
HAL Id: hal-01406544
https://hal.science/hal-01406544v1

Preprint submitted on 1 Dec 2016 (v1), last revised 9 Dec 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A semi-Lagrangian algorithm in policy space for hybrid
optimal control problems

Roberto Ferretti, Achille Sassi

To cite this version:
Roberto Ferretti, Achille Sassi. A semi-Lagrangian algorithm in policy space for hybrid optimal control
problems. 2016. �hal-01406544v1�

https://hal.science/hal-01406544v1
https://hal.archives-ouvertes.fr

A semi-Lagrangian algorithm in policy space

for hybrid optimal control problems

Roberto Ferretti ∗ Achille Sassi †

September 2, 2016

Abstract

The mathematical framework of hybrid system is a recent and general tool to treat
control systems involving control action of heterogeneous nature. In this paper, we
construct and test a semi-Lagrangian numerical scheme for solving the Dynamic Pro-
gramming equation of an infinite horizon optimal control problem for hybrid systems.
In order to speed up convergence, we also propose an acceleration technique based on
policy iteration. Finally, we validate the approach via some numerical tests in low
dimension.

Keywords: Hybrid control, Dynamic Programming, Semi-Lagrangian schemes, Policy
iteration

AMS Subject Classification 2010: 34A38, 49L20, 65B99, 65N06

1 Introduction

In the last two decades, the concept of hybrid control system has provided a sound math-
ematical framework for treating control systems in which continuous and discrete control
actions mix together, and this framework has also been successfully adapted to optimal
control problems. Among the various systems covered by this theory, we mention economic
models with restocking, multigear and hybrid vehicles, and, more in general, systems with
switchings in the dynamics and/or impulsive changes in the state. In this work, we study
efficient numerical methods for applying Dynamic Programming techniques to hybrid op-
timal control problems of infinite horizon type.

Among the various mathematical formulations of optimal control problems for hybrid
systems, we will adopt here the one given in [3, 5]. Let I = {1, . . . ,m}, and consider the

∗Dipartimento di Matematica e Fisica, Università Roma Tre, L.go S. Leonardo Murialdo, 1, 00146
Roma (Italy), e-mail: ferretti@mat.uniroma3.it
†Unité de Mathématiques Appliquées – ENSTA Paristech, 828 Boulevard des Maréchaux, 91120

Palaiseau (France), e-mail: ach.sassi@gmail.com

1

controlled system (X,Q) satisfying:
Ẋ(t) = f

(
X(t), Q(t), α(t)

)
t ∈ (0,∞)

X(0) = x

Q(0+) = q

(1.1)

where x ∈ Rd, and q ∈ I. Here, X and Q denote respectively the continuous and the
discrete component of the state. The function f : Rd × I × U → Rd is the continuous
dynamics, for a set of continuous controls given by:

U =
{
α : (0,∞)→ U | α measurable, U compact

}
.

The trajectory undergoes discrete transitions when it enters two predefined sets A (the
autonomous jump set) and C (the controlled jump set), both of them subsets of Rd × I.
More precisely:

• On hitting A, the trajectory jumps to a predefined destination set D ⊂ Rd × I. The
jump driven by a transition map g : Rd × I × V → D, where V is a discrete finite
control set. Denoting by τi a time at which the trajectory hits A, the new state will
be
(
X(τ+

i

)
, Q(τ+

i)
)

= g
(
X(τ−i), Q(τ−i), wi

)
, for a control wi ∈ V.

• Entering the set C, the controller can choose either to jump or not. If the con-
troller chooses to jump, then the continuous trajectory is moved to a new point in
D. Denoting by ξk one such time of jump, we will have

(
X(ξ−k), Q(ξ−k)

)
∈ C and

(x′, q′) =
(
X(ξ+

k), Q(ξ+
k)
)
∈ D.

The trajectory starting from x ∈ Rd with discrete state q ∈ I is therefore composed
of branches of continuous evolution given by (1.1) between two discrete jumps at the
transition times τi or ξk.

Now, considering an optimal control problem in the infinite horizon form, and including
all control actions in a control strategy

θ :=
(
α(·), {wi}i∈N,

{
(ξk, x

′
k, q
′
k)
}
k∈N

)
we associate to θ a cost defined by:

J(x, q; θ) :=

∫ +∞

0
`
(
X(t), Q(t), α(t)

)
e−λtdt

+
∞∑
i=0

cA
(
X(τ−i), Q(τ−i), wi

)
e−λτi

+
∞∑
k=0

cC
(
X(ξ−k), Q(ξ−k), X(ξ+

k), Q(ξ+
k)
)
e−λξk

(1.2)

where λ > 0 is the discount factor, ` : Rd×I×U → R+ is the running cost, cA : A×V → R+

is the autonomous transition cost and cC : C ×D → R+ is the controlled transition cost.
The value function V of the problem is then defined as:

V (x, q) := inf
θ
J(x, q; θ). (1.3)

2

We point out that, in this generality, the problem requires strong assumptions to be
mathematically well-posed. In particular, it should be ensured that the value function
(1.3) is continuous, and that the so-called “Zeno executions” (i.e., the occurrence of an
infinite number of transitions in a finite time interval) are avoided. We will give in the next
section a precise set of assumptions, whereas in the examples we will apply the numerical
technique under consideration in more general situations, showing that the recipe is robust
enough to handle them.

