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ON THE PERSISTENCE OF HOLDER REGULAR PATCHES OF
DENSITY FOR THE INHOMOGENEOUS NAVIER-STOKES EQUATIONS

RAPHAEL DANCHIN AND XIN ZHANG

ABSTRACT. In our recent work dedicated to the Boussinesq equations [14], we established
the persistence of solutions with piecewise constant temperature along interfaces with Holder
regularity. We here address the same problem for the inhomogeneous Navier-Stokes equa-
tions satisfied by a viscous incompressible and inhomogeneous fluid. We establish that,
indeed, in the slightly inhomogeneous case, patches of densities with C** regularity propa-
gate for all time.

As in [14], our result follows from the conservation of Holder regularity along vector fields
moving with the flow. The proof of that latter result is based on commutator estimates
involving para-vector fields, and multiplier spaces. The overall analysis is more complicated
than in [14] however, since the coupling between the mass and velocity equations in the
inhomogeneous Navier-Stokes equations is quasilinear while it is linear for the Boussinesq
equations.

INTRODUCTION

We are concerned with the following inhomogeneous incompressible Navier-Stokes equa-
tions in the whole space RN with N > 2:
Op+u-Vp=0,
p(Ou+u - Vu) — pAu+ VP =0,
divu = 0,
(p;u)lt=0 = (po, uo).
Above, the unknowns (p,u, P) € Ry x RY x R stand for the density, velocity vector field
and pressure, respectively, and the so-called viscosity coefficient p is a positive constant.

(INS)

There is an important literature dedicated to the mathematical analysis of System (INS).
The global existence of finite energy weak solutions with no vacuum (i.e. p > 0) has been
established in the seventies (see the monograph [3] and the references therein), then extended
by SIMON in [23] in the vacuum case. Similar results have been obtained shortly after by
L1ONS in the more general case where the viscosity is density-dependent (see [21]).

Among the numerous open questions raised by LIONS in [21], the so-called density patch
problem is a particularly challenging one. The question is whether, assuming that pg = 1p,
for some domain Dy of R? and that V/Poug is in L?(R?), it is true that we have

(0.1) p(t)=1p, forall t>0

for some domain D; with the same reqularity as the initial one. Although the renormalized
solutions theory of D1 PERNA and LiONs [15] for transport equations ensures that we do
have (0.1) with D, being the image of Dy by the volume preserving (generalized) flow of u,
the weak solution framework does not give much information on the regularity of the patch
D; for positive times.

The present paper aims at making one more step toward solving LIONS’ question, by
considering the case where

(0.2) po = mlp, + n2lpg,

Key words and phrases. Inhomogeneous Navier-Stokes equations; C*° density patch; Striated regularity.
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2 RAPHAEL DANCHIN AND XIN ZHANG

for some simply connected bounded domain Dy of class C¢, and positive constants 7; and
12 close to one another.

That issue has been considered recently in [19, 20] by LIAO AND ZHANG in the 2-D
case (see also [18] for the 3-D case), first assuming that |7, — 72| is small then in the more
challenging case where 11 and 72 are any positive real numbers. Under suitable striated-type
regularity assumptions for the initial velocity, the authors proved the all-time persistence of
high Sobolev regularity of patches of density.

Before giving more insight into our main results, let us briefly recall how LIAO AND
ZHANG’S proof goes. As in the pioneering work by CHEMIN [7] dedicated to the vortex
patches problem for the 2-D incompressible Euler equations, the regularity of the interfaces
is described by means of one (or several) tangent vector fields that evolve according to the
flow of the velocity field. More precisely, let us assume that the boundary 9Dy of the initial
patch Dy is the level set f;'({0}) of some function f : R? — R that does not degenerate
in a neighborhood of dDy. Then the vector field Xy := V1 f; is tangent to 9Dy. Now, if we
denote by 1 the flow associated to the velocity field u, that is the solution to the (integrated)
ordinary differential equation

(0.3) Y(t,x) =x+ /0 u(T,i/J(T,x)) dr,

then the boundary of D; := (¢, Dy) coincides with ft_l({()}) where f; := fpo ¢t_1 and
Yy = (t,-), and we have

(04) p(ta ) = 771]]"Dt + 772]]"1),?'

Note that the tangent vector field X; := V', coincides with the evolution of the initial
vector field X along the flow of u, that is' :

(05) X(ta ) = (aquzZ)) o ¢;1’
and thus satisfies, at least formally, the transport equation

X +u-VX = 0xu,
X|t=0 = Xo.

Consequently, the problem of persistence of regularity for the patch reduces to that of the
vector field X solution to (0.6). In their outstanding work, LIAO AND ZHANG justified that
heuristics in the case of high Sobolev regularity, first if ; and 7 are close to one another
[19], and next assuming only that n; and 72 are positive [20]. More precisely, the function
fo is assumed to be in W*P(R?) for some integer number k > 3 and real number p in ]2, 4],
and the initial velocity field ug, to satisfy the following striated regularity property along the
vector field X := V= fo:

(0.6)

(%(Ouo € H*% forall (e {0,--- ,k} and for some 0<e<s<1.
Note however that the minimal regularity requirement in [19, 20] is that f is in W?3? for
some p €]2,4f[. In terms of Holder inequality, this means (using Sobolev embedding), that
the boundary of the patch must be at least in C*¢ for some ¢ > 0.

In order to propagate lower order Holder regularity, one may take advantage of the recent
results by HUANG, PAICU AND ZHANG in [16] (see also [13]). Indeed, there, for small enough
§ > 0, the authors construct global unique solutions with flow in C'® whenever the initial

density is close enough (for the L> norm) to some positive constant, and ug is in the Besov
-1

-8 -1 Nis
space B RM)N By (R™) (see the definition below in (1.3)). This clearly allows to
propagate C1¢ interfaces, but only for € < 6, because the maximal value of ¢ is limited by the

Ior any vector field Y = Y*(z)8), and function f in C*(R™;R), we denote by dy f the directional derivative
of f along Y, that is, with the Einstein summation convention, dy f := Y*0yf =Y - Vf.
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global regularity assumption on ug although LIAO AND ZHANG’s results mentioned above (as
well as those of CHEMIN [7] in the context of Euler equations) suggest that only tangential
regularity is needed to propagate the regularity of the patch.

1. RESULTS

Our goal here is to propagate the C''* Holder regularity of the patch, within a critical
regularity framework. By critical, we mean that we strive for a solution space having the
same scaling invariance by time and space dilations as (IN.S) itself, namely:

(1.1) (p,u, P)(t,x) = (p, \u, X*P)(N\*t,A\z) and (po,uo)(x) = (po, AMug)(Ax).

Working with critical regularity is by now a classical approach for the homogeneous Navier-
Stokes equations (that is p is a positive constant in (INS)) in the whole space RY (see e.g.
[4, 17] and the references therein) and that it is also relevant in the inhomogeneous situation
(see in particular the work by the first author in [10] devoted to the well-posedness issue
in critical homogeneous Besov spaces, and its generalization to more general Besov spaces
performed by ABIDI in [1] and ABIDI AND PAICU in [2]).

In all those works however, the regularity requirements for the density are much too strong
to consider piecewise constant functions. That difficulty has been by-passed in a joint work
of the first author with P.B. MucHA [11], where well-posedness has been established in a
critical regularity framework that allows for initial densities that are discontinuous along a
C! interface (see the comments below Theorem 1.1).

Before writing out the statement we are referring to and giving the main results of the
present paper, we need to introduce some notations. In all the paper, we agree that A < B
means A < CB for some harmless “constant” C, the meaning of which may be guessed
from the context. For T' €]0,+occ[, p € [1,+00] and E a Banach space, the notation L%.(E)
designates the space of LP functions on ]0,7[ with values in E, and LP(R; F) corresponds
to the case T' = +oo. For simplicity, we keep the same notation for vector or matrix-valued
functions.

