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Abstract. In this article we study the controllability properties of general

compactly perturbed exactly controlled linear systems with admissible control
operators. Firstly, we show that approximate and exact controllability are

equivalent properties for such systems. This unifies previous results available

in the literature and that were established separately so far. Then, and more
importantly, we provide for the perturbed system a complete characterization

of the set of reachable states in terms of the Fattorini-Hautus test. The results
rely on the Peetre lemma.

1. Introduction and main result. In this work we study the exact controlla-
bility property of general compactly perturbed controlled linear systems using a
compactness-uniqueness approach. This technique has been introduced for the very
first time in the pioneering work [16] to establish the exponential decay of the so-
lution to some hyperbolic equations. On the other hand, the first controllability
results using this method were obtained in [18] for a plate equation and then in [19]
for a wave equation perturbed by a bounded potential. Wether one wants to estab-
lish a stability result or a controllability result, one is lead in both cases to prove
estimates, energy estimates or observability inequalities. For a perturbed system,
a general procedure is to start by the known estimate satisfied by the unperturbed
system and to try to derive the desired estimate, up to some “lower order terms”
that we would like to remove. The compactness-uniqueness argument then reduces
the task of absorbing these additional terms to a unique continuation property for
the perturbed system. We should point out that, despite the numerous applica-
tions of this flexible method to successfully establish the controllability of systems
governed by partial differential equations (see e.g. [18, 19, 2, 11, 4, 8, 12], etc.), no
systematic treatment has been provided so far, by which we mean that there is no
abstract result available in the literature that covers all type of systems, regardless
the nature of the PDE we are considering (wave, plate, etc.). This will be the first
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point of the present paper to fill this gap (Theorem 1.1 below). Then, and more
importantly, we considerably improve this result by establishing an explicit charac-
terization of the set of reachable states (Theorem 1.2 below). This characterization
is given in terms of the Fattorini-Hautus test - a far weaker kind of unique continu-
ation property than the approximate controllability. Our result shows in particular
that this test is actually sufficient to ensure the exact controllability of the per-
turbed system (Corollary 1.3 below). We illustrate this result by answering to a
recent open problem introduced in [8] where the Fattorini-Hautus test plays a key
role (Proposition 3.1 below). The proofs of the main results of this article are based
on the Peetre Lemma, introduced in [15], which is in fact the root of compactness-
uniqueness methods. Finally, let us mention that in the work [8] the authors used a
compactness-uniqueness argument to establish the null-controllability of some heat
equation, which is a controllability property that does not enter in our framework.
Therefore, it would be very interesting to see if general results similar to the ones
of the present work hold as well for null-controllability property.

Let us now introduce some notations and recall some basic facts about the con-
trollability of abstract linear evolution equations. We refer to the excellent text-
book [17] for the proof of the statements below. Let H and U be two (real or
complex) Hilbert spaces, let A : D(A) ⊂ H −→ H be the generator of a C0-
semigroup (SA(t))t≥0 on H and let B ∈ L(U,D(A∗)′). For T ≥ 0 let ΦT ∈
L(L2(0,+∞;U), D(A∗)′) be the input map of (A,B), that is the linear operator
defined for every u ∈ L2(0,+∞;U) by

ΦTu =

∫ T

0

SA(T − s)Bu(s) ds.

We assume that B is admissible for A, which means that Im ΦT ⊂ H for some (and
hence all) T > 0. From this assumption it follows that ΦT ∈ L(L2(0,+∞;U), H).
Its adjoint Φ∗T ∈ L(H,L2(0,+∞;U)) is the unique continuous linear extension to
H of the map z ∈ D(A∗) 7→ B∗SA(T − ·)∗z ∈ L2(0,+∞;U), where B∗SA(T − ·)∗z
is extended by zero outside (0, T ) (in particular, Φ∗T z(t) = 0 for a.e. t > T ). Let us
now consider the abstract evolution system

d

dt
y = Ay +Bu, t ∈ (0, T ),

y(0) = y0,
(1)

where T > 0 is the time of control, y0 ∈ H is the initial data, y is the state and
u ∈ L2(0, T ;U) is the control. Since B is admissible for A, system (1) is well-
posed: for every y0 ∈ H and every u ∈ L2(0, T ;U), there exists a unique solution
y ∈ C0([0, T ];H) to system (1) given by the Duhamel formula

y(t) = SA(t)y0 + Φtu, ∀t ≥ 0.