To the best of our knowledge, the first rigorous theoretical study of the convergence
of numerical schemes for the approximation of the value function of (1.1)–(1.2) has been
given in [7]. Here, solvability of the scheme by value iteration is proved, along with a
convergence result based on the Barles–Souganidis theorem [1]. In spite of its robustness,
however, value iteration is a relatively inefficient technique to compute the numerical so-
lution, and an acceleration strategy would be highly desirable.
From the very start of Dynamic Programming techniques [2, 8], policy iteration (PI) has
been recognized as a viable, usually faster alternative to value iteration in computing
the fixed point of the Bellman operator. Among the wide literature on policy iteration,
we quote here the pioneering theoretical analysis of Puterman and Brumelle [10], which
have shown that the linearization procedure underlying policy iteration is equivalent to a
Newton-type iterative solver. More recently, the abstract setting of [10] has been adapted
to computationally relevant cases [12], proving superlinear (and, in some cases, quadratic)
convergence of policy iteration. Moreover, we mention that an adaptation of policy itera-
tion to large sparse problems has been proposed as “modified policy iteration” (MPI) in
[11], and has also become a classical tool.

In the present paper, we intend to study the construction and numerical validation of
a SL scheme with PI/MPI sover for hybrid optimal control. To this end, we will recall
the general algorithm, sketch some implementation details for the simple case of one-
dimensional dynamics, and test the scheme on some numerical examples in dimension
d = 1, 2.

The outline of the paper is the following. In Section 2 we will review the main re-
sults about the Bellman equation characterizing the value function, and construct a semi-
Lagrangian (SL) approximation for V in the form of value iteration. In Section 3 we will
improve the algorithm by a policy iteration technique. Finally, section 4 will present some
numerical examples of approximation of the value function and construction of the optimal
control.

2 A Semi-Lagrangian scheme for hybrid control problems

First, we recall some basic analytical results about the value function (1.3). To this end,
we start by making a precise set of assumptions on the problem.

2.1 Basic assumptions and analytical framework

In the product space Rd × I, we consider sets (and in particular the sets A,C and D) of
the form

S = {(x, q) ∈ Rd × I : x ∈ Si, q = i}, (2.1)

in which Si represents the subset of S in which q = i. We assume that:

3

(A1) For each q ∈ I, Aq, Cq, and Dq are closed subsets of Rd, and Dq is bounded. ∂Aq
and ∂Cq are C2.

(A2) The function f is bounded. Moreover, it is Lipschitz continuous in the state variable
x and uniformly continuous in the control variable α.

(A3) The map g : A×V → D is bounded and uniformly Lipschitz continuous with respect
to x.

(A4) ∂A is a compact set, and for some γ > 0, the following transversality condition:

f(x, q, α) · ηx,q ≤ −2γ

holds for all x ∈ ∂Aq, and all α ∈ U , where ηx,q denotes the unit outward normal to
∂Aq at x. We also assume similar transversality conditions on ∂C.

(A5) We assume that, for all i ∈ I, d(Ai, Ci) ≥ β > 0 and d(Ai, Di) ≥ β > 0, where d is
the Euclidean distance.

(A6) The control set U is a compact metric space, and V is a finite discrete set.

(A7) ` : Rd × I × U is a bounded and non-negative function, Lipschitz continuous w.r.t.
the x variable, and uniformly continuous w.r.t. the α variable.

(A8) cA(x, q, w) and cC(x, q, x′, q′) are uniformly Lipschitz continuous in the variables x
and x′, and bounded with a strictly positive infimum. Moreover, for any x and q,
the function cC satisfies (for some ∆ ≥ 0) the inequality

cC(x, q, x′, q′) < cC(x, q, x̄, q̄) + cC(x̄, q̄, x′, q′)−∆

Via a suitable generalization of the Dynamic Programming Principle, it can be proved
that the Bellman equation of the problem is in the form of a Quasi-Variational Inequality,
and more precisely, once defined the Hamiltonian by

H(x, q, p) := sup
α∈U

{
− `(x, q, α)− f(x, q, α) · p

}
and the transition operators M and N by:

Mφ(x, q) := inf
w∈V

{
φ
(
g(x, q, w)

)
+ cA(x, q, w)

}
(x, q) ∈ A

Nφ(x, q) := inf
(x′,q′)∈D

{
φ(x′, q′) + cC(x, q, x′, q′)

}
(x, q) ∈ C

we have the following

Theorem 1 ([5]) Assume (A1)–(A8). Then, the function V is the unique bounded and
Hölder continuous viscosity solution of:
λV (x, q) +H

(
x, q,DxV (x, q)

)
= 0 (x, q) ∈ (Rd × I) \ (A ∪ C)

max
{
V (x, q)−NV (x, q), V (x, q) +H

(
x, q,DxV (x, q)

)}
= 0 (x, q) ∈ C

V (x, q)−MV (x, q) = 0 (x, q) ∈ A
(2.2)

Note that uniqueness follows from a strong comparison principle, which also allows
to use the Barles–Souganidis theorem [1] for proving convergence of stable and monotone
schemes.

