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SOBOLEV ALGEBRAS THROUGH A “CARRÉ DU CHAMP”

IDENTITY

FRÉDÉRIC BERNICOT AND DOROTHEE FREY

Abstract. We consider abstract Sobolev spaces of Bessel-type associated with
an operator. In this work, we pursue the study of algebra properties of such
functional spaces through the corresponding semigroup. As a follow-up of [4], we
show that under the extra property of a “carré du champ identity”, this algebra
property holds in a wider range than previously shown.

1. Introduction

1.1. Setting. Let (M, d) be a locally compact separable metric space, equipped
with a Borel measure µ, finite on compact sets and strictly positive on any non-
empty open set. For Ω a measurable subset of M , we shall denote µ (Ω) by |Ω|.
For all x ∈ M and all r > 0, denote by B(x, r) the open ball for the metric d with
centre x and radius r, and by V (x, r) its measure |B(x, r)|. For a ball B of radius
r and a real λ > 0, denote by λB the ball concentric with B and with radius λr.
We shall sometimes denote by r(B) the radius of a ball B. We will use u . v to
say that there exists a constant C (independent of the important parameters) such
that u ≤ Cv, and u ≃ v to say that u . v and v . u. Moreover, for Ω ⊂ M a
subset of finite and non-vanishing measure and f ∈ L1

loc(M,µ), −
∫

Ω
f dµ = 1

|Ω|
∫

f dµ

denotes the average of f on Ω.
From now on, we assume that (M, d, µ) is a doubling metric measure space, which

means that the measure µ satisfies the doubling property, that is

(VD) V (x, 2r) . V (x, r), ∀ x ∈ M, r > 0.

As a consequence, there exists ν > 0 such that

(VDν) V (x, r) .
(r

s

)ν

V (x, s), ∀ r ≥ s > 0, x ∈ M.

We then consider an unbounded operator L on L2(M,µ) as well as an ’abstract’
notion of gradient operator Γ under the following assumptions:

Assumptions on L and Γ. • Assume that L is an injective, ω-accretive op-

erator with dense domain D ⊂ L2(M,µ), where 0 ≤ ω < π/2. Assume

that there exists a bilinear operator Γ, with domain F2 for some subset F of

L2(M,µ), with D ⊂ F .

• For every f ∈ F , we set Γ(f) := |Γ(f, f)|1/2 and assume that Γ satisfies the

inequality

(1.1) |Γ(f, g)| ≤ Γ(f)Γ(g), ∀f, g,∈ F .
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Moreover, assume that

(R2) ‖Γf‖2 . ‖L1/2f‖2, ∀f ∈ D.

• Assume that the semigroup (e−tL)t>0 admits a kernel representation with a

kernel pt satisfying the upper Gaussian pointwise estimates

(UE) |pt(x, y)| .
1

V (x,
√
t)

exp

(

−d2(x, y)

Ct

)

, ∀ t > 0, a.e. x, y ∈ M.

• Assume that the semigroup (e−tL)t>0 and its gradient satisfy L2 Davies-

Gaffney estimates, which means that for every r > 0 and all balls B1,B2

of radius r

(DG) ‖e−r2L‖L2(B1)→L2(B2) + ‖rΓe−r2L‖L2(B1)→L2(B2) . e−c
d2(B1,B2)

r2 .

By our assumptions, (e−tL)t>0 is bounded analytic on Lp(M,µ) for p ∈ (1,∞)
and uniformly bounded on Lp(M,µ) for p ∈ [1,∞], see [5, Corollary 1.5]. Note that
(DG) for the semigroup is a consequence of (UE). By analyticity of the semigroup,
the property (UE), and thus also (DG), extends to the collections ((tL)ne−tL)t>0

for every integer n ≥ 0. The operator Γ is a sublinear operator, acting like the
length of the gradient on a Riemannian manifold.

We also assume that Γ and L are related by a weak version of a “carré du champ
identity”:

Carré du champ identity. Assume that Γ and L satisfy the following: for every

t > 0 and all functions f, g ∈ L∞(M,µ) ∩ D
(1.2) e−tLL(fg) = e−tL

[

Lf · g
]

+ e−tL
[

f · Lg
]

− 2e−tLΓ(f, g).