The regularity of the solution allows us to consider control problems for the system
(1). We say that the system (1) or (A,B) is:

• exactly controllable in time T if, for every y0, y1 ∈ H, there exists u ∈
L2(0, T ;U) such that the corresponding solution y to the system (1) satis-
fies y(T ) = y1.

• approximately controllable in time T if, for every ε > 0 and every y0, y1 ∈ H,
there exists u ∈ L2(0, T ;U) such that the corresponding solution y to the
system (1) satisfies

∥∥y(T )− y1
∥∥
H
≤ ε.
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Clearly, exact controllability in time T implies approximate controllability in the
same time. The set Im ΦT (resp. Im ΦT ) is called the set of exactly (resp. approx-
imately) reachable states in time T . Therefore, (A,B) is exactly (resp. approxi-
mately) controllable in time T if, and only if, Im ΦT = H (resp. Im ΦT = H). It
is also well-known that the controllability has a dual concept named observability.
More precisely, (A,B) is exactly controllable in time T if, and only if, there exists
C > 0 such that

‖z‖2H ≤ C
∫ T

0

‖Φ∗T z(t)‖
2
U dt, ∀z ∈ H, (2)

and (A,B) is approximately controllable in time T if, and only if,(
Φ∗T z(t) = 0, a.e. t ∈ (0, T )

)
=⇒ z = 0, ∀z ∈ H. (3)

Let us now state the main results of this paper. The first one simply unifies
previous results available in the literature under a general semigroup setting:

Theorem 1.1. Let H and U be two (real or complex) Hilbert spaces. Let A0 :
D(A0) ⊂ H −→ H be the generator of a C0-semigroup on H and let us consider
B ∈ L(U,D(A∗0)′) an admissible control operator for A0. Let K ∈ L(H) and let us
form the unbounded operator AK = A0 + K with D(AK) = D(A0) 1. We assume
that:

(i) There exists T0 > 0 such that (A0, B) is exactly controllable in time T0.
(ii) K is compact.

(iii) (AK , B) is approximately controllable in time T0.

Then, (AK , B) is exactly controllable in time T0.

The second and most important result of the present paper shows that we can
even give a very precise characterization of the reachable states for the perturbed
system, if we allow the time of control to be slightly longer:

Theorem 1.2. Let H and U be complex Hilbert spaces and let A0, AK and B be
defined as in Theorem 1.1. For T > 0 let ΦT ∈ L(L2(0,+∞;U), H) be the input
map of (AK , B). Let σF be the set given by

σF = {λ ∈ C, ker(λ−A∗K) ∩ kerB∗ 6= {0}} ,

and for every λ ∈ C let Eλ be the subspace of H defined by

Eλ =

{
z ∈

+∞⋃
m=1

ker(λ−A∗K)m, B∗(λ−A∗K)mz = 0, ∀m ∈ N

}
.

Then, under the assumptions (i) and (ii) of Theorem 1.1, the set σF is finite, Eλ
is finite dimensional for every λ ∈ C, and we have

Im ΦT =

(⊕
λ∈σF

Eλ

)⊥
, ∀T > T0.

This second result shows in particular that the approximate controllability as-
sumption (iii) of Theorem 1.1 can be weakened to the Fattorini-Hautus test:

1 AK is then the generator of a C0-semigroup on H and B is also admissible for AK , see below.
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Corollary 1.3. Let H and U be complex Hilbert spaces and let A0, AK and B be
defined as in Theorem 1.1. Then, under the assumptions (i) and (ii) of Theorem
1.1, and if (AK , B) satisfies the Fattorini-Hautus test:

ker(λ−A∗K) ∩ kerB∗ = {0} , ∀λ ∈ C, (4)

then (AK , B) is exactly controllable in time T for every T > T0.

