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Abstract 

By assuming that the individual derives utility from consumption only, the resulting optimal decision to save in 

the Ramsey model depends on the rate of return, given a certain time preference. If therefore the production 

function is such that this rate of return remains relatively low, the individual reacts unconsciously by refusing to 

save despite the capital depreciates and the household grows. We argue that it is conceptually necessary in that 

framework to assume a direct preference for saving (or for thriftiness) in the utility function, not only to make 

the individual behave as a real human being who cares about the survival of the household, but also to account 

reasonably for any other motives to save or accumulate than the rate of return. We show it generalizes the model 

in a way to recover static properties of the exogenous Solow version and to extend results of capitalist spirit 

models following Zou (1994). 

Keywords: bequest, status, thriftiness, capitalist spirit, ramsey model 

1. Introduction 

It goes to our mind almost systematically, that the flow of saving should never be included in the Utility function 

along with consumption, to solve the inter-temporal maximization problem of the consumer. Two reasons can be 

stated precisely and may sound a bit obvious only at first glance. The first one which is to consider savings as 

having no intrinsic value for the individual, can arguably be contested in some cases. The second, a technical 

redundancy applying to the basic model where the goal of the individual is to reallocate exogenous flows of 

income, can be shown to not apply to models of accumulation. The goal of this paper is to criticize the 

systematic neutrality of a Utility effect of savings in the literature, and to report the relevant implications in the 

Ramsey growth model where specifically, such neutrality may actually be inappropriate. 

To contest the first reason for excluding savings from Utility in the Ramsey context, it might not be necessary to 

recall the literature motivating that individuals derive direct Utility from wealth for the status; see Zou (1994), 

Bakshi and Chen (1996), Carroll (2000) or Kumhof, Rancière and Winant (2015). Indeed, by introducing the 

saving flow in the Utility function, not only is the continual seek for a higher capital and status captured, but also 

a direct preference for thriftiness which should be involved if the individual worries about the necessity to 

renovate the depreciated capital, or to accumulate sufficient wealth for the growing household. (Note 1). 

In life-cycle (LC) or overlapping generations (OLG) models, the neutrality of this direct preference for 

thriftiness or wealth accumulation is systematically constrained each period, such that the individual saves only 

if the interest rate is attractive. Because of this particularity, alternative models accounting for the bequest motive 

have been proposed in the literature. One type includes for example Barro (1974) or Laitner (1992), where 

successive generations working for only one period value the level of Utility of their children. Another consists 

in “joy of giving models” like for example Andreoni (1990), or more recently Dynan, Skinner and Zeldes (2002), 

where individuals gain satisfaction from bequeathing a part their lifetime income to the children. Although the 

second type has been extensively examined in the literature, the altruistic Ramsey model has never been 

explored under the assumption of a direct preference for bequeathing savings that are reinvested. It could be 

supposed indeed, that each generation working at period t leaves a bequest that serves to renovate or increase the 

capital left to the children at t+1, before retiring or eventually dying. From this conceptual viewpoint, a direct 

preference for saving finds a very strong motivation in that framework, aside from a plausible preference for 

thriftiness or wealth accumulation. 
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Technically, it may have seemed redundant at first glance to introduce explicitly this preference in the model, 

because the dynamics is already such that savings and accumulation occur up to a steady-state. However, this 

result is precisely due to the properties of the production function and not to a particular intention of the 

individual to accumulate or renovate capital. It is well known for example that under the case of a small open 

economy facing a relatively low world interest rate, the dynamics conterfactually predicts that this economy 

never saves and for instance, that it asymptotically mortgages all of its capital and labor income; see Barro and 

Sala-i-Martin (1995, chapter 3) or Hof and Wirl (2008). Similar unplausible results occur in the case of a closed 

economy with for example an Ak production function. Starting indeed from a steady-state position, if a 

permanent productivity shock occurs such that A decreases to A’, individuals chose to remain on a relatively high 

level of consumption and to neglect the capital depreciation until it totally disappears. We show (in appendix) 

that including a direct preference for saving or for thriftiness in the utility function is a way to make the 

representative agent conscious as a real human being and to reach a new viable solution. 

Another technical detail that defends the necessity to introduce a direct preference for saving in the Ramsey 

model is that, contrary to basic inter-temporal models where the goal of the individual is to reallocate exogenous 

flows of income, this one endogenizes the behavior of a ‘saver’ (the Solow agent); i.e. it studies the long-run 

accumulation process of capital that results from optimal demands for consumption and savings at each period. 

As a direct consequence, the microeconomic theorem of integrability applies, which means the corresponding 

Utility function is of the type U(Ct,St). (Note 2)  

Assuming a direct preference for saving or accumulating generates a more general dynamics than the standard 

one and even those of models accounting for the capitalist spirit as Zou (1994). Furthermore, it allows to recover 

the basic static properties of the exogenous Solow version. 

Similarly to growth models involving absolute wealth in Utility as Zou (1994), or relative wealth as Corneo and 

Jeanne (2001), the presented model allows to invest more than in the standard version by modulating the 

preference for wealth accumulation. This property is known as a plausible way to contrast with the contested 

lower boundary condition and convergence theorem of the traditional theory. It implies for instance that 

necessary and sufficient conditions required to meet the golden rule of accumulation can be specified. Another 

similarity that might also be important to report, is that the effect of the natural growth rate of workers on the 

steady-state level of capital per capita appears confirmed. Those common results could eventually be interpreted 

as two steps already made towards a reconciliation with Solow’s static properties of the steady-state.  

In contrast with this previous literature however, the proposed preference function generates a slower transition, 

and offers the possibility to reach also lower steady-state levels of capital per capita than in the standard model 

by investing less. Aside from allowing to recover a total coherence with the basic exogenous version, this second 

property might complement explanations of cross-country differences, and for instance, reconcile more empirical 

growth facts of developing countries with optimal growth theory. 

