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NICOLAS-AUGUSTE TISSOT: A LINK BETWEEN

CARTOGRAPHY AND QUASICONFORMAL THEORY

ATHANASE PAPADOPOULOS

Abstract. Nicolas-Auguste Tissot (1824–1897) published a series of papers
on cartography in which he introduced a tool which became known later on,

among geographers, under the name of the Tissot indicatrix. This tool was

broadly used during the twentieth century in the theory and in the practical
aspects of the drawing of geographical maps. The Tissot indicatrix is a graph-

ical representation of a field of ellipses on a map that describes its distortion.
Tissot studied extensively, from a mathematical viewpoint, the distortion of

mappings from the sphere onto the Euclidean plane that are used in drawing

geographical maps, and more generally he developed a theory for the distor-
sion of mappings between general surfaces. His ideas are at the heart of the

work on quasiconformal mappings that was developed several decades after

him by Grötzsch, Lavrentieff, Ahlfors and Teichmüller. Grötzsch mentions the
work of Tissot and he uses the terminology related to his name (in particular,

Grötzsch uses the Tissot indicatrix). Teichmüller mentions the name of Tissot

in a historical section in one of his fundamental papers where he claims that
quasiconformal mappings were used by geographers, but without giving any

hint about the nature of Tissot’s work. The name of Tissot is also missing from

all the historical surveys on quasiconformal mappings. In the present paper,
we report on this work of Tissot. We shall also mention some related works

on cartography, on the differential geometry of surfaces, and on the theory of
quasiconformal mappings. This will place Tissot’s work in its proper context.
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1. Introduction: From geography to quasiconformal mappings

The theory of quasiconformal mappings (like that of conformal mappings) can be
traced back to old geography. Geographers, since Greek antiquity, were interested in
the question of drawing maps that minimize distortion. Here, the word “distortion”
may refer to angle, area, or length, or a combination of these notions. The early
geographers knew that a mapping from the sphere (or a spheroid)1 to the Euclidean

Date: December 1, 2016.
1The claim that the Earth is spheroidal and not spherical, more precisely, that it is slightly

flattened at the poles, was first made by Newton, who concluded in his Principia that this flatness,
which he expected to be of the order of 1/230, is due to the Earth’s rotation. This was confirmed
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2 ATHANASE PAPADOPOULOS

plane cannot preserve these three parameters at the same time, and they searched
for a “best compromise.” Making precise such a notion of compromise between the
three distortions we mentioned depended on the practical use for which the map
was intended.

Several mathematicians – some of them among the most prominent – were also
geographers. One can mention Ptolemy, Euler, Lambert, Lagrange, and Gauss, and
there are many others. Most of them were interested at the same time in the math-
ematical theory and the practical art of map drawing. Euler, at the Academy of
Sciences of Saint Petersburg, besides being a mathematician, had the official status
of a cartographer, and was one of the leaders of the huge project of drawing maps of
the new Russian Empire. Motivated by cartography, he was led to study questions
regarding conformal and almost-conformal mappings. In 1777, he published three
memoirs on mappings from the sphere to the Euclidean plane: De repraesentatione
superficiei sphaericae super plano (On the representation of spherical surfaces on a
plane) [15], De proiectione geographica superficiei sphaericae (On the geographical
projections of spherical surfaces) [16] and De proiectione geographica Deslisliana
in mappa generali imperii russici usitata (On Delisle’s geographic projection used
in the general map of the Russian empire) [17]. In the first memoir, [15], Euler
examines several projections of the sphere, searching systematically for the par-
tial differential equations that they satisfy. He recalls that there is no “perfect”
mapping from the sphere onto a plane, and he considers the question of finding
mappings with the least distortion. He highlights several kinds of properties that
one may naturally ask for geographical maps: conformality; sending meridians to
curves normal to a given axis and parallels to lines parallel to that axis; preservation
of area (up to scale), etc. Most of all, Euler considered, like Lambert at about the
same time, arbitrary mappings from the sphere onto a flat surface, and not only
mappings obtained as a projection from a given point onto a plane, a cylinder or a
cone, etc.