Remark 1.4. It follows from Corollary 1.3 that, if (A0, B) and (AK , B) are two
systems satisfying the Fattorini-Hautus test, and K is compact, then

inf {T > 0, (A0, B) is exactly controllable in time T}
= inf {T > 0, (AK , B) is exactly controllable in time T} .

In other words, both systems share the same minimal time of control.

Remark 1.5. In many applications the spaces H and U are real Hilbert spaces. To
apply Theorem 1.2 (and Corollary 1.3) in such a framework, we first introduce the

complexified spaces Ĥ = H + iH and Û = U + iU and we define the complexified
operators ÂK and B̂ by ÂK(y1 + iy2) = AKy1 + iAKy2 for y1, y2 ∈ D(AK) and

B̂(u1 + iu2) = Bu1 + iBu2 for u1, u2 ∈ U . Splitting the evolution system described

by (ÂK , B̂) into real and imaginary parts, we readily see that (ÂK , B̂) is (exactly
or approximately) controllable in time T if, and only if, so is (AK , B). Then, we

check the Fattorini-Hautus test for (ÂK , B̂). In the sequel we shall keep the same
notation to denote the operators and their extensions.

Corollary 1.3 shows that, in order to prove the exact controllability of a com-
pactly perturbed system which is known to be exactly controllable, it is (necessary
and) sufficient to only check the Fattorini-Hautus test (4). This result has been
established in a particular case in [4, Theorem 5] for a perturbed Euler-Bernoulli
equation with distributed controls. The Fattorini-Hautus test appears for the very
first time in [7, Corollary 3.3] and it is also sometimes misleadingly known as the
Hautus test in finite dimension, despite it has been introduced earlier by Fattorini,
moreover in a much larger setting. In a complete abstract control theory framework,
it is the sharpest sufficient condition one can hope for since it is always a necessary
condition for the exact, null or approximate controllability, to hold in some time.
This is easily seen through the dual characterizations (2) or (3) since SA(t)∗z = eλtz
for z ∈ ker(λ − A∗). It is also nowadays well-known that this condition character-
izes the approximate controllability of a large class of systems generated by analytic
semigroups (see [7, 1, 14]). Surprisingly enough, Corollary 1.3 shows that it may as
well characterize the exact controllability property for some systems. In practice,
the Fattorini-Hautus test can be checked by various techniques, such as Carleman
estimates for stationary systems (see e.g. [4, 1]) or through a spectral analysis when
this later technique is not available (see e.g. [14, 3, 5] or the example of Section 3
below).

Let us mention that it is not clear when the Fattorini-Hautus test (4) remains
sufficient to obtain the exact controllability of the perturbed system in time T0.
Therefore, both Theorem 1.1 and Corollary 1.3 are important. Obviously, Corollary
1.3 is a stronger result if we do not look for the best time. However, it may very
well happen that the conservation of the time T0 is required to apply some other
results, as for instance in [5] where the authors fundamentally need it to stabilize a
perturbed hyperbolic equation in finite time.
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Finally, let us point out that in this work we do not request any spectral proper-
ties whatsoever on the operators A0 or AK , contrary to the papers [10, 13] where the
existence of a Riesz basis of generalized eigenvectors or related spectral properties
are required.

The rest of this paper is organized as follows. In Section 2, we prove the main
results of this work. In Section 3, we show that our results can easily produce new
results for the controllability of PDEs. Finally, we have included in Appendix A a
proof of an estimate that is needed in the proof of our main results (especially for
unbounded admissible control operators).

2. Proofs of the results. The proofs of Theorem 1.1 and Theorem 1.2 both rely
on the Peetre Lemma (see [15, Lemma 3]):

Lemma 2.1. Let H1, H2, H3 be three Banach spaces. Let L ∈ L(H1, H2) and
P ∈ L(H1, H3) be two linear bounded operators. We assume that P is compact and
that there exists α > 0 such that

α ‖z‖H1
≤ ‖Lz‖H2

+ ‖Pz‖H3
, ∀z ∈ H1. (5)

Then, ImL is closed and kerL is finite dimensional.