The remainder is organized as follows. Section 2 shows that applying this type of preferences in the Ramsey 

model appears to generate more consistent results than in the standard case. Section 3 concentrates on a 

discussion of the transition through a comparative analysis, and Section 4 concludes. 

2. A Further Formulation of the Ramsey Growth Model 

The first section presents the model which involves an interesting application of the Pontryagin’s Maximum 

Principle. The second discusses the steady-state and Golden Rule. 

2.1 The Optimal Control Program 

At time t, a representative generation composed of L workers cares about consuming and reinvesting a part of 

income produced. The instantaneous preference function is defined by 𝑈𝑡(𝑐𝑡, 𝑠𝑡), where 𝑐𝑡 denotes per capita 

consumption at t, 𝑠𝑡 denotes per capita savings (or bequests), and 𝜃 ∈ (0,1) is a proportion which measures the 

degree of preference for consumption over savings. The budget constraint of this representative agent is given by 

𝑐𝑡 + 𝑠𝑡 = 𝑦𝑡, where 𝑦𝑡 denotes income per worker. The production function is supposed of the Cobb-Douglas 

form with constant returns to scale, such that 𝑦𝑡 = 𝑓(𝑘𝑡) = 𝑘𝑡
𝛼 , where 𝑘𝑡  denotes capital per worker, and 

𝛼 ∈ (0,1). The dynastic Utility function (after substitution of 𝑠𝑡) is denoted by 𝑉{𝑐𝑡, 𝑘𝑡}. It is maximized over an 

infinite horizon subject to a dynamic constraint of capital accumulation (by the social planner):  

Max𝑐𝑡
 𝑉{𝑐𝑡 , 𝑘𝑡} = ∫ 𝑈𝑡(𝑐𝑡 , 𝑘𝑡) 𝑒(𝑛−𝛽)𝑡𝑑𝑡

∞

𝑡0
                        (1) 

        s.t.     𝑘̇𝑡 = 𝑓(𝑘𝑡) − 𝑐𝑡 − (𝑛 + 𝛿)𝑘𝑡                              (2) 
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where 𝑛 is the natural growth rate of workers, 𝛽 is the usual degree of impatience and 𝛿 is the rate of 

depreciation of capital. We impose the usual restriction 𝛽 > 𝑛 to ensure a feasible interior solution to the 

problem.  

For the sake of concreteness, we assume a Cobb-Douglas Utility function 𝑈𝑡(𝑐𝑡, 𝑠𝑡) = 𝑐𝑡
𝜃𝑠𝑡

1−𝜃  and its 

log-transformation 𝑈𝑡(𝑐𝑡, 𝑠𝑡) = 𝜃ln(𝑐𝑡) + (1 − 𝜃)ln(𝑠𝑡).  

Considering the first specification for example, the Hamiltonian is given by: 

𝐻𝑡(𝑐𝑡 , 𝑠𝑡) = 𝑐𝑡
𝜃[𝑓(𝑘𝑡) − 𝑐𝑡]1−𝜃𝑒(𝑛−𝛽)𝑡 + 𝜆𝑡𝑒(𝑛−𝛽)𝑡[𝑓(𝑘𝑡) − 𝑐𝑡 − (𝑛 + 𝛿)𝑘𝑡]         (3) 

After standard computations (exposed in appendix), the resulting differential equation of consumption is: 

 𝑐̇𝑡 =
1−𝑎𝜃

1−𝜃
[(2 − 𝑎𝜃 − 𝜃)𝑓𝑘 − (1 − 𝑎)(𝛿 + 𝛽)]𝑐𝑡 − 𝑎𝜃(𝑛 + 𝛿)𝑓𝑘𝑘𝑡              (4) 

In clear, there can be multiple dynamical systems depending on the value of 𝑎 ∈ (0,1), which satisfy the first 

necessary conditions. This means that among all admissible values of 𝑎, or 𝜆𝑡 as explained by Schättler and 

Ledzewicz (2012), it remains to determine which one(s) maximize(s) 𝑉𝑡{𝑐𝑡
∗, 𝑘𝑡

∗}. In that sense, we may now 

define 𝑎 as being a choice variable associated to a set of controlled trajectories, and 𝑎∗ as being the rational 

choice associated to the optimal one which maximizes total welfare; i.e., the value of 𝑎 is endogenously set by 

the maximizing behavior. 

Contrary to the differential equation of consumption (4), the one of the log-transformed Utility can admit the 

value of 𝜃 = 1, in which case it simplifies to the standard Ramsey equation. Its expression is given by: 

 
𝑐𝑡̇

𝑐𝑡
=

1−𝑎𝜃

1+𝑎𝜃(𝑎−2)
[2𝑎(1 − 𝜃)𝑓𝑘 + (1 − 𝑎)(𝑓𝑘 − 𝛽 − 𝛿)] −

𝑎(1−𝜃)

1+𝑎𝜃(𝑎−2)
(𝑛 + 𝛿)𝛼           (5) 

The graphical resolution of the dynamical systems shows that for any 𝑎 ∈ (0,1), there exists a unique saddle 

path in each case leading to a steady state equilibrium denoted by {𝑐𝑇
∗ (𝑎), 𝑘𝑇

∗ (𝑎)} . The phase diagram 

corresponding to the multiplicative Cobb Douglas case (Figure 1), shows that the parameter 𝑎 affects only the 

convexity of the ‘𝑐𝑡̇ = 0 locus’. (Note 3) The level of consumption increases to the left of this locus, and 

decreases to the right. For the case of the log-Utility (Figure 2), the phase diagram is identical to the standard one 

except that the vertical ‘𝑐𝑡̇ = 0 locus’ depends now on the parameter 𝑎. 

