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Toward a Sparse Bayesian Markov Random Field
Approach to Hyperspectral Unmixing

and Classification
Peng Chen, James D. B. Nelson, and Jean-Yves Tourneret, Senior Member, IEEE

Abstract— Recent work has shown that existing powerful
Bayesian hyperspectral unmixing algorithms can be significantly
improved by incorporating the inherent local spatial correlations
between pixel class labels via the use of Markov random fields.
We here propose a new Bayesian approach to joint hyperspectral
unmixing and image classification such that the previous assump-
tion of stochastic abundance vectors is relaxed to a formulation
whereby a common abundance vector is assumed for pixels in
each class. This allows us to avoid stochastic reparameterizations
and, instead, we propose a symmetric Dirichlet distribution model
with adjustable parameters for the common abundance vector
of each class. Inference over the proposed model is achieved via
a hybrid Gibbs sampler, and in particular, simulated annealing
is introduced for the label estimation in order to avoid the local-
trap problem. Experiments on a synthetic image and a popular,
publicly available real data set indicate the proposed model is
faster than and outperforms the existing approach quantitatively
and qualitatively. Moreover, for appropriate choices of the
Dirichlet parameter, it is shown that the proposed approach
has the capability to induce sparsity in the inferred abundance
vectors. It is demonstrated that this offers increased robustness in
cases where the preprocessing endmember extraction algorithms
overestimate the number of active endmembers present in a given
scene.

Index Terms— Hyperspectral unmixing, image classification,
spatial correlations, Markov random fields (MRFs), Markov
chain Monte Carlo (MCMC), simulated annealing.

I. INTRODUCTION

HYPERSPECTRAL imaging devices capture energy
across hundreds of spectral bands over the electromag-

netic spectrum and are currently of great interest to timely
topics in the environmental sciences, space research, defence,
and security. Unfortunately, owing to the complex image

This work was supported in part by the
HYPANEMA ANR Project under Grant ANR-12-BS03-003 and in part by the
Project ANR-11-LABX-0040-CIMI as part of the Program ANR-11-IDEX-
0002-02. The work of J. Nelson was supported in part by the Engineering
and Physical Sciences Research Council under Grant EP/N508470/1 and in
part by the Defence Science and Technology Laboratory. The associate editor
coordinating the review of this manuscript and approving it for publication
was Prof. Peter Tay.

P. Chen is with the Department of Statistical Science, University College
London, London, WC1E 6BT, U.K.

J. Nelson, deceased, was with the Department of Statistical Science,
University College London, London, WC1E 6BT, U.K.

J.-Y. Tourneret is with the University of Toulouse, 31071 Toulouse, France
(e-mail: jean-yves.tourneret@enseeiht.fr).

Digital Object Identifier 10.1109/TIP.2016.2622401

formation process and the limited spatial resolution of even
the most sophisticated current sensors, an individual pixel
will often contain a mixture of spectra from more than one
material. Hyperspectral unmixing is the process that undoes
this mixing and expresses the spectrum of each pixel as
a superposed combination of constituent spectra, called the
endmembers, weighted by a vector of fractional abundances
which represents the proportions of each endmember.

Although some recent research considers nonlinear
unmixing, such as [1] and those reviewed in [14], linear
models continue to receive much attention. There are two main
approaches to the treatment of endmember models. The first
are database-led treatments. These presuppose that the user
has access to a database of pure signatures that have been
captured under the same, or similar, conditions as the data
of interest. The second class of approaches are extraction-led
and instead assume that the pure signatures are present, and
can be accurately extracted, from the data itself. In the latter
case, hyperspectral unmixing commonly follows two steps,
namely endmember extraction and inversion. In the first step,
the constituent spectra of pure materials present in the image
are identified using an endmember extraction algorithm such
as N-FINDR [46] and vertex component analysis (VCA) [35].
The inversion step is devoted to the abundance estimation.
Since it represents proportions, it should be noted that the
abundance vector at each pixel is often constrained such
that is is nonnegative and sums to one. In other words, the
abundance vectors belong to a standard simplex. Consequently
many algorithms proposed in the literature are based on
constrained optimization techniques such as, for example, the
fully constrained least squares [20] and scaled gradient [44]
algorithms.

Both endmember extraction and inversion have attracted
approaches such as the minimum volume-based algorithms [4],
[8], [26], [32], Bayesian approaches [2], [5], [11], [13], [34]
and recent sparse regression based methods [22], [23].
In particular, Bayesian approaches provide a powerful
framework to model the variability and uncertainty present in
the data, endmembers, abundances, and/or their parameters.
Furthermore, Bayesian formulations provide a statistically
well-principled means to encapsulate and incorporate
meaningful prior information, such as the constraints on the
abundances, into the modelling process. Although sparse
regularisation methods such as variants of generalised and
fused Lasso [22], [23], can also be framed in terms of



probabilistic priors, current algorithmic machinery is purely
based on maximum a posteriori. As such, unlike fully
Bayesian treatments, it therefore does not easily permit any
measure of uncertainty to be expressed in the solution.

In recent years fully-Bayesian approaches to the extraction-
based treatment of endmembers have proposed a variety of
ways to model the abundances. Perhaps the most common
Bayesian strategy has been to use the uniform distribution
over the simplex as a prior distribution for the abundance
vectors [2], [11], [13]. This is, at least in part, motivated by
computational tractability. However, as in [5], [15], and [33],
a more natural and “stronger” prior for the abundance vectors
is the Dirichlet distribution as it automatically enforces the
constraints on the abundances.

In parallel, Markov random fields (MRFs) have enjoyed
extensive interest in hyperspectral image classification and
segmentation [3], [27], [37], [42]. The theory of MRFs pro-
vides a well-founded and convenient means to model the
spatial dependencies between important image features such
as intensity, labels, and so on. The Markov property captures
the local correlations inherent in spatial data. Furthermore, this
prior can be naturally and readily incorporated into a wider
Bayesian framework and is amenable to a plethora of powerful
inferential machinery including Markov chain Monte Carlo
from which the full posterior distribution of the underlying
state can be recovered. As such, it is no surprise that MRFs
are subject to continued investigation in this area [28].

In particular, contemporary approaches to hyperspectral
unmixing have begun to investigate the utility of MRFs [38].
Perhaps the most accomplished first example of MRFs for
Bayesian unmixing is the work by Eches et al. [16]. Image
pixels are classified by assigning discrete labels to them.
The Potts model (a special case of MRFs) is employed as
a prior distribution for the labels. This takes into account
the possible spatial correlations between the neighbouring
pixels and favour smoother label configurations. However,
for label estimation the Gibbs sampler, which is used for
sampling labels from the posterior, suffers from the local-trap
problem, i.e., it often becomes trapped in local minima. We
will illustrate this problem with a simple experiment in this
paper, and propose the use of a simulated annealing within
Gibbs sampler to solve it.