Remark 2.2. If kerL = {0}, it is well-known (see e.g. [15, Lemma 4]) that the
conclusion of Lemma 2.1 implies that there exists β > 0 such that

β ‖z‖H1
≤ ‖Lz‖H2

, ∀z ∈ H1.

In other words, the compact term in (5) can be cancelled.

Let us denote by (SA0
(t))t≥0 (resp. (SAK

(t))t≥0) the C0-semigroup generated
by A0 (resp. AK). For T > 0 let ΨT ∈ L(L2(0,+∞;U), H) (resp. ΦT ∈
L(L2(0,+∞;U), H)) be the input map of (A0, B) (resp. (AK , B)). Assume now
that (A0, B) is exactly controllable in time T0. Then, for every T ≥ T0, there exists
C > 0 such that, for every z ∈ H,

‖z‖2H ≤ C
∫ T

0

‖Ψ∗T z(t)‖
2
U dt,

so that

‖z‖2H ≤ 2C

(∫ T

0

‖Φ∗T z(t)‖
2
U dt+

∫ T

0

‖Ψ∗T z(t)− Φ∗T z(t)‖
2
U dt

)
.

To prove that (AK , B) is exactly controllable in time T , we would like to get rid of
the last term in the right-hand side of the previous inequality. Therefore, we would
like to apply Lemma 2.1 to the operators L = Φ∗T and P = Ψ∗T − Φ∗T . Note that
both operators are bounded linear operators since B is admissible for both A0 and
AK (see below). To apply Lemma 2.1, we have to check that Ψ∗T −Φ∗T is compact.

Lemma 2.3. The operator Ψ∗T − Φ∗T ∈ L(H,L2(0,+∞;U)) is compact for every
T > 0.

For the proof of this lemma we need to recall the following estimate (see Appendix
A): there exists C > 0 such that, for every f ∈ C1([0, T ];H), we have∫ T

0

∥∥∥∥B∗ ∫ t

0

SA0
(t− s)∗f(s) ds

∥∥∥∥2

U

dt ≤ C ‖f‖2L2(0,T ;H) . (6)
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This estimate holds because B is admissible for A0 (for bounded operators B ∈
L(U,H) it is a straightforward consequence of the Cauchy-Schwarz inequality).
Using the dual characterization of admissibility (see (21) below) and combining
(6) with the identity (7) below we see that, if B is admissible for A0, then B is
admissible for AK as well.

Proof of Lemma 2.3. Let us first compute Ψ∗T − Φ∗T . To this end, we recall the
integral equation satisfied by semigroups of boundedly perturbed operators (see
e.g. [6, Corollary III.1.7]), valid for every z ∈ H and t ∈ [0, T ]:

SAK
(t)∗z = SA0(t)∗z +

∫ t

0

SA0(t− s)∗Fz(s) ds, (7)

where we introduced F ∈ L(H,L2(0, T ;H)) defined for every z ∈ H and every
s ∈ (0, T ) by

Fz(s) = K∗SAK
(s)∗z.

Note that Fz ∈ C1([0, T ];H) for z ∈ D(A∗K). Thus, we have
∫ t

0
SA0

(t−s)∗Fz(s) ds ∈
D(A∗0) for every t ∈ (0, T ) if z ∈ D(A∗K). This shows that each term in (7) actually
belongs to D(A∗0) if z ∈ D(A∗0) = D(A∗K). Therefore, we can apply B∗ to obtain
the following expression for Ψ∗T − Φ∗T :

(Ψ∗T − Φ∗T )z(t) = −B∗
∫ t

0

SA0(t− s)∗Fz(s) ds,

for every z ∈ D(A∗0) and a.e. t ∈ (0, T ). Using now (6) there exists C > 0 such that

‖(Ψ∗T − Φ∗T )z‖L2(0,T ;U) ≤ C ‖Fz‖L2(0,T ;H) ,

for every z ∈ D(A∗K), and thus for every z ∈ H by density. To conclude the proof it
only remains to show that F is compact. Since H is a Hilbert space, we will prove
that, if (zn)n ⊂ H is such that zn → 0 weakly in H as n → +∞, then Fzn → 0
strongly in L2(0, T ;H) as n→ +∞. Since zn → 0 weakly in H as n→ +∞, using
the strong (and therefore weak) continuity of semigroups on H, we obtain

SAK
(s)∗zn −−−−−→

n→+∞
0 weakly in H, ∀s ∈ [0, T ].