4

2.2 Numerical approximation

In order to set up a numerical approximation for (2.2), we construct a discrete grid of
nodes (xj , q) in the state space and fix the discretization parameters ∆x and ∆t. In what
follows, we will denote the discretization steps in compact form by δ := (∆t,∆x) and the
approximate value function by Vδ.

Following [7], we write the fixed point form of the scheme at (xi, q) as

v
(q)
i = Vδ(xi, q) =

min

{
NVδ(xi, q),Σ(xi, q, Vδ)

}
(xi, q) ∈ C

MVδ(xi, q) (xi, q) ∈ A
Σ(xi, q, Vδ) else

(2.3)

in which N , M and Σ are consistent and monotone numerical approximations for re-
spectively the operators N , M and the Hamiltonian H. More compactly, (2.3) could be
written as

Vδ = Tδ(Vδ).

We recall that, for λ > 0, under the basic assumption which ensure continuity of the value
function, the right-hand side of (2.3) is a contraction [7] and can therefore be solved by
fixed-point iteration, also known as value iteration (VI):

Vδ,j+1 = Tδ(Vδ,j). (2.4)

To define more explicitly the scheme, as well as to extend the approximate value function
to all x ∈ Rd and q ∈ I, we use an interpolation I constructed on the node values, and
denote by I[Vδ](x, q) the interpolated value of Vδ computed at (x, q). With this notation,
a natural definition of the discrete jump operators M and N is given by

MVδ(x, q) := min
w∈V

{
I[Vδ]

(
g(x, q, w)

)
+ cA(x, q, w)

}
(2.5)

NVδ(x, q) := min
(x′,q′)∈D

{
I[Vδ](x

′, q′) + cC(x, q, x′, q′)
}

(2.6)

On the other hand, a standard semi-Lagrangian discretization of the Hamiltonian related
to continuous control is provided (see [6]) by

Σ(xi, q, Vδ) := min
α∈U

{
∆t `(xi, q, α) + e−λ∆t I[Vδ]

(
xi + ∆t f(xi, q, α), q

)}
. (2.7)

In the SL form, the value iteration (2.4) might then be recast at a node (xi, q) as

v
(q)
i,j+1 =

min
w∈V

{
I[Vδ,j]

(
g(xi, q, w)

)
+ cA(xi, q, w)

}
(xi, q) ∈ A

min
{

min
(x′,q′)∈D

{
I[Vδ,j](x

′, q′) + cC(xi, q, x
′, q′)

}
,Σ(xi, q, Vδ,j)

}
(xi, q) ∈ C

Σ(xi, q, Vδ,j) else

(2.8)
with Σ given by (2.7), and j denoting the iteration number.

Convergence of the scheme can be proved by using the arguments in [6, 7]) if the
interpolation I is monotone (e.g., a P1 or Q1 finite element interpolation):

Theorem 2 ([7]) Assume (A1)–(A8). Assume in addition that λ > 0, and that the
interpolation I is monotone and invariant for the sum of constants. Then, Vδ,j → Vδ for
j →∞. Moreover, the approximate solution Vδ converges to V locally uniformly in Rd× I
for ∆x,∆t→ 0.

5

3 Policy iteration algorithm

Following [13], we give now an even more explicit form of the scheme, which is the one
applied to the one-dimensional examples of Sec. 4. Once we set up a 1-D space grid of
evenly spaced nodes x1, . . . , xn with space step ∆x, the discrete solution may be given the
vector structure

v := (v(1),v(2), . . . ,v(m)) ∈ Rnm

in which v(q) := (v
(q)
1 , . . . , v

(q)
n) denotes the discretized value function associated to the

q-th component of the state space. Within the vector v, the element v
(k)
i appears with

the index (k − 1)n+ i.
Keeping the same notation for all vectors, α ∈ Unm will denote the vector of controls of

the system, α
(k)
i being the value of the control at the space node xi while the k-th dynamics

is active. We also define the vector s ∈ Inm representing the switching strategy, so that

s
(k)
i = l means that if the trajectory is in xi and the active dynamics is k, the system

commutes from k to l. Note that, in the numerical examples of Sec. 4, discontinuous
jumps will always appear only on the discrete component of the state space, so that, for
example, we have x′ = x and this data need not be kept in memory (we will use the term
switch to denote a state transition of this kind).

In the general case, we would also need to keep memory of the arrival point of the
jump and/or of the discrete control w in the case of an autonomous jump. In general,
the arrival point is not a grid point, so that we also need to perform an interpolation in
(2.5)–(2.6). Therefore, the details for the general case can be recovered by mixing the
basic arguments used in what follows.

The endpoint of this construction is to put the problem in the standard form used in
policy iteration,

min
(α,s)∈Unm×Inm

(
B(α, s)v − c(α, s)

)
= 0, (3.1)

with explicitly defined matrix B and vector c. Note that, in (3.1), we have made clear the
fact that a policy is composed of both a feedback control α and a switching strategy s.