The local trap problem is not an uncommon drawback
of MCMC samplers, especially those that draw from MRF
models. Fortunately, with some care, advanced MCMC
methods can help mitigate such issues [29]. The simulated
annealing (SA) scheme is a simple and elegant strategy to mit-
igate the deleterious effects of the trap. It allows the sampler
to behave in a more exploratory fashion in the early iterations
of the algorithm. It is perhaps no surprise that image analysis
provided early examples of its use [19]. More up-to-date work,
such as [25], [37], and [47] apply SA-within-Gibbs samplers
or the Metropolis algorithm to perform image segmentation.

A. Contributions

In this work, the endmembers are assumed to have been
extracted by an endmember extraction algorithm. We propose

a new Bayesian model combined with MRFs to perform hyper-
spectral image unmixing and classification simultaneously. In
the proposed model, we introduce labels to classify image
pixels into different classes, according to the assumption
that there exists a common abundance vector in each class.
We then apply the Potts model for the label variables to
exploit the spatial correlations between neighbouring pixels.
Furthermore, the common abundance vector from each class is
assumed to follow the same symmetric Dirichlet distribution
with parameters that are constant and that can be tuned freely.

1) Dirichlet Model: The main thematic difference between
the proposed work and that of [16] is that our approach
assumes a common abundance model (CAM) whereas [16]
assumes a stochastic abundance model (SAM). As will be
seen in later sections, this fundamental difference significantly
simplifies the model, allows us to model the abundances
directly (instead of via a reparameterisation), and it leads
to faster, and more accurate, estimates of abundances and
pixel classes. In particular, unlike SAM, the proposed CAM
model affords a closed form expression for the abundances
distribution and, as described further in Section II-B and
Section III, our model also avoids some other theoretical
weaknesses suffered by [16].

2) Towards Sparsity: Bayesian approaches commonly rely
on extraction preprocessing methods such as N-FINDR and
VCA and others to construct the set of endmembers. Since
the number of endmembers is not known a priori it is entirely
possible that this could be overestimated. As discussed further
in Section III-B and demonstrated by experiments, in contrast
to SAM, the proposed model offers robustness to overestima-
tion of the endmember number. This is a direct consequence
of the key model difference in the way that the abundances are
treated; our Dirichlet model admits the possibility of promot-
ing sparsity among the abundances and therefore represents a
significant behavioural difference between the two approaches.
In effect, this contribution extends the MCMC frameworks
to situations where the number of extracted endmembers is
overestimated.

3) Synthetic Experiments: In Section V-B we apply the
proposed SA to [16] to show that the convergence benefits are
not simply confined to our proposed model. In Section V-C,
we compare the proposed CAM approach to the SAM
from [16] and show very clear computational performance and
accuracy improvements. The experiments therein confirm that
the new algorithm is at least one order of magnitude faster,
and at least one order of magnitude more accurate, than [16]
(cf. Tables II and III).

4) Real Experiments: Experiments on real data in Section VI
illustrate that, in contrast to SAM, the proposed method
demonstrates stability in the inferred label maps with respect
to the number of endmembers (which is not usually known
a priori) whereas the label maps of [16] change notably as R
is varied. Moreover, unlike SAM, when the estimated number
of endmembers is increased, the proposed method is able to
perform some variable selection capability by effectively push-
ing the contributions of some of the redundant endmembers
to values that are approximately zero. This key behaviour is
simply not available when adopting the SAM approach.



5) Algorithm Convergence: Inference over the proposed
model is performed via a Gibbs sampler combined with a
Metropolis-Hastings algorithm and, unlike previous related
approaches, we invoke an SA within-Gibbs sampler scheme
to estimate the label variables whilst taking care to avoid
the local-trap problem and incorporate a Gelman-Rubin con-
vergence criterion. Quantitative and qualitative results from
experiments on synthetic data and on a publicly available real
dataset indicate the performance and speed advantages of the
proposed model over [16].

B. Related Work and Scope

An extension of [16] is considered in [15] which (i) uses
an adaptive neighbourhood structure in the MRF construction
and (ii) uses a Dirichlet distribution to model the abundance
means and variances. Our model differs from [15] in that
the assumed symmetric Dirichlet distribution has deterministic
parameters which do not depend on the classes. Not only
does the assumption reflect our lack of knowledge about the
proportions of endmembers in each class but also, in the case
of its parameters with common value below 1, the Dirichlet
distribution prefers a sparse distribution of the abundance
vectors and consequently can be used to encourage sparse
unmixing. This could benefit scenarios where the number of
extracted endmembers is somewhat larger than the actual par-
ticipating endmembers in a given pixel, i.e., where the image
is large and complex or where the endmember extraction
algorithms have overestimated the number of endmembers.

Although some of the advances in [15], such as the
adaptive Markov random field, could also be incorporated
into the proposed model, this is beyond the scope of this
work. Instead we base our comparisons on the work in [16]
so as to (i) contrast the relative accuracy and computational
performance of the proposed CAM assumption against the
SAM and (ii) assess the relative utility of the Dirichlet
distribution to model abundances, not just (as in [15]) as an
elegant means to avoid the reparameterisation of [16], but also
to explore the additional robustness and potential sparsifying
properties it offers when the number of extracted endmembers
is overestimated earlier on in the processing chain.

C. Structure

The remainder of the paper is organized as follows.
Section II formulates the problems of hyperspectral unmixing
and image classification and then motivates, and provides,
a brief introduction of Markov random fields and the Potts
model. Sections III and IV describe the proposed model
and corresponding inferential machinery. Sections V and VI
describe the experiments with synthetic and real data. Finally,
we draw conclusions in Section VII.

II. PRELIMINARIES

A. Linear Mixing Model

The linear mixing model (LMM) assumes that the expected
spectrum of each pixel in a hyperspectral image can be
expressed as a linear combination of endmember spectra

weighted by the corresponding fractional abundances. Thus
given an L-band hyperspectral image consisting of P pixels,
the linear mixing model is

yp = Map + ep (1)

for p = 1, ..., P , where yp denotes the spectral measurement
at pixel p, M = [m1, ..., mR] is an L × R matrix comprising
R endmembers, which can be known or estimated from the
data, and ap = [a1p, ..., aRp]T ∈ SR−1 is the R×1 abundance
vector that represents the proportions of each endmember and
where the unit (R − 1)−simplex

S
R−1 =

{
a p | arp ≥ 0, r = 1, ..., R,

R∑
r=1

arp = 1

}

encapsulates the abundance nonnegativity constraint (ANC)
and the abundance sum-to-one constraint (ASC), namely

1) arp ≥ 0, r = 1, ..., R (nonnegative)
2)

∑R
r=1 arp = 1 (sum-to-one).