Next, let us recall the definition of Besov spaces (following e.g. [4, Section 2.2]). To this
end, consider two smooth radial functions x and ¢ supported in {¢ € RV : |¢| < 4/3} and
{6 € RV :3/4 < |€| < 8/3}, respectively, and satisfying

(1.2) Y (2778 =1, VE€RN\{0}, x(©)+ D o278 =1, VRV,
JEL Jj=0
Next, let us introduce the following Fourier truncation operators:
Aj=¢(277D), S;:==x(27'D), VjeZ;  Aj:=¢277D),Vj>0, A_j:=x(D).
For all triplet (s,p,7) € R x [1,00]?, the homogeneous Besov space B;T(RN) (just denoted

by B;,,, if the value of the dimension is clear from the context) is defined by

(13) B, (RY) = {u e SHRY) : Jull s, = |27l Azul o

@) <P 2

where S; (RY) is the subspace of tempered distributions &’(R") defined by
S, RY) :={ueSRY): lim Sju = 0}
j——o0
We shall also use sometimes the following inhomogeneous Besov spaces:

(1.4) B, (RY) := {ue S'®Y): Jullps, == ||27°l1Aulls

erNU{—1}) < X }-

Throughout the paper, we agree that the notation b;r(RN ) designates both B;W(RN ) and
B3 ,.(RN).
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It is well-known that the family of Besov spaces contains more classical items like the
Sobolev or Holder spaces. For instance Biz(RN ) coincides with the homogeneous Sobolev

space H*(RY) and we have
(1.5) B, oRY) = (RY) = L®(RY) N BS,  (RY) if s €]0,1[.

To emphasize that latter connection between Holder and Besov spaces, we shall often use
the notation ¢ := BS, ,, (or €° := BS, ) for any s € R.

When investigating evolutionary equations in critical Besov spaces, it is wise to use the
following tilde homogeneous Besov spaces first introduced by CHEMIN in [8]: for any ¢ €
10, 4+-00] and (s,p,r,v) € R x [1,4+00]3, we set

- N ) ) ]

Ly(Bs,) = {u € S(0,¢xRY): Tim Su=0 in LY(EL®) and |lulz g, < oo},

j——o00

where

lullz 5.y = 1221803 2 lorzy < -

The index t will be omitted if it is equal to 400, and we shall denote
Co(Ry; By,) i= L™(Ry; By ) NC(Ry; By ).
Finally, we shall make use of multiplier spaces associated to couples (F, F') of Banach spaces

included in the set of tempered distributions. The definition goes as follows:

Definition. Let E and F be two Banach spaces embedded in S'(RY). The multiplier space
M(E — F) (simply denoted by M(E) if E = F) is the set of those functions ¢ satisfying
wu € F for all u in E and, additionally,

(1.6) el mE—r) == sup |loullp < oo.
uck
l[ull g <1
It goes without saying that || - ||s¢(z—r) is @ norm on M(E — F) and that one may

restrict the supremum in (1.6) to any dense subset of E.
The following result that has been proved in [11] is the starting point of our analysis.

Theorem 1.1. Let p € [1,2N] and ug be a divergence-free vector field with coefficients in
N

LN .N_1
By, . Assume that po belongs to the multiplier space /\/I(Bp‘?1 ) There exist two constants
c and C depending only on p and on N such that if

llpo = 1] + M_l\IUOIIB%A <c

N _
M(szjl 1) p,1

then System (INS) in RN with N > 2 has a unique solution (p,u,V P) satisfying

N

LN
e per=(RuM(B] ),
N

~ LN
e uc Cb(RJr;Bp‘?l ),
LN
o (O, V?u,VP) e L'(Ry; B ).
Furthermore, the following inequality is fulfilled:

(1.7) [[ull . o+ |00, pVu, VP Ny < Clluoll x .
Lee i Lt BP

N
(R+;Bpp1 ) (R+;Bpl,71 ) p,1

A similar result (only local in time) may be proved for large ug. However the smallness
condition on pg — 1 is still needed, and whether one can extend Theorem 1.1 to the case of
large density variations and critical velocity fields is totally open.
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LN
By classical embedding, having V?u in L'(Ry; By, ) implies that Vu is in LY(Ry;Cp).
Therefore the flow ¢ of u is in C1. Now, it has been observed in [11] that for any uniformly

C! bounded domain Dy, the function 1p, belongs to M(B;J) whenever —1 + 1—1) <s< %-

LN
Therefore, one may deduce from Theorem 1.1 that if pg is given by (0.2), if ug is in B,
for some N —1 < p < 2N and if

lluol| ~_, +|m2 —m| is small enough
Bzfl
then System (INS) admits a unique global solution in the above regularity class with p(¢,-)
given by (0.4) and D; = (¢, Dg) in C* for all time ¢ > 0.

The present paper aims at propagating C1'¢ regularity of density patches for any ¢ €
10,1] and within a critical regularity framework. For simplicity, we shall focus on simply
connected bounded domains Dy, and C1¢ regularity thus means that there exists some open
neighborhood Vj of Dy and a function fy : RV — R of class C¢ such that

(1.8) Do = f;'({0}) NV and Vfy does not vanish on V.
As the viscosity coefficient p will be fixed once and for all, we shall set it to 1 for notational
simplicity. Likewise, we shall assume the reference density at infinity to be 1.

Our main statement of propagation of Holder regularity of density patches for (INS) in

the plane reads as follows.

Theorem 1.2. Let Dy be a simply connected bounded domain of R? satisfying (1.8) for some
e in |0,1[. There exists a constant 1y depending only on Dy so that for all n €] — no,nol if
the initial density is given by

(1.9) po = (1+n)lp, + Lpg,

and the divergence free vector-field ug € L? has vorticity wo = O1ug — Oaul with zero average
and such that

(110) wo = (T}() ]lDo

for some small enough function Wy with Holder regularity, then System (INS) has a unique
solution (p,u, VP) with the properties listed in Theorem 1.1 for some suitable p €]1,4].
In addition, if we denote by v the flow of u then for allt > 0, we have

(1.11) p(t,-) == (L+n)lp, + 1pe with Dy :=)(t, Do),
and D; remains a simply connected bounded domain of class CH¢.

Remark 1.3. We need the initial vorticity to be mean free, in order to guarantee that ug
2

belongs to some homogeneous Besov space B;l 1. It is no longer needed in dimension 3 (see
Theorem 2.2 below).

Of course, there are many other examples of initial velocities for which propagation of
CY¢ patches holds true : an obvious one is when ug has critical reqularity and vanishes on a

neighborhood of Dy.

Remark 1.4. Our method would allow us to consider large initial vorticities as in (1.10).
However, we would end up with a local-in-time result only.

As in [19, 20], Theorem 1.2 will come up as a consequence of a much more general result
of persistence of geometric structures for (INS). To give the exact statement, we need to
introduce for (o,p,T) € R x [1, 00]%]0, 0c], the space

o ~ L5 —1lto 2 1 (pp Lt
EJ(T) := {(v,VQ) : v € C([0,T[; B}, ), (0, V*0,VQ) € Ly(Br, )},
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endowed with the norm

(s VO g ¢y += lI0ll + (@, V20, VQ)|

.ﬂﬁ»o'fl .ﬂﬁ»o'fl N
Lp(85) ZACHEY
For notational simplicity, we shall omit o or 7" in the notation Eg (T') whenever o is zero or
T = co. For instance, E, := Eg(oo)

Theorem 1.5. Let ¢ be in ]0,1] and p satisfy

N N
(1.12) 5 <p<min {1— QN}

LN
Let ug be a divergence-free vector field with coefficients in B, . Assume that the initial

. ﬁfl . ﬂ+
density po is bounded and belongs to the multiplier space ./\/l(Bp’:1 ) N ./\/((Bp’:1 : ) There
exists a constant ¢ depending only on p and on N such that if

(1.13) lpo =10~ + HUOH S0

M(BPI,)I )ﬁ/\/t( _+8 Q)HL 171
then System (INS) has a unique solution (p,u,V P) with

N

N Ne 2
pe L*(Ry L nM(BY ) O M(BLT)) and (u,VP) € E
Moreover, for any vector field Xo with C*¢ regularity (assuming in addition that & > 2 — %
if div X #£ 0), if the following striated-type conditions are fulfilled