Since K∗ is compact, we obtain

K∗SAK
(s)∗zn −−−−−→

n→+∞
0 strongly in H, ∀s ∈ [0, T ].

On the other hand, by the classical semigroup estimate, (K∗SAK
(s)∗zn)n is clearly

uniformly bounded in H with respect to s and n. Therefore, the Lebesgue’s dom-
inated convergence theorem applies, so that Fzn → 0 strongly in L2(0, T ;H) as
n→ +∞. This shows that F is compact.

The proof of Theorem 1.1 is now a direct consequence of Lemma 2.1 and 2.3.

Proof of Theorem 1.1. The assumptions of Lemma 2.1 are satisfied for L = Φ∗T0

and P = Ψ∗T0
−Φ∗T0

. Therefore, Im ΦT0 is closed (we recall that Im ΦT0 is closed if,
and only if, so is Im Φ∗T0

) and it follows from the very definitions of the notions of
controllability that (AK , B) is then exactly controllable in time T0 if, and only if,
(AK , B) is approximately controllable in time T0.

Note that so far we have used only the first part of the conclusion of Lemma 2.1.
For the proof of Theorem 1.2 we need the following general result:
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Lemma 2.4. Let H and U be two complex Hilbert spaces. Let A : D(A) ⊂ H −→ H
be the generator of a C0-semigroup on H and let B ∈ L(U,D(A∗)′) be admissible
for A. For T > 0 let ΦT ∈ L(L2(0,+∞;U), H) be the input map of (A,B). Let σF
be the set given by

σF = {λ ∈ C, ker(λ−A∗) ∩ kerB∗ 6= {0}} ,
and for every λ ∈ C let Eλ be the subspace of H defined by

Eλ =

{
z ∈

+∞⋃
m=1

ker(λ−A∗)m, B∗(λ−A∗)mz = 0, ∀m ∈ N

}
.

Assume that there exists T0 > 0 such that

dim ker Φ∗T0
< +∞. (8)

Then, the set σF is finite, Eλ is finite dimensional for every λ ∈ C, and we have

ker Φ∗T =
⊕
λ∈σF

Eλ, ∀T > T0. (9)

Remark 2.5. From the proof of Lemma 2.4 below we easily see that the equality
(9) remains valid for T = T0 too if ker Φ∗T0

⊂ D(A∗) (in addition to (8)).

Remark 2.6. In the finite dimensional case H = Cn and U = Cm (n,m ∈ N∗) we
recover the well-known fact that Im ΦT = Im (B|AB| · · · |An−1B) for every T > 0.

Proof of Lemma 2.4. Let us first prove that, for every T > 0 and λ ∈ C, we have

ker Φ∗T ⊃ Eλ. (10)

Let then z ∈ Eλ. Thus, z ∈ D((A∗)∞) and there exists m ∈ N∗ such that

(λ−A∗)mz = 0, (11)

and

B∗(λ−A∗)rz = 0, ∀r ∈ {0, . . . ,m− 1} . (12)

Thanks to (11) we have, for every t ≥ 0,

SA(t)∗z = eλt
m−1∑
r=0

tr

r!
(A∗ − λ)rz.

Applying B∗ and using (12) we obtain that z ∈ ker Φ∗T . This establishes (10). Since
the sum

∑
λ∈σF

Eλ is clearly a direct sum, (10) implies that

ker Φ∗T ⊃
⊕
λ∈σF

Eλ, ∀T > 0. (13)

In particular, by (8) we obtain that σF is finite and that Eλ is finite dimensional
for every λ ∈ σF .