We assume that the errors e1, ..., eP are independent and
identically distributed according to an L-dimensional normal
distribution with zero mean and unknown variance, i.e.,

ep ∼ N (0, s2 I L)

for p = 1, ..., P , where s2 is an unknown scalar, and I L

is the identity matrix of size L. In addition, we denote the
observed hyperspectral image or data as Y = [ y1, ..., yP ] and
the corresponding abundance matrix as A = [a1, ..., aP ].

B. Image Classification

In this paper the problem of image classification or labelling
will be solved jointly with hyperspectral unmixing. Let
S = {1, ..., P} index the image pixels or sites and
L = {1, ..., K } denotes the set of class labels. In image
classification, one attempts to assign a label z p ∈ L to each
pixel or site p ∈ S of the image, resulting in a set of label
variables Z = {z1, ..., z P}, according to some classification
rule or assumption. In general, it is required that pixels
in each class have some similar characteristics, which are
significantly different across classes. Here we present two
specific classification rules as follows

Rule A: stochastic abundance model
Classify pixels into the same class if their abundance
vectors share a certain distribution with the same
parameters, i.e., set z p = k if a p ∼ Distribution(�k),
where �k ∈ {�1, ...,�K } denotes the set of common
parameters for class k.

Rule B: common abundance model
Classify pixels into the same class if they share
the same abundance vector, i.e., set z p = k
if ap = ak , where ak ∈ {a1, ..., aK } denotes the
common abundance for class k.

Note that the above rules are both made in terms of the
abundance vectors, but the difference is that the abundance
vectors in each class are assumed to be randomly distributed
or the same according to Rule A and Rule B respectively.



C. Markov Random Fields

In nature most materials such as, for example water, woods,
or grass, tend to exist in clusters or clumps. Consequently,
neighbouring pixels in hyperspectral images are fairly likely
to have some similar properties such as spectrum, abundance
vector, and label.

1) Properties: This spatial correlation can be exploited by
various means. In well principled probabilistic frameworks,
it is common to capture this notion by the incorporation of a
Markov random field (MRF) prior on the image labels Z [28].
For then, we have that P(Z) > 0 and P(Z|Z−p) = P(Z|ZS p)
where S p is a neighbourhood of pixel, or site, p and
Z−p = Z\{p} is the label field with site p removed. If Z
satisfies these MRF conditions then, as a consequence of
the well-known Hammersley-Clifford theorem, that estab-
lishes the equivalence between MRFs and Gibbs distributions,
we can write P(Z) ∝ exp(−T −1U(Z)) where the constant
T ∈ R+ is known as the temperature and U(Z) is called the
prior energy function.

2) Potts Model: The Potts model is a simple and natural
way to describe multiple discrete labels in an MRF framework.
It can be defined via the full-conditional distribution

P(z p | z−p) ∝ exp

⎡
⎣β

∑
p′∈Sp

δ(z p − z p′)

⎤
⎦ (2)

where β > 0 is called granularity coefficient, C(β) is the
normalizing constant or partition function, and δ(·) is the
Kronecker delta function such that δ(z) = 1 if z = 0, and
δ(z) = 0 otherwise. The granularity coefficient β accounts for
the strength of local interactions over the label field Z and
plays an important role in the application to image classifica-
tion. It tunes the degree of homogeneity in the estimated label
map so that a small value of β induces a noisy label map with
a large number of small regions, while a large value of β leads
to a homogeneous label map with few large regions.

Note that sampling from (2) can be easily achieved using
a Gibbs sampler [16]. This mainly involves drawing the
variables z1, ..., z P one by one from the set of labels {1, ..., K }
with their full-conditional distributions. However, as it will
be discussed in Section IV-B, this sampling scheme can be
problematic especially when β has a large value.

III. HIERARCHICAL BAYESIAN MODEL

Eches et al. [16] considered an MRF-based Bayesian
approach to the problems of hyperspectral unmixing and image
classification. We start by briefly introducing Eches’ approach,
and then propose a new MRF-based hierarchical Bayesian
model, which is arguably simpler and promotes sparsity of
the abundance vectors.

A. Eches’ Model: CLRSAM

The core of Eches’ approach lies in a reparametrization of
the abundance vectors. In particular, each component of the
abundance vector ap is rewritten as a function of another set
of random variables t p = [t1,p, ..., tR,p]T as follows

ar,p = exp(tr,p)∑R
i=1 exp(ti,p)

(3)

for r = 1, ..., R, where tr,p are named the logistic coefficients.
This reparametrization can also be viewed as a transformation
from t p to a p , and, although not introduced in this way
by the authors, it is the inverse of the so-called centred
logratio (CLR) transformation which originates from the area
of compositional data analysis [39], i.e.,

t p = clr(ap) =
[

ln
a1,p

g(ap)
, ..., ln

aR,p

g(ap)

]
(4)

where g(ap) = R
√

a1,p · · · aR,p . Since the CLR is a one-to-one
transformation from the unit (R − 1)-simplex to a real space,
it opens up the possibility of using standard unconstrained
multivariate method. Indeed, the components of t p , which
depend on the class to which the corresponding pixel belongs,
are assumed to be independent and Gaussian distributed

tr,p | z p = k, μr,k, σ
2
r,k ∼ N (μr,k , σ

2
r,k).

Consequently, the distribution of ar,p , as a function of tr,p , also
depends on the class to which the corresponding pixel belongs.
As such it is an example of what we refer to as a SAM:
it complies with Rule A presented in Section II-B. Henceforth,
putting CLR together with SAM, we shall therefore refer to
it as the CLRSAM for convenience. However the distribution
of ar,p does not have a closed form, and the assumption of
independence between tr,p does not hold theoretically, since
the CLR transformation defined in (4) implies that the tr,p

should sum to zero. The directed acyclic graph (DAG) of
Eches’ CLRSAM is depicted in Fig. 1.