N . ﬂ+5—2 . ﬂ+5—2
Ox,p0 € ./\/l(Bp’j1 — By ) and Ox,up € By ,

then System (0.6) in RN has a unique global solution X € Cy(Ry;C%), and we have
N1 . ﬂ+€*2 S
oxpe L®(RuM(BY — By ) and (9xu,0xVP) € B

Some comments are in order:
e The divergence-free property on Xy is conserved during the evolution because if
one takes the divergence of (0.6), and remember that divu = 0, then we get
{ OpdivX +u-VdivX =0,

(1.14)
div X‘t:() = div XQ.

e In the case div Xy # 0, the additional constralnt on (e, p) is due to the fact that the

product of a general C*¢ function with a Bp7 dlstrlbutlon need not be defined if
the sum of regularity coefficients, namely ¢ + ? — 2, is negative.

e The vector field X given by (0.6) has the Finite Propagation Speed Property. In-
deed, from the definitions of the flow and of the space Ep, and from the embedding

N
of Bp’:l(RN) in Cp(RY), we readily get for all £ > 0 and 2 € RV,
(t2) | S Vil x < OVl .
17 1) p 1
Therefore, if the initial vector field X is supported in the set K then X(t) is

supported in some set K; such that

diam(K;) < diam(Ky) + CVt Hu0||

pl
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e One can prove a similar result (only local in time even in the 2D case) if we remove
the smallness assumption on ug. Moreover, we expect our method to be appropriate
for handling Holder regularity C*¢ if making suitable assumptions on 8&0 po and

8;(0110 for j = 0,--- , k. We refrained from writing out here this generalization to
keep the presentation as elementary as possible.

We end this section with a short presentation of the main ideas of the proof of Theorem
1.5. The starting point is Theorem 1.1 that provides us with a global solution (p,u, VP)
N .
with p € L™ <R+;M(Bp’j1 )) and (u, VP) € E,. The flow ¢ of u is thus in C'. Our main
task is to prove that X (¢,-) remains in C%¢ for all time. Now, (0.6) ensures that

X(t,2) = Xo(v; Hz)) + /Ot 8Xu<t',1/zt/ (w;l(m)))dt’.

Because ¢ is a C! diffeomorphism of RY, it thus suffices to show that Oxwu is in Lllo SRy C0#).

Note that Equation (0.6) exactly states that [Dy, dx] = 0, where Dy := 9, +u-V stands for
the material derivative associated to u. Therefore differentiating the mass and momentum
equations of (INS) along X, we discover that

(1.15) Di0xp=0
and that
(1.16) pD:Oxu + OxpDiu — Ox Au + Ox VP = 0.

On the one hand, Equation (1.15) implies that any (reasonable) regularity assumption for
p along X is conserved through the evolution. On the other hand, even though (1.16)
has some similarities with the Stokes system, it is not clear that it does have the same
smoothing properties, as its coefficients have very low regularity. One of the difficulties
lies in the product of the discontinuous function p with D;Oxu, as having only dxu in C%¢
suggests that D:0xu has negative regularity.

Our strategy is to assume that p belongs to some multiplier space corresponding to the
space to which D;0xu is expected to belong. As our flow is C!, propagating multiplier
informations turns out to be rather straightforward (see Lemma A.3). Thanks to this new
viewpoint, one can avoid using the tricky energy estimates and iterated differentiation along
vector fields (requiring higher regularity of the patch) that were the cornerstone of the work
by LIAO AND ZHANG. In fact, under the smallness assumption (1.13) which, unfortunately,
forces the fluid to have small density variations, we succeed in closing the estimates via
only one differentiation along X. This makes the proof rather elementary and allows us to
propagate low Hoélder regularity.

However, even with the above viewpoint, whether one can differentiate terms like Au or
VP along X within our critical regularity framework is not totally clear. In fact, as in
our recent work [14] dedicated to the incompressible Boussinesq system, we shall resort to
elementary paradifferential calculus (first introduced by BONY in [5]).

Let us briefly recall how it works. Fix some suitably large integer Ny and introduce the
following paraproduct and remainder operators:

Ty = Z S;_nouAju and  R(u,v) = ZAjuAjv = Z Ajulpo.
JEZ JEZ JEL
|7—k|<Ng
It is clear that, formally, any product may be decomposed as follows:
(1.17) wv = Ty + Tyu + R(u,v).

To overcome the problem with the definition (and estimates) of dx Au and dx V P, the idea is
to change the vector field X to the para-vector field operator Tx- := T'xx Ok -. This is justified
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because in our regularity framework Tx turns out to be the principal part of operator Jdx.

N1
Typically, X will act on VP or on Au which are in L! (R+; Bp’: 1 (RN )) Now, suppose that
. N
(X, f) € (€°®M)Y x By (RN) with (e,p) €]0, 1[x[1, +00] such that

N N
(1.18) —€]l—g2[ if divX =0, and — €]2—¢, 2] otherwise.
p p

Then, by virtue of Bony’s decomposition (1.17), we have
(Tx — 0x)f = To s X* + OpR(f, X*) — R(f,div X).

Taking advantage of classical continuity results for operators 7" and R (see [4]), we discover
that, under Condition (1.18), we have

(1.19) (T = 0f 3 oa S UL 1K e

p,1 p,1

Now, incising the term dxu by the scalpel Tx in (1.16) and applying Tx to the third
equation of (INS) yield

thTXu — ATXZ.L + VTXP_ =9,
(1.20) div Txu = div (T, xu” — Taiy x u),
Txult=0 = Txyuo

with

(1.21) g := —p[Tx, DiJu + [Tx, AJu — [Tx, V]P + (dx — Tx)(Au — VP)
— OxpDyu + p(TX - 3)()Dtu.

This surgery leading to (1.20) is quite effective for three reasons. Firstly, all the commutator
terms in (1.21) are under control (see the Appendix). More importantly, as D;Oxu and
D,Txu are in the same Besov space, we can still use the multiplier type regularity on the
density that we pointed out before. Lastly, Condition (1.13) ensures that (Tx — dx)u is
indeed a (small) remainder term.

Of course, the divergence free condition need not be satisfied by Txu. We shall thus further
modify the above Stokes-like equation so as to enter in the standard maximal regularity
theory. Then, under the smallness condition (1.13), one can close the estimates involving
striated regularity along X, globally in time.

The rest of the paper unfolds as follows. In the next section, we show that Theorem 1.5
entails a general (but not so explicit) result of persistence of Holder regularity for patches
of density in any dimension, under suitable striated regularity assumptions for the velocity.
We shall then obtain Theorem 1.2, and an analogous result in dimension N = 3. Section 3
is devoted to the proof of all-time persistence of striated regularity (that is Theorem 1.5).
Some technical results pertaining to commutators and multiplier spaces are postponed in
appendix.

2. THE DENSITY PATCH PROBLEM

This section is devoted to the proof of results of persistence of regularity for patches
of constant densities, taking Theorem 1.5 for granted. Throughout this section we shall
use repeatedly the fact (proved in e.g. see [11, Lemma A.7]) that for any (not necessarily
bounded) domain D of RY with uniform C' boundary, we have

1p € M(B;,T(RN)) whenever (s, p,r) 6]%9 -1, %[x]l,oo[x[l,oo].
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From that property, we deduce that if (¢,p) €]0,1[x]N — 1, %[, then the density pg given
N _q Ny 9
by (1.9) belongs to M(Bf,  (RN)) N M(Bg, ~ (RY)).

As a start, let us give a result of persistence of regularity, under rather general hypotheses.

Proposition 2.1. Assume that pg is given by (1.9) with small enough n and some domain
Dy satisfying (1.8). Let ug be a small enough divergence free vector field with coefficients in
N

LN
By, for some N—1<p < min {]YT_;, 2N}- Consider a family (X)0)rea of CO¢ divergence
ANy 9
[free vector fields tangent to Dy and such that Ox, ,uo € B4 : for all X € A.
Then the unique solution (p,u,VP) of (INS) given by Theorem 1.1 satisfies the following

additional properties:
e p(t,-) is given by (1.11),
e all the time-dependent vector fields Xy solutions to (0.6) with initial data X are

in LS (Ry;C%%) and remain tangent to the patch for all time.