Define now the matrices DA, DC ∈Mnm

(
{0, 1}

)
as permutations of the array v. These

matrices represent changes in the state due to the switching strategy: DA corresponds to
autonomous jumps and DC to controlled jumps. Note that, in our case, the elements of
DA and DC will be in {0, 1}, that there exists at most one nonzero element on each row,
and that the two matrices cannot have a nonzero element in the same position.
In order to determine the positions of the nonzero elements dAa,b(s) = 1 in the matrix
DA, we apply the following rule. For all (i, k) ∈ {1, . . . , n} × I, if the following conditions
hold:

(xi, k) ∈ A
s

(k)
i 6= k (a switch occurs)

(xi, s
(k)
i) ∈ g(xi, k,V) (the switch is in the image of g),

then, {
a = (k − 1)n+ i

b = (s
(k)
i − 1)n+ i.

Similarly, the nonzero elements of the matrix DC , dCa,b(s) = 1, follow a slightly less strict

6

rule. For all {1, . . . , n} × I, if the following conditions hold:{
(xi, k) ∈ C
s

(k)
i 6= k (a switch occurs),

then, {
a = (k − 1)n+ i

b = (s
(k)
i − 1)n+ i.

Last, we define the matrix
D(s) := DA(s) +DC(s),

which accounts for changes in the state related to the switching strategy, both autonomous
and controlled.

We turn now to the continuous control part. First, we write Σ in vector form as

Σ(x, k,v) = min
α(k)∈Un

{
∆t `(x, k,α(k)) + e−λ∆tE(x, k,α(k))v(k)

}
,

where the matrix E(x, k,α(k)) ∈Mn(R) is defined so as to have

E(x, k,α(k))v(k) = I[Vδ]
(
x+ ∆t f(x, k,α(k)), k

)
and I[Vδ]

(
x+∆tf(x, k,α(k)), k

)
and `(x, k,α(k)) denote vectors which collect respectively

all the values I[Vδ]
(
xi + ∆t f(xi, k, α

(k)
i), k

)
and `(xi, k, α

(k)
i).

At internal points, using a monotone P1 interpolation for the values of v results in a con-
vex combination of node values. On the boundary of the domain, the well-posedness of the

problem requires either to have an invariance condition (which implies that f(xi, k, α
(k)
i)

always points inwards) or to perform an autonomous jump or switch when the boundary
is reached. Therefore, we should not care about defining a space reconstruction outside
of the computational domain, although this could be accomplished by extrapolating the
internal values.

The matrix E(α, s) ∈Mnm(R) is then constructed in the block diagonal form:

E(α, s) :=

E(1)(α(1), s(1)) 0 · · · 0

0 E(2)(α(2), s(2))
. . .

...
...

. . .
. . . 0

0 · · · 0 E(m)(α(m), s(m))

Assuming for simplicity that we work at Courant numbers below the unity (although this
is not necessary for the stability of SL schemes), each block E(k)(α(k), s(k)) ∈ Mn(R) is

a sparse matrix with non-zero elements e
(k)
i,j determined so as to implement a P1 space

interpolation, in the following way: for every (i, k) ∈ {1, . . . , n} × I, define

hi,k :=
∆t

∆x
f(xi, k, α

(k)
i)

and

if

{
s

(k)
i = k

hi,k < 0
then

{
e

(k)
i,i−1(α, s) = 1 + hi,k

e
(k)
i,i (α, s) = −hi,k

7

else,

if

{
s

(k)
i = k

hi,k > 0
then

{
e

(k)
i,i (α, s) = 1− hi,k
e

(k)
i,i+1(α, s) = hi,k

Note that, if a switching strategy z ∈ Inm doesn’t perform any switch (i.e. z
(k)
i = k for all

(i, k) ∈ N × I), by definition of the matrix E(α, s) we would obtain, for all k ∈ I,

E(k)(α(k), z(k))v(k) = E(x, k,α(k))v(k),

whereas, in the general case, if a switch occurs at xi, then the corresponding element of
the matrix E(k) is zero. Finally, we define the vector c(α, s) ∈ Rnm with a block structure
of the form :

c(α, s) =
(
c(1)(α(1), s(1)), c(2)(α(2), s(2)), . . . , c(m)(α(m), s(m))

)
with c(k)(α(k), s(k)) ∈ Rn such that, for every (i, k) in {1, . . . , n} × I,

c
(k)
i (α

(k)
i , s

(k)
i) =

{
−∆t `(xi, k, α

(k)
i) s

(k)
i = k

−ξ(k, s(k)
i) s

(k)
i 6= k

where ξ(k, l) denotes the switching cost (cA or cC) from dynamics k to l.
With these notations, we can write the SL scheme (2.3) in vector form as

v = min
(α,s)∈Unm×Inm

{[
D(s) + e−λ∆tE(α, s)

]
v − c(α, s)

}
, (3.2)

or, defined the matrix

B(α, s) := −Inm +D(s) + e−λ∆tE(α, s),

as
min

(α,s)∈Unm×Inm

(
B(α, s)v − c(α, s)

)
= 0.

Once we have reformulated the Semi-Lagrangian scheme for the hybrid control problem in
the standard form, we can solve it using Algorithm 1. The only difference with a standard
PI algorithm is to include the switching strategy in the control policy.