This equality can be viewed in L2
loc(M,µ), since for functions f, g chosen as above,

we know that Γ(f, g) ∈ L1(M,µ) and so the LHS and RHS are both locally in

L2(M,µ) due to (UE).

Remark 1.1. • Note that the full carré du champ identity, which is

(1.3) L(fg) = Lf · g + f · Lg − 2Γ(f, g),

is stronger than the previous assumption. It is not clear on which set of

functions such an identity may be assumed.

• Let us emphasise that the proofs developed in the next sections do not really

require the exact identity (1.2). It would be sufficient to only assume the

following inequality: for every t > 0 and all functions f, g ∈ L∞(M,µ) ∩ D
(1.4)

∣

∣e−tLL(fg)−
(

e−tL
[

Lf · g
]

+ e−tL
[

f · Lg
])∣

∣ .
∣

∣e−tLΓ(f, g)
∣

∣ .

We will assume the above throughout the paper. We abbreviate the setting with
(M,µ,Γ, L).

1.2. The algebra property. Following up on [4], we aim to prove that the (Bessel-
type) Sobolev spaces satisfy an algebra property under our assumptions. Such
property is very well understood in the Euclidean space and goes back to initial
works by Strichartz [13], Kato and Ponce [9], and then Coifman and Meyer [6, 11]
using the paraproduct decomopsition. We refer the reader to [4] and references
therein for a more complete review of the literature on this topic. This algebra
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property and the corresponding Leibniz rule is crucial in order to study nonlinear
PDEs.

In this current work, we are going to describe how the “carré du champ” property
allows us to improve the main results of [4]. Indeed, the carré du champ identity
combined with (1.1) encodes a kind of algebra property at the order of regularity
1, since the operator Γ (resp. L) is implicitly an operator of order 1 (resp. 2).

Let us first give a rigorous sense to what we mean by the Algebra property for
Sobolev spaces. We follow the approach of [4]. Denote by C0(M) the space of
continuous functions on M which vanish at infinity, and C := C0(M) ∩ F . We

define L̇p
α(M,L, µ) ∩ L∞(M,µ) as the completion of

{

f ∈ C, Lα/2f ∈ Lp(M,µ)
}

with respect to the norm
∥

∥Lα/2f
∥

∥

p
+ ‖f‖∞. We denote in the sequel ‖Lα/2f‖p by

‖f‖p,α.
Let us recall our definition of the algebra property A(p, α) from [4, Definition

1.1].

Definition 1.2. For α > 0 and p ∈ (1,∞) we say that property A(p, α) holds if:

• the space L̇p
α(M,L, µ) ∩ L∞(M,µ) is an algebra for the pointwise product;

• and the Leibniz rule inequality is valid:

‖fg‖p,α . ‖f‖p,α‖g‖∞ + ‖f‖∞‖g‖p,α, ∀ f, g ∈ L̇p
α(M,L, µ) ∩ L∞(M,µ).

1.3. Main result. For p ∈ [1,∞], we say that the semigroup satisfies gradient
bounds (Gp) if

(Gp) sup
t>0

‖
√
tΓe−tL‖p→p < ∞.

Let us observe that by (R2) and (UE), it is classical that our previous assumptions
already imply (Gp) for p ∈ (1, 2].

Our main result reads as follows:

Theorem 1.3. Let (M,µ,Γ, L) as in Subsection 1.1 with a homogeneous dimension

ν > 2. Assume in addition (Gp0) for some p0 ∈ [2, ν). Then A(p, α) holds for every
p ∈ (1, p0) with α ∈ (0, 1), and for every p ∈ (p0,∞) with 0 < α < p0

p
.

The condition p0 < ν is not relevant and not used, but for p0 > ν the result was
already obtained in [4] in a more general framework. That is why we restrict our
attention here to the range 2 ≤ p0 < ν.

We use a slightly different decomposition of the product than in [4]. Indeed in
[4], the product of two functions was decomposed into two paraproducts. Here,
we decompose it into three terms (two paraproducts and a ’resonant part’). The
two paraproducts are completely uncritical, whereas the third one carries the most
subtle information encoded in the resonances. The carré du champ identity now
allows us to handle this third part in a better way. This allows to improve over [4]
in the case p > 2.