Proof. As pointed out at the beginning of this section, our assumptions on p ensure that
N

N
po is in M(Bgfl) N (BIEJ%LE), and (1.13) is fulfilled if » and g are small enough. Of
course, Ox, opo = 0 for all A € A because the vector fields X, o are tangent to the boundary.
Therefore, applying Theorem 1.5 ensures that all the vector fields X are in L7 (R; C0#).
Now, if we consider a level set function fy in C1¢ associated to Dy (see (1.8)) then the function
ft := fo o1y is associated to the transported domain D; = 14(Dy), and easy computations

show that
(2.1) DiVf=-Vu-Vf with (Vu); = 0.
Therefore, as X satisfies (0.6), we have
Dy(Xx-V[f)= (D X)) Vf+ Xy (DiVf)=0,
which ensures that X, remains tangent to the patch for all time. U

2.1. The two-dimensional case. Here we prove Theorem 1.2. So we assume that wg =
wolp, for some small enough function wy that can be taken compactly supported and in the
nonhomogeneous Besov space BY |(R?) for some a €]0,¢[, with no loss of generality. As
we assumed that ug has some decay at infinity, it may be computed from wy through the
following Biot-Savart law:

up = (—A) " Vtw.
.2
We claim that ug belongs to all spaces B/, (R2) with p > 1. Indeed, let us write that
ug = Sou() + (Id - So)uO.

Because wq is bounded, compactly supported and mean free, it is obvious that Sowp is
smooth, in all Lebesgue spaces and also mean free. Biot-Savart law thus ensures that Souo
belongs to all Lebesgue spaces L7 with ¢ > 1 (as it is smooth and behaves like O(|x|~2) at
infinity, due to the mean free property, see e.g. [22, p. 92]). Hence for any 1 < ¢ < 2 and
p > ¢, one may write

1Souol .21 < [1Souol| | < 1Souol|ne < Ciy-
BP B

p,1

2 2
rp aq
p,o0
As regards the high frequency part of ug, because the Fourier multiplier (Id — Sp) V- (—A)~!
is homogeneous of degree —1 away from a neighborhood of 0, we have
1(1d — So)uoll .2, = [|(Id = So)V*(=A)'wol| 2,
BP BP
p,1 p,1
< dd - SO)WOHB%—Q S 1Ad = So)wol|zr S llwollLraree-
p,1
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Next, consider the divergence free vector field X = V1 fy where fj is given by (1.8) and is
(with no loss of generality) compactly supported. If it is true that

.2 _94¢ 1
(2.2) Ix,u0 € By 4 for some 1<p< mim(1 ,4),
’ —¢

then one can apply Proposition 2.1 which ensures that the transported vector field X; remains
in C%¢ for all ¢ > 0. Now, it is classical that we have X; = (V f;)* with f; = fo o ¢;. Hence
D; has a C'¢ boundary.

Let us establish (2.2). Of course, by embedding, we have Xy in B, ;. Now, (1.19) ensures
that for any p > 1 satisfying % +e—1>0,

2.3 TXu—axu g_Su g_X S -
(2.3) 1 Txou0 0 oIIBﬁg > Sl oHB;llH 0l

From Biot-Savart law, we get

Txoto = Txo (=) 7' Viwo = (=A) 'V Txgwo + [T, (—A) 7'V,
whence using Lemma B.1,
(2.4) 100 = (=)' Y Txowoll o S 1 Xoll g llwollze-
Next, we notice that

Txowo — div (Xowo) = —div (T,,y Xo + R(wo, Xo)).

Therefore, taking advantage of standard continuity results for T and R, we have
(2:5) [Tiooo = div (Xowo)l g1 S lwollirll Xoll gy, for all p= 1.

«a
00,1’

Finally, because Xy and @y are compactly supported and in B Proposition A.2 and

obvious embedding ensure that

Xo and wg arein BKI N L.
Hence, remembering that div (Xowp) = div (Xo &g 1p,), that div Xo = 0 and that dx,1p, =
0, Corollary B.5 implies that div (Xowp) belongs to BKII.

Putting (2.3), (2.4) and (2.5) together, we conclude that (2.2) is fulfilled provided the
Lebesgue index p defined by

2
(2.6) a==—-2+4¢
p

is in ]1,min(4, 7). As 0 < a < &, this is indeed the case. This completes the proof of

Theorem 1.2. O

2.2. The three-dimensional case. As a second application of Proposition 2.1, we now
want to generalize Theorem 1.2 to the three-dimensional case. Our result reads as follows.

Theorem 2.2. Let Dy be a CY¢ simply connected bounded domain of R3 with e €]0,1[ and pg
be given by (1.9) for some small enough n. Assume that the initial velocity uy has coefficients
in S} (R®) and vorticity*

QQ =V Nug = QO]I'Dm
for some small enough Qg in C%°(R3R3) (5 €]0,e[) with divQy = 0 and € - Tip, loDy = 0
(here fiy, ~denotes the outwards unit normal of the domain Dy ).

2For any point Y € R®, we set X AY := (X2Y® — X?y2 X%Y! — X'Y?, X'v? — X2Y') where X stands
for an element of R?® or for the V operator.
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There exists a unique solution (p,u,VP) to System (INS) with the properties listed in
Theorem 1.1 for some suitable p satisfying

. 2
(2.7) 2<p<mm<1 6)-

9
— &

Furthermore, for all t > 0, we have (1.11) and D; remains a simply connected bounded
domain of class C1<.

Proof. Without loss of generality, one may assume that (~20 is compactly supported (as mul-
tiplying it by a cut-off function with value 1 on Dy will not change ). Like in the 2D case,
we first have check that wug satisfies the assumptions of Proposition 2.1. As it is divergence
free and decays at infinity (recall that ug € S},), it is given by the Biot-Savart law:

(28) ug = (—A)_lv Ay, with Qg = ﬁo 1p,.

.31
Let us first check that ug belongs to B, ; for some p satisfying Condition (2.7). Recall that

the characteristic function of any bounded domain with C' regularity belongs to all Besov
1

spaces B(ioo with 1 < g < oo (see e.g. [24]). Hence combining Proposition A.1 and the
embedding (A.1) gives

3

1 .3 _9 .
(2.9) Ip, € €' Nbjoc— B;, , forany ¢€]l,o0] and b€ {B, B}.

Now, using Bony’s decomposition and standard continuity results for operators R and T, we
discover that
Qoe? = M(BI) A
0E€ 6, — (q,l) 0ranyq€}2,2_5[.
Hence the definition of Multiplier space and (2.9) yield

~ S22 3 3
(2.10) Q= Qolp, € BY,  forany ge } T [
As ug is in 8}, and (—A71)7IVA in (2.8) is a homogeneous multiplier of degree —1, one can

conclude that
L3 .31
up € B;,l — B;,l s
Note that for any value of ¢ in ]0, 1[, one can find some p satisfying (2.7).

for any p > q.

Next, we consider some (compactly supported) level set function f; associated to 9Dy,
and the three C%¢ vector-fields Xi0 = e AV fo with (eq, e2, e3) being the canonical basis of
R3. It is clear that those vector-fields are divergence free and tangent to dDy. Let us check

-394
that we have Ox, juo € B}, * for some p satisfying (2.7). As in the two-dimensional case,
this will follow from Biot-Savart law and the special structure of €. Indeed, from (1.19) and
div X} 0 = 0, we have

. 3 3
[T 010 = 0, gt0ll 31ema S woll s o[ Kol Vo€ |5 5]

p.l p.1
Then (2.8) yields
Tipoto = Tx, o (—A) 'V A Qo = (=A) 7'V A T, o Q0 + [Tx o, (—A) VA Q.
Thanks to Lemma B.1 and homogeneity of (—A~1) 71V A, it is thus sufficient to verify that
TXMQO belongs to Bp%;_e

3
for some p satisfying (2.7). In fact, from the decomposition

Top.000 — div (Xi,000) = —div (T, Xi,0 + R(Q0, Xi0)),
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and continuity results for R and T, we get

. . 3
736,00 = div (Xi0Q0) | 5.os < 1900131 Xollyer foramy g€ 5. 5=—].

q,1 q 1
Thus, remembering (2.10) and 0 < § < e, we have to choose some p satisfying (2.7), such
that the following standard embedding holds

3 4e-3 3 +e-3
(2.11) BquE Ber for some qe}g 5 5 5[ with ¢ < p.