We remark that some theoretical result obtained in the “classical” setting is also true
in the hybrid setting. In particular, convergence might still be obtained by monotonicity
(see, e.g., [6]) with minor changes in the proof, since the right-hand side of (2.8) is still in
the form of a minimum:

Theorem 3 Let v be the solution of (3.2), and vj be defined by Algorithm 1. If

min
α,s

(
B(α, s)v0 − c(α, s)

)
≤ 0,

then the sequence vj is monotone decreasing, and vj → v.

8

Algorithm 1 Policy Iteration, 1D matrix form

j ← 0
STOP ← FALSE
α0 ∈ Unm
s0 ∈ Inm
while STOP = FALSE do

if [stopping criterion satisfied] then
STOP ← TRUE

else
vj ← w solution of B(αj , sj)w = c(αj , sj) (Policy Evaluation)
(αj+1, sj+1)← arg min

(a,σ)∈Unm×Inm

(
B(a,σ)vj − c(a,σ)

)
(Policy Improvement)

j ← j + 1
end if

end while

3.1 Modified policy iteration

A different iterative solver for the numerical scheme has been first proposed and analysed in
[11], and is known as modified policy iteration. It consists in performing the minimization
in (2.8) only once every Nit iterations. In other terms, the policy evaluation step is
replaced by Nit iterations of linear advection (in which, however, the transport may occur
among different components of the state space). For Nit = 1 we obtain the value iteration,
whereas for Nit →∞ the transport steps converge to an exact policy evaluation, and the
algorithm coincides with the previous “exact” PI algorithm.

The pseudo-code in Algorithm 2 shows the MPI algorithm in one-dimensional matrix
form, for a comparison with the exact algorithm (Algorithm 1).

Algorithm 2 Modified Policy Iteration, 1D matrix form

j ← 0
STOP ← FALSE
α0 ∈ Unm
s0 ∈ Inm
while STOP = FALSE do

if [stopping criterion satisfied] then
STOP ← TRUE

else
if j = 0 (modNit) then

(αj+1, sj+1)← arg min
(a,σ)∈Unm×Inm

(
B(a,σ)vj − c(a,σ)

)
(Policy Improvement)

else
(αj+1, sj+1)← (αj , sj)

end if
vj+1 ←

[
D(sj+1) + e−λ∆tE(αj+1, sj+1)

]
vj − c(αj+1, sj+1) (Inexact Policy

Evaluation)
j ← j + 1

end if
end while

9

Note that, in the numerical test section, the MPI algorithm has been applied to the
two-dimensional examples. Although the formulation in dimension d = 2 could be ac-
complished by a suitable redefinition of the vectors and matrices, in practice the MPI
algorithm does not need such a formalism.

Concerning convergence, the hybrid case can again be treated with the same theoretical
tools of the original proof in [11], which relies on the monotonicity of the (discretized)
Bellman operator, as well as on giving an upper and a lower bound on the sequence vj
by means of two converging sequences (one of which generated by value iteration). More
precisely, the sequence considered in the convergence proof for the MPI is the sequence
of approximations obtained after each policy improvement. In our notation, this is the
subsequence vl corresponding to j = lNit + 1. We have therefore the following

Theorem 4 Let v be the solution of (3.2), and vj be defined by Algorithm 2. If

min
α,s

(
B(α, s)v0 − c(α, s)

)
≤ 0,

then, for any Nit ≥ 1, the subsequence vl obtained for j = lNit+1 is monotone decreasing,
and vl → v for l→∞.

4 Numerical tests

We give in this section some numerical examples in one and two space dimensions, compar-
ing the performances of Value and Policy Iteration – exact PI algorithm in one dimension,
and MPI in two dimensions. The comparison shows a substantial improvement in the
convergence of the solver for the exact PI algorithm, whereas the MPI performs roughly
the same number of iterations as the VI. Here, the bottleneck is apparently the contraction
coefficient of the Bellman operator. Nevertheless, the MPI allows to avoid the minimiza-
tion step in a large majority of the iterates, thus reducing the CPU time. Note that
in both two-dimensional examples the control appears only as a switching strategy, and
the complexity of policy evaluation steps is reduced by a factor 1/m. For more complex
control actions the improvement in computing time would be even greater.

4.1 Stabilization of an unstable system

We now apply this technique to a stabilization problem: we consider a system with two
dynamics: one “strong and expensive” and the other “weak and cheap”. Only the former
is able to keep the state of the system within the given set over time.

The state equation Ẋ(t) = f
(
X(t), Q(t), α(t)

)
is defined by

f(x, q, α) =

{
x+ d1α q = 1

x+ d2α q = 2

where d1 < d2 and −1 ≤ α(t) ≤ 1 for every t in [0,+∞). Switching is mandatory only
when the dynamics q = 1 is active and |X(t)| = 1, which implies that the state of the
system belongs to the interval [−1, 1] for all t in [0,+∞).