Proof. The theorem will be proved in the following sections. The proof goes through
the use of Stein’s complex interpolation between the two endpoints (α, p) = (1, p0)
and (α, p) = (0,∞).
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The case p ∈ (1, p0) is obtained as the combination of the paraproduct decomposi-
tions (3.1) and (3.2) with the boundedness results of Propositions 3.2, 3.7 and 3.8.
The case p ∈ [p0,∞) is shown by combining the paraproduct decompositions (3.1)
and (3.2) with the boundedness results of Propositions 3.2 and 3.9. �

1.4. Comparison to previous results and examples. Let us compare this re-
sult with what we have previously obtained in [4, Theorem 1.5]. First, let us
mention that even if [4] was written in the setting of a Dirichlet form (which is a
particular case of our current setting here), all of the results in [4] can be described
in our present setting, without assuming the ’carré du champ’ identity, with iden-
tical proofs. The extra main property used in [4] (instead of (1.2)) is the following
inequality

(1.5)

∣

∣

∣

∣

∫

Lf · g dµ
∣

∣

∣

∣

.

∫

Γf · Γg dµ

for all functions f, g ∈ F .

Let us now compare our result with the one of [4]:

• The two approaches rely on the same framework given by a ’gradient’ oper-
ator Γ satisfying a Leibniz rule and a semigroup (e−tL)t>0. The main differ-
ence is that [4] requires (1.5), whereas here we assume (1.2) or in fact the
weaker version (1.4). We first observe that in the case of a self-adjoint and
conservative operator L, then by integrating (1.4) implies exactly (1.5). So
our current assumption is stronger than the one used in [4] and corresponds
to a pointwise version; it is therefore natural that we are able to obtain a
wider range of exponents. To be more precise, for p > p0 we improve the
range α ∈ (0, 1− ν( 1

p0
− 1

p
)) (obtained in [4]) to α ∈ (0, p0

p
).

• Moreover, we only detail the proofs of [4] and of the current work in the
setting where the semigroup is supposed to satisfy (UE), which corresponds
to pointwise (or L1-L∞) local estimates. However, it is by now well-known
that all the employed arguments can be extended to a more general frame-
work where the semigroup is only assumed to have local Lp−-Lp+ estimates
for some p− < 2 < p+. In such a situation the condition on the exponents
α, p such that A(α, p) can be proved will depend on p−, p+. A careful ex-
amination reveals the following difference: in [4], we make appear only one
Γ operator, evaluated on a product and then use a Leibniz property. In the
current work, the “carré du champ” identity (1.2) makes appear the product
of two Γ operators. So combining the Γ operator (on which we assume Lp−-
Lp0 local estimates through (Gp0)) and the local Lp−-Lp+ estimates on the
semigroup will then lead to more restrictions in the current setting than in
[4]. Thus also from this point of view it is natural that we can obtain a wider
range for the Sobolev algebra property, because of our stronger assumption.

As a conclusion of the comparison: our previous work [4] and this current one
are both interesting in themselves and each of them brings results in its proper
framework. If one can fit into the current framework, then it is better to follow the
current approach, where we develop a simpler proof for the range (1, p0] and a wider
range for p > p0 by taking advantage of the carré du champ identity. However [4]
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explains how we can still prove the Algebra property in a more general setting, yet
with a smaller range.

Let us now describe some examples where the extra assumption in terms of ’carré
du champ’ identity is satisfied:

• The Dirichlet form setting (as detailed in [4]) with a carré du champ. In
such a case, the carré du champ operator Γ satisfies the ’strong’ (pointwise)
identity (1.3), as well as (1.1).

• In the Euclidean setting M = Rn (or more generally in a doubling Riemann-
ian manifold), consider A = A(x) a complex matrix - valued function with
bounded measurable coefficients, satisfying the ellipticity (or accretivity)
condition

(1.6) λ|ξ|2 ≤ ℜ〈A(x)ξ, ξ〉 and |〈A(x)ξ, ζ〉| ≤ Λ|ξ||ζ |,
for some constants λ,Λ > 0 and every x ∈ Rn, ξ, ζ ∈ Rn.

For such a complex matrix-valued function A, we may define a second
order divergence form operator

L = LAf := −div(A∇f),

which we first interpret in the sense of maximal accretive operators via
a sesquilinear form. That is, D(L) is the largest subspace contained in
W 1,2 := D(∇) for which

∣

∣

∣

∣

∫

M

〈A∇f,∇g〉 dµ
∣

∣

∣

∣

≤ C‖g‖2 ∀g ∈ W 1,2,

and we define Lf by

〈Lf, g〉 =
∫

M

〈A∇f,∇g〉 dµ

for f ∈ D(L) and g ∈ W 1,2. Thus defined, L = LA is a maximal-accretive
operator on L2 and D(L) is dense in W 1,2.

