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Abstract: This paper presents a nonlinear controller for 3D trajectory tracking of an autonomous 

helicopter. The main idea consists of combining feedback linearization controller together with a novel 

nonlinear IMC control. This approach allows more robustness, fast and good trajectory tracking. It is 

applied to a small, eight-rotor, Square-Shaped Octo-Rotor and has shown satisfactory results using 

adequate control architecture. The controller effectiveness is shown through numerical simulations and 

confirmed using a software simulator and real tests. 

Keywords: Nonlinear control, Autonomous system, Trajectory tracking. 


1. INTRODUCTION 

Rotorcrafts have many applications because of their vertical 

landing/take-off capability and payload. Among these 

rotorcrafts, Octo-Rotor helicopter may usually afford a larger 

payload than conventional helicopter due to the eight rotors. 

For these advantages, the Octo-Copter has received much 

interest from students and researchers where some models 

have been presented for different shapes (Star-Shaped: Alwi 

2013; Stocia et al. 2012 and 4Y-shaped: Adir et al. 2012; ...).  

In order to achieve complicated missions, it is necessary to 

design controller such that the system will be able to follow 

predefined trajectories, particularly, in the presence of 

disturbances. This is the reason for why many studies have 

led to the development of nonlinear control laws. The 

feedback linearization control law is, as known, one of the 

most popular nonlinear control methods, which has been the 

subject of many books (see for example Slotine et al. 2012; 

Khalil 2002, Isidori 1985). In addition, the nonlinear control 

results permit a global asymptotic stability provided that no 

singular points exist. Many controllers allow good set-point 

tracking. However, for almost all processes control, 

disturbance rejection is much more significant. Hence, 

controller design that emphasizes disturbance rejection rather 

than a good set point tracking is of a great interest and a real 

design problem. Our focus is consequently pushed on this last 

point. Among the large variety of control techniques 

available in the literature, a model based control method, 

namely the Internal Model Control (IMC), is popular in 

industrial process control applications (Muhammad et al. 

2010) due to its disturbance rejection capability and 

robustness (Morari et al. 1989). The aim of this research 

work is to stabilize the helicopter while ensuring the tracking 

of complex trajectories with a precise way, and also to ensure 

a given level of robustness with respect to structured and 

unstructured uncertainties. For this purpose, a novel 

Nonlinear IMC-Feedback linearization control is herein 

described by taking care of having an adequate control 

structure. 

This paper is organized as follows: Section 2 introduces the 

dynamics of the Octo-Rotor and its operating principle. 

Section 3 presents the synthesis of the so-called nonlinear 

IMC- feedback linearization control and its application is 

developed in section 4. In section 5, the controller 

effectiveness is shown through numerical simulations and 

confirmed by experimental tests under different operating 

conditions.  Finally conclusions are given.  

2. OCTOROTOR DYNAMICS 

In this section, we give a brief explanation of the system used 

to obtain the complete model, and which describes the 

UAV’s behaviour. The Octo-Copter is controlled by the 

angular speeds of eight electric motors. Each motor produces 

a thrust and a torque, whose combination creates the main 

thrust, the yaw, the pitch and the roll torques acting on the 

UAV. As shown in Fig. 1, the system operates in two 

coordinate frames: the earth fixed frame 𝑅0(𝑂0, 𝑋, 𝑌, 𝑍) and 

the body frame 𝑅1 (𝑂1, 𝑋1, 𝑌1, 𝑍1). Let 𝜒 = (𝑥, 𝑦, 𝑧)𝑇 ∈ 𝑅3  be 

the absolute position of the system and 𝜂 = (𝜑, 𝜃, 𝛹)𝑇 ∈

]−
𝜋

2
, +

𝜋

2
[ × ]−

𝜋

2
, +

𝜋

2
[ × ]−𝜋,+𝜋[ be the Euler angles (roll, 

pitch, and yaw) that describe the orientation of the aircraft. In 

order to obtain a usable model for the control synthesis of 

control laws, it is necessary to make a certain number of 

approximations and assumptions. 