B. Proposed Model

We here propose a new Bayesian model based on classifi-
cation rule B presented in Section II-B, namely the common
abundance model. Recall that Rule B indicates that the abun-
dance vectors belonging to the kth class are all equal (to ãk),
i.e., that a p = ãk for all p ∈ S such that z p = k, where
k ∈ L, and thus the linear mixing model becomes

yp | z p = k, ãk, s2 ∼ N (Mãk, s2 I L)

for p ∈ S. We then avoid the need to reparameterize
by assuming the abundance vector ãk follows a symmetric
Dirichlet distribution with constant parameters [α, ..., α] ∈ R

R

that are equal to each other, namely

ãk ∼ Dir(α, ..., α)

f (̃ak) ∝
R∏

r=1

ãα−1
r,k

with ãr,k > 0,∀r, k, and
∑R

r=1 ãr,k = 1,∀k, and where α is
called the concentration parameter. When α is fixed to 1, the
Dirichlet distribution is equivalent to a uniform distribution
over the unit (R − 1)-simplex, and can be regarded as a non-
informative prior for ãk . In contrast, values of α below 1 prefer
sparse distributions of ãk , i.e., most values within a single
sample of ãk will be close to 0, and the majority of probability
mass will be concentrated on a few of the values. This property
is potentially advantageous when the set of active endmembers
for a given pixel is small compared to those active in the entire
image. In practice, α can be tuned or learned either by hand



Fig. 1. DAGs of Eches’ CLRSAM model (top) and the proposed model
(bottom). Circle nodes and square nodes represent unknown and known
random variables respectively, and rectangular boxes represent repetitive
structures.

or via a cross-validation scheme. Automatic tuning is left as
further work.

An inverse gamma prior Inv-Gamma(1, δ) is assigned to
the error variance s2, and the Jeffreys prior 1/δ is chosen
for the hyperparameter δ. An alternative would be to place a
Jeffrey’s prior on s2 but a prior on δ is done here largely for
convenience as it avoids fixing δ to a specific value. The label
variable z p is defined as in the Potts model, but instead of
fixing the value of the granularity coefficient β as in Eches’
CLRSAM, we will choose a cooling schedule for inverse β
and apply SA at the model inference stage. As discussed
further in Section IV-B, this provides further robustness to
the sampler and avoids the local trap problem. Consequently,
a new hierarchical Bayesian model is built as follows, with its
DAG shown in Fig. 1(bottom).

1st level—likelihood

yp | z p = k, ãk, s2 ∼ N (Mãk, s2 I L)

2nd level—prior

ãk ∼ Dir(α, ..., α)

P(z p | z−p) ∝ exp

⎡
⎣β

∑
p′∈Sp

δ(z p − z p′)

⎤
⎦

s2 | δ ∼ Inv-Gamma(1, δ) (5)

Algorithm 1 Gibbs sampler for the proposed model

3rd level—hyperprior

f (δ) ∝ 1/δ.

Putting this all together, it follows that the joint posterior is
therefore decomposed as

f ( Ã, s2, δ, Z | y1:P ) ∝ f ( Ã)P(Z) f (s2|δ)

×
K∏

p=1

f (yp|z p, ãz p , s2) (6)

where Ã := (̃a1, ..., ãK ) denotes the abundances matrix with
density f ( Ã) = ∏K

k=1 f (̃ak).

IV. MODEL INFERENCE

Once the proposed model has been constructed one is then
left with the task of formulating the posterior distribution of
the unknown parameters so that inference can be performed.
However, the posterior distribution is too complex to obtain
closed-form expressions of Bayesian estimators, such as
the posterior mean and mode, of each unknown parameter.
We therefore invoke MCMC methods to generate samples
from the posterior distribution (6), and use the samples to
approximate Bayesian estimators.

A. Hybrid Gibbs Sampler

As summarised in Algorithm (1), a Gibbs sampler is used
for the proposed model. Let ϒ = (̃ak, z p, s2, δ, Y , M) denotes
the set of all random variables in the proposed model, and ϒ−υ

the set of random variables except υ. By applying the Bayes’
theorem, we obtain the following results.

1) Full-Conditional Distribution of ãk:

f (̃ak | ϒ−ãk ) ∝
∏

p∈Pk

f (yp | ãk, z p, s2) f (̃ak)

∝
∏

p∈Pk

exp

[
− 1

2s2 ‖y p − Mãk‖2
] R∏

r=1

ãα−1
r,k .

(7)

where Pk = {p ∈ {1, ..., P} | z p = k}. Unfortunately this is
an unrecognised form of distribution that cannot be directly
sampled. We therefore use a Metropolis-Hastings algorithm



to draw samples from it. We have chosen a proposal that
simplifies the acceptance ratio and takes the form

q (̃a(i+1)
k ) ∝

∏
p∈Pk

exp

[
− 1

2s2 ‖yp − Mã(i)
k ‖2

]

∝ exp

[
−1

2
(̃a(i)

k − μ)T �−1(̃a(i)
k − μ)

]
(8)

where by denoting M ′ = [m1, ..., mR−1] and u =
[1, ..., 1]T ∈ R

R−1

μ = �

⎡
⎣nk

s2 (M ′ − mR uT )T

⎛
⎝ 1

nk

∑
p∈Pk

yp − mR uT

⎞
⎠

⎤
⎦

� =
[nk

s2 (M ′ − mR uT )T (M ′ − mR uT )
]−1

and nk is the number of sites in Pk . Thus, the proposal
distribution defined in (8) shares the form of a multivariate
Gaussian distribution truncated on the (R−1)-simplex, namely
NSR−1(μ,�) := 1SR−1 (̃a(i+1)

k )N (μ,�), where 1SR−1 is the
indicator function on the (R − 1)-simplex, and we have

ã(i+1)
k | ϒ−ãk ∼ NSR−1(μ,�).

Sampling from such a distribution can be achieved by using a
standard rejection sampling. However a more efficient Gibbs
sampling method is available in [12]. Adapting this into our
treatment is straightforward and results in the M-H algorithm
acceptance probability

min

{
1,

p(̃ak)
(i+1)

p(̃ak)(i)

}
= min

{
1,

R∏
r=1

(
ã(i+1)

r,k

ã(i)
r,k

)α}
.

Although the proposal in (8) is specific to this work, it
is derived from the quite classical strategy of choosing a
convenient proposal close to the distribution from which one
would like to sample.