Here and in what follows, ci,j denotes a constant switching cost from q = i to q = j,
and the cost functional is defined as

`(x, q, α) =

{
x2 + c1α

2 q = 1

x2 + c2α
2 q = 2

10

d1 d2 c1,2 c2,1 c1 c2 λ tf

0.5 2 0.2 0 0.25 4 1 20

Table 1: Choice of parameters, weak-strong test

ε NV NP

10−3 456 8

10−6 1147 10

10−12 2786 12

Table 2: Number of iterations (VI and PI) for a given tolerance ε, weak-strong test

1 0.5 0 0.5 1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x

v(
x,

d)

q=1
q=2

0 5 10 15 20
1

0

1

t
X op

t(t)

0 5 10 15 20

1

2

t

Q
(t)

0 5 10 15 20
1

0

1

t

op
t(t)

Figure 1: Value function, trajectory and optimal control, weak-strong test

The values assigned to all the parameters are summed up in Table 1, whereas Table 2
reports the number of iterations required for given stopping tolerances. In the first three
examples, the stopping criterion reads

‖vj − vj−1‖∞ < ε.

Note that, according to Table 2, squaring the tolerance makes the number of iteration NP

of the PI algorithm increase linearly, which indicates roughly quadratic convergence, while
the number NV for VI has a geometric behaviour as expected.

Figure 1 shows the optimal strategy obtained for ∆t = 0.0067, ∆x = ∆t||f ||∞,(
X(0), Q(0)

)
= (0.5, 1), and t ∈ [0, tf]. This strategy consists in using the unstable

dynamics q = 1 as long as the state belongs to the interval [−x̄, x̄] (where the value of
x̄ ∈ [−1, 1] depends on the given data). On the other hand, as soon as |X(t)| > x̄, the
optimal choice is to switch from q = 1 to q = 2 in order to stabilize the system and force
it back towards the origin, then switch again to the first dynamics which can be used at
a lower cost.

11

m ρ1 ρ2 ρ3 r cd τ ν

140 [kg] 0.06 0.09 0.12 0.2 [m] 0.3 10 [Nm] 6 · 103 [min−1]

cα cx ci,j λ tf

1 0.5

{
0.1 i 6= j

0 i = j
1 10 [s]

Table 3: Choice of parameters, three-gear vehicle test

ε NV NP

10−3 337 6

10−6 586 6

10−12 1084 6

Table 4: Number of iterations (VI and PI) for a given tolerance ε, three-gear vehicle test.

4.2 Three-gear vehicle

In this test, we consider the optimal control of a vehicle equipped with a three-gear en-
gine, focusing on the acceleration strategy and the commutation between gears. Physical
parameters correspond to the italian scooter Piaggio Vespa 50 Special.

The state equation for the speed of the vehicle is defined, for each gear q ∈ {1, 2, 3},
by

f(x, q, α) :=
1

m

(
T (βqx)

rρq
α− cdx

2

)
where T (ω) := τ

(
ω
ν −

(
ω
ν

)3)
is the power band of the engine, τ and ν are respectively its

maximum torque and r.p.m., βq := 60
rπρq

is a conversion coefficient with

ρq :=
transmission shaft r.p.m.

crankshaft r.p.m.
,

r is the radius of the wheel and cd the drag coefficient. The control α(t) ∈ [0, 1] represents
the fraction of maximum torque used and the running cost is a linear combination of x
and α:

`(x, α) = −cxx+ cαα

cx and cα are positive weights. Last, we define ci,j as the switching cost from from q = i
to q = j.

The numerical results are obtained by assigning realistic values (Table 3) to the pa-
rameters defining the dynamics. The number of iterations is shown in Table 4 for various
tolerances. The constant number of iterations obtained by PI might be due to the fact
that optimal solutions (seem to) work with increasing values of q, this possibly meaning
some sort of “causality” in the propagation of the value function.

Figure 2 shows the power band corresponding to our choice of τ and ν. Figure 3 shows
the optimal solution obtained with ∆t = 0.027 [s], ∆x = ∆t||f ||∞, (x, q) = (0.28 [m/s], 1)
and t ∈ [0, tf]. The optimal strategy is to reach the highest gear as fast as possible and
then stabilize at a value α ≈ 0.5. A different scenario is shown in Fig. 4, in which we set
the initial state to (x, q) = (14.58 [m/s], 1). Here, the control lets the vehicle slow down,
then switches to the third gear in order to replicate the previous strategy.

12

0 1000 2000 3000 4000 5000 6000
0

1

2

3

4

5

6

7

8

9

10

11

ω [min
−1

]

T
(ω

)
[N

m
]

Figure 2: Power band of the engine.

0 5 10 15 20 25 30 35 40 45 50
25

20

15

10

5

0

x [km/h]

v(
x,

d)

q=1
q=2
q=3

0 2 4 6 8 100

20

40
52.6

t [s]

X op
t(t)

 [k
m

/h
]

0 2 4 6 8 10
1

2

3

t [s]

Q
(t)

0 2 4 6 8 10
0

0.5

1

t [s]

op
t(t)

Figure 3: Value functions, trajectory and optimal control, three-gear vehicle, first case.

0 5 10 15 20 25 30 35 40 45 50
25

20

15

10

5

0

x [km/h]

v(
x,

d)

q=1
q=2
q=3

0 2 4 6 8 100

20

40
52.6

t [s]

X op
t(t)

 [k
m

/h
]

0 2 4 6 8 10
1

2

3

t [s]

Q
(t)

0 2 4 6 8 10
0

0.5

1

t [s]

op
t(t)

Figure 4: Value functions, trajectory and optimal control, three-gear vehicle, second case.