For such an operator we have the pointwise carré du champ identity (1.3)
with the operator

Γ(f, g) := ℜ〈A∇f,∇g〉.
The ellipticity condition then implies (1.1).

• In the case of a non-selfadjoint operator L, we can also consider the following
example: in the Euclidean space, associated with a rather singular function
a, consider the operator L(f) = −∆(af). It is non-selfadjoint and non
conservative, but some of arguments of [4] or those developed here can be
used, if we can prove (UE) and (DG). We refer the reader to [10] (extended
to a doubling setting in [7]), where it is proven that if the measurable function
a has an accretive real part, then the semigroup e−tL∗

satisfies (UE) and by
duality it is also true for e−tL. Combining this with Riesz transform estimates
in L2 also gives L2 Davies-Gaffney estimates (DG) for the operator L.
For such an operator, it is interesting to observe that assumption (1.5) (used
for [4]) relies on a Lipschitz condition on a although the assumption (1.4)
(used here) will require a C2-condition on a.
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2. Technical preliminaries

Let us give some notation and a few reminders about certain operators con-
structed from the functional calculus of L. We refer to [4] for more details. We
first define approximation operators, which are the elementary objects to build a
paraproduct associated with a semigroup.

Definition 2.1. Let N ∈ N, N > 0, and set cN =
∫ +∞
0

sNe−s ds
s
. For t > 0, define

(2.1) Q
(N)
t := c−1

N (tL)Ne−tL

and

(2.2) P
(N)
t := φN(tL),

with φN(x) := c−1
N

∫ +∞
x

sNe−s ds
s
, x ≥ 0.

Let us define some suitable sets of test functions. Let us recall that C := C0(M)∩
F .

Definition 2.2. For p ∈ (1,+∞), we define the set of test functions

Sp = Sp(M,L) := {f ∈ C ∩ Lp : ∃ g, h ∈ L2 ∩ Lp, f = Lg and h = Lf},
and

S = ∪p∈(1,+∞)Sp.

We recall from [4, Proposition 2.13] that (UE) implies square function estimates

for Q
(N)
t in Lp.

Lemma 2.3. Let p ∈ (1,∞), N ∈ N, N > 0, and α > 0. Under (UE), one has
∥

∥

∥

∥

∥

(
∫ ∞

0

|(tL)αP (N)
t f |2 dt

t

)1/2
∥

∥

∥

∥

∥

p

. ‖f‖p

for all f ∈ Lp(M,µ).

A direct consequence of the above is the following orthogonality lemma. See [4,
Lemma 2.15] for a slightly less general version.

Lemma 2.4. Let p ∈ (1,∞), N ∈ N, N > 0, and α > 0. Assume (UE). Then
∥

∥

∥

∥

∫ +∞

0

(tL)αP
(N)
t Ft

dt

t

∥

∥

∥

∥

p

.

∥

∥

∥

∥

∥

(
∫ +∞

0

|Ft|2
dt

t

)1/2
∥

∥

∥

∥

∥

p

,

where Ft(x) := F (t, x), F : (0,+∞) ×M → R is a measurable function such that

the RHS has a meaning and is finite.

Under the additional assumption (Gp0) for some p0 > 2, one also has square
function estimates involving Γ.

Lemma 2.5. Let N ∈ N, N > 0, and α ∈ (0, 1). Assume (Gp0) for some p0 ∈
(2,∞).Then for every p ∈ (1, p0),

∥

∥

∥

∥

∥

(
∫ ∞

0

|
√
tΓ(tL)−α/2P

(N)
t f |2 dt

t

)1/2
∥

∥

∥

∥

∥

p

. ‖f‖p

for all f ∈ Lp(M,µ).
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Proof. The proof of [4, Proposition 2.14] has to be adapted as follows. By writing

P
(N)
t f =

∫ ∞

t

Q(N)
s f

ds

s
,

one has the pointwise estimate

|
√
tΓ(tL)−α/2P

(N)
t f | ≤

∫ ∞

t

(

t

s

)
1−α
2

|
√
sΓ(sL)−α/2Q(N)

s f | ds
s
.