Let us now prove the reverse inclusion for T > T0. First note that

ker Φ∗T ⊂ ker Φ∗T ′ , ∀T ≥ T ′. (14)

From now on, T is fixed such that T > T0. Let ε ∈ (0, T − T0] so that T − ε ≥ T0

and thus, by (14) and (8),

dim ker Φ∗T−ε < +∞. (15)

The key point is to establish that

ker Φ∗T ⊂ D(A∗). (16)
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We follow the ideas of the proof of [4, Theorem 5]. Let z ∈ ker Φ∗T . We have to
show that, for any sequence tn > 0 with tn → 0 as n→ +∞, the sequence

un =
(SA(tn)∗z − z)

tn
converges in H as n → +∞. Let N ∈ N be large enough so that tn < ε for every
n ≥ N . Let us first show that

un ∈ ker Φ∗T−ε, ∀n ≥ N. (17)

To this end, observe that, for n ≥ N , we have∫ T−ε

0

∥∥Φ∗T−εSA(tn)∗z(t)
∥∥2

U
dt =

∫ T−tn

ε−tn
‖Φ∗T z(t)‖

2
U dt,

(this is true for z ∈ D(A∗) and thus for z ∈ H by density and continuity of Φ∗T for
T > 0). This shows that SA(tn)∗z ∈ ker Φ∗T−ε for n ≥ N since z ∈ ker Φ∗T . Thus,
we have (17).

Let now µ ∈ ρ(A∗) be fixed and let us introduce the following norm on ker Φ∗T−ε:

‖z‖−1 =
∥∥(µ−A∗)−1z

∥∥
H
.

Since (µ−A∗)−1z ∈ D(A∗), we have

(µ−A∗)−1un =
SA(tn)∗ − Id

tn
(µ−A∗)−1z −−−−−→

n→+∞
A∗(µ−A∗)−1z in H.

Therefore, (un)n≥N is a Cauchy sequence in ker Φ∗T−ε for the norm ‖·‖−1. Since
ker Φ∗T−ε is finite dimensional (see (15)), all the norms are equivalent on ker Φ∗T−ε.
Thus, (un)n≥N is then a Cauchy sequence for the usual norm ‖·‖H as well and, as
a result, converges for this norm. This shows that z ∈ D(A∗) and establishes (16).

Next, observe that
ker Φ∗T ⊂ kerB∗. (18)

Indeed, if z ∈ ker Φ∗T , then z ∈ D(A∗) as we have just seen, so that the map
t ∈ [0, T ] 7→ B∗SA(t)∗z ∈ U is continuous and we can take t = 0 in the definition
of ker Φ∗T to obtain that B∗z = 0.

Finally, let us prove that ker Φ∗T is stable by A∗. Let z ∈ ker Φ∗T , that is

Φ∗T z(t) = 0, a.e. t ∈ (0, T ).

Since z ∈ D(A∗) we can differentiate this identity to obtain (see e.g. [17, Proposition
4.3.4])

Φ∗TA
∗z(t) = 0, a.e. t ∈ (0, T ),

that is A∗z ∈ ker Φ∗T .
Consequently, the restriction M of A∗ to ker Φ∗T is a linear operator from the

finite dimensional space ker Φ∗T into itself. Assume that ker Φ∗T 6= {0} (otherwise
(9) is clear from (13)). Therefore, M is triangularizable in ker Φ∗T (here we use that
H is a complex Hilbert space). In other words, ker Φ∗T is the direct sum of the root
subspaces of M : for every λ ∈ σ (M), there exists m(λ) ∈ N∗ such that

ker Φ∗T =
⊕

λ∈σ(M)

ker (λ−M)
m(λ)

.

Finally, thanks to (18) we have σ (M) ⊂ σF and ker (λ−M)
m(λ) ⊂ Eλ for every

λ ∈ σ (M).