Lagrange, in his study of geographical maps (see [26] and [27]), also considered
general mappings from the sphere onto a flat surface. Like Euler and Lambert be-
fore him, he characterized angle-preserving general mappings analytically, and he
applied his methods to the particular case of mappings from the sphere onto the
plane that send meridians and parallels to circles. He writes that “these are the
only curves which one can easily employ in the construction of geographic maps”
([26] pp. 642). Lagrange introduced a function called the magnification ratio. The
name given to this function clearly indicates its meaning. For conformal mappings,
the magnification ratio depends only on the point on the sphere (and not on the
direction at that point). Lagrange gave formulae for this parameter for general
conformal mappings. We note right away that this notion played an important
role in the later work of Chebyshev on the drawing of geographical maps: the lat-
ter noticed that the magnification ratio, under the condition that the distortion of
the map is minimal in some appropriate sense, satisfies Laplace’s equation, and he
showed that under some natural conditions, the best angle-preserving geographical
maps of a certain region having a reasonable size are those for which the mag-
nification ratio function is constant on the frontier of the region. Chebyshev thus
reduced the question of finding the best geographical map to a problem in potential
theory, namely, solving the Laplace equation on a certain domain of the sphere for
a function which is constant on the boundary of the domain. We refer the reader
to the papers [7] and [8] by Chebyshev (also included in his Collected works [9]),
and to the recent survey [34] for some details on the subject.

by several expeditions in the eighteenth century, which included especially French scientists, whose
aim was to make precise measurements of the meridians near the poles.



NICOLAS-AUGUSTE TISSOT 3

It is also worth recalling that the motivation of several prominent mathematicians
to study the differential geometry of surfaces came from geography. A famous case
is Gauss, who declares explicitly in the preface of his paper [20] that his aim is only
to construct geographical maps and to study the general principles of geodesy for
the task of land surveying. Gauss’s paper [20] is titled Allgemeine Auflösung der
Aufgabe, die Teile einer gegebenen Fläche auf einer andern gegebenen Fläche so
abzubilden dass die Abbildung dem Abgebildeten in den kleinisten Theilen ähnlich
wird. (General solution of the problem: to represent the parts of a given surface
on another so that the smallest parts of the representation shall be similar to the
corresponding parts of the surface represented). This is an epoch-making paper, in
which the author proves that every sufficiently small neighborhood of any point in
an arbitrary real-analytic surface can be mapped conformally onto a subset of the
Euclidean plane.

There are many other examples of mathematical works on the geometry of sur-
faces motivated by geography. We refer the reader to the recent survey [33].

After differential geometry, we arrive at quasiconformal mappings. Teichmüller’s
paper [37] contains a section on the origin of these mappings in which he mentions
the name of the French geographer Tissot. Grötzsch, in his paper [24] mentions sev-
eral times the name of Tissot and refers to his work. But the name of Tissot is never
mentioned in any paper on the history of quasiconformal mappings, and it seems
that the references to him by Grötzsch and by Teichmüller’s remained unnoticed.
Yet the work of Tissot, which is well known among geographers, and in particu-
lar in the drawing of geographical maps, is very closely related to quasiconformal
mappings. Let us mention right away some of Tissot’s important results.

(1) Tissot invented a device which provides a visual measure for the distortion
of a geographical map. This is a field of infinitesimal ellipses which are the
image of a field of infinitesimal circles on the region on the sphere which
is represented. This field of infinitesimal ellipses is characterized by two
parameters: their relative size, and the ratio of their two axes (the major
axis divided by the minor axis).2 These parameters represent respectively
the local area distortion and the angle distortion of the mapping that is used
to draw the geographical map. This device is known among geographers as
the Tissot indicatrix. An example is given in Figure 1. From the differential
geometric point of view, the Tissot indicatrix gives an information on the
metric tensor of the metric obtained by pushing forward the metric of the
sphere or the spheroid by the projection used.

(2) Tissot noticed that for a given mapping between two surfaces, there is, at
each point of the domain, a pair of orthogonal directions which are sent to
a pair of orthogonal directions on the image surface. Unless the mapping is
angle-preserving at some point, the pair of orthogonal directions is unique.
The orthogonal directions at the various points on the two surfaces define
a pair of orthogonal foliations which are preserved by the mapping. We
shall comment later on the uniqueness of the two fields of directions that
are referred to in the above result.

An important observation made by Tissot right at the beginning of his
memoir [55] (p. 1) is that the most appropriate mode of projection in order
to build a geographical map depends on the shape of the region, that is,
on the shape of its boundary as a subset of the sphere (or the spheroid).

2The expression “infinitesimal circle” means here, as is usual in the theory of quasiconformal
mappings, a circle on the tangent space at a point. In practice it is a circle on the surface which

has a “tiny radius.” These circles, on the domain surfaces, are all supposed to have the same small
size, so that the collection of relative sizes of the image ellipses is a meaningful object.
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Figure 1. The Tissot indicatrix for the Cassini projection; from the
Album of map projections [35] pp. 26.

Tissot discovered that in order for the map to minimize the appropriately
defined distortion, a certain function λ, defined by setting

dσ2 = (1 + λ)2ds2,

must be minimized in some sense. Here, ds and dσ are the line elements at
the source and the target surfaces respectively. The minimality of λ may
mean, for example, that the value of the gradient of its square must be the
smallest possible. Darboux later on connected this work of Tissot with the
work of Chebyshev that we mentioned above. We shall comment on this
fact later in this paper.