13

4.3 Bang–Bang control of a chemotherapy model

In this test, we consider the control of a two-compartment model of tumor growth. For
this model, and cost functionals of the kind we will consider below, optimal controls are
known to be of bang–bang type (see [9]). In this case, we can recast the problem in hybrid
form, by considering an evolution in lack of chemotherapy (Q = 1):{

Ẋ1(t) = −a1X1(t) + 2a2X2(t)

Ẋ2(t) = a1X1(t)− a2X2(t)
(4.1)

and a different evolution at full-dose chemotherapy (Q = 2):{
Ẋ1(t) = −a1X1(t)

Ẋ2(t) = a1X1(t)− a2X2(t).
(4.2)

Here, the two compartments represent the number of cells at different stages of their lives,
and the chemotherapy acts by preventing the generation of new tumor cells in the first
compartment by inhibiting the mitosis of cells in the second compartment.

The cost functional is defined as

J(x, q; θ) =

∫ ∞
0

(
r1Ẋ1(t) + r2Ẋ2(t) +Q(t)− 1

)
e−λtdt, (4.3)

in which Ẋ1(t) and Ẋ2(t) are given by (4.1)–(4.2) for respectively Q(t) = 1 and Q(t) = 2,
and we have to minimize a combination between the growth of the tumor mass and the
toxic effect of the drug on healthy cells (note that this latter term appears only when
Q(t) = 2). Due to the geometric properties of the problem, Zeno executions cannot occur,
and we can avoid to introduce a switching cost, which would have no practical meaning.
Setting the switching cost to zero also causes the two value functions to coincide, i.e.,
V (x, 1) ≡ V (x, 2), and in this case a switch can occur at t = 0+. While the general theory
usually rules out this situation, no particular problems arise in this specific case.

The values of the parameters are assigned as in Table 5, according to the current
literature (see [9]). Figg. 5–7 show the value function(s) of the problem, the optimal
switching with respect to time and space and a sample trajectory starting from the initial
state (x1, x2) = (2, 1). The value function has been computed with a 100×100 grid on the
domain [0, 2]2, and ∆t = 0.1. Note that there exists a clear discontinuity for the gradient
of the value function, which corresponds to the switching curve in Fig. 7, which separates
the black region, in which the optimal solution is Q(t) = 1, from the white region, in
which the optimal solution is Q(t) = 2. The approximate optimal control shows a limit
cycle in which a quasi-periodic switching between the two dynamics takes place.

Table 6 compares the two (VI and MPI) numerical solvers. Here and in the following
test, the MPI algorithm has been implemented with Nit = 10, and an initial block of 10
value iterations has been performed at the very start in order to provide a better initial
guess. As remarked above, the Modified Policy Iteration algorithm performs essentially
the same number of iterations than the value iteration algorithm, but at a lower cost.

4.4 DC/AC inverter

The last test presents a single-phase DC/AC inverter, whose conceptual structure is
sketched in Fig. 8.

14

0

2

1

0.2 0.4 0.6 0.8
1.2 1.4 1.6 1.8 0

2

1

0.5

1.5

0

6

4

2

2

4

6

X

Y

Z

20 40 60 8010 30 50 70 90

2

1

0.6

0.8

1.2

1.4

1.6

1.8

2.2

2.4

Figure 5: Value function and optimal switching for the chemotherapy test.

0 10020 40 60 8010 30 50 70 90
0

2

1

0.2

0.4

0.6

0.8

1.2

1.4

1.6

1.8

0 10020 40 60 8010 30 50 70 90
0

1

0.2

0.4

0.6

0.8

0.1

0.3

0.5

0.7

0.9

1.1

Figure 6: Trajectories X1(t) and X2(t) for the chemotherapy test.

0 210.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8
0

2

1

0.2

0.4

0.6

0.8

1.2

1.4

1.6

1.8

Figure 7: Optimal switching map for the chemotherapy test.

15

a1 a2 r1 r2 λ x1 x2

0.197 0.356 6.94 3.94 0.1 2 1

Table 5: Choice of parameters, chemotherapy test

ε NV NP

10−3 192 192

10−6 528 526

Table 6: Number of iterations for a given tolerance ε, chemotherapy test.

Figure 8: Abstract structure of the single-phase DC/AC inverter.

In this device, a DC source generates an AC output by means of a suitable operation
of the switches S1, . . . , S4, as well as a suitable choice of the three components (R, L and
C) which appear in series in the RLC load. Following [4], we consider as state variables
X1 = iL (the current through the inductor L, i.e., through the load) and X2 = vC (the
voltage across the capacitor C), the state equations being

Ẋ1(t) =
VDC
L

(Q(t)− 2)− R

L
X1(t)− 1

L
X2(t)

Ẋ2(t) =
1

C
X1(t).

(4.4)

The physical meaning of the discrete state variable depends on the state of the switches
S1, . . . , S4, and more precisely

Q(t) =

1 if S1, S3 = OFF and S2, S4 = ON

2 if S1, S4 = OFF and S2, S3 = ON

3 if S2, S4 = OFF and S1, S3 = ON .