 

Figure 1. Phase diagram for the multiplicative Cobb-Douglas case 

 

        

Figure 2. Phase diagram for the additive Cobb-Douglas case 
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Let {𝑐𝑡
∗(𝑎), 𝑘𝑡

∗(𝑎)} denote any equilibrium (or saddle path) solution that leads to the steady-state at 𝑡 = 𝑇. It can 

easily be noticed that the transversality condition lim𝑡→∞ 𝜆𝑡(𝑎)𝑘𝑡
∗(𝑎)𝑒(𝑛−𝛽)𝑡 = 0, is fulfilled at equilibrium if 

𝛽 > 𝑛 because: 

lim𝑡→∞ 𝜆𝑡(𝑎) = 𝑈𝑐𝑇
∗ (𝑎), from the first necessary condition, 

lim𝑡→∞ 𝑘𝑡
∗(𝑎)𝑒(𝑛−𝛽)𝑡 = 𝑘𝑇

∗ (𝑎). lim
𝑡→∞

𝑒(𝑛−𝛽)𝑡 = 0, if 𝛽 > 𝑛 

Let the control set be defined by: 

𝑍 = {𝑐𝑡
∗(𝑎) ∈ ℝ++ / 𝑐𝑡

∗(𝑎) <  𝑦𝑡
∗(𝑎) ∀ 𝑎 ∈ (0,1)}, 

such that total welfare 𝑉𝑡{𝑐𝑡
∗(𝑎), 𝑘𝑡

∗(𝑎)} is restricted to the set of real numbers. We can now proceed to a formal 

definition of a feasible optimal solution to the problem. 

PROPOSITION 1: An admissible controlled trajectory {𝑐𝑡
∗(𝑎∗), 𝑘𝑡

∗(𝑎∗)} satisfying the necessary Pontryagin’s 

conditions ∀ 𝑎∗ ∈ (0,1) , 𝑐𝑡
∗(𝑎∗) ∈ 𝑍  and 𝑘𝑡

∗(𝑎∗) ∈ ℝ++ , is an optimal controlled trajectory if and only if 

𝑉𝑡{𝑐𝑡
∗(𝑎), 𝑘𝑡

∗(𝑎)} ≤ 𝑉𝑡{𝑐𝑡
∗(𝑎∗), 𝑘𝑡

∗(𝑎∗)} ∀ 𝑎 ∈ (0,1) / 𝑎 ≠ 𝑎∗, 𝑐𝑡
∗(𝑎) ∈ 𝑍, 𝑘𝑡

∗(𝑎) ∈ ℝ++. 

An important result to keep in mind, is that the rational choice of the optimal trajectory is determinant for the 

terminal steady-state {𝑐𝑇
∗ (𝑎∗), 𝑘𝑇

∗ (𝑎∗)} reached in the long run. 

2.2 Steady-States and Golden Rule 

Contrary to the multiplicative Cobb Douglas Utility function, the log form allows to derive a steady-state 

solution analytically, which is: 

𝑘𝑇
∗ (𝑎) = [

(1−𝑎𝜃)(1−2𝑎𝜃+𝑎)𝛼

𝑎(1−𝜃)(𝑛+𝛿)𝛼+(1−𝑎𝜃)(1−𝑎)(𝛽+𝛿)
]

1
(1−𝛼)

                          (6) 

For any non-corner point (𝜃, 𝑎) ∈ (0,1) × (0,1), the steady-state level of capital (or income) per worker is a 

decreasing function of the natural growth rate. Hence, as soon as individuals are assumed to gain some Utility 

from accumulating or saving, the negative impact of population growth known from the basic exogenous Solow 

model is recovered. 

Another important static property that plays a crucial role for the dynamics is the one of the golden rule from 

Phelps (1961). The Ramsey growth model, as it is used in most macroeconomic studies, is characterized by a 

steady-state level of capital per worker that remains always lower than the consumption maximizing level (and 

hence, than the over-accumulation one as well). As explained previously, this constitutes one of the reasons why 

alternative capitalist spirit models have been proposed in the literature, following for example Zou (1994) and 

Corneo and Jeanne (2001). Before presenting necessary and sufficient conditions for a golden rule steady-state, it 

may be preferable to present first a more general property that concerns any ‘terminal’ or constrained 

steady-state. 

PROPOSITION 2: Among all feasible controlled trajectories {𝑐𝑡
∗(𝜃, 𝑎), 𝑘𝑡

∗(𝜃, 𝑎)}  ∈ 𝑍 × ℝ++, converging to a 

particular steady-state solution { 𝑐𝑇
∗  ̅̅ ̅̅  , 𝑘𝑇

∗̅̅ ̅ } , there exists a preference-choice couple (𝜃∗, 𝑎∗) ∈ (0,1) × (0,1) 

compatible with an optimizing behavior; ie. which satisfies: 𝑉𝑡{𝑐𝑡
∗(𝜃, 𝑎), 𝑘𝑡

∗(𝜃, 𝑎)} ≤ 𝑉𝑡{𝑐𝑡
∗(𝜃∗, 𝑎∗), 𝑘𝑡

∗(𝜃∗, 𝑎∗)} , 

∀ (𝜃, 𝑎) ∈ (0,1) × (0,1)  /  (𝜃, 𝑎) ≠ (𝜃∗, 𝑎∗). 

