0 0 0 0 0 0 0 0 0

0.35 0.05 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0
0 0 0.717 0.08 0 0.203 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.049 0 0.951 0 0 0 0 0 0 0
0 0 0 0 0.469 0.469 0 0.062 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0 0
0 0 0 0 0 0 0 0.935 0 0.065 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.099 0 0.09 0.811 0 0
0 0 0 0 0 0 0 0 0 0 0 0.2 0 0 0.1 0.3
0 0 0 0 0 0 0 0 0 0.05 0.05 0.1 0.8 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.65 0.15
0 0 0 0 0 0 0 0 0 0.1 0.5 0.1 0 0 0.3 0
0 0 0 0 0 0 0 0 0 0 0 0 0.45 0.1 0 0.05


(70)

We notice that these matrices show a clear block-like structure with a first block (West side) consisting
of nodes 1 to 6, a second block (East side) corresponding to nodes 9 to 16 and two bridge nodes 7 and 8
connecting the West and East sides, as it appears from the structure of the network shown in Figure 5.

We then introduce the source terms in the model. We shall consider two different cases corresponding
to different traffic conditions. In the first case the vehicles enter the network at West side through junction
A, therefore through nodes 1 and 2 in the dual graph, and leave the network by the far East side using
nodes 12 and 16. In this case the source transfer matrix S2 has dimension 2 and acts on the two first
states of the system. Here we use as Markov source the matrix producing the plot shown in Figure 4:

S2 =
(

0.4 0.6
0.2 0.8

)
(71)

In the second case the vehicles enter the network at any junction and therefore at any node of the
dual graph except at the bridges (nodes 7 and 8). The corresponding Markov transfer matrix S14 has

16



dimension 14 and acts on the West and East nodes. We chose a simple example of a reversible ergodic
chain with uniform stationary distribution so that in the long run any node gathers the same amount of
vehicles from the outside:

S14 =



0.1 0.1 0.2 0.2 0 0 0 0 0 0 0 0 0.2 0.2
0.1 0.1 0.2 0.2 0 0 0 0 0 0 0 0 0.2 0.2
0.2 0.2 0.1 0.1 0.2 0.2 0 0 0 0 0 0 0 0
0.2 0.2 0.1 0.1 0 0.2 0.2 0 0 0 0 0 0 0
0 0 0.2 0 0 0.1 0.1 0.2 0.2 0.2 0 0 0 0
0 0 0.2 0.2 0.1 0 0.1 0.2 0 0.2 0 0 0 0
0 0 0 0.2 0.1 0.1 0 0.2 0.2 0.2 0 0 0 0
0 0 0 0 0.2 0.2 0.2 0 0.1 0.1 0 0.2 0 0
0 0 0 0 0.2 0 0.2 0.1 0 0.1 0.2 0.2 0 0
0 0 0 0 0.2 0.2 0.2 0.1 0.1 0 0.2 0 0 0
0 0 0 0 0 0 0 0 0.2 0.2 0.1 0.1 0.2 0.2
0 0 0 0 0 0 0 0.2 0.2 0 0.1 0.1 0.2 0.2

0.2 0.2 0 0 0 0 0 0 0 0 0.2 0.2 0.1 0.1
0.2 0.2 0 0 0 0 0 0 0 0 0.2 0.2 0.1 0.1


(72)

The results of the simulations of this system are partially reproduced in Figures (6), (7) and (8).
Figure (6) shows the time plots of the nodes of West side for runs of Markov injection of vehicles
entering the network according to the matrix S2 (Figure 6-a) and to the matrix S14 (Figure 6-b). Figure
(7) shows the corresponding flows for the East side. It is clear that the amount of vehicles present in
the West side is much larger than on the East side in both situations, in fact any West node copes with
more vehicles that any East node. Moreover concerning their mass contents the nodes are ordered in the
same manner in both the incoming situations of S2 or S14. This suggests that in this case the internal
structure of the network and in particular the exit locations are the main factors governing the traffic
flow as compared with the distribution of the influx nodes. In fact the nodes are ordered in the same
way here as the components of the Perron-Frobenius eigenvector of Qx, 1 that is independent of S. This
is not always the case for we know from the previous example, (69), how the asymptotic behavior may
depend on the injection system. On the contrary we can see that the fluctuations levels around the mean
are intimately related with vicinity of the arrival nodes as can be checked by comparing the (a) side
of the this figures with the (b) side. We notice that the dynamics on the network in our case is quite
different of the one of the closed counterpart described in [30] where the traffic is equally distributed in
both sides of the network and among the nodes (up to the bridges) and there is no fluctuations at all.