(3) Tissot constructed mappings that realize the required properties of minimal
distortion.

Most of the mathematicians who preceded Tissot (Lagrange, Euler, etc.), and
Chebyshev who was his contemporary, studied conformal maps between surfaces,
with some distortion parameter to be minimized. In contrast, Tissot studied ex-
tensively distortion-minimizing non-conformal maps.

We shall elaborate on Tissot’s ideas in § 3 below.
Beyond the work of Tissot, a theory of “almost-conformal” mappings whose main

object was to find mappings with least distortion between two surfaces had been
inherent in the works of geographers for more than two thousand years. Geograph-
ical maps were used for various practical needs, including navigation, surveying
for the purpose of collecting taxes, etc., but the theory behind these maps was an
important element in the exact sciences.

It is always interesting how very simple ideas lead to elaborate theories.

2. On the works of Nicolas-Auguste Tissot

Nicolas-Auguste Tissot (1824–1897) was born (like Poincaré whom we shall men-
tion very soon) in Nancy. In an article by A.-P. d’Avezac published in the Bulletin
de la Société de Géographie [6], we read the following (p. 127)3:

Mr. Nicolas-Auguste Tissot, an ancient capitaine du génie, and today

assistant professor (répétiteur) in geodesy at the École Polytechnique,
presented to the Academy of Sciences a series of communications on
geographical maps, whose outline is reproduced in the Comptes Rendus
des Séances (Novembre 7, 1859, 49, pp. 673–676; March 5, 1860, pp.
474–476; and December 17, 1860, pp. 964–969). Their main goal is

3This quote and the next one are my translations from the French.
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to determine the rule according to which the deformation is produced
around each point, regardless of the system of representation; and to
compare, from this point of view, the various systems that are used and
proposed in the drawing of mappae mundi, and finally, to find, in this
way, the best mode of projection for each particular country. In the
investigation of this particular question, he outstripped Mr. Airy.4

In § 3, we shall describe the content of the Comptes Rendus notes referred to by
d’Avezac.

Tissot defended his doctoral thesis on November 17, 1851, cf. [39]. On the cover
page of the thesis, the author is described as “M. A. Tissot, Ex-Capitaine du Génie.”
The work presented contains in fact two theses,5 the first one on Mechanics, titled
Mouvement d’un point matériel pesant sur la sphère (Motion of a material point
moving on the sphere) and the second one on astronomy, titled Sur la détermination
des orbites des planètes et des comètes (On the determination of the orbits of planets
and comets). In his first thesis, Tissot studies the motion of a point on a sphere
under the action of gravity. In the second thesis, Tissot describes various methods of
determining distances between celestial bodies making use of works of Cauchy and
of Lagrange on the determination of the orbits of celestial bodies. The techniques
used in the two memoirs are those of differential geometry, differential equations
and approximation theory. They are the same techniques that Tissot used later on
in his work on cartography.

On the title page of Tissot’s memoir [55] (1881), the expression Examinateur à

l’École Polytechnique follows his name. In his Éloge historique de Henri Poincaré
[10], Darboux relates the following episode about Tissot, examining Poincaré at the
entrance exam:6

Before questioning Poincaré, Mr. Tissot suspended the exam during 45
minutes: we thought it was the time he needed to prepare a sophisti-
cated question. Mr. Tissot came back with a question of the Second
Book of Geometry. Poincaré drew a formless circle, he marked the lines
and the points indicated by the examiner, then, after wandering long
enough in front of the blackboard, with his eyes fixed on the ground, he
concluded loudly: “It all comes down to proving the equality AB = CD.
This is a consequence of the theory of mutual polars, applied to the two
lines.” Mr. Tissot interrupted him: “Very good, Sir, but I want a more
elementary solution.” Poincaré started wandering again, this time not in
front of the blackboard, but in front of the table of the examiner, fac-
ing him, almost unconscious of his acts; then suddenly he developed a
trigonometric solution. Mr. Tissot objected: “I would like you to stay in
elementary geometry.” Almost immediately after that, the examiner of
elementary geometry was given satisfaction. He warmly congratulated
the examinee and announced that he deserves the highest grade.

Besides his work on geographical maps, Tissot wrote several papers on elemen-
tary geometry; see e.g. [56], [47] and [40]. We mention in this respect that several

4The reference is to the British astronomer George Biddell Airy (1801–1892).
5In France, the Doctorat d’État consisted of two theses; the second one was not necessarily

original, and usually consisted in the survey of some work in a field which is different from the
candidate’s field of expertise. The subject of this thesis was chosen by the faculty and communi-

cated to the PhD student a few weeks before the defence. The Doctorat d’État disappeared in
the 1990s.