This property resulting directly from the resolution might be viewed as a reciprocal of the first one. Indeed, a 

steady-state dynamics is an optimal controlled trajectory as soon as there is no other ways to reach the same 

dynamics with a higher total welfare. Suppose for example that the constrained terminal state corresponds to the 

solution of the Solow model: 

𝑘𝑇
∗̅̅ ̅ = (

𝑠𝑇
∗̅̅ ̅

𝑛 + 𝛿
)

1

1−𝛼

    where    𝑓𝑘𝑇
∗̅̅ ̅̅ =

(𝑛 + 𝛿)𝛼

𝑠𝑇
∗̅̅ ̅

   and   𝑠𝑇
∗̅̅ ̅ ∈ (0,1) 

The determination of 𝜃 a posteriori for a given 𝑠𝑇
∗̅̅ ̅, requires to solve a quadratic equation in 𝜃, which implies 

two admissible sets (𝜃𝑖 , 𝑎𝑖), ∀ i=1,2. In some cases, restrictions imposed allow to eliminate one of the sets 

entirely, so that a unique underlying combination of parameters (𝜃𝑖
∗, 𝑎𝑖

∗) that maximizes total welfare can be 

identified; it is for example the case for relatively high or low steady-states. Under cases where both sets offer 

potential candidates however, the terminal state assumed can possibly be generated by two different optimal 

trajectories (or two different rational behaviors). In such a multiple equilibrium context, the goodness of fit to 
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real data becomes the last way to identify the right solution. 

The golden rule steady-state which maximizes consumption is reached if 𝑠𝑇
∗̅̅ ̅ = 𝛼 . For the multiplicative 

Cobb-Douglas form, the following condition must hold: 

[1 +
1−𝜃

(1−𝑎𝜃)𝑋
𝑎𝜃(𝑛 + 𝛿)]

−1

= 𝛼                              (7) 

where 𝑋 = (2 − 𝑎𝜃 − 𝜃)(𝑛 + 𝛿) − (1 − 𝑎)(𝛿 + 𝛽), and for the log-Utility case, 

1−𝑎𝜃

𝑎(1−𝜃)
[1 + 𝑎(1 − 2𝜃) − (1 − 𝑎)

𝛽+𝛿

𝑛+𝛿
] = 𝛼                         (8) 

3. Numerical Analysis of the Dynamics 

3.1 General Properties of the Dynamics 

The question that comes first is to know how total welfare changes with respect to the parameter 𝑎, which has 

been defined previously as reflecting the choice of an admissible trajectory made by the individual. The next 

interesting step is to understand how the variables behave along the optimal path (Note 4). 

Numerical simulations show that for a preference parameter 𝜃 that tends to one, the optimal value of 𝑎 

decreases and the maximum total welfare tends to stabilize for 𝑎 < 𝑎∗. In Figure 3 for example, when 𝜃 = 0.95, 

the maximum total welfare attains 𝑉∗ = 241.62 at 𝑎∗ = 0.71, and remains almost constant for 𝑎 ≤ 0.71 

(precisely, it decreases slowly until 𝑉 = 241.36 for 𝑎 = 0.01). As 𝜃 decreases, the value of 𝑎∗ increases but 

at a much lower rate; for instance 𝑎∗ = 0.76 when 𝜃 = 0.85 and 𝑎∗ = 0.78 when 𝜃 = 0.2. This Figure 

shows also that the choice of the right equilibrium co-state (or value of a) matters much more for lower values of 

𝜃. For example, the size of the welfare gain from an admissible path to the optimal one can exceed 26% for the 

case where 𝜃 = 0.2. 

 
Figure 3. Total welfare by admissible path 

 

 

Figure 4. Steady-state per capita capital by admissible path 
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different levels of total welfare. When 𝜃 remains relatively high, total welfare is lower than in the standard case 

where individuals value consumption only. As 𝜃 decreases below a certain cutoff value, total welfare tends to 

increase back until reaching higher values than in the standard model. Besides the fact that the steady-state 

saving rate for such values of 𝜃 seems unreasonable, as indicated by Figure 6, this parameter describing fixed 

preferences is conceptually not to be ‘selected’ so that total welfare or even consumption is maximized. (Note 5) 

In Figure 4, it is interesting to notice that accounting for supplementary motives for saving, does not always 

mean a higher steady-state capital per capita than in the standard model. For values of 𝜃 that are close to one 

(0.95 in our example), there are some admissible trajectories (for high values of a) which lead to lower 

steady-state capital per capita than in the standard case. This interesting remark will be developed later. 

Concerning transitions towards higher-steady-states, Figure 5 shows that (unconstrained) optimal trajectories 

exhibit a faster growth when preferences for saving for social reasons become more intense. Interestingly, 

although the speed of growth increases with such intense preferences, thrifty individuals appear less sensitive to 

variations of the interest rate compared to those who care about consumption only. For instance, Figure 6 shows 

that the magnitude of the variation of the saving rate along the optimal path increases with 𝜃. 

 

 

Figure 5. Equilibrium path of capital per capita 

 

 

Figure 6. Equilibrium path of the saving rate 
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                       (9) 
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where 𝑣𝑡(𝑘𝑡) represents the part of utility derived from the capital stock, with 𝑣𝑘 > 0 and 𝑣𝑘𝑘 < 0. Preserving 

same notations as in the presented paper, the resolution of the program under this assumption leads to the 

following rule: 

𝑓𝑘𝑇
= 𝛿 + 𝛽 −

𝑣𝑘

𝑢𝑐
                                    (10) 

Hence, given the ratio 𝑣𝑘 𝑢𝑐⁄  is always positive, the steady-state capital per capita in such models will always be 

greater than in the standard one. The alternative Utility function proposed in this paper generates a more general 

version of the neoclassical growth model by contrasting this result. 

For a convenient comparative analysis, suppose the flow of Utility of the capitalist spirit model of Zou (1994) is 

given by: 

𝑢𝑡(𝑐𝑡) + 𝑣𝑡(𝑘𝑡) = 𝑙𝑛(𝑐𝑡) + 𝛾𝑙𝑛(𝑘𝑡), where 𝛾 ∈ [0, ∞)                (11) 

For 𝑛 = 0, it can be shown that the steady-state capital per capita is given by: 

𝑘𝑇 = (
𝛼+𝛾

(𝛾+1)𝛿+𝛽
)

1

1−𝛼
                                  (12) 

and is increasing in γ. The value of this parameter can be easily deduced such as to meet the golden rule 

steady-state. 