Since α ∈ (0, 1), Hardy’s inequality yields
(
∫ ∞

0

|
√
tΓ(tL)−α/2P

(N)
t f |2 dt

t

)1/2

.

(
∫ ∞

0

|
√
tΓ(tL)−α/2Q

(N)
t f |2 dt

t

)1/2

.

Having this pointwise inequality, one can proceed as before in [4, Proposition 2.14].
�

3. Main result

From now on, fix D ∈ N in the definition of Q
(D)
t and P

(D)
t sufficiently large

(D > 4ν will suffice), and write Qt := Q
(D)
t and Pt := P

(D)
t .

We define paraproducts associated with the underlying operator L. Note how-
ever that the definitions differ from those in [4].

For g ∈ L∞(M,µ), we define the paraproduct Πg on S by

Π(D)
g (f) = Πg(f) :=

∫ ∞

0

Pt(Qtf · Ptg)
dt

t
, f ∈ S.

For every p ∈ (1,∞) and every f ∈ Sp, the integral is absolutely convergent in
Lp(M,µ). We refer the reader to [4, Section 3] for the details, noting that (Pt)t>0

is bounded uniformly in Lp(M,µ).

We define the resonant term Π on S by

Π(D)(f, g) = Π(f, g) :=

∫ ∞

0

Qt(Ptf · Ptg)
dt

t
, f, g ∈ S.

We discuss the question of absolute convergence of the integral in Π(f, g) after
Proposition 3.2.

Lemma 3.1 (Product decomposition). For every p ∈ (1,∞) and every f, g ∈ Sp,

we have the product decomposition

(3.1) fg = Π(f, g) + Πg(f) + Πf (g) in Lp(M,µ).

Proof. Since Sp ⊆ L∞(M,µ), we have f · g, Ptf · Ptg ∈ Lp(M,µ). We recall from
[4, Proposition 2.11, Lemma 3.1] that in the Lp sense, f · g = limt→0 Ptf · Ptg and
0 = limt→∞ Ptf · Ptg, where the latter makes use of our assumption N(L) = {0}.
The same arguments then also imply that

f · g = lim
t→0

Pt(Ptf · Ptg),

0 = lim
t→∞

Pt(Ptf · Ptg)
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in the Lp sense. Since Pt and Qt are defined such that Qt = −t∂tPt, we obtain

fg = lim
t→0

Pt(Ptf · Ptg)− lim
t→∞

Pt(Ptf · Ptg) = −
∫ ∞

0

∂t(Pt(Ptf · Ptg)) dt

=

∫ ∞

0

Qt(Ptf · Ptg)
dt

t
+

∫ ∞

0

Pt(Qtf · Ptg)
dt

t
+

∫ ∞

0

Pt(Ptf ·Qtg)
dt

t
,

which is the stated decomposition. �

The critical term in the product decomposition is the resonant term Π(f, g). We
have shown already in [4, Proposition 3.3] that the paraproduct Πg(f) is bounded

in L̇p
α for all α ∈ (0, 1), without other assumption than (UE). Let us mention that

the result remains true for α ≥ 1.

Proposition 3.2. Let p ∈ (1,∞), α ∈ (0, 1) and g ∈ L∞(M,µ). Then Πg is

well-defined on Sp with for every f ∈ Sp

‖Πg(f)‖p,α . ‖f‖p,α‖g‖∞.

Let us now have a look at the resonant term Π(f, g). We use the assumed carré

du champ identity (1.2) to write, with Q̃t := (tL)−1Qt,

Π(f, g) =

∫ ∞

0

(tL)−1QttL(Ptf · Ptg)
dt

t

=

∫ ∞

0

Q̃t(tLPtf · Ptg)
dt

t
+

∫ ∞

0

Q̃t(Ptf · tLPtg)
dt

t

− 2

∫ ∞

0

Q̃tΓ
(
√
tPtf,

√
tPtg

) dt

t
.(3.2)

For the first term one can use the same arguments as for Πg(f) to show that
for p ∈ (1,∞), g ∈ L∞(M,µ) and f ∈ Sp, the integral converges absolutely in
Lp(M,µ). By interchanging the roles of f and g, the same holds true for the sec-

ond term. In the third term, for every 0 < ε < R < ∞, the finite integral
∫ R

ε
is

well-defined. The results of Proposition 3.5 and Proposition 3.8 below in particular
imply that the integral converges absolutely in Lp(M,µ).