2) Full-Conditional Distribution of z p:

P(z p = k | ϒ−z p ) ∝ P(z p | z−p) f (y p | az p , z p, s2)

∝ exp

⎡
⎣β

∑
p′∈S p

δ(z p − z p′)

⎤
⎦

× exp

[
− 1

2s2 ‖y p − Mãk‖2
]
. (9)

Note that, since (9) defines an MRF Z | ϒ−Z , sampling
can be achieved by using SA in order to avoid the local-trap
problem. This will be discussed in more detail in Section IV-B
but we briefly note here that this involves setting β = 1/T ,
and sampling z p from (9) while decreasing T according to
T (i+1) = T (i)r i+1 + Te. Also note that updating the label
locations randomly or according to the checkerboard pattern
(i.e., updating the even and then odd sites) generally improves
the convergence properties of the Gibbs sampler. However, in
our experiments, the convergence of the proposed sampler was
sufficiently fast without using these more elaborated moves.

3) Full-Conditional Distribution of s2:

f (s2 | ϒ−s2) ∝ f (s2 | δ)

P∏
p=1

f (yp | az p , z p, s2) .

As s2 has a conjugate inverse-gamma prior, it follows

s2 | ϒ−s2 ∼ Inv-Gamma

⎛
⎝1+ L P

2
, δ+

P∑
p=1

‖y p−Ma(z p)‖2

2

⎞
⎠.

4) Full-Conditional Distribution of δ:

f (δ | ϒ−δ) ∝ f (s2 | δ) f (δ)

and it can be shown that δ | ϒ−δ ∼ Inv-Gamma(1, s2).

B. Local-Trap Problem

The so-termed local trap problem occurs when an MCMC
sampler gets trapped within a local mode of a multi-modal
distribution separated by low-density barriers. It is one of
several well-known drawbacks of MCMC samplers [29]. The
local trap problem may be observed when a new sample is
always generated in a neighbourhood of the current sample.
In the case of Gibbs sampling, for example, the update of one
component of the random variables depends on the previous
values of the other components, which results in local moves in
the joint sample space. When there is high correlation between
components the moves are expected to be more “local” and
slow, and thus may fail to escape a local mode separated by
low-density barriers [17].

For the Potts model defined in (2), there is a strong
dependence between the neighbouring z ps. This is especially
apparent when the granularity coefficient β takes a large
value. As a result when a Gibbs sampler is used to sample
from a Potts model it is quite likely to suffer from slow
and small moves. In the Gibbs sampler introduced for the
proposed model, the same issue arises when we sample the
label variable Z from the MRF defined by (9). If β is fixed
too large initially, the Gibbs sampler used for sampling Z may
get trapped within some local mode of the MRF and fail to
find the global one.

To alleviate or overcome the local-trap problem, many
advanced MCMC methods [29] have been proposed in
the literature, including parallel tempering, slice sam-
pler, adaptive Metropolis algorithm, stochastic approximation
Monte Carlo [29], as well as the collapsed Gibbs sampler of
van Dyk and Park [45]. In particular, [40] considers estimation
of β in the Potts model within an MCMC algorithm. In our
case, however, we propose to consider the method of simulated
annealing [28], which provides a perfectly reasonable solution.

Simulated annealing (SA) is a stochastic algorithm for
finding the global minimum of a given function that may
possess several local minima. It simulates the physical anneal-
ing procedure, i.e., a process whereby a physical substance
is heated and then allowed to cool down slowly to form
a “low-energy configuration” [28]. For example, consider a
system whose energy configuration has the following Gibbs
distribution

fT (x) ∝ exp [−E(x)/T ]



where T > 0 is the temperature parameter, and E(x) denotes
the energy of the system. The SA method simply applies a
sampling algorithm, be it Metropolis, Gibbs, or otherwise,
such that the value of the temperature T is decreased gradually
at each iteration step. Initially, T is set very high and x is
set to a random configuration. At a fixed T , the samples are
drawn according to the distribution fT (x). After the sampling
converges to the equilibrium at the current temperature, T is
then decreased in accordance with a given cooling strategy.
The process is repeated until T is near to zero (at which, to
carry on the annealing analogy, the system is “frozen” near its
low-energy configuration).

Geman and Geman [19] established an SA convergence
result which states that if the decreasing sequence of tem-
peratures satisfy

lim
i→∞ T (i) = 0

and

T (i) ≥ �
ln(i)

(10)

where � is a problem-dependent constant, then the algorithm
is guaranteed to converge to the global minimum irrespective
of the initial configuration. However, the cooling schedule
implied in (10) is too slow to be of practical use. Instead,
heuristic, faster schedules have to be used in practice.

In the proposed model, β in (5) can be considered as the
inverse temperature T = 1/β. Smaller β will present a weaker
spatial prior and will therefore tend to result in “noisier”
maps, whilst larger values give stronger priors and lead to
“smoother” maps. By allowing β to start off relatively small,
the sampler is able to explore a large class of different labelling
configurations early on. This behaviour may help the sampler
avoid the local trap problem. As the “temperature” decreases
(as β increases), the prior becomes stronger and helps stabilize
the resulting sampled chain of configurations towards spatially
homogeneous solutions. Other variables could have been cho-
sen for similar SA treatment. The choice of β was inspired
by the observation that, in our simulations, the CLRSAM
sometimes resulted in either “noisy” maps for small fixed β
or, sometimes (for example, see Section V-B) would suffer
from the local-trap problem for larger β. By varying β in this
manner one is able to derive the benefits of both exploration
and stability.

Since the SA is embedded within the Gibbs sampler, this
aspect of our proposed scheme has some similarities with
the simulated tempering idea discussed in [36] and first
proposed in [31]. However, the proposed SA-within-Gibbs
sampler and simulated tempering have also differences that
deserve to be mentioned here. Simulated tempering consists of
sampling a sequence of distributions that vary randomly over
time according to an appropriate temperature cooling sched-
ule. In particular, simulated tempering considers an enlarged
space containing the parameter vector to be sampled and
the temperature which is, itself, considered as a dynamical
parameter. Conversely, the algorithm proposed in this paper
updates the temperature at each iteration (or equivalently, the
value of β) in order to stabilize the generated values of β.

The main motivation for using this strategy is its simplicity.
Note that other optimization-within-MCMC algorithms that
are described in [41] could also be investigated to sample the
value of β.

For practicality, we choose an exponential cooling sched-
ule [21]

T (i) = T (0)r i + Te (11)

where i denotes the i th iteration, T (0) is an initial value
of the temperature which should be set large enough to
encourage sufficient exploration of the state space early on
in the algorithm, Te is the limit value of the temperature that
should be close enough to zero to ensure that the algorithm
reaches a reasonable low-energy equilibrium configuration,
and r (0 < r < 1) is the decreasing rate which should be
given a value close enough to 1 to ensure that the temperature
decreases slowly enough but far away enough from 1 to ensure
that the algorithm is tractable. The choices of r and T (0) are
not critical parameters in that, if set large enough, they do not
have a big impact on the results. In other words, they do not
have to be carefully tuned to each new data set. The trade-off
is merely quality versus computation time. As both parameters
are raised the computation time increases. However, there will
be a limit to the accuracy of the solution (it does not increase
indefinitely with respect to these parameters).