 
Figure 7. Equilibrium path of capital per capita 

Note. Common parameters in each model are assigned the following values: α = 0.3, β = 0.02, n = 0, δ = 0.05,  k0 = 1. The steady-state 

saving rate associated to the golden rule is therefore 0.3. In the presented model, the optimal pair (θ,  a∗) is deduced accordingly and equals 

(0.901, 0.85) and in the model of Zou (1994), γ = 0.171. The standard Ramsey results have been included in each Figure to compare the 

dynamics; the steady-state level of the saving rate ŝT
∗  equals 0.21 in that model. 

 

 
Figure 8. Equilibrium path of the saving rate 

Note. Common parameters in each model are assigned the following values:α = 0.3, β = 0.02, n = 0, δ = 0.05,  k0 = 1. The steady-state 

saving rate associated to the golden rule is therefore 0.3. 

 

The slowest transition towards the golden rule steady-state in Figure 7 and 8, is unsurprisingly the Solow one 

where individuals do not take advantage of the high returns initially. In all other cases, an optimal decision 

implies a faster speed of growth which differs depending on the type of preferences assumed. It appears clearly 

that the model of Zou (1994) generates the faster transition. In other words, the stock of capital in the Utility 
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function, compared to the unconsumed part of income, affects more intensively the willingness to accumulate. 

An additional particularity of the proposed model shown by Figure 4, is to allow for some admissible controlled 

trajectories towards lower steady-states as well. Departing from the standard model, this Figure indicates that the 

steady-state level of capital per capita increases with the degree of preference for saving (1 − 𝜃) and with the 

choice parameter 𝑎, except for few cases where (1 − 𝜃) is relatively low. Figures 9 and 10 present an example 

of transition towards a lower steady-state. For a ‘terminal’ saving rate 𝑠̂𝑇
∗  of 0.15 (versus 0.21 in the standard 

model), two different optimal trajectories are possible. In both cases, the speed of growth remains logically 

greater than in the Solow model. For the case where the value of 𝜃 is higher, the corresponding value of ‘𝑎’ 

leading to the specified steady-state with the maximum welfare is also higher and very close to one. Interestingly, 

the difference between the values of 𝑎 in each case is such that the trajectory of the individual endowed of the 

higher preference for consumption 𝜃, appears faster than the one who values wealth accumulation more 

intensively. In that case, the thriftiest individual is again less sensitive to variations of capital returns. 

 

 
Figure 9. Equilibrium path of capital per capita 

Note. Common parameters in each model are assigned the following values:α = 0.3, β = 0.02, n = 0, δ = 0.05, k0 = 1. The steady-state 

saving rate in the Solow model and in the presented one equals 0.15. Two solutions (θi, ai
∗) are compatible with an optimizing behavior 

towards this steady-state, (0.999,0.99) and (0.962,0.97). The standard Ramsey results are reported for comparisons (in this model, ŝT
∗ =

0.21). 

 

 
Figure 10. Equilibrium path of the saving rate 

Note. Common parameters in each model are assigned the follow values:α = 0.3, β = 0.02, n = 0, δ = 0.05, k0 = 1. The steady-state saving 

rate in the Solow model and in the presented one equals 0.15. 

  

4. Conclusion 

Clearly, in the standard Ramey model, the capital accumulation occurs mechanically thanks to the interest rate. 

When its value is low, the incentive to save disappears. The desire to save or invest in itself is neither explicitly 

nor implicitly involved in the mind of the representative agent. Yet, several motives other than the interest rate 

are actually present in that framework. Important ones are a least the necessity to renovate the capital that 

depreciates, and the necessity to increase it in order to absorb a growing household. We may eventually cite also 

the desire to get richer as in the literature of ‘capitalist spirit’. We explain in that paper that including the saving 
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flow in the utility function is not only a way to make the individual humanely conscious and care about survival, 

but also to capture any other motives to save than the rate of return that could reasonably be involved. 

The standard Ramsey model is limited in any case. It generates a steady- state level of capital per capita bounded 

by the golden rule level, where the resulting equilibrium saving rate reaches a maximum value of ‘𝛼’ (roughly 

estimated at 30%), when the time preference rate tends to its lower bound level n. Capitalist spirit growth models 

as proposed for example by Zou (1994), offer a reasonable way to contrast this constraining and counterfactual 

property. However, the love of wealth accumulation as formalized in such models, allows to extend the set of 

possible dynamics to efficient and over-accumulation ones only, so that explanations of low GDP levels remain 

limited to the time preference rate essentially. The proposed model offers the possibility to expand the set of 

steady-states on both sides of the standard version, so that eventual poverty traps in low developed countries 

characterized by insufficient investment can also be reconciled in a same way with optimal growth theory.  

In the exogenous version of Solow (1956), the individual is a saver and the desire to save is set independently of 

the interest rate by assumption. We show in this paper that including the saving flow in the utility function allows, 

not only to extend capitalist spirit models, but also to recover the properties known from the exogenous version. 

We even show through an additive Cobb-Douglas Utility function, that the dynamics and steady-state solution 

change as soon as individuals derive utility (or comfort) from saving. This should necessarily be the case if 

individuals are conscious about the possibility to die or hurt if they omit to save (enough) in that context. We 

conclude that the standard Ramsey model, used as a central structure in macroeconomic models, is actually a 

particular and too restrictive version of the optimal growth model where the representative individual cannot be 

assimilated to a real human being. Therefore, several further works are worth conducting on existing 

macroeconomic studies using the standard Ramsey model to check the impacts of this more appropriate dynamic 

structure, and hence, the robustness of the results derived from those studies in the literature. 
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Notes 

Note 1. This idea can eventually be related to the modern literature of anticipatory feelings, like for example 

Kuznitz, Kandel, and Fos (2008). The individual is supposed conscious and can be affected in the present by 

future situations, even under a deterministic context. In our case, the thrifty individual obtains ‘comfort’, feels 

safe, or avoids anxiety when saving a part of income. 