Instead of showing the boundedness of Π(f, g) in L̇p
α directly, we first show its

boundedness in Lq(M,µ) for large q < ∞, and then interpolate with L̇p0
1 , where p0

is chosen such that (Gp0) holds.

With the same arguments as in the proof of Proposition 3.2, one immediately
obtains the Lp boundedness of the first term in (3.2). See the proof of [4, Proposition
3.3].

Lemma 3.3. Assume (UE). Let p ∈ (1,∞). Then for every f ∈ Lp(M,µ) and

every g ∈ L∞(M,µ), we have
∥

∥

∥

∥

∫ ∞

0

Q̃t(tLPtf · Ptg)
dt

t

∥

∥

∥

∥

p

. ‖f‖p‖g‖∞.

For the second term, we obviously obtain the symmetric result in f and g. But
it is also possible to interchange the roles of f and g.
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Lemma 3.4. Assume (UE). Let p ∈ (1,∞). Then for every g ∈ Lp(M,µ) and

every f ∈ L∞(M,µ), we have

∥

∥

∥

∥

∫ ∞

0

Q̃t(tLPtf · Ptg)
dt

t

∥

∥

∥

∥

p

. ‖f‖∞‖g‖p.

A result of this kind was already proven in [8, Theorem 4.2]. For convenience of
the reader we give a (different) proof here.

Proof. By Lemma 2.4 applied to Tt = Q̃t and [4, Theorem 2.17], we have for every
q ∈ (p,∞) - with the notation as in [4] -

∥

∥

∥

∥

∫ ∞

0

Q̃t(tLPtf · Ptg)
dt

t

∥

∥

∥

∥

p

.

∥

∥

∥

∥

∥

(
∫ ∞

0

|tLPtf · Ptg|2
dt

t

)1/2
∥

∥

∥

∥

∥

p

. ‖N∗(Ptg)‖p‖Cq(tLPtf)‖∞.

We let the reader check that a simple adaptation of [4, Lemma 4.4 (a)] yields
‖N∗(Ptg)‖p . ‖g‖p. Similarly, one can modify the proof of [4, Lemma 4.4 (b)] for
the second estimate. To do so, note that by our assumptions,

∥

∥

∥

∥

∥

(
∫ ∞

0

|tLPtf |2
dt

t

)1/2
∥

∥

∥

∥

∥

q

. ‖f‖q,

and that (tLPt)t>0 satisfies Lq off-diagonal estimates of any order. Using this, one
obtains ‖Cq(tLPtf)‖∞ . ‖f‖∞. �

In order to treat the third term in (3.2), we define the operator ΠΓ on S by

ΠΓ(f, g) :=

∫ ∞

0

Q̃tΓ
(
√
tPtf,

√
tPtg

) dt

t
, f, g ∈ S.

Proposition 3.5. Assume (UE). Let p ∈ (2,∞), and let g ∈ L∞(M,µ). Then

ΠΓ( . , g) is well-defined on Lp(M,µ) with for every f ∈ Lp(M,µ)

‖ΠΓ(f, g)‖p . ‖f‖p‖g‖∞.

Proof. We can write Q̃t = (tL)−1Q
(D)
t = [c−1

D (tL)D−1e−t/2L]e−t/2L =: ˜̃QtP
(1)
t/2 . By

Lemma 2.4 with Tt =
˜̃Qt in the first step, Minkowski’s inequality in the second,

(UE) and (1.1) in the third, and the Cauchy-Schwarz inequality in the last step,
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we obtain

‖ΠΓ(f, g)‖p .
∥

∥

∥

∥

∥

(
∫ ∞

0

∣

∣

∣
P

(1)
t/2Γ

(
√
tPtf,

√
tPtg

)

∣

∣

∣

2 dt

t

)1/2
∥

∥

∥

∥

∥

p

.

∞
∑

j=0

∥

∥

∥

∥

∥

x 7→
(
∫ ∞

0

∣

∣

∣
P

(1)
t/21Sj(B(x,

√
t))Γ
(
√
tPtf,

√
tPtg

)

∣

∣

∣

2 dt

t

)1/2
∥

∥

∥

∥

∥

p

.