Let us now conclude this section with the proof of Theorem 1.2.
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Proof of Theorem 1.2. The assumptions of Lemma 2.1 are satisfied for L = Φ∗T and
P = Ψ∗T − Φ∗T for every T ≥ T0. Therefore, for every T ≥ T0, we have

(ker Φ∗T )
⊥

= Im ΦT , dim ker Φ∗T < +∞.
Applying now Lemma 2.4 we obtain the desired conclusion.

3. An example. Our results, especially Corollary 1.3, potentially have a lot of
applications. In this section we focus on a recent open problem introduced in [8,
Section 4].

Let Ω ⊂ RN (N ≥ 1) be an open bounded subset with boundary ∂Ω of class C2

and let ω ⊂ Ω be a non empty open subset. Let T > 0. We consider the following
wave equation with non local spatial term:

ytt −∆y =

∫
Ω

k2(ξ)y(t, ξ) dξ + 1ω(x)u(t, x) in (0, T )× Ω,

y = 0 on (0, T )× ∂Ω,

y(0) = y0
1 , yt(0) = y0

2 in Ω.

(19)

In (19), (y0
1 , y

0
2) is the initial data, y is the state and u is the control. 1ω denotes

the function that is equal to 1 in ω and 0 outside. The kernel k2 is assumed to
be in L2(Ω). Clearly, such kernels do not in general satisfy the strong analyticity
assumption (3) of [8].

Let us recast (19) as a first-order abstract evolution system (1). The state space
H and the control space U are

H =

H1
0 (Ω)

×

L2(Ω)

, U = L2(Ω).

The operator AK : D(AK) ⊂ H −→ H is

AK

y1

y2

 =

 y2

∆y1 +

∫
Ω

k2(ξ)y1(ξ) dξ

 , D(AK) =

H2(Ω) ∩H1
0 (Ω)

×

H1
0 (Ω)

,

and the control operator B : U −→ H is

Bu =

 0

1ωu

 .

Clearly, AK splits up into AK = A0 +K, where A0 : D(A0) ⊂ H −→ H is given by

A0

y1

y2

 =

 y2

∆y1

 , D(A0) = D(AK),

and K : H −→ H is given by

K

y1

y2

 =

 0∫
Ω

k2(ξ)y1(ξ) dξ

 .
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It is well-known that A0 is the generator of a C0-group on H. On the other hand,
by the compact embedding H1

0 (Ω) ↪→ L2(Ω), it is clear that K is compact. Finally,
observe that B is bounded and thus admissible. Therefore, the assumptions (i) and
(ii) of Theorem 1.1 are satisfied.

There is a little subtlety though. Indeed, as usual, we identify L2(Ω) with its
adjoint. Therefore, we cannot identify H with its adjoint as well. The results of this
paper still remain valid in such a framework but we need to distinguish between H
and its dual H ′:

H ′ =

L2(Ω)

×

H−1(Ω)

,

equipped with the duality product〈z1

z2

 ,

y1

y2

〉
H′,H

= 〈z1, y2〉L2(Ω) − 〈z2, y1〉H−1(Ω),H1
0 (Ω),

for (z1, z2) ∈ H ′ and (y1, y2) ∈ H. Then, we can check that

A∗K

z1

z2

 =

 −z2

−∆z1 − k2

∫
Ω

z1(ξ) dξ

 , D(A∗K) =

H1
0 (Ω)

×

L2(Ω)

,

(where 〈∆z, y〉H−1(Ω),H1
0 (Ω) = −〈∇z,∇y〉L2(Ω) for z, y ∈ H1

0 (Ω)) and

B∗

z1

z2

 = 1ωz1.

We can now state the following simple (but new) consequence of Corollary 1.3:

Proposition 3.1. Assume that the wave equation (A0, B) is exactly controllable in
time T0 > 0. If k2 6≡ 0 in ω, then (19) is exactly controllable in time T for every
T > T0.