Note 2. Recall the Hurwicz-Uzawa theorem, and let the demand functions be ξC and ξS, where pC = pS = 1 and m 

= Y. We have that ξC (pC,Y) and ξS (pS,Y) add up to Y each time and are homogenous of degree zero in prices and 

income. Let X denote the range of ξ. Then, the theorem states that there exists a Utility function U: X→R on the 

range X such that ξC (pC,Y) and ξS (pS,Y) are the unique maximizers of U over the budget set. In other words, U 

is necessarily a function of the two desired ‘activities’ for which total income is shared each time. 

Note 3. It can indeed be shown that the second derivative of the ‘𝑐𝑡̇ = 0 locus’ with respect to kt is strictly 

positive for a < 1, and tends to zero when a tends to 1. 

Note 4. Numerical computations of saddle paths are made according to the shooting method. A solution a* is 

considered sufficiently accurate if in its neighborhood, changes in total welfare become relatively negligible. In 

this part, parameters kept constant are assigned the following values: α=0.3, β=0.02, n=0, δ=0.05, k0=1. For 

convenience, total welfare is calculated with re-scaled variables (ct and st are multiplied by 100). 

Note 5. The golden rule of capital accumulation is indeed not necessarily what individuals prefer. 

 

Appendix A  

Resolution of the dynamic program 

The social planner solves: 

   Max𝑐𝑡
 𝑉{𝑐𝑡 , 𝑘𝑡} = ∫ 𝑈𝑡(𝑐𝑡 , 𝑘𝑡) 𝑒(𝑛−𝛽)𝑡𝑑𝑡

∞

𝑡0
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                                s.t.     𝑘𝑡̇ = 𝑓(𝑘𝑡) − 𝑐𝑡 − (𝑛 + 𝛿)𝑘𝑡  

Resolution for the multiplicative Cobb Douglas case:  

        𝐻𝑡(𝑐𝑡 , 𝑠𝑡) = 𝑐𝑡
𝜃[𝑓(𝑘𝑡 − 𝑐𝑡)]1−𝜃𝑒(𝑛−𝛽)𝑡 +    𝜆𝑡𝑒(𝑛−𝛽)𝑡[𝑓(𝑘𝑡) − 𝑐𝑡 − (𝑛 + 𝛿)𝑘𝑡] 

The necessary conditions: 

𝑖)     𝐻(𝑡, 𝜆0, 𝜆𝑡 , 𝑘𝑡 , 𝑐𝑡) = max𝜈𝜖(0;𝜃𝑦𝑡) 𝐻(𝑡, 𝜆0, 𝜆𝑡 , 𝑘𝑡 , 𝜈)  

𝑖𝑖)    
𝜕𝐻

𝜕𝑘
(𝑡, 𝜆0, 𝜆𝑡 , 𝑘𝑡 , 𝑐𝑡) =

𝜕[𝜆𝑡𝑒(𝑛−𝛽)𝑡]

𝜕𝑡
  

𝑖𝑖𝑖)   
𝜕𝐻

𝜕𝜆
(𝑡, 𝜆0, 𝜆𝑡 , 𝑘𝑡 , 𝑐𝑡) =

𝑑𝑘𝑡

𝑑𝑡
= 𝑘𝑡̇  

𝑖𝑣)    lim𝑡→∞ 𝜆𝑡𝑒(𝑛−𝛽)𝑡𝑘𝑡 = 0  

The first order condition implies: 𝜕𝑈𝑡 𝜕𝑐𝑡 =⁄ 𝑈𝑐𝑡
= 𝜆𝑡 . This static maximizing condition is to be substituted in the 

dynamical expressions that serve to derive the differential equation of the control. With 𝜆𝑡 ≥ 0  and 𝑈𝑡 

homothetic, we can express an explicit condition in a convenient way by letting  𝑎 ∈ (0,1) such that: 𝜆𝑡 =

(
𝑐𝑡

𝑠𝑡
)

𝜃

(
1−𝑎

𝑎
) ≥ 0   and   

𝑐𝑡

𝑠𝑡
=

𝑎𝜃

1−𝑎𝜃
  

 

 
Figure A1. Static equilibrium condition in the multiplicative 

 

As explained by Schättler and Ledzewicz (2012) p.96, the substitution of the necessary condition for a static 

maximization corresponds to a weak formulation of the Pontryagin’s Maximum Principle. Just like in the standard 

Ramsey model, it is the necessary condition that is substituted in our case (here, the equilibrium co-state and ratio). 

ii) (1 − 𝜃) (
𝑐𝑡

𝑠𝑡
)

𝜃

𝑓′ + 𝜆𝑡[𝑓′ − 𝛿 − 𝛽] = −𝜆𝑡̇  

(1 − 𝜃) (
𝑐𝑡

𝑠𝑡

)
𝜃

𝑓′ + (
1 − 𝑎

𝑎
) (

𝑐𝑡

𝑠𝑡

)
𝜃

[𝑓′ − 𝛿 − 𝛽] = −𝜆𝑡̇ 

(
𝑐𝑡

𝑠𝑡
)

𝜃

[((1 − 𝜃) +
1−𝑎

𝑎
) 𝑓′ −

1−𝑎

𝑎
(𝛿 + 𝛽)] = −𝜆𝑡̇  

Differentiating totally condition (i): 