C. Convergence Diagnostics

Owing to the complex nature of the proposed model and
sampler, convergence diagnostics is far from straightforward.
For one thing, there is a large number of random variables
involved. In practice, however, it is fortunately unnecessary
to check the convergence of each variable. We will therefore
concentrate on the main (multivariate) variables of interest,
namely the abundance variable A and the label variable Z.
Visual inspection provides a natural means to formulate a
choice of convergence diagnostic because the label variable Z
can be conveniently shown as label map, and the abundance
variable A can also be presented as abundance maps of each
endmember in M . Convergence is assumed to hold when one
observes that the label map and the abundance maps become
relatively stable without any considerable changes as the
number of iterations increases. However, although seemingly
common (especially in hyperspectral unmixing tasks), visual
inspection can be inaccurate and somewhat arbitrary. Hence,
we will mostly rely on the Gelman-Rubin diagnostic [18] in
this work.

1) Gelman-Rubin Diagnostic: The main idea of the
Gelman-Rubin diagnostic is to run multiple chains with widely
differing starting values and then to compare the variance
within the chains with the variance across the chains. After
convergence, the two variances should be similar. We run
m ≥ 2 chains of length 2n with over-dispersed starting values,
and keep the last n samples in each chain. We first calculate
the within-chain variance W = m−1 ∑m

j=1 s2
j , where s2

j is the
variance of the j th chain, i.e.,

s2
j = 1

n − 1

n∑
i=1

(θi j − θ̄ j )
2



and where θi j denotes the value of i th sample in j th chain,
and θ̄ j is the mean value of j th chain. The sample estimate W
likely underestimates the true variance of the stationary distrib-
ution since the chains may have not converged to the stationary
distribution. We then calculate the between-chain variance

B = n

m − 1

m∑
j=1

(θ̄ j − ¯̄θ)2 , ¯̄θ = 1

m

m∑
j=1

θ̄ j .

The between-chain variance B is the variance of the chain
means multiplied by n because each chain is based on n draws.
We can then estimate the variance of the stationary distribution
as a weighted average of W and B as follows

V =
(

1 − 1

n

)
W + 1

n
B .

Because of over-dispersion of the starting values, V overesti-
mates the true variance. Finally we calculate the potential scale
reduction factor R = √

V/W . When R is close enough to 1
(e.g., smaller than 1.05, say), we then assume the convergence
has been reached. If there is more than one parameter, we can
calculate the potential scale reduction factor for each one. An
alternative is to use the multivariate potential scale reduction
factor [7].

After convergence has been determined, another question is
how long the chain should be run. In this work, we simply
follow the typical routine and thin the chain by only taking
every kth value (e.g., every 10th value), in order to decrease
autocorrelations in the chain.

V. EXPERIMENTS ON SYNTHETIC IMAGES

Unmixing experiments were performed on synthetic data
constructed in accordance with rule B. Although this naturally
favours the proposed model it is, nonetheless, instructive to
contrast some of the key behavioural differences with that
of the CLRSAM (Eches et al. [15]). A direct comparison
can be made here since both the CLRSAM and our pro-
posed approach incorporates the same MRF model. Indeed, in
Section V-B, we examine the benefits of the SA method for
CLRSAM. In Section V-C we then compare the computational
performance and accuracy of the abundance and label estima-
tion obtained by the proposed method and the CLRSAM (both
using SA). Later on, in Section VI, we consider the relative
benefits of sparsity of the proposed approach on a popular real
hyperspectral data set.

A. Synthetic Data Generation

The generated synthetic image is endowed with L = 224
spectral bands, P = 25 × 25 pixels, and K = 3 different
classes. The label map is illustrated in Fig. 3 (left). The
procedure of synthetic image generation is as follows:

1) Choose R = 3 significantly different endmembers
from the USGS spectral library splib06,1 and hence the
endmember matrix M;

1The splib06 library, released by USGS in September 2007, comprises
spectral signatures of 240 different mineral types, with reflectance values given
in 224 spectral bands covering wavelength range of 400-2500 nm. Available
online: http://speclab.cr.usgs.gov/spectral.lib06

TABLE I

THE GROUND TRUTH ABUNDANCE VECTORS FOR
EACH CLASS IN THE SYNTHETIC IMAGE

Fig. 2. Distributions of the number of mislabelled pixels Nmis before using
SA (left) and after using SA (right).

2) Generate a label map Z with 3 classes by simulating the
Potts model with β = 1.1;

3) Choose the common abundance vector for each class as
in Table I, and hence the actual abundance matrix A by
setting ã p = ãk if z p = k;

4) Generate the data Y according to (1) (LMM) with
variance s2 = 0.001.

B. SA Performance

In our first experiment, we illustrate the benefits of SA
by applying it directly to Eches’ CLRSAM. We note that
Eches’ approach does not apply SA when sampling the label
variable Z. We therefore embed SA into the CLRSAM to
produce an extended version and compare its performance
with that of the original model. In the original CLRSAM, the
granularity coefficient β is fixed to 1.1. When applying SA,
β is the inverse temperature T . So β will increase from 0 to 1.1
if we decrease the temperature T from infinity to 0.91. The
exponential cooling schedule in (11) then becomes

T (i) = T (0)r i + 0.91

where we will set T (0) = 100 and r = 0.95, and run a
large enough number of iterations to allow T to decrease close
enough to 0.91.

We measure the performances of Eches’ CLRSAM before
and after using SA with respect to the number of mislabelled
pixels, denoted by Nmis, which is computed by comparing
the estimated label map with the actual label map. Here the
label map is estimated by the converged mode of the label
variable. We run 100 experiments and record the numbers of
misclassified pixels over all experiments.

Given the synthetic image we implement the two models
(over 100 experiments each) and obtain the distributions of
Nmis shown in Fig. 2. It is clear that the original CLRSAM
results in a distribution of Nmis with two significant modes,
one is around 0 with probability of about 0.6, and the other
one is around 150 with probability of about 0.4. It indicates
that the model suffers from getting trapped in a local mode of
the posterior of Z whose corresponding label map is shown



Fig. 3. Left: the correct label map. Right: a false label map resulted from
Eches’ CLRSAM.