6Poincaré entered the École Polytechnique in 1873. It is not unusual that at such an exami-
nation, some students listen to the examination of other students. In fact, a student is given a
question or a set of questions which he is asked to prepare while another student (who had already
been given some time to prepare his questions) is explaining his solutions at the blackboard, in
the same room.
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prominent French mathematicians of the nineteenth and the beginning of the twenti-
eth century were very much interested in such problems. The names include Serret,
Catalan, Laguerre, Darboux, Hadamard and Lebesgue, and there are others.

3. Tissot’s work on cartography

In the years 1856 and 1858, Tissot published several papers and Comptes Rendus
notes on cartography in which he made a detailed analysis of the distortion of some
known geographical maps (see [41], [42], [43]). He started developing his own theory
in three Comptes Rendus notes [44], [45] and [46], written in the years 1859–1860.

In [44], Tissot starts with the following observation. To construct a geographical
map, or to represent one surface on another, one first chooses on each of the two
surfaces a decomposition into infinitesimal parallelograms using two systems of
curves (in reality, these two “systems of curves” are two transverse foliations), in
such a way that the lines of the first system are sent to the lines on the second. In
this way, points and their images are encoded as intersection points of corresponding
lines.

Encoding points as intersections of two lines was widely used in projective ge-
ometry. At the practical level, it was used by engineering students in France in
their study of “dessin industriel”, by students in arts who were asked to magnify a
drawing using graph paper, etc.

Based on the existence of this decomposition into nets of infinitesimal parallelo-
grams, Tissot states the following:

Any representation from a surface onto another may be replaced, at each point,
by an orthogonal projection made at an appropriate scale.

The proof is given in his later papers. Tissot then gives in [44] the following
principles that concern angle, distance, and area deformation. These principles
play a very important role in the rest of his work.

1.— For any kind of representation of a surface onto another, there exists, at
every point of the first surface, two perpendicular tangents, which are unique unless
the angles are preserved at that point, such that the images of these two tangents
are perpendicular on the second surface.

Tissot calls the tangents referred to in this statement principal tangents.

2.— The directions of the principal tangents are those at which the ratio of
lengths of the corresponding infinitesimal elements attains its greatest and smallest
values.

Tissot denotes these two values by a and b, a > b.

3.— In order to find the image of an infinitely small figure drawn in the tan-
gent plane of the first surface, one uses the following procedure: Superpose the two
tangent planes in such a way that the principal tangents coincide. Turn the first
tangent plane by an angle whose cosine is b/a. Use the orthogonal projection given
by the two decompositions by parallelograms on the two surfaces, then modify the
image of the figure by applying in the second tangent plane a magnification of ratio
a.

Tissot notes that the image of an infinitely small figure around a point on the
first surface which is a circle of radius 1 centered at the given point is an ellipse
whose major and minor axes are a and b. He then outlines a practical way to find
the major and minor axes of these ellipses, and he provides formulae for them. This
is the basis of the theory of what became known later as the Tissot indicatrix.
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In the note [45], Tissot says that at any point of the Terrestrial globe, the
angle which is deformed most by a geographical map is never the angle made by
the meridian and the parallel at that point. Likewise, the directions which are
stretched most, or contracted most, do not coincide with those of the meridian and
the parallel unless the images of these directions are at right angles. He says that
using the rules he gave in the previous note, one can easily compute the greatest
alterations of angles and distances. This is the basis of the theory which is behind
the maps that he will describe later on, in which he seeks for the most advantageous
properties for what concerns distortion.

Tissot declares that the projection that he shall adopt depends on the particular
country that has to be represented, in particular, its position with respect to the
equator, its size, and the form of its contour. He then makes a list of 12 known
projections or families of projections that are known, for which he gives formulae
for the angle, distance, and area deformations. He compares the usefulness of
these projections. The central question is again that of finding the best possible
projection.

The third note, [46], is more technical than the first two. Tissot mentions there
the difficulties that arise in applying the theory to a country with a great area, like
Russia. He gives several formulae for the projections of countries with a reason-
able surface area, like France and Spain. These formulae will be discussed more
thoroughly in his long memoir [55] published several years later. In a note on pp.
2 of this memoir, Tissot declares that after he published the first of his Comptes
Rendus notes on the subject, the statements that he gave there without proof were
reproduced by A. Germain in his Traité des projections des cartes géographiques
[21] and by U. Dini in his memoir Sopra alcuni punti della teoria delle superfici
[14]. He says that Germain and Dini gave their own proofs of these statements,
which are nevertheless more complicated than those he had in mind and which he
gives in the present memoir. He also declares that Dini showed that the whole
theory of curvature of surfaces may be deduced from the general theory that Tissot
developed. In fact, Dini applied this theory to the representation of a surface on
a sphere, using Gauss’s methods. Tissot also declares that his ideas were used in
astronomy, by Hervé Faye, in his Cours d’astronomie de l’École polytechnique [18].
The texts of the two Comptes rendus notes [46] and [43] of Tissot are reproduced
in the treatise of Germain [21].