𝜕𝑈𝑐

𝜕𝑐𝑡
𝑐𝑡̇ +

𝜕𝑈𝑐

𝜕𝑘𝑡
𝑘𝑡̇ = 𝜆𝑡̇  

𝜃(1 − 𝜃) (
𝑐𝑡

𝑠𝑡
)

𝜃 1

𝑐𝑡
[(−

𝑠𝑡

𝑐𝑡
−

𝑐𝑡

𝑠𝑡
− 2) 𝑐𝑡̇ + 𝑓′ (1 +

𝑐𝑡

𝑠𝑡
) 𝑘𝑡̇] = 𝜆𝑡̇  

Constraining the static maximizing condition by substituting 𝜆𝑡 means that the associated equilibrium ratio 
𝑐𝑡

𝑠𝑡
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defined above can be constrained as well. The expression simplifies to: 

𝜃(1 − 𝜃) (
𝑐𝑡

𝑠𝑡
)

𝜃 1

𝑐𝑡
[(−

1

𝑎𝜃(1−𝑎𝜃)
) 𝑐𝑡̇ + 𝑓′

1

1−𝑎𝜃
𝑘𝑡̇] = 𝜆𝑡̇  

Combining this expression with condition (ii) leads to: 

𝜃(1−𝜃)

𝑎𝜃(1−𝑎𝜃)

𝑐𝑡̇

𝑐𝑡
= 𝑓′

𝜃(1−𝜃)

1−𝑎𝜃
𝑘𝑡̇

1

𝑐𝑡
+ [

1−𝑎𝜃

𝑎
𝑓′ −

1−𝑎

𝑎
(𝛽 + 𝛿)]  

−
𝜃(1−𝜃)

𝑎𝜃(1−𝑎𝜃)
𝑐𝑡̇ +

𝜃(1−𝜃)

(1−𝑎𝜃)
𝑓′𝑘𝑡̇ = − [

1−𝑎𝜃

𝑎
𝑓′ −

1−𝑎

𝑎
(𝛽 + 𝛿)] 𝑐𝑡  

𝑓′ [
1−𝑎𝜃

𝑎
𝑐𝑡 +

𝜃(1−𝜃)

1−𝑎𝜃
𝑘𝑡̇] −

1−𝑎

𝑎
(𝛿 + 𝛽)𝑐𝑡 =

(1−𝜃)

𝑎(1−𝑎𝜃)
𝑐𝑡̇  

Introducing condition (iii): 

𝑓′ [(1 − 𝑎𝜃)𝑐𝑡 +
(1−𝜃)𝑎𝜃

1−𝑎𝜃
𝑦𝑡 −

(1−𝜃)𝑎𝜃

1−𝑎𝜃
𝑐𝑡 −

(1−𝜃)𝑎𝜃

1−𝑎𝜃
(𝑛 + 𝛿)𝑘𝑡] − (1 − 𝑎)(𝛿 + 𝛽)𝑐𝑡 =

(1−𝜃)

(1−𝑎𝜃)
𝑐𝑡̇  

𝑓′ [𝑐𝑡 [(1 − 𝑎𝜃) +
(1−𝜃)(1−𝑎𝜃)

1−𝑎𝜃
] −

(1−𝜃)𝑎𝜃

1−𝑎𝜃
(𝑛 + 𝛿)𝑘𝑡] − (1 − 𝑎)(𝛿 + 𝛽)𝑐𝑡 =

(1−𝜃)

(1−𝑎𝜃)
𝑐𝑡̇  

The resulting dynamical system is: 

𝑐𝑡̇(𝑐𝑡 , 𝑘𝑡) =
1−𝑎𝜃

1−𝜃
[(2 − 𝑎𝜃 − 𝜃)𝑓′ − (1 − 𝑎)(𝛿 + 𝛽)]𝑐𝑡 − 𝑎𝜃(𝑛 + 𝛿)𝑓′𝑘𝑡  

𝑘𝑡̇(𝑐𝑡 , 𝑘𝑡) = 𝑓(𝑘𝑡) − 𝑐𝑡 − (𝑛 + 𝛿)𝑘𝑡  

In other words, we know an optimal trajectory should necessarily be generated by this differential system 

(derived from necessary conditions). There still remain to find which static equilibrium co-state maximizes total 

welfare (i.e., the value of 𝑎 ∈ (0,1)). One should understand that this value is endogenously set by the 

individual when choosing the preferred path. 

Resolution for the additive Cobb Douglas case: 𝑈𝑡(𝑐𝑡 , 𝑠𝑡) = 𝜃ln(𝑐𝑡) + (1 − 𝜃)ln(𝑠𝑡) 

𝜕𝑈𝑡 𝜕𝑐𝑡⁄ = 0 implies: 

𝜃

𝑐𝑡
−

1−𝜃

𝑦𝑡−𝑐𝑡
 = 𝜆𝑡  

𝜃𝑦𝑡

𝑐𝑡(𝑦𝑡−𝑐𝑡)
−

𝑐𝑡

𝑐𝑡(𝑦𝑡−𝑐𝑡)
 = 𝜆𝑡  

Defining 
𝑐𝑡

𝑠𝑡
=

𝑎𝜃

1−𝑎𝜃
 where 𝑐𝑡 = 𝑎𝜃𝑦𝑡  ∈ [0, 𝜃𝑦𝑡] , 

𝑎𝜃𝑦𝑡

𝑎𝑐𝑡(𝑦𝑡−𝑐𝑡)
−

𝑎𝜃

𝑐𝑡(1−𝑎𝜃)
 = 𝜆𝑡  

1

𝑎(1−𝑎𝜃)𝑦𝑡
−

1

(1−𝑎𝜃)𝑦𝑡
 = 𝜆𝑡  

𝜆𝑡 =
1−𝑎

𝑎(1−𝑎𝜃)𝑦𝑡
  

Differentiating totally the first order condition gives: 