In section 5.2 we prove, (64), that the averaged dynamics of a network driven by an injection matrix
S corresponds to the one of a constant source equal to the stationary distribution of S. Let us define
µav(t) the t iterated of the mass distribution associated to this constant source. It is natural to define a
fluctuation function δi(t) for each node i and each Markov run of the system by:

δi(t) = |µi(t)− µavi (t)| (73)

In Figure 8(a) we show a time plot of the Bridge nodes dynamics in the case of vehicles entering
by all the roads of the network, and in Figure 8(b) the corresponding average evolution. Notice that,
since the Bridge nodes are a cut of the graph, the difference of the two asymptotic values in Figure 8(b)
represents the net averaged outcome of vehicles from West to East per unit time. As anticipated at the
end of section 5.2, in Figure 8(a) we see large fluctuations (of order one) at any time. In Figure 9 this
fluctuations are characterized by the values of the fluctuation function δi(t) as defined in (73). Due to the

1Ψ1 = (0.0654, 0.2017, 0.1866, 0.0887, 0.1311, 0.093, 0.0176, 0.0065, 0.0170, 0.0064, 0.0328, 0.0213, 0.0460, 0.0354, 0.0367, 0.0125)
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Figure 6: West side network. (a) vehicles enter by nodes 1 and 2, (matrix S2). From top to bottom (at
t = 200): nodes 2, 3, 5, 6, 4, 1.(b) vehicles enter by all nodes, (matrix S14). From top to bottom (at t = 200):
nodes 3, 2, 5, 6, 4, 1.
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Figure 7: East side network. (a) vehicles enter by nodes 1 and 2, (matrix S2). (b) vehicles enter by all
nodes, (matrix S14). In both cases, vehicles leave the network by nodes 12 and 16 and from top to bottom
(at t = 200): nodes 13, 15, 14, 11, 12, 9, 16, 10.
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Figure 8: Bridges : vehicles enter by all nodes, (matrix S14). (a) time plot of the Markov run, (b) time plot
of the average evolution. In both cases, from top to bottom (at t = 200): node 7 (Bridge West to East) and
node 8 (Bridge East to West).

vicinity of the incoming nodes there is a net difference between the case of the source S2, Figure 9(a) and
the case of the source S14, Figure 9(b). In the first situation we observe small fluctuations softened by
the distance to the source, quite the opposite of the second situation where the δis are many times close
to one. Even though large fluctuations cannot be neglected in the long run, it is clear that the average is
an useful indication of the rates of the traffic in the network. To theoretically quantify such fluctuations
in a manner that would take into account the specificity of each node gives rise to interesting questions,
leading to the possibility of handling the issue of traffic control, that are out of the scope of the present
work and that we leave for a forthcoming study. Nevertheless we hope that we have convinced the reader
of the interest of the model for studying road traffic situations.

It is clear from the preceding analysis that our model is suitable in other cases where transport of
some conserved quantity is present. A pertinent well documented case is the one of electric networks,
[24], and [34] and [35] for more recent developments. In this context the presence of electronic variable
resistors may lead to a stochastic source where the consideration of a Markov injection model may be of
interest. In this situation, the reversibility of the chain, which is a characteristic attribute of this case,
may open to interesting simplifications, and therefore to more precise conclusions. The characteristics
of our model would be particularly adapted to a situation where the transient dynamics is relevant.

7 Conclusions
In this paper we study the flux through a finite Markov chain of a quantity, called mass, that has the
property of moving through the states of the chain according to the Markov transition probabilities. Mass
is supplied by a source and the chain possesses one or more absorbing states where mass accumulates.
In the vast range of systems whose dynamics can be modelled by Markov chains, this approach could be
useful to treat the case of open systems where the quantity of interest is provided by an external source,
evolves inside the system and is eliminated in the end.
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Figure 9: Fluctuations δi(t), i = 7, 8 with respect to the average defined in (73) in the Bridge nodes : (a)
vehicles enter by nodes 1 and 2, (matrix S2), (b) vehicles enter by all nodes, (matrix S14).

In the case where the source is constant in time, we give the expression µt of the distribution of mass
in the system at any time, as a function of the source and of the eigenvalues and eigenvectors of Q, the
transition matrix restricted to the non-absorbing states. We show that µt converges to an asymptotic
distribution µ with an exponential rate that is dominated by the largest eigenvalue of Q.

In the case where the source is periodic in time, the distribution of mass at any time t can also be
computed analytically. The asymptotic distribution is found to have the same periodicity as the source
and, as in the case of constant source, the gap between µ and µt decreases exponentially with a rate
depending on the largest eigenvalue of Q.

Nevertheless, in contrast with a conventional absorbing Markov chain the asymptotic distribution µ
depends of the source flux σ and has contributions from all the eigendirections of Q. In particular, as a
fixed point of an affine transformation, µ is not zero.

All quantities of interest have been explicitly computed and these ideas illustrated in the case of a
3-states Markov chain.

A concrete example of application of this framework to traffic flow in a road network is presented
and partially worked out in section 6.
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