Now, because 9dx, ,1p, =0 and S~20 is in ng , for all 0 < 6, < 4, Corollary B.5 yields,

0x,.0820 = div (Xp 0 @ Qo) = div (Xp o ® Qo 1p,) € B‘s* ' for all ¢ > 1.

One can thus conclude that dx, jup € B;l Zre for any index p satisfying p > ¢ with ¢
satisfying Condition (2.11) and % +e—2=106"€)0,9].

As one can require in addition p to fulfill (2.7), Proposition 2.1 applies with the family
(Xk,0)1<k<3- Denoting by (Xj)1<k<3 the corresponding family of divergence free vector fields
in C%¢ given by (0.6) with initial data Xg, and introducing Yy := X3 A X1, Y2 := X3 A X
and Y3 = X1 A X9, we discover that for a = 1,2, 3,

Yy +u-VY, = —-Vu-Y,,
(Ya)lt=0 = 0afo V fo.

From (2.1), it is clear that the time-dependent vector field (8a foly, 1)) V f; also satisfies
(2.12), hence we have, by uniqueness, Y, (¢,-) = (((9af0)(1,b;1))Vft. So finally,

(2.12)

Vfoour P V= ZY ) Bafo o ;!

As 1, Lis ¢! and as both Y, and Vfj are in C*¢, one can conclude that V f; is C%¢ in some
neighborhood of 0Dy. Therefore D; remains of class C1¢ for all time. O

Remark 2.3. In the 3-D case, the mean free assumption on initial vorticity is not required,
but one cannot consider constant vortex patterns as in the 2-D case. Let us also emphasize
that, as for the Boussinesq system studied in [14], a similar statement may be proved in
higher dimension.

3. THE PROOF OF PERSISTENCE OF STRIATED REGULARITY

That section is devoted to the proof of Theorem 1.5. The first step is to apply Theorem
N

LN
1.1. From it, we get a unique global solution (p,u, VP) with p € Cb(RJr;M(Bppl )) and
N

~1
(u, VP) € Ep, satisfying (1.7). Because the product of functions maps Bp X B ') to B S

we deduce that the material derivative Dyu = Oyu+ u - Vu is also bounded by the right- hand
side of (1.7). So finally,

(3.1) 1w, VP) |l + [[Deull  xy < Clluoll v,

L(BN) T B

In order to complete the proof of the theorem, it is only a matter of showing that the
additional multiplier and striated regularity properties are conserved for all positive times.
In fact, we shall mainly concentrate on the proof of a priori estimates for the corresponding
norms, just explaining at the end of this section how a suitable regularization process allows
to make it rigorous.
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3.1. Bounds involving multlpher norms. As already pointed out in the introduction,

because Vu is in LY(Ry; B v ) and B ”1 is embedded in Cp, the flow 9 of u is C! and we have
for all t > 0, owing to (1. 7)

t
(3.2) |Vt Lo < exp(/ |Vl e dT) <C
0

for a suitably large universal constant C.
Now, from the mass conservation equation and (1.15), we gather that
p(t,") = poo 1/1{1 and (8xp)(t, ) = (aXOPO) °© 1/%_1

Hence ||p(t,-)||r~ is time independent. Furthermore, Lemma A.3 and Condition (1.12)
guarantee that for all ¢t € R,

3.3 ,Ot—l N SCpo—l N _ 4>

3.4 p(t) —1 N, o <Clpo—1 N 5,

( ) H ( ) ”M(szjl+ 2) H HM(BPI:1+ 2)

3.5 0 t N _ N, , <CJo N _ N . o -
( ) H( XP)( )HM(B N1 Bpljl+ 2) H XoPO”M(szjl 1 Bp}jj 2)

3.2. Estimates for the striated regularity. Recall that Txu satisfies the Stokes-like
system (1.20). As Txu need not be divergence free, to enter into the standard theory, we set

vi= Txu —w with w:= Takxuk — TdivXu-
Denoting § := g — pu- VTxu — (pdyw — Aw) with g defined in (1.21), we see that v satisfies:
porv — Av + VixP =7,
(S) dive =0,
’U|t:0 = 9.
We shall decompose the proof of a priori estimates for striated regularity into three steps.
The first one is dedicated to bounding g (which mainly requires the commutator estimates

of the appendix). In the second step, we take advantage of the smoothing effect of the heat
flow so as to estimate v. In the third step, we revert to Txu and eventually bound X.

First step: bounds of §. Recall that § := g — pu- VTxu — (pOyw — Aw) with
g = —p[Tx, DiJu+ [Tx, Alu—[Tx, V]P + (0x — Tx)(Au — VP) — dx pDyu+ p(Tx — dx) Dyu.

The first term of g may be bounded according to Proposition B.3 and to the definition of
multiplier spaces. We get, under assumption (1.18),

(3.6) lp[Tx, Delull e 2 Slel  owi s (||UH<5 Tl 52t
pl (prl ) pl
Sl y ol Tiulgecs + gl y X,
p,1 p,1 p,1

Next, thanks to the commutator estimates in Lemma B.1, we have

(3.7) 75, Alull x oo STV X llge- Vel s
BP1 pl
(3.8) I[7x, V] Pl s 2oz SIVX g VP x
Pl pl

Bounding the fourth term of g stems from (1.19): we have

(3.9) I(7x — 0x)(Au — VP xiee S 1A% VP [ Xllge-

p 1 p,1
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Then the definition of multiplier spaces yields

(3.10) e S X BN [ X1
pl ( p1 " Ppi ) p,1
Finally, using again (1.19) and the definition of multiplier spaces, we may write
(3.11) lp(Tx — 8x)Dyul| shree Slel v [ Xllgel Dl a s
P 1 M(Bp 1 ) p 1

Putting together (3.6) — (3.11) and integrating with respect to time, we end up with

(3.12) Hgll s /HPH e 2)(HUIlcgaIITXUIIB%EHIVUIIB%IITXUIlcgsfz)dt'

p,1 p,1

/”Xuc,ﬂs (Ivull NHUH x| Deul N Dol -~y +H(V2u,VP)H.Ll>dt/
M(BPTT) BP

pl .1 Pt
/ HaXPH %—1 Nope—2 ”Dtu” X ldt
Bp,l _>BP1 ) pl

Bounding the second term of ¢ is obvious : taking advantage of Bony’s decomposition
(1.17) and remembering that % + e > 1 and that divu = 0, we get

313) o VTicul, oo < [, e (sl Tl

p,1
. . /
+ HUHBZ%HHTXUH%—J dt’.

To bound the last term of g, we use the decomposition
pOyw — Aw = p(Wy + Wa) + W3,
with

Wy i= Ty, xOpu® — Tazy xOpu,  Wa = Ty, o, xu* — Thiva,xu, Wi := A(Tdivxu - Takxuk)-

i+ —
Continuity results for the paraproduct and the definition of ./\/(( ) ensure that
(3.14) ||PW1H Ny S / ||,0|| g IVX||ge- 1||8tu\| vy dt’,
(BP 1 ) ) p 1
(3.15) loWall  nyon S / ||,0|| g 106X | ge—zlul| | e dt’,
(Bp 1 ) ) p 1

3.16 Wg N, S / VX o1 ||U N dtl.
B16) Wl seny S f 19X HB:IH

To estimate 9, X in (3.15), we use the fact that
X =—u-VX +0xu = —div(u® X) + Ixu.