∞
∑

j=0

2−2jN2jν

∥

∥

∥

∥

∥

∥

x 7→
(

∫ ∞

0

(

−
∫

B(x,2j
√
t)

|
√
tΓPtf | · |

√
tΓPtg| dµ

)2
dt

t

)1/2
∥

∥

∥

∥

∥

∥

p

.

∞
∑

j=0

2−2jN2jν

∥

∥

∥

∥

∥

x 7→
(
∫ ∞

0

(

−
∫

B(x,2j
√
t)

|
√
tΓPtf |2 dµ

)(

−
∫

B(x,2j
√
t)

|
√
tΓPtg|2 dµ

)

dt

t

)1/2
∥

∥

∥

∥

∥

p

.

(3.3)

For all j ≥ 0 and x ∈ M , L2 off-diagonal estimates for (
√
tΓPt)t>0 (see (DG)) yield

(

−
∫

B(x,2j
√
t)

|
√
tΓPtg|2 dµ

)1/2

≤
∞
∑

k=0

(

−
∫

B(x,2j
√
t)

|
√
tΓPt(1Sk(B(x,2j

√
t))g)|2 dµ

)1/2

.

(

−
∫

B(x,2j
√
t)

|g|2 dµ
)1/2

+
∞
∑

k=1

(

1 +
(2j+k

√
t)2

t

)−N

2kν/2
(

−
∫

B(x,2j+k
√
t)

|g|2 dµ
)1/2

. ‖g‖∞.(3.4)

Using this estimate in (3.3), we get

‖ΠΓ(f, g)‖p . ‖g‖∞
∞
∑

j=0

2−2jN2jν

∥

∥

∥

∥

∥

x 7→
(
∫ ∞

0

−
∫

B(x,2j
√
t)

|
√
tΓPtf |2 dµ

dt

t

)1/2
∥

∥

∥

∥

∥

p

= ‖g‖∞
∞
∑

j=0

2−2jN2jν‖
√
tΓPtf‖T p,2

2j
(M),

where T p,2
2j

(M) denotes the tent space with angle 2j and appropriate elliptic scal-

ing. By change of angle in tent spaces [2, Theorem 1.1], ‖
√
tΓPtf‖T p,2

2j
(M) .

2jν/2‖
√
tΓPtf‖T p,2(M) for all p ≥ 2. On the other hand, it is known from e.g. [3,

Theorem 3.1] (which extends to our setting) that
√
tΓPt satisfies a conical square

function estimate for p ≥ 2. Thus, we finally obtain

‖ΠΓ(f, g)‖p . ‖g‖∞
∞
∑

j=0

2−2jN2jν2jν/2‖
√
tΓPtf‖T p,2(M) . ‖f‖p‖g‖∞.

�

Putting Lemma 3.3, Lemma 3.4 and Proposition 3.5 together, we obtain

Corollary 3.6. Assume (UE). Let p ∈ (2,∞), and let g ∈ L∞(M,µ). Then

Π( . , g) is well-defined on Lp(M,µ) with for every f ∈ Lp(M,µ)

‖Π(f, g)‖p . ‖f‖p‖g‖∞.
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The above result provides us with the required result at one of the endpoints in
the interpolation. Let us now have a look at the other endpoint.

One of the terms in (3.2) can be estimated in L̇p
α without further assumptions.

The proof is the same as the one for Proposition 3.2.

Proposition 3.7. Assume (UE). Let p ∈ (1,∞), α ∈ (0, 1) and g ∈ L∞(M,µ).
Then the integral on the left-hand side is well-defined on Sp with for every f ∈ Sp

∥

∥

∥

∥

∫ ∞

0

Q̃t(tLPtf · Ptg)
dt

t

∥

∥

∥

∥

p,α

. ‖f‖p,α‖g‖∞.

The result for the resonant term can be obtained similarly to the one in Propo-
sition 3.5, but requires the additional assumption of gradient bounds on the semi-
group.

Proposition 3.8. Assume (UE) and (Gp0) for some p0 ∈ [2,∞). Let p ∈ (1, p0),
α ∈ (0, 1) and g ∈ L∞(M,µ). Then the integral on the left-hand side is well-defined

on Sp with for every f ∈ Sp

‖ΠΓ(f, g)‖p,α =

∥

∥

∥

∥

∫ ∞

0

Q̃t(
√
tΓPtf ·

√
tΓPtg)

dt

t

∥

∥

∥

∥

p,α

. ‖f‖p,α‖g‖∞.