The cost functional is defined so as to force the system to evolve (approximately) along
an ellipse of the state space (see [4]), namely

x2
1

a2
+
x2

2

b2
= c,

in which the constants a and b are defined in terms of the physical parameters R, L, C
and of the desired pulsation ω. This makes it natural to define the running cost as

`(x, q, α) =

(
x2

1

a2
+
x2

2

b2
− c
)2

. (4.5)

16

VDC R L C ω c λ x1 x2

200 [V] 0.7 [Ω] 0.1 [H] 0.1 [F] 2π [s−1] 22500 1 0 200

Table 7: Choice of parameters, inverter

ε NV NP

10−3 469 469

10−6 13481 13491

Table 8: Number of iterations for a given tolerance ε, DC/AC inverter test.

With the parameters chosen (see Table 7), a ≈ 0.84, b ≈ 1.34 and the required output of
the system would be given by two sinusoids of amplitude respectively 126 A for X1 and 200
V for X2, both at the frequency of 1 Hz. The approximate solution has been computed
on a 100 × 100 grid on the domain [−250, 250]2, with ∆t = 0.01, and state constraint
boundary conditions have been treated by penalization, assigning a stopping cost of 5 ·108

on the boundary. The effect of the lack of full controllability is apparent in Fig. 9,
which shows one component of the value function (they are practically undistinguishable
from one another) and the optimal switching with respect to time. Fig. 10 shows the
output (X1(t), X2(t)) of the controlled system, whereas, as an example, Fig. 11 reports
the switching map of the second component of the state space. Here, the optimal solution
is to keep Q(t) = 2 in grey regions, commute to Q(t) = 1 in black regions and to Q(t) = 3
in white regions.

Finally, Table 8 compares the two numerical solvers (VI and MPI). In this last test,
the stopping condition has been computed on the relative l1 update,

‖vj − vj−1‖1
‖vj‖1

< ε,

to avoid problems with both high values of the solution and the occurrence of a disconti-
nuity caused by the lack of controllability.

Conclusions

We have constructed and validated a Semi-Lagrangian scheme for hybrid Dynamic Pro-
gramming problems in infinite horizon form. The numerical scheme has been made more
efficient by a Policy Iteration type solver. Numerical tests performed on examples of
varying complexity show that the scheme is robust and that the approximate optimal
control policy obtained is stable and accurate, although the complexity remains critical
with respect to the dimension of the state space.

This validation suggests that this could be a feasible method to design optimization-
based static controllers in low dimension.

References

[1] G. Barles, P.E. Souganidis, Convergence of approximation schemes for fully nonlinear
second-order equations, Asymptotic Analysis, 4 (1991), 271–283.

[2] R. Bellman, Dynamic Programming, Princeton University Press, Princeton NJ, 1957.

17

0

200

200

100

100

0

200

200

100

100

0e00

2e08

4e08

1e08

3e08

X

Y

Z

0 2 41 30.5 1.5 2.5 3.5

2

1

3

0.5

1.5

2.5

3.5

Figure 9: Value function and optimal switching for the DC/AC inverter.

0 2 41 30.5 1.5 2.5 3.5

0

100

100

150

50

50

150

0 2 41 30.5 1.5 2.5 3.5

0

200

200

100

100

250

150

50

50

150

250

Figure 10: Trajectories X1(t) and X2(t) for the DC/AC inverter.

0200 200100 100

0

200

200

100

100

150

50

50

150

Figure 11: Optimal switching map for q = 2 for the DC/AC inverter.

18

[3] M.S. Branicky, V. Borkar, S. Mitter, A unified framework for hybrid control problem,
IEEE Transactions on automated control 43 (1998), 31–45.

[4] J. Chai, R.G. Sanfelice, Hybrid feedback control methods for robust and global power
conversion, IFAC–PapersOnLine 48-27 (2015), 298–303.

[5] S. Dharmatti, M. Ramaswamy, Hybrid control system and viscosity solutions, SIAM
J. on Control and Optimization 34 (2005), 1259–1288.

[6] M. Falcone, R. Ferretti, Semi-Lagrangian approximation schemes for linear and
Hamilton–Jacobi equations, SIAM, Philadelphia, 2013.

[7] R. Ferretti, H. Zidani, Monotone numerical schemes and feedback construction for
hybrid control systems, J. of Optimization Theory and Applications 165 (2014), 507–
531.

[8] R.A. Howard, Dynamic Programming and Markov processes, MIT Press, Cambridge
MA, 1960.

[9] U. Ledzewicz, H. Schättler, Optimal bang–bang control for a two-compartment model
in cancer chemotherapy, J. of Optimization Theory and Applications 114 (2002),
609–637.

[10] M.L. Puterman and S.L. Brumelle, On the convergence of policy iteration in station-
ary dynamic programming, Mathematics of Operational Research 4 (1979), 60–69.

[11] M.L. Puterman and M.C. Shin, Modified policy iteration algorithms for discounted
Markov decision problems, Management Science 24 (1978), 1127–1137.

[12] M.S. Santos, J. Rust, Convergence properties of policy iteration, SIAM J. on Control
and Optimization 42 (2004), 2094–2115.

[13] A. Sassi, Tecniche di Programmazione Dinamica nell’ottimizzazione di sistemi di con-
trollo ibridi, MSc Thesis, Università Roma Tre, 2013.

19