Tissot developed his complete theory several years after his three Comptes Ren-
dus notes, first in installments, in 1878–1880, (cf. Tissot [49]–[54]), and then in
the long memoir [55], which contains the work in [49]–[54] together with additional
material.

The memoir [55] is 337 pages long. It consists of a preamble and 4 chapters. We
briefly review its content.

In the first chapter, Tissot studies the general properties of surfaces and the
distortions of maps between them. He provides the proof of Statement 1 which
we quoted above, asserting d the existence and uniqueness of the pairs of field of
perpendicular lines that are sent to each other by the maps. He also gives the
following complement:

We can vary in all possible manners the fields of perpendicular lines, obtaining
an infinite number of decompositions into infinitesimal rectangles, each leading to
a map between surfaces and having the property that these fields are the unique
invariant orthogonal fields.

The first chapter contains, besides the proofs of the results announced in the
Comptes Rendus notes, a description of the Tissot indicatrix, a detailed study of
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its properties, and a method of calculating the various deformations of angle, length
and area using this indicatrix.

Practically, on a given geographical map, the Tissot indicatrix is a field of ellipses
drawn at certain points (often located at intersections of the images of the parallels
and the meridians that are drawn on the map). These ellipses illustrate the dis-
tortion at these points. See e.g. the maps drawn in the Album of map projections
[35].

In terms of the differential geometry of surfaces, the Tissot indicatrix is a repre-
sentation of the quadratic form that defines the metric tensor at each point of the
geographic map. In the case of a conformal map, the Tissot indicatrix is simply a
field of circles.

Tissot explains how one can draw the axes of the indicatrix. The two fileds of
axes, when they are integrated over the surface, give the two orthogonal foliations,
forming what which Tissot calls canevas. The development of the theory is an
ingenious combination of elementary geometry, infinitesimal calculus, and differ-
ential equations. We recall that the results apply to maps between differentiable
surfaces embedded in space, and not only between the sphere and the Euclidean
plane. Tissot studies in particular the case of surfaces of revolution.

In the section starting at pp. 21 of the memoir, Tissot gives the formulae for the
major and minor axes of the ellipses and its inclination for general maps between
surfaces, in terms of the local parametrisations of these surfaces.

Tissot starts with two surfaces defined using orthogonal coordinate systems
(x, y, z) and (x′, y′, z′) respectively, functions of two variables l and m. The coordi-
nates are chosen so that the mapping between the surfaces is defined by equating
the six coordinates with appropriate functions of l and m. He sets

L =

[(
dx

dl

)2

+

(
dy

dl

)2

+

(
dz

dl

)2
] 1

2

,

L′ =

[(
dx′

dl

)2

+

(
dy′

dl

)2

+

(
dz′

dl

)2
] 1

2

,

M =

[(
dx

dm

)2

+

(
dy

dm

)2

+

(
dz

dm

)2
] 1

2

,

M ′ =

[(
dx′

dm

)2

+

(
dy′

dm

)2

+

(
dz′

dm

)2
] 1

2

.

The lengths of two infinitesimal parallelograms on the two canevas that correspond
to each other will be, for the first surface, Ldl and Mdm, and on the second one,
L′dl and M ′dm. Setting h and k to be the ratios of the sides of these parallelograms
and Θ and Θ′ their angles, we have

h =
L

L′ ,

k =
M

M ′ ,

cos Θ =
1

LM

[
dx

dl

dx

dm
+
dy

dl

dy

dm
+
dz

dl

dz

dm

]
and

cos Θ =
1

L′M ′

[
dx′

dl

dx′

dm
+
dy′

dl

dy′

dm
+
dz′

dl

dz′

dm

]
.
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Depending on the practical applications needed, the formulae for the major and
minor axes and the inclination of the ellipses defining the Tissot indicatrix are
derived from these formulae. We refer the reader to pages 22ff. of Tissot’s memoir,
where he considers a variety of special cases in which he derives precise formulae.
For instance, in the case where the mapping is such that the ratios of lengths in the
direction of the two linear elements have the same common value h, then he finds
the following formulae for the major and minor axes of the ellipses:

b = h

cos Θ′

2
cos Θ

2

and

b = h

sin Θ′

2
sin Θ

2

Many other cases are considered.
Tissot uses extensively power series expansion. We shall see below that Darboux,

in Part II of his paper [13] on the work of Tissot, develops the same theory in the
setting of Gauss’s intrinsic geometry of surfaces. It is interesting to note that after
he explains the methods of Tissot, Darboux says: “We can approach the same
theory in a more rigorous way, where the power series developments intervene only
at the end, and in more general conditions.”