Proof. As mentioned before, to apply Corollary 1.3 we only have to check the
Fattorini-Hautus test (4) corresponding to (19). Let then λ ∈ C and z1 ∈ H1

0 (Ω),
z2 ∈ L2(Ω), be such that

−z2 = λz1 in L2(Ω),

−∆z1 − k2

∫
Ω

z1(ξ) dξ = λz2 in H−1(Ω),

1ωz1 = 0 in L2(Ω),

(20)

and let us show that this implies that (z1, z2) = 0 in H ′. Plugging the first equation
into the second one gives

−∆z1 − k2

∫
Ω

z1(ξ) dξ = −λ2z1 in H−1(Ω).

Using the third condition of (20) we obtain that

k2

∫
Ω

z1(ξ) dξ = 0 in H−1(ω).
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The assumption k2 6≡ 0 in ω then implies that the constant
∫

Ω
z1(ξ) dξ is equal to

zero. Coming back to (20) we see that z1 ∈ H1
0 (Ω) satisfies −∆z1 = µz1 in H−1(Ω),

1ωz1 = 0 in L2(Ω),

with µ = −λ2. As it is well-known, this implies that z1 = 0 in Ω. Coming back to
the first equation of (20) we obtain that z2 = 0 in Ω as well.

Appendix A. Proof of the estimate (6). This appendix is devoted to a proof
of the estimate (6) that is used in the proof of Lemma 2.3. It is largely inspired by
[9, Proposition 3.3].

Let us recall our framework. H and U are two Hilbert spaces. A : D(A) ⊂ H −→
H is the generator of a C0-semigroup (SA(t))t≥0 on H and B ∈ L(U,D(A∗)′) is
admissible for A. Let us recall the following dual characterization of admissibility:
B is admissible for A if, and only if, for some (and hence all) T > 0, there exists
β > 0 such that∫ T

0

‖B∗SA(T − t)∗z‖2U dt ≤ β ‖z‖2H , ∀z ∈ D(A∗). (21)

Let us now introduce for n ∈ N large enough (n > ω0, where ω0 ∈ R is the growth
bound of A) the Yosida-like approximations Cn ∈ L(H,U) defined by

Cnz = nB∗(n−A∗)−1z, ∀z ∈ H.
Let us recall that (see e.g. [6, Lemma II.3.4])

n(n−A∗)−1z −−−−−→
n→+∞

z in H, ∀z ∈ H. (22)

This implies in particular that

Cnz −−−−−→
n→+∞

B∗z in U, ∀z ∈ D(A∗), (23)

since for every z ∈ D(A∗) we have

‖Cnz −B∗z‖U
≤ ‖B∗‖L(D(A∗),U)

(∥∥n(n−A∗)−1A∗z −A∗z
∥∥
H

+
∥∥n(n−A∗)−1z − z

∥∥
H

)
.

For f ∈ L2(0, T ;H), let us denote by S∗A ∗ f ∈ L2(0, T ;H) the function defined for
every t ∈ (0, T ) by

(S∗A ∗ f)(t) =

∫ t

0

SA(t− s)∗f(s) ds.

Using the Cauchy-Schwarz inequality we have∫ T

0

‖Cn(S∗A ∗ f)(t)‖2U dt ≤ T
∫ T

0

∫ t

0

∥∥B∗SA(t− s)∗n(n−A∗)−1f(s)
∥∥2

U
ds dt.

Using Fubini’s theorem we obtain∫ T

0

‖Cn(S∗A ∗ f)(t)‖2U dt ≤ T
∫ T

0

∫ T

0

∥∥B∗SA(t)∗n(n−A∗)−1f(s)
∥∥2

U
dt ds.

Using now the admissibility of B (see (21)) this gives∫ T

0

‖Cn(S∗A ∗ f)(t)‖2U dt ≤ Tβ
∫ T

0

∥∥n(n−A∗)−1f(s)
∥∥2

H
dt. (24)
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Let us now remark that S∗A ∗ f ∈ L2(0, T ;D(A∗)) for f ∈ C1([0, T ];H). Using then
(23) and (22) (and the uniform boundedness principle), we see that the Lebesgue’s
dominated convergence theorem applies and that we can pass to the limit n→ +∞
in (24) to finally obtain the desired estimate.
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