TABLE II

RESULTS OF THE PERFORMANCE MEASURES OF ECHES’ CLRSAM
MODEL AND THE PROPOSED MODEL

in Fig. 3 (right). On the other hand, after using SA the distri-
bution of Nmis is concentrated around 0 with maximum Nmis
of only 6. In other words, the modified model avoids the
local mode of the posterior of Z. We can conclude that
the introduction of the SA technique helps Eches’ CLRSAM
successfully avoid the local-trap problem for this example
and thus delivers a more accurate estimate of the label map.
In subsequent experiments herein this modified, enhanced,
version of Eches’ CLRSAM will be used instead of the
original one.

C. MSE and Computational Performance

In this experiment, we compare Eches’ CLRSAM model
and the proposed model. For simplicity, the concentration
parameter α is set to unity. The next section explores the
sparsity effects of choosing α < 1. Three performance
measures are used, namely, the number of mislabelled pixels
(Nmis), the computational time (tcost), and the mean squared
error of the estimated abundance defined by

MSE(̂A) = 1

RP

P∑
r=1

P∑
p=1

(̂ar,p − ar,p)
2.

Table II summarises the mean performance measures
over 10 experiments for the two models on the syn-
thetic image. We found that the proposed model out-
performs Eches’ CLRSAM, with no mislabelled pixels,
and an MSE(̂A) over 10 times smaller than that of
Eches’ CLRSAM with an average computational cost of
only 5.5 seconds.

Of course, it should be noted that the results corroborate
to some extent the fact that the assumption made in the
synthetic image generation, namely Rule B, is well-aligned
to the properties of the proposed model. In the next section,
however, we find that the sparsifying property of the proposed
approach provides potential further benefits compared to that
of Eches’ CLRSAM method when considering unmixing of
real hyperspectral data.

Fig. 4. False color image of the Moffett Field dataset (top) and the two
regions of interest (bottom-left: ROI 1, bottom-right: ROI 2). The numbers 1-6
indicate the endmembers extracted from each region by the VCA algorithm.

VI. EXPERIMENTS WITH REAL IMAGES

The popular Moffett Field hyperspectral image was used
to qualitatively evaluate the performance of the proposed
model on real data. This dataset, widely used to test spectral
unmixing, and other hyperspectral imaging techniques [10],
[13], [24], was collected by the AVIRIS sensor over Moffett
Field, California around the southern part of the San Francisco
Bay in 1997. The top panel of Fig. 4 shows a false color
image of the Moffett Field scene with two regions of interest
(ROI). This scene consists of a large lake in the top-left of
the image, a coastal area composed of vegetation and soil and
an urban area in the bottom-right. The dataset contains 224
spectral bands covering a wavelength range from 400 to 2500
nanometers, at a nominal spectral resolution of 10 nm, and
it has been reduced from the original 224 bands to L = 188
bands by removing noisy and water absorption bands.

A. ROI 1

ROI 1 has P = 50 × 50 pixels, and covers K = 4 general
classes of areas: lake, lake shore, vegetation and bare land.
Thus there are at least three endmembers present in the region
associated with water, vegetation and soil.

1) Stability With Respect to Number of Endmembers:
Despite the existence of methods that estimate the number
of endmembers present such as ELM [30] and HySIME [6],
they can clearly never be infallible and are often applied
as a preprocessing step independently from the unmixing
methodology itself. It is prudent and instructive, therefore,
to consider the stability of the two unmixing approaches as



Fig. 5. The label maps of ROI 1 estimated by Eches’ CLRSAM model (top)
and the proposed model (bottom) for R = 3, 4, and 5 respectively. Compare
with the false colour image in the lower-left panel of Fig. 4.

TABLE III

COMPUTATIONAL TIMES (SECONDS) OF ECHES’ CLRSAM MODEL AND

THE PROPOSED MODEL ON ROI 1 FOR R = 3, 4 AND 5 RESPECTIVELY

the number of endmembers is varied. To this end, we proceed
as follows. We set K = 4, α = 1, and, as is the case in
all experiments on the real data, used Te = 0.91 (which is
equivalent to β = 1.1 in Eches’ CLRSAM model). To study
the effects of the numbers of endmembers, we let R take on
the values 3, 4, and 5.

As can be seen from Fig. 5, the proposed model
gives more accurate and stable label maps than those of
Eches’ CLRSAM as the number of endmembers increases.
The colours dark-blue, light-blue, orange, and red represent
estimates of the water, littoral, soil, and vegetation classes
respectively. In contrast to the proposed method, CLRSAM
contains some clearly suspect estimates such as single shore
pixels that either appear on land or are surrounded by the
water class. Moreover, as the number of assumed endmem-
bers R is varied, the CLRSAM label maps change significantly
compared with the proposed method. This result confirms that
CLRSAM is more sensitive to knowledge about the number
of endmembers present. Table III indicates that there is also a
significant speed advantage too. The proposed method is not
only quicker by an order of magnitude it also appears to scale
better as R is increased.

2) Sparsity for Endmember Shrinkage and Selection: In
the next experiment we fix K = 4 and set the numbers
of endmembers to be some way larger than expected, say
R = 6 to test the ability of the proposed approach to mitigate
endmember redundancy by the use of sparsity (by employing
α < 1). We thus compare the behaviour of the system when
α = 1 to that of α = 0.01.

Six endmembers are extracted from ROI 1 via VCA, as
illustrated in Fig. 7. These correspond to the pixels marked
in the bottom-left panel of Fig. 4 (bottom-left). VCA finds

Fig. 6. The label maps estimated by the proposed model with α = 1 and
α = 0.01.

Fig. 7. The six endmembers extracted from ROI 1. Top row, left-to-right:
soil, vegetation, water taken from location 1-3 resp. in the bottom-left panel
of Fig. 4; bottom row: possible mixes between vegetation/soil, soil/water,
soil/vegetation taken from locations 4-6 resp. in the bottom-left panel of Fig. 4.

distinct pixels from the image data itself and assigns them
as endmember signatures under the assumption that the pure
pixels are present in an image scene. Indeed, the first three
signatures represent soil, vegetation, and water and they are
similar to the actual signatures of these materials in the
database. The other three signatures, as indicated by their
location, might be mixed signatures of soil, vegetation and
water. For example, the fourth endmember m4, located in the
border between bare soil area and vegetation area, is probably
a spectral mixture of soil and vegetation.