[−
𝜃

𝑐𝑡
2 −

1−𝜃

(𝑦𝑡−𝑐𝑡)2] 𝑐̇𝑡 +
(1−𝜃)𝑓′(𝑘𝑡)

(𝑦𝑡−𝑐𝑡)2 𝑘̇𝑡 = 𝜆̇𝑡  ,  

The first term in brackets can for example be expressed more conveniently:  

[−
𝜃

𝑐𝑡
2 −

1−𝜃

(𝑦𝑡−𝑐𝑡)2] = −
𝜃(𝑎𝜃𝑦𝑡)2

𝑐𝑡
2(𝑎𝜃𝑦𝑡)2 −

(1−𝜃)[(1−𝑎𝜃)𝑦𝑡]2

(𝑦𝑡−𝑐𝑡)2[(1−𝑎𝜃)𝑦𝑡]2 = −
𝜃

(𝑎𝜃𝑦𝑡)2 −
(1−𝜃)

[(1−𝑎𝜃)𝑦𝑡]2  

Following same simplifying tricks, the differentiated condition can be expressed as: 
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−𝜃(𝑎2𝜃−2𝑎𝜃+1)

(𝑎𝜃)2(1−𝑎𝜃)2𝑦𝑡
2 𝑐̇𝑡 +

(1−𝜃)𝑓′

(1−𝑎𝜃)2𝑦𝑡
2 𝑘̇𝑡 =

−(1−𝜃)𝑓′

(1−𝑎𝜃)𝑦𝑡
−

(1−𝑎)

𝑎(1−𝑎𝜃)𝑦𝑡
(𝑓′ − 𝛿 − 𝛽)  

−(𝑎2𝜃−2𝑎𝜃+1)

𝑎(1−𝑎𝜃)

𝑐𝑡̇

𝑐𝑡
+ (1 − 𝜃)𝑓′ [1 −

(𝑛+𝛿)𝑘𝑡

(1−𝑎𝜃)𝑦𝑡
] = −(1 − 𝜃)𝑓′ −

1−𝑎

𝑎
(𝑓′ − 𝛿 − 𝛽)  

−(𝑎2𝜃−2𝑎𝜃+1)

𝑎(1−𝑎𝜃)

𝑐𝑡̇

𝑐𝑡
= 𝑓′ [−2(1 − 𝜃) −

1−𝑎

𝑎
+

(1−𝜃)(𝑛+𝛿)𝑘𝑡

(1−𝑎𝜃)𝑦𝑡
] +

1−𝑎

𝑎
(𝛽 + 𝛿)  

The resulting system is therefore: 

𝑐𝑡̇

𝑐𝑡
=

1−𝑎𝜃

1+𝑎𝜃(𝑎−2)
[2𝑎(1 − 𝜃)𝑓𝑘 + (1 − 𝑎)(𝑓𝑘 − 𝛽 − 𝛿)] −

𝑎(1−𝜃)

1+𝑎𝜃(𝑎−2)
(𝑛 + 𝛿)𝛼  

𝑘𝑡̇ = 𝑓(𝑘𝑡) − 𝑐𝑡 − (𝑛 + 𝛿)𝑘𝑡  

 

Appendix B  

The case of the Ak function 

Suppose 𝑓(𝑘𝑡) = 𝐴𝑘. In the Solow model, a steady-state requires necessarily 𝑠𝐴 = 𝑛 + 𝛿. There is no transition 

dynamics (to a given intial state 𝑘0, corresponds a steady-state level of consumption 𝑐0). For concreteness, 

suppose (𝐴, 𝛿, 𝑛, 𝑘0) = (0.07, 0.05, 0, 10). We deduce the saving proportion s = 0.714 and the steady-state 

(𝑐∗, 𝑘∗) = (0.2, 10). 

Assuming now a permanent productivity shock such that A decreases to A’ = 0.065, the new steady-state is 

(𝑐∗, 𝑘∗) = (0.15, 10) and requires a direct increase of the saving proportion to s’ = 0.769. 

In the standard Ramsey model, assuming 𝑈 = ln (𝑐𝑡), the differential system resulting from the optimization 

program is: 

𝑐𝑡̇

𝑐𝑡
= 𝐴 − 𝛽 − 𝛿  

𝑘𝑡̇ = 𝑓(𝑘𝑡) − 𝑐𝑡 − (𝑛 + 𝛿)𝑘𝑡  

The steady-state requires 𝐴 = 𝛽 + 𝛿 and 𝑐𝑡 = 𝑓(𝑘𝑡) − (𝑛 + 𝛿). 𝑘𝑡 . Recalling the previous numerical values and 

assuming 𝛽 = 0.02, the initial steady-state is again (𝑐∗, 𝑘∗) = (0.2, 10). Deviating slightly from this steady state 

with a lower capital return 𝐴′ = 0.065 implies a suicidal behavior of the individual with a dynamics diverging 

towards 𝑘𝑇 = 0. Precisely, following the change in A, the individual choses to remain on a high level of 

consumption relatively to the new steady-state one, and to neglect the capital depreciation until a final state 

where both capital and consumption equal zero.  

 

 

Figure B1. Steady-state levels of capital and consumption 
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Figure B2. Divergence towards zero after a productivity shock 

 

A way to recover a reasonable behavior is to introduce the saving flow in the utility function. Recalling equation 

(9), suppose that 𝐴 = 𝛽 + 𝛿 as previously (with same numerical values). In that case, the initial steady-state 

chosen by the individual who maximizes total welfare is reached for 𝑎∗ = 0.9541. If 𝐴 decreases to 𝐴′ = 0.065, 

the new steady-state is reached for 𝑎∗ = 0.9484 and corresponds to (𝑐∗, 𝑘∗) = (0.15, 10). 