Hence using (1.17), and continuity results for the remainder and paraproduct operators, we
get under Condition (1.18),

196X lge—> S Nl 21X lgge + 10xullge—e-

pl

Therefore, taking advantage of (1.19) yields

=

(3.17) HszH P A / HPH i 2)(|!X\\<ps\\UI!BN L 1 Txullge2) IVl L dt'.

p,1 p
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Combining (3.14), (3.15) and (3.17), we eventually obtain

(318) [lpdw — Al | x / [ Txull el Vull_slloll .o dt
(B2, By Mm(BYTT)
t
LI (Ol Bl g + DIl 4] s 0]y, )
0 ‘ ( M(BP,+ 2) Bpl ) zf M(BPI;1+ 2) Bzfl 1

Putting together estimate (3.12), (3.13) and (3.18), we eventually obtain

(3.19) HQH B3 /HPH P A 2)(HUIlcgaIITXUIIB%EHIVUIIB%IITXUIlcgsfz)dt'

p,1 p,1

HXH%(HWH yllull x_y + 110, D) )loll  xesy !

/ pl Bpl B Bzfl 1 M(BPI?IJF 2)

b [ UK NPTt + [ Noxoll sy s Dl e
Pl (Bp,l _>Bp1 ) pl

N N
Second step: bounds of v. We now want to bound v in L (BIEJFE_Q) NL (Blflﬁ), knowing
(3.19). This will follow from the smoothing properties of the heat flow. More precisely,
introduce the projector P over divergence-free vector fields, and apply IP’Aj (with j € Z) to
the equation (S). We get

{ 6tAjv - AAjU = ]P’Aj(g—i- (1 — p)@tv)
Ajv|t:O = Ajvo.
Lemma 2.1 in [8] implies that if p € [1, 0],

P t / i A ~
I350(01er < ayuallr + 1O 85+ (L= oo
0

Therefore, taking the supremum over j € Z, using the fact that
v =2v+P(g+ (1—p)o)

N 9 Ny
and that P: B, — BJ, , we find that
(3:20) vl xpy + 0 ol s
L?O(BP 1+ ) t(Bpl ) t(Bpp1+ )
Slvoll xsee + 6l xieay A =p)00l ey
Bpl (Bpl ) (Bpl )

The smallness condition (1.13) combined with Inequality (3.4) ensure that the last term of
(3.20) may be absorbed by the left-hand side, and we thus end up with

ol +l1owll S llvoll, v, + 1[4l

. ﬂ+5—2 —-Q—s . ﬂ+s—2 — . ﬂ+5—2 °
Ly (szjl )ﬁL (Bp 1 ) Ly (BPI,JI ) BPI,JI L% (szjl )
Next, we use the fact that by definition of vy,
v = Txouo — Takxoug + Ty Xo U0
= 8X0u0 — Takung — 8kR(Xg, uo) + R(diV XQ, uQ) — TakXOulg + Tdiv XOUO-
Hence continuity results for the paraproduct yield, under Condition (1.18),

ool xsea S lOxo ol A + 1 Xollg luoll

pl P, pl
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Thus

3.21 V|| _ N, N + ||0yv N, S@Xuo N,
( ) H HL?O(BPI’)1+E Q)HL%(BPI?;FE) || t ||L%(BP+E 2) H 0 HBP+E 2

p,1 p,1

[ Xollgelluoll x— +llgll_,

.%+572 N
p,1 t (Bp,l )

Third step: bounds for striated reqularity. Remembering that
Txu =v+4+w with w= Takxuk — Tdivxu,
it is now easy to bound the following quantity:

A (t) = || Txul + || Tcul +[|VTx Pl
Lge L L}

(55") :

v (3%7%72).

N
G
p,1 p,1

Indeed, we have

(3.22) VTxP = (Id — P)(g — pdyv),

and thus ||V7x P|| % .., may be bounded by the right-hand side of (3.21). Note also
LB

t p,1
that continuity results for paraproduct operators guarantee that
Slull, -~y

tOO( pz,)l )

ol ydve 1X e ey

t p,1
t

w N < wll N NVX ooy dt.

ol ey [, 10l e 9K

Hence we have

(3.23) () S 10xouoll x iy + [ Xollgelluoll xy + 19l ~yoo
’ sz;"' i ’ Bzfl 1 Ltl(BPI,Jl+ 2)

+ ||u N_ N X700 per -

L N AN L S

Because X satisfies (0.6), standard Holder estimates for transport equations imply that

t t
Xy < Soll e+ [ IVl X e+ [ ol ot

Now, recall that
Ixu — Txu = Tp o X* + R(Opu, X¥)
whence, using standard continuity results for operators T and R, and embedding,
(3.24) 1 Txu = Oxullye S 1 Tw = Oxull .. SVl x| Xl
sz,)l sz,)l

Therefore we have

t
(3.25) X oo g2y < [ Xol| 's+/ IVull w1 Xllgedt’ + | Txull ..
S b e n(55")

Then, using (3.1) and plugging the above inequality in (3.23), we get

P
p,1

%tgaxuo ﬂ57+X0'Eu0 ~_, +llg N .
© % 10ml goccs VKol ol g 181 s

p,1 p,1 t

t
ool (15l v+ 19l 10 at )

szjl 1 Ltl (BPI,)1+ ) 0 Bzfl ‘
Choosing ¢ small enough in (1.13), we see that the first term of the second line may be
absorbed by the left-hand side. Therefore, setting

H(t) :=H(t) + HXHLgO(%f'E)
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and using again (3.25) and the smallness of ug,

H () S ||(9XOUO|| vy + [ Xollg- + ||9H Ny +/ HVUII N HXHcgs t',

pl (Bpl

In order to close the estimates, it suffices to bound g by means of (3.19). Then the above
inequality becomes, after using (3.4) and (3.5),

H (1) S 10x0voll vz + [ Kol

p,1
8o (Jullya | Txcul| | xy [Vl x| Txullpes) dt
o AL (D R YR
Xl (9l g el oy + 1@ D)l ool e
/ ‘ pl Bpl - Bpl - (sz’)f 2)
I TP ool s 1D
p,1 p,1 p,1 p,1

The smallness of pg and wg implies that the second line may be absorbed by the Lh.s.
Therefore using the bounds for dyu and Dyu in (3.1), we eventually get

< .
@) 1050l ccn + WXl ool ol <1+ [, NHXHWdT)

P p,1 pl

/ Xl V2 TPy e+ Joxopoll nos e / L

Bp 1 M (Bppl
It is now easy to conclude by means of Gronwall lemma and (3.1). Using once again the
smallness of ug, we get

(3.26)  A(#) S 10xotoll x4z + | Xollge
p,1
+ (|[9x,p0 N_; N.. o Tllpo N, upl| N_,.
(sl sy teay ool s ool
From (3.24), we gather that dxwu is bounded by the right-hand side of (3.26). Next, in
order to control the whole nonhomogeneous Hélder norm of X, it suffices to remember that

[ Xlleoe = X |[£oe + 1 X ll¢-
and that Relation (0.5) together with (3.2) directly yield
[ Xell oo < [[0x0 ¢l Lo < Cl Xl Lo
Finally, to estimate Ox VP, we use Inequality (1.19) and get
[Ox VP — VTXPH S Xl e o) IVPIL )

(BP 1+E_2) (Bp 1

Therefore ||0x VP|| may be bounded like J¢ ().

L% (Bﬁ+572)
3.3. The regularization process. In all the above computations, we implicitly assumed
that X and dxu were in L (Ry;C%¢) and L}, (R4;C%¢), respectively. However, Theorem
1.1 just ensures continuity of those vector-fields, not Holder regularity.

To overcome that difficulty, one may smooth out the initial velocity (not the density, not
to destroy the multiplier hypotheses) by setting for example uf := 5. Then Condition

N

N
(1.13) is satisfied by (po,ug) and, as in addition wug belongs to all Besov spaces By, with
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p > pand r > 1, one can apply® [13, Th. 1.1] for solving (INS) with initial data (pg,ud).
This provides us with a unique global solution (p™,u", VP™) which, among others, satisfies

N
Vu" € LT(R+;BET) for all r €]1,00] and max( ,37{Vj2> <p< T]\_[Tl.
By taking r sufficiently close to 1 and using embedding, we see that this implies that Vu'™
is in L} .(Ry; (5075) for all 0 < 6 < 1 and thus the corresponding flow ™ is (in particular)
in C1¢. This ensures, thanks to (0.5), that X™ is in L° (R4;C%¢) and thus that dx»u™ is in
L} (Ry;C%).