The second chapter concerns the practical applications of the theory developed
in Chapter 1. It is dedicated to the answer to the question:

How to find the projection which is most appropriate to a given country?
In the introduction of this chapter, Tissot says that in the drawing of maps that

are intended for the use in public services, and in particular in the services of the
army, the most important question is the reproduction of angles. He says that for
the map to be useful, as a topographical tool, the distortion of angles must be
very small. He recalls that the distortion of distances varies from point to point,
and he says that the supremum of this distortion must be reduced to a minimum.
Another rule he mentions is that in working with geographical maps, formulae must
be simple. He suggests equipping the map with a network of curves, using colors,
which are loci where the distortion of length is constant. He shows that these curves
will be in general algebraic of degree two, and in most cases they will be ellipses.
Furthermore, for a given country that has to be represented, a point has to be
chosen, called the central point, and the position of this point must be determined
according to the required maximizing properties. The meridian and the parallel
passing through this point will be called the mean meridian and the mean parallel.
This chapter contains many formulae, concerning types of various projections. As
an illustration, let us mention one of the formulae (p. 71), which is also contained
in his Comptes Rendus note [46] written 21 years before. It involves some notation.

Let l and m denote the latitude and longitude of a point on the surface of the
Earth, r the radius of the terrestrial parallel at the latitude l and s the arc of
meridian contained between the mean parallel and the parallel at latitude l. If x
and y denote the coordinates of the corresponding point on the map with respect
to a perpendicular system of axes, then the projection is given by the following
formulae

x = s+
1

2
rm2 sin l
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and

y = rm(1 +
1

6
m2 cos 2l).

The other formulae contain higher order terms.
Then follows a long development in which Tissot simplifies the formulae using

power series expansions, with practical applications concerning the drawing of maps
of France, Spain and other countries.

The last two chapters of the memoir [55] are more computational than the first
two. Tissot compares there the distortions of various projections.

Let us also mention the so-called Tissot projection used in cartography. It is
described in Chapter 2 of the memoir [55]. From the point of view of minimizing
distortion, this map makes a compromise between conformal and equal area pro-
jection. The mathematical tools behind the definition are based again on power
series expansions. The Tissot projection was used by the French army cartography
department; see [36]. It was also used in the cadastral survey of Egypt; cf. [31]. In
fact, Tissot mentions in his memoir [55] pp. 71, that his projection can be used for
a country situated in the lune between two meridians which are not very distant
from one another, and as an example he gives precisely Egypt.

Darboux was interested in the work of Tissot on geography, and in particular,
in his projection described in Chapter 2 of his memoir [55]. He wrote a paper
on Tissot’s work, [13]. In the introduction of that paper, Darboux recalls that
using power series expansions, Tissot gave a new method for the representation of
a given country. The region that has to be represented has to be small enough
compared to the Earth. He also recalls that the series expansions reduce to a
minimum amount the distortions of angles and distances, but he says that “[Tissot’s]
exposition appeared to me a little bit confused, and it seems to me that while we
can stay in the same vein, we can follow the following method.” He then provides
another method to construct Tissot’s projection. In this method, using a system
of principal tangent lines, the linear element at a point of the surface is written as

(1) ds2 = dx2 + dy2 +

(
xdx

R
+
ydy

R′

)2

,

where R and R′ are the principal radii of curvature at the given point. In this
formula, the terms of the third order and more in x and y have been neglected.

Then, one looks for power series,

α = f(x, y)

and

β = φ(x, y)

such that

dα2 + dβ2

coincides with ds2 for terms up to a certain order (the highest possible).
The condition that the map is a similarity at that point leads to an equation of

the form

dα2 + dβ2 = (1 + λ)2ds2

where λ is a function.
Setting λ0 to be the second order homogeneous component of λ, Darboux is led

to the equation

λ0 =
x2 + y2

4RR′ +A(x2 − y2) + 2Bxy

where A and B are constants.
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Darboux then says that Tissot determines A and B by an ingenious device. Let
us admit for simplicity that the Earth is spherical, that is, let us take R = R′ = 1.
Then Tissot’s method amounts to searching, among all the conics with equation

λ =
α2 + β2

4
+A(α2 − β2) + 2Bαβ = const.,

the one which fits better the form of the surface to be represented, and at the same
time corresponds to the smallest value of λ, with some considerations to be taken
into account, for instance, the mean value of the square of the gradient of λ is
sought to be smallest possible.