When α is decreased from 1 to 0.01, as can be seen from
Table IV, the proportions of endmembers m2 and m6 become
almost zero. In effect, the redundancy of the endmember set
(deliberately introduced by choosing R = 6 endmembers),
is mitigated somewhat by choosing a small value of α. For
small α, the Dirichlet prior induces concentration of mass,
or sparsity, in the manner in which the abundance values
are distributed over the simplex. As a further consequence,
the distributions of the endmembers themselves become more
concentrated. In the “shore” area, for instance, the number
of constituent endmembers decreases from 6 to 3. For this
example, in addition to Table IV, we also see from Fig. 6
that, although the choice of α has a significant impact on the
estimation of the abundances, it has little effect on the inferred
label map.

Notwithstanding, the sparse method yields an abundance
solution which is much closer to something that one could
reasonably expect. This fact alone should motivate the prefer-
ence for the sparse solution in this case. Although the inferred
label map in both ROI experiments were somewhat similar,
it is also important to note that the inferred endmembers offer
more refined information than class. The solutions obtained



TABLE IV

THE ESTIMATED ABUNDANCE VECTORS IN EACH CLASS
OF ROI 1 FOR α = 1 AND 0.01 RESPECTIVELY

Fig. 8. The label maps of ROI 2 estimated by Eches’ CLRSAM model (top)
and the proposed model (bottom) for R = 3, 4 and 5 respectively. Compare
with the false colour image in the lower-right panel of Fig. 4.

Fig. 9. The label maps of ROI 2 estimated by the proposed model with
α = 1 and α = 0.01 (for K = 3, R = 6).

from realistic and reasonable endmember proportions lead to
better interpretability.

B. ROI 2

The other region of interest studied, ROI 2, consists of
three main classes: urban/roads, vegetation, and bare land. It is
therefore likely that there are at least three materials present
in this region associated with vegetation, soil, and concrete.

1) Stability With Respect to Number of Endmembers:
Similar to the ROI 1 experiment, we consider the robustness of
the inferred label maps to variations in the value of R. We set
K = 3, α = 1 and let R = 3, 4, and 5. It is shown in Fig. 8 that
the proposed model identifies the two vegetation strips in the
top-middle of the region, the road running from the bottom-left
to the middle-right, and the road loop in the top-right. The false
colour map in the bottom-right of Fig. 4 reveals that the lower-
right part area comprises a fine-grained “speckled” mixture of

Fig. 10. The six endmembers extracted from ROI 2. Top row, left-to-right:
soil, soil/construction, vegetation taken from location 1-3 resp. in the
bottom-right panel of Fig. 4; bottom row: possible mixes between soil/
construction, construction/soil/vegetation, vegetation/construction taken from
locations 4-6 resp. in the bottom-right panel of Fig. 4.

TABLE V

THE ESTIMATED ABUNDANCE VECTORS IN EACH CLASS
OF ROI 2 FOR α = 1 AND 0.01 RESPECTIVELY

urban/roads/concrete (purple), vegetation (green), and soil/bare
land (orange). These seem to be also present in the lower-right
part of the proposed estimated maps (although it is difficult to
determine exactly how accurate the estimation is). However,
this behaviour does not seem to be reflected as much by
CLRSAM where the majority of the lower-right is swathed
in what appears to be the vegetation class. Furthermore, it is
also apparent that the proposed model gives more accurate and
stable label maps than those of Eches CLRSAM model as the
number of endmembers is varied.

2) Sparsity for Endmember Shrinkage and Selection: Fig. 9
shows that, for the case where K = 3 and R = 6, the proposed
method does finally yield a significantly different label map
for two different values of α. We see that, in particular, the
interface between the vegetation and soil is markedly different.
It appears that large regions of soil are misclassified as vege-
tation. On the other hand, when α is reduced from 1 to 0.01,
these areas are classified more accurately. Although some of
the vegetation area is now missing the road loop in the top-
right is more apparent than it is in any of the other experiments.
It is also noteworthy that the choice of α = 0.01 gives a
result closer to that of, say, the R = 4 experiment illustrated
in Fig. 8: there is a 77.5% agreement between the R = 4
experiment and (R = 6; α = 0.01) experiment whereas there
is a 74.2% agreement between the R = 4 and (R = 6; α = 1)
experiments. Furthermore, it can be seen from Table V that the
proportions of endmembers m2 and m4 become almost zeros.
Again, the Dirichlet prior has counterbalanced the redundancy
in the endmember selection somewhat (cf. Fig. 10) and has
also produced more concentrated endmember distributions.



VII. CONCLUSION

Our experiments with synthetic and real data indicated
that the proposed model outperforms Eches’ CLRSAM model
with respect to the accuracy of unmixing and classification
as well as computational time. In particular, when we set
the concentration parameter to a value below 1, the proposed
model showed some ability to perform sparse unmixing. Image
classification was jointly solved with hyperspectral unmixing
in this work. Therefore, the accuracy of image classification
depended on the accuracy of unmixing, and vice versa. In this
sense, the two tasks can be seen as mutually beneficial; this
arguably helps produce better results. Our work distinguishes
between two different classification rules in this paper, namely,
Rule A of stochastic abundance vectors in each class and
Rule B of common abundance vectors in each class. Since the
proposed model is built based on Rule B, we might be tempted
to conclude that the assumption of common abundance vector
in each class is more compatible with reality but follow-on
work is required to study this further. We have shown that
the proposed method offers stability to the assumed number
of endmembers. Furthermore, when the number of endmem-
bers is set too large, the Dirichlet concentration parameter
embedded in our model can help mitigate the endmember
redundancy.

Markov random fields (MRFs) have been widely used to
model spatial correlations between image pixels. However, as
demonstrated in this work, MCMC inference over MRFs tends
to suffer from the local-trap problem. This is because of, on
the one hand, the local nature of the inferential MCMC update
scheme and, on the other hand, the local spatial interactions
inherently defined by the Markov property on the lattice.
However, we have shown that simulated annealing, as well
as other advanced MCMC methods, can be used to alleviate
or overcome this problem.

Our future work will focus on improving the stability of
sparse unmixing with the proposed model. To construct a
fully-practicable sparse Bayesian method, one would need
to establish a means by which the Dirichlet concentration
parameter α can be set or tuned, either a priori or learned
from training data. Inspiration can be drawn here from works
such as [6] and [30] who have proposed ways to estimate
the number of endmembers a priori. In addition, we can
also exploit the spectral correlations together with spatial
correlations in hyperspectral images. This work could then
potentially benefit situations where there is a relatively large
total number of endmembers present in the image but where
the number of endmembers that participate in the formation
of a given pixel is relatively small. This could ultimately pave
the way to the construction of a sparse Bayesian approach
to unmixing using a spectral library rather than endmembers
extracted from the image itself.
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