From the previous steps and the fact that the data (po, ug) satisfy (1.13) uniformly, we get
uniform bounds for p", u™, VP™ and X", and standard arguments thus allow to show that
u" tends to u in L} (R4; L) and thus (" — 1) — 0 in L2 (R4; L>). Interpolating with
the uniform bounds and using standard functional analysis arguments, one can eventually
conclude that X™ — X in L2 (R;;C%) for all & < ¢ (and similar results for (u"),en)
and that all the estimates of the previous steps are satisfied. The details are left to the

reader. O

APPENDIX A. MULTIPLIER SPACES

The following relationship between the nonhomogeneous Besov spaces B;J(RN ) and the

homogeneous Besov spaces B;J,(RN ) for compactly supported functions or distributions has
been established in [12, Section 2.1].

Proposition A.1. Let (p,7) € [1,0¢]? and s > —g = —-N(1 - %) (or just s > —g if

r =o00). For any u in the set 5’(RN) of compactly supported distributions on RN, we have
N : N
u€ B, (RY) <= ue By .(RY).
Moreover, there exists a constant C = C(s,p,r, N,Suppu) such that
-1
O ullg, < llullsg, < Cllull, -

p,r T

A simple consequence of Proposition A.1 and of standard embeddings for nonhomogeneous
Besov spaces is that for any (s, p,r) as above, we have

(A1) ERY)NBIPRY) — &®RY)nBs (RY) for any § > 0.
We also used the following statement:

Proposition A.2. Let (p,s) be arbitrary in [1,00] x R. Then for allu € BS, ;(RN)NE'(RY),
we have u € B;,I(RN) and there exists C = C(s,p,Suppu) such that

lulls, < Cllullss,,-

Proof. Let u be in Bgo,l(RN ) with compact support, and fix some smooth cut-off function
¢ so that ¢ = 1 on Suppu. Of course, being compactly and smooth, ¢ belongs to any
nonhomogeneous Besov space. Then, using decomposition (1.17) and the fact that u = ¢u,
one can write

u="Tou+T,¢+ R(u, o).

s

5%.1> standard continuity results for the paraproduct ensure

Because ¢ is in LP and u, in B

that Tyu is in By ;. For the second term, we just use that w is in, say, B;noifi(o’s) and ¢, in

B- min(0,s)

1 *5 hence Ty¢ is in B, ;. For the remainder term, we use for instance the fact that

1
¢ is in B;'JQ. Putting all those informations together completes the proof. O

3That paper is dedicated to the half-space, but having the same result in the whole space setting is much
easier.
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The following result was the key to bounding the density terms in our study of (INS).

Lemma A.3. Let (s,s4,0,0k,7,7%) €] — 1, 1[>x[1,00]* with k = 1,2, and Z : RN — RV be

a C' measure preserving diffeomorphism such that DZ and DZ=1 are bounded. When we

consider the homogeneous Besov space Bj .(RY) or Bk . (RN), we assume in addition that

sel— N N — NN for k =1,2. Then we have:

P Py Pk

(i). If b5 .(RY) stands for B .(RY) or B;,,,(RN), then the mapping u — wo Z is con-
tinuous on b;r(RN ): there is a positive constant Cz s, such that

and sy, €]

(A.2) lwo Zllsy, < Czsprllullps,-

(ii). If b3k . with k = 1,2, denote the same type of Besov spaces, then the mapping

PksTk

@+ @ o Z is continuous on M (b5t (RY) — b52  (RN)), that is

p1,r1 p2,7r2

1 59 1 59 .
171 Hbmm) 171 Hbmm)

(iii). We have the following equivalence for any ¢ € &' (RV),
peM(Bs, (RY) = B2 (RY)) <= e M(b3 . (RY) = b2 (RY)).

p1,71 p2,T2 p1,71 p2,r2

Here by} . and b2 .. can be different type of Besov spaces but obey our convention

on the index s for homogeneous Besov space.

Proof. Ttem (i) in the case b = B has been proved in [12, Lemma 2.1.1]. One may easily
modify the proof to handle nonhomogeneous Besov spaces: use the finite difference charac-
terization of [24, Page 98] if s > 0, argue by duality if s < 0 and interpolate for the case

.
s=0. Weget Czspr~1+ HDZH;;T if s>0,and Czsp,~1+ HDZ*IHLj<> " if s < 0.

Part (ii) is immediate according to (1.6) and (A.2). Indeed we may write:

A s s = su o Z)ulls
I HM@AW%JQ nwwp_ﬂw Julls..
P1,T1
= sup  [(p(woZ7))oZm

fulls; <1 P22
pP1,:7T1

<Czz sup lo(uoZ™ ")
lullys; <1 brairs
p1,7T1

1
< Czallellmep , ez, sup fluoZ7 |
lullor <1

502717102,2”@“/\4(1131 —bp3ra)”

P1,T1 2,72

To prove the last item, it suffices to check that if ¢ belongs to £'NM (B;}’T1 — B;;m), then
¢ is also in the multiplier space between the general type Besov spaces. Take u € by} . with

compact support, and some smooth and compactly supported nonnegative cut-off function
1 satisfying ¢» = 1 on Supp . Then from Proposition A.1 and (1.6), we have

loullzs . = llewull < ledullges

rg H()OHM(B;%’TI_)B;%”?) ”wuHBgl

1,71
S HSDHM(B;%,Tj*)B;gﬂ‘Q) ||’I’Z)u‘|bzi,rl

<
~ H(pHM(B;%yTl_)B;g,TQ) ”wHM(b;%,rl) Hu”b;i,rl .

For the last inequality, we used C2° < M (b5 ) (see [12, Corollary 2.1.1]). O

p1,71
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APPENDIX B. COMMUTATOR ESTIMATES

We here recall and prove some commutator estimates that were crucial in this paper. All
of them strongly rely on continuity results in Besov spaces for the paraproduct and remainder
operators, and on the following classical result (see e.g. [4, Section 2.10]).

Lemma B.1. Let A : RV \ {0} — R be a smooth function, homogeneous of degree m. Let

(6’5’p’r’rlar2’plap2) G]Oal[XR X [1500]6 with % = pll + 1%2, % = % + % and

N N
s—m-+4+e< — or {S—m—|—6<—(mdr:1}-
b b

There exists a constant C depending only on s,&, N and A such that,
7y, ACDul gy < ClI Vgl g5 Nl

If the integer Ny in the definition of Bony’s paraproduct and remainder is large enough
(for instance Ny = 4 does), then the following fundamental lemma holds.

Lemma B.2 (Chemin-Leibniz Formula). Let (g, s, sg,p, pr, 7, 7%) €]0, 1[xR? x [1,00]* for

k =1,2 satisfying
1 1 1 1 1 1
S=— 4+ — and - =—+—.
p p1 p2 roory T

(i). If sa <0 and s;1+sy+e—1< % or{si+syt+e—1= % and r = 1}, then we have
1TxTyf = TyTx f - T'TngHB;}jsﬁH < CIX gl g, N9l g2z, -

The above inequality still holds in the limit case sy = 0, if one replaces ||gl| g0 by
00,79

lollgn, e
(ii). If s +s2+e—1 6]0,%[ or{si+s2+e—1= % and r = 1}, then we have
I7xR(f,9) ~ RCTx f.9) = RU Teq)l goysewves < CUX Nl Ly Nllges
The above inequality still holds in the limit case s1 4+ sa +e—1 =0, r = 0o and
1 1
1419
r1 o

Proof. This is a mere adaptation of [14] to the homogeneous framework. The proof is based
on a generalized Leibniz formula for para-vector field operators which was derived by J.-Y.
Chemin in [6]. More precisely, define the following Fourier multipliers

Ak,j = <pk(27jD) with (&) = ikp(§) for ke {l,--- ,N} and j € Z.
Then we have

TxTyf = Z(Sj—NongAjf + A fTxSi—nog) + Z(Tl,j + 1)

jez jez
JEL
a=1,..., 4
where
Ty = > 2 Ay XF(Ag (A5 £S5 No9) — B jrAj S5 Nog)
J<i <+
j—Nog—1<57 <4/~ No—1
Ty = > 2" A XF(A ) Ak 0S5 nog,
jI<j—2

1= No<i"<j—No—2
Ty := Sj—nog[Txr, Aj]0k 1,
T47j = Ajf[TXk, ijNo]akg.