Darboux says that in the case where the curve is an ellipse, one obtains a “re-
markable result,”, namely, that the value of λ is maximal on the boundary of the
ellipse, and the value of λ on this boundary is constant. Darboux (like Tissot before
him) gives the value of this constant. Darboux notes that there is a relation with
Chebyshev’s theorem that we mentioned above, and he makes this relation explicit.
In both theories, an integral has to be minimized, and if one takes the same de-
gree of approximation, the two integrals are the same. Darboux then explains that
conversely, the theorem of Chebyshev justifies the “rather elementary” reasoning
of Tissot and his use of the set of conics. Indeed, by the theorem of Chebyshev, λ
has to be constant on the boundary of the region to be represented and since, with
the approximation made, it has to be constant on concentric conics, it is natural
to choose among these conics the one which covers best the given region or, more
precisely, its projection on the tangent plane, while having the smallest λ.

After that, Darboux extends the whole theory of Tissot to maps between surfaces
in the setting of Gauss’s theory, starting with arbitrary curvilinear coordinates with
length element

ds2 = Edu2 + 2Fdudv +Gdv2

and using the theory of conformal representations. He makes the relation between
the work of Tissot and the works of Gauss, Tchebyshev and Beltrami.

Since we mentioned the works of Lagrange and Chebyshev on cartography, let us
note that Darboux wrote two papers which are directly motivated by these works.
In the first paper, [12], Darboux gives a proof of a problem addressed by Lagrange
in the paper [26] on cartography that we already mentioned. The question concerns
a constant which Lagrange calls the “exponent of the projection.” This question
is reduced to the following problem in elementary geometry: Given three points
on the sphere, can we draw a geographical map, with a given exponent, such that
these three points are represented by three arbitrarily chosen points on the map?
Lagrange, in his paper, says that a geometric solution seems very difficult, and that
he did not try to find a solution using algebra. Darboux solves the problem in a
geometric manner. He says that it is the recent progress in geometry that made
this solution possible. In the second paper, [11], Darboux gives a detailed proof of
the result of Chebyshev that we quoted above, saying that the most advantageous
representation of a region of the sphere onto the Euclidean plane is the one where
the magnification ratio is constant on the boundary of the surface to be represented.
The proof he gives is the one outlined by Chebyshev, using potential theory. To
make the relation with modern works, let us mention that Milnor also gave a proof
of the theorem of Chebyshev, again following the latter’s approach, see [32]. It
seems that Milnor was not aware of the work of Darboux on the same problem (he
does not mention his name in his paper).

We end the discussion on geography by recommending to the interested reader
the book [19] by T. G. Feeman. It is addressed to mathematicians. It gives a nice
exposition of the various distortions of a geographical map (angle, distance and
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area-distortions), with a review of several types of maps and an analysis of their
distortion. The book also contains a section on the Tissot indicatrix.

4. Quasiconformal mappings

The theory of quasiconformal mappings appeared in complex analysis under
various names, and with slighly different definitions. Presumably, the English name
“quasiconformal mapping” is due to Ahlfors; cf. his comments in his Collected
works edition.7 Grötzsch, in his papers written at the end of the 1920s, used the
expression “nichtkonformen Abbildungen” (non-conformal maps). He considered
in [23] and in other papers he wrote in the same period the problem of finding the
homeomorphism between two rectangles (the images of the vertices being fixed)
that has the least deviation from conformality. He proved that in some reasonable
sense of the expression “ that has the least deviation from conformality” the solution
is given by the natural linear map between these rectangles. According to Ahlfors
[3], the problem that Grötzsch solved in that paper was first considered as a mere
curiosity, and the full strength of quasiconformal mappings and their use in the
deformation theory of Riemann surfaces was first realized by Teichmüller. Let us
quote Ahlfors from his 1954 paper [3] pp. 156:

The very genesis of quasiconformal mappings was connected with the
elementary extremal problem formulated by Grötzsch. Teichmüller was
the first to extract a general principle: In a class of mappings it is re-
quired to find one whose maximal dilatation is a minimum. It is to be
expected that the solution is unique, and that the extremal mapping is
characterized by simple properties.

Ahlfors gives a brief summary of the early use of quasiconformal mappings in his
1964 paper [3] (p. 153). In his 1978 ICM paper, he writes ([4] pp. 72): “Quasicon-
formal mappings might have remained a rather obscure and peripheral object of
study if it had not been for Oswald Teichmüller.” Quasiconformal mappings play
a central role in the work of Teichmüller, who thoroughly developed the theory
and made it at the basis of several research topics, including the theory of moduli
of Riemann surfaces, value distribution theory of meromorphic functions, the type
problem and the Bieberbach coefficient problem. We refer the reader to the surveys
[25], [1] and [33] for more details.

Lavrentieff, around 1935, wrote two papers in French, [29] and [30], in which
he introduced a class of mappings he called “fonctions presque analytiques” (al-
most analytic functions). The two papers contain a remarkable series of results in
function theory and geometry that are based on quasiconformal mappings. Let us
note that in Lavrentieff’s papers, the dilatation of a mapping between surfaces, in
the modern sense of quasiconformal theory, is highlighted, but it is not assumed
to be uniformly bounded. We note by the way that the same holds in some of
Teichmüller’s papers, e.g. [38].