Proof. The proof is similar to the one of Proposition 3.5. We first use that by

choosing D in the definition of Qt = Q
(D)
t large enough, the operator (tL)α/2Qt

satisfies L2 off-diagonal estimates of order N = N(D,α) > ν. This allows to follow
the steps in (3.3) and (3.4). We obtain
∥

∥

∥

∥

Lα/2

∫ ∞

0

Qt(
√
tΓPtf ·

√
tΓPtg)

dt

t

∥

∥

∥

∥

p

=

∥

∥

∥

∥

(tL)α/2
∫ ∞

0

Qt(t
−α/2

√
tΓPtf ·

√
tΓPtg)

dt

t

∥

∥

∥

∥

p

.

∞
∑

j=0

2−2jN2jν

∥

∥

∥

∥

∥

x 7→
(
∫ ∞

0

(

−
∫

B(x,2j
√
t)

|t−α/2
√
tΓPtf |2 dµ

)(

−
∫

B(x,2j
√
t)

|
√
tΓPtg|2 dµ

)

dt

t

)1/2
∥

∥

∥

∥

∥

p

. ‖g‖∞
∞
∑

j=0

2−2jN2jν
∥

∥

∥

√
tΓ(tL)−α/2Pt(L

α/2f)
∥

∥

∥

T p,2

2j
(M)

. ‖g‖∞‖
√
tΓ(tL)−α/2Pt(L

α/2f)‖T p,2(M),

where the last line follows from change of angle in tent spaces [2, Theorem 1.1].
If p ≥ 2, the above conical square function estimate is dominated by its vertical
counterpart [3, Proposition 2.1, Remark 2.2]. Invoking Lemma 2.5 for p ∈ [2, p0),
we therefore have that the above is bounded by

‖g‖∞‖
√
tΓ(tL)−α/2Pt(L

α/2f)‖Lp(M ;L2(R+; dt
t
)) . ‖g‖∞‖Lα/2f‖p.

If p ∈ (1, 2), we use [1, Proposition 6.8] (adapted to our current setting under
(UE) and (R2)), to have the Lp-boundedness of the conical square function and we
conclude to the same estimate. �
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Stein’s complex interpolation between the estimates in Proposition 3.5 and Propo-
sition 3.8 on the endpoints (α, p) = (0,∞) and (α, p) = (1, p0) then yields

Proposition 3.9. Assume (UE) and (Gp0) for some p0 ∈ [2,∞). Let p ∈ (p0,∞),

α ∈ (0, p0
p
) and g ∈ L∞(M,µ). Then for every f ∈ L̇p

α(M), we have

‖ΠΓ(f, g)‖p,α . ‖f‖p,α‖g‖∞.

Proof. We apply Stein’s complex interpolation [12]. Let p1 ∈ (p0,∞), and β ∈
(0, 1). Fix g ∈ L∞(M,µ). Define for z ∈ C the operator

T z
g := Lz/2ΠΓ(L

−z/2 . , g).

Recall that under (UE), imaginary powers of L are bounded in Lp for all p ∈ (1,∞)
(see [4, Proposition 2.1]), with bound

‖Liη‖p→p . (1 + |η|)s,
whenever s > ν

2
and η ∈ R. From Proposition 3.5, we know that T 0

g = ΠΓ( . , g) is
a bounded operator in Lp1 . We thus obtain

sup
γ∈R

(1 + |γ|)−s‖T iγ
g ‖p1→p1 ≤ C0,

with s > ν
2
. On the other hand, Proposition 3.8 yields that T 0

g = ΠΓ( . , g) is

bounded on L̇p
β. Hence,

sup
γ∈R

(1 + |γ|)−s‖T β+iγ
g ‖p0→p0 ≤ C1

β.

Stein’s interpolation [12, Theorem 1] then yields that the operator

Lα/2ΠΓ(L
−α/2 . , g) : Lp → Lp

is bounded whenever α = θβ and 1
p
= θ

p0
+ 1−θ

p1
. Taking the limit for β → 1 and

p1 → ∞ yields the result.
�
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