DENSITY PATCHES IN THE INHOMOGENEOUS NAVIER-STOKES EQUATIONS 21
Bounding Tl,j and TQ’]' stems from the definition of Besov norms, and Lemmas 2.99, 2.100
of [4] allow to bound T3 ; and T} ; provided € < 1.
In order to prove the second item, let us set

Ajj={j—No—1,---,j'=No—1} U{j = No,--- ,j — No — 2}-

We have
TxR(f,9) =Y (A;9TxAif + A;fTxAj9) + > (R + Raj)
jEL jez
=R(Txf.9) + R(f,Txg) + Y_ Bay,
JEZ

where, denoting Aj = A];NO 4+t Aj+N0,

Riji= > sen(f —j+ 127 ApX¥(Ayj (A fAjg) — AjfAr jAg)
|3/ =3l <Ng+1
jHEAj,j’

J=1<4<g
i’ =No<j"<j—Ng

. . . ki .7
Ryj = > 2 Ajn XAk 1 (A AG9),
j'<j—Ng—2
j'=Ng<j""<j—Ng—2

Rsj = Ajg[TXhA‘]akf,

R =A; f[Txk ]8kg

Here again, bounding Rl, ; and Rg,j follows from the definition of Besov norms, while Lemma
2.100 of [4] allows to bound R3; and Ry ;. O

Proposition B.3. Let (¢,p) be in ]0,1[x[1,00]. Consider a couple of vector fields (X, v) in
the space

. N . ﬂ+1 N
(L;)OC)C(R+; cgE)) X ( loc(R-i-v B p ) N Llloc(R-i-; Bpljl )) )
satisfying dive = 0 and the transport equation
O +v-V)X = dxwv,
(B.1) (0 )X =0x
Xli=o = Xo.

If in addition

N N
(B.2) —>2—¢, or —>1—¢ and divX =0.
p p

then there exists a constant C such that:

(B.3) [Tx. 8 +v- Vol vy SCUXgellol xpilivll x,
BP BP P

p,1 p,1 p,1

Flvllg-1lTxvll, e+ ol ol Txvllge-s).

p,1 Bp,l

Proof. This is essentially the proof of [14, Proposition A.5]. For the reader convenience, we
here give a sketch of it. Because divv = 0, we may write

[Tx, O + v%g]v = —vfagTkav — Tathakv + TXkak(vzagv)
= —Tatxkakv + (947.‘)((2}52}) — %Zx(vzv) — "9, Txv.
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Hence, decomposing v‘v according to Bony’s decomposition, we discover that

a=5
[Tx, 0 + v'0)v = Z R,
a=1
with
Ry = —Tathﬁkv, Ry = (%(TXTUW + TxTv’UK),
Rs = agTXR(vg,v), Ry = —7.‘54)((2}51)),

Rs = —0'0,Txv.

Now, it suffices to check that all the terms R, may be bounded by the r.h.s. of (B.3).

e Bound of Ry: From the equation (B.1), we have
Rl = TU_VXkakU — Takaak?}.
Hence using standard continuity results for the paraproduct, we deduce that

1l g sema S U0 5 (o~ VX lems + ool

p,1 p,1
Keeping in mind (B.2), the last term may be bounded according to (1.19), after using the
N9 .
embedding B ) (RV) «— € 2(RY). We get

1oxv = Txvllge—z S Vol x I Xlge-

p,1

As for the first term, we use the fact divev = 0 and the following decomposition
v-VX = ToX 4 Th,xv" + O R(v", X),
which allow to get, as long as (B.2) holds

1Bl xsee SV (0l 21X e + 1 Txvllge—2).

p,1 p,1 p,1
e Bound of Ry: Due to Lemma B.2 (i) and continuity of paraproduct operator, we have

HR2HB%+572 S IIXHgsllvllB%ﬂllvllcgfl + HngallTvaB%ﬁ + IIUIIB%HIITvagH-
p,1 p,1 p,1 p,1

e Bound of Rs: Applying Lemma B.2 (ii) and continuity of remainder operator under the
condition % +¢e—1> 0 yields

1Bsll 3 oo S IXgellvll, xllvllg—s + ol x i [ Txvllges-
BPyl p,1 Bp,l

e Bound of Ry: From Bony decomposition (1.17), it is easy to get

l < .
ool S ll-slol

-

Hence

||R4IIB%I+E_2 N HVXllcgslengaIIUIIB%IH-
P, p,
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e Bound of Rs: Applying Bony decomposition and using that dive = 0 and % +e > 1 give

1Rl svee Sl Txvll sie + 0l sl Txvllges
p,1 p,1 p,1

Combining the above estimates for all Ry, with ae = 1,...,5 yields (B.3). O
Another consequence of Lemma B.2 is the following estimate of div (X fg):

Proposition B.4. Let (s,p,7) be in |0,1[x[1,00]%, and n, in ]0,1 — s[. Consider a bounded
vector field X and two bounded functions f,qg satisfying

X e (B, RN ne* " ®RY)Y, (f,9) € B, (RY) x B I(RY) and dxg € B3, (RV).

If in addition div X belongs to M(B;T(RN) — B;;l(RN)), and there exists some q € [1,p[
such that

. 11
(B.4) divX € B (RY) with spg:=s—1+N(=— =

) >0,
qQ p
then we have div (X fg) € B;;I(RN), and the following estimate holds true:
ldiv (X £l s S 1K Ly ol ooy N rn + 11l 10l g
i X gm0l 11 g e
Proof. In light of Bony’s decomposition (1.17), and denoting Tg'f = Tgf + R(f,g), we can
decompose div (X fg) into
4
div (X fg) = div (T},X + Tx(fg)) = Y _ Fu,
a=1
where
Fl = le(TJ/ch), FQ = TdiVX(fg)7
Fg = TxT;f, F4 = TXng
e Bound of Fy: As s > 0, standard continuity results for R and R give
1Bullpgs < WX sy S e gl X
e Bound of F»: Thanks to continuity results for 77, we have for s < 1,
1Bl s S lldiv X o | fll el e
e Bound of F3: Because X and g are in L°° and s > 0, we readily have
Vsl g S IX e |95 g, S 1K e 115 -

e Bound of Fy: Because 0 < s < s + n < 1, Lemma B.2 and continuity results for the
paraproduct imply that
[Tyl gor S NX gesall Flioelgll g + 1 Teglgeos + 175 0l g
X e gl g + e Tl s + gl 5 £l
To bound the last term, one may use the decomposition
Txf=div(Txf) — fdivX + Ty div X + R(f, div X).
Hence using continuity results for R and 7' and the fact that (s, 4, q) satisfies (B.4),
1T g S 11, (1 e+ iy Xy =) + [ loe e X g
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Finally, to bound the term with Txg, we use the fact that
Oxg — Txg =Tvy - X +div R(X,g) — R(div X, g),

whence
(B.5) 10x9 — Tl - < gl (115, + lldiv X gona ).
This completes the proof of the proposition. O

Proposition B.4 above reveals that the bounded function g may behave like some element
in M(B;r) under a suitable additional structure assumption. If in addition g has compact
support, then one can relax a bit the regularity of X and f to study dx(fg), and get the
following generalization of [9, Lemma A.6).

«

<1, and

Corollary B.5. Consider a divergence-free vector field X with coefficients in B
some function f in Bgﬁ;l with 0 < a, 0/ < 1. Let g € L™ be compactly supported and satisfy

Oxg € B;Hn{a’al}_l for some p € [1,00]. Then we have dx(fg) € B;ﬁn{a’al}_l.

Proof. Let ¢ € C° be a cut-off function such that ¢y = 1 near Supp g. Denote ()? ,f) =

(¥ X, 9 f). From Proposition A.2, we know that f and X are in B;?in(a’a,) N L for any

q € [1,¢]. It is also clear that Ox(fg) = 0% ~g € prin{ea} =1 Honce applying Proposition
X p,1
B.4 gives the result. O
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