We mention some of the results of Lavrentieff, because they remain poorly known
compared to those of the other founders of the theory of quasiconformal mappings,
and because the notion (which we recall below) of quasiconformal mappings that
he uses is very close in spirit to the work of Tissot.

In his paper [30] (with an announcement of the results in the Comptes Rendus
note [29]), Lavrentieff gave a series of extremely interesting results on quasicon-
formal mappings. One of them (§4 of [29] and §3 of [30]) is a generalization of

7Ahlfors writes in [5], Vol. 1, pp. 213: “The truth is that I cannot recollect having invented
the name, but I have also not been able to locate it elsewhere. Little did I know at the time what

an important role quasiconformal mappings would come to play in my own work.” In any case,
the expression appears in print in Ahlfors’ 1935 fundamental paper on covering surfaces [2].



NICOLAS-AUGUSTE TISSOT 13

Picard’s theorem to the setting of quasiconformal mappings. Another one (§5 of
[29] and §4 of [30]) concerns a criterion, based on quasiconformal mappings, to find
the type of a Riemann surface. There are several other results. We reproduce here
Lavrentieff’s definition of quasiconfomality to show how close it is to the ideas of
Tissot.

Lavrentieff says that a function w = f(z) of a complex variable z in a domain D
of the complex plane is almost analytic if it satisfies the following properties:

(1) f is single-valued and continuous on D.
(2) Except for a countable set of points z in D, the function f is an orientation-

preserving local homeomorphism.
(3) There exist two real functions p(z) ≥ 1 and θ(z) such that

• With the exception of points z in a set E consisting of a finite number
of analytic arcs, p(z) is continuous, and θ(z) is continuous at all points
z satisfying p(z) 6= 1.

• In every domain ∆ which does not contain points of E and whose
frontier is a simple analytic curve, p(z) is uniformly continuous, and
if δ and its frontier do not contain points z satisfying p(z) = 1, θ is
uniformly continuous on ∆.

• Let z0 be a point in ∆ which is not in E, and consider the ellipse E

centered at z0, such that the angle between the major axis of E and
the real axis of the plane is θ, and such that if a and b are the major
and the minor axes of E, we have p(z0) = a/b. Then, we have

lim
a→0

∣∣f(z1)− f(z0)

f(z2)− f(z0)

∣∣ = 1

where z1 and z2 are the points in E such that |f(z) − f(z0)| attains
respectively its maximum and its minimum.

Lavrentieff calls the functions p(z) and θ(z) the characteristic functions of the
almost analytic function f(z). Although he uses the same word as Tissot, it seems
that Lavrentieff was not aware of his work.

Lavrentieff notes that the problem of representing a 2-dimensional Riemannian
manifold on a domain in the Euclidean plane is equivalent to the problem of con-
structing an almost-analytic function having the given characteristics p and θ. He
gives several existence theorems that answer this question. We state his Theorem
3, pp. 414 of [30]:

For any function p(z) ≥ 1 and θ(z) defined on the unit disc z ≤ 1 satisfying the
conditions stated in the definition of an almost analytic function, one can construct
an almost analytic function w = f(z) satisfying f(0) = 0, f(1) = 1 which realizes
a conformal representation from the unit disc z ≤ 1 and the unit disc w ≤ 1 and
which has p and θ as characteristic functions.

This is one form of the fact which says (in modern terms) that an almost complex
structure on a surface is integrable, which in turn is related to Gauss’s existence of
isothermal coordinates.

In a note (p. 408), Lavrentieff says that in the definition of almost analytic
functions if one adds the requirement that the characteristic function p is bounded,
then one obtains a class of functions which coincides with the ones considered by
Grötzsch in [22] (1928). He also notes that he had already considered a special class
of almost analytic functions in his ICM paper [28] (1928), in which he considers the
question of constructing the Riemann Mapping Theorem by a sequence of explicit
mappings obtained from the theory of partial differential equations, using a mini-
mization principle. A similar application of quasiconformal mappings is mentioned
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by Teichmüller in the last part of his paper [37]. We refer the reader to the recent
survey [33].
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321–483.

[38] Teichmüller, Oswald. 1938. Untersuchungen über konforme und quasikonforme Abbildungen.
Deutsche Math. 3, 621–678. English translation by M. Brakalova-Trevithick and M. Weiss,

Investigations of conformal and quasiconformal mappings. In Handbook of Teichmüller theory
(A. Papadopoulos, ed.), Volume VII, EMS Publishing House, Zürich, to appear in 2017.
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