Assumptions: 

1) The structure and propellers are rigid and perfectly 

symmetrical  

2) The gyroscopic and ground effects are neglected.  
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3) The UAV has very small upper bounds on |𝜑| and |𝜃| 
in such a way that the differences |𝜑| − 𝑠𝑖𝑛(𝜑) and 
|𝜃| − 𝑡𝑎𝑛(𝜃) are arbitrarily small. 

 

Fig. 1. Frames representation. 

The dynamic model of the Octo-Rotor is classically derived 

from the Newton-Euler law. Gravity force acts on the center 

of mass in the negative Z direction in the earth frame. The 

global thrust is in the positive Z direction of the body frame. 

Therefore, the translational dynamic equations of the Octo-

Copter can be expressed in earth frame as follows, 

𝑚𝜒̈ = (−𝑚𝑔 + 𝑢𝑇𝑅)𝑒𝑧                                                              (1) 
, using the rotation matrix R ∈ SO(3): 

𝑅(𝜑, 𝜃, 𝛹) = [

c𝛹c𝜃 c𝛹s𝜃s𝜑 − s𝛹c𝜑 c𝛹s𝜃c𝜑 + s𝛹s𝜑
s𝛹c𝜃 s𝛹s𝜃s𝜑 + c𝛹c𝜑 s𝛹s𝜃c𝜑 − c𝛹s𝜑 
−s𝜃 c𝜃s𝜑 c𝜃c𝜑

] 

s() and  c() are abbreviations for sin(.) and cos(.) respectively. 

Where 𝑔 denotes the gravity acceleration, 𝑚 the mass, 𝑒𝑧 =
(0,0,1)𝑇the unit vector expressed in the earth frame, and 

𝑢𝑇  the global thrust produced by the eight rotors of 

speeds Ω𝑖. Each motor 𝑀𝑖 (for 𝑖 = 1,… ,8) produces the 

thrust force 𝑇𝑖  , so that  

𝑢𝑇 =∑𝑇𝑖

𝑖=8

𝑖=1

= 𝑏∑Ω𝑖
2

𝑖=8

𝑖=1

                                                               (2) 

Where b is the thrust factor. 

 

Yaw motion is generated by the differential drag forces 𝐷𝑖 . 
Pitch and Roll motions, are created as the difference in 

combined thrust for opposite sides of the vehicle,  

𝐷𝑖 = 𝑑Ω𝑖
2    𝑖 = 1, … ,8                                                                (3) 

Where d is the drag factor. 

The rotational dynamic equation of an Octo-Rotor can be 

written as follows: 

𝐼𝜛̇ = −𝜛 × 𝐼𝜛 − 𝐺𝑎 + 𝜏                                                           (4) 
Where 𝜛 = (𝜛𝑥 ,  𝜛𝑦 ,  𝜛𝑧)

𝑇  is the angular velocity vector, 

𝐼 = 𝑑𝑖𝑎𝑔( 𝐼𝑥  ,  𝐼𝑦 ,   𝐼𝑧)  is the diagonal inertia matrix  and 𝐺𝑎 

is the gyroscopic effect, while 𝜏 is the control torque obtained 

by varying the rotor speeds.  𝜏 = (𝜏𝜑 , 𝜏𝜃 , 𝜏𝛹)
𝑇 is defined for 

square shaped Octo-Copter as 

(

𝜏𝜑
𝜏𝜃
𝜏𝛹
) =

(

  
 

𝐿(𝑇7 − 𝑇3) + 𝑙
√2

2
(𝑇6 + 𝑇8 − 𝑇2 − 𝑇4)

𝑙
√2

2
(𝑇6 + 𝑇4 − 𝑇2 − 𝑇8) − 𝐿(𝑇1 − 𝑇5)

𝑙( 𝐷2 + 𝐷4 + 𝐷6 + 𝐷8 ) − 𝐿(𝐷1 + 𝐷3 + 𝐷5 + 𝐷7))

  
 
                    (5) 

Where 𝐿  represents the distance from the motors placed on 

the long arms to the center of mass and 𝑙  the distance from 

the motors placed on the short arms (see Fig. 2). The 

gyroscopic effects 𝐺𝑎 are neglected according to assumption 

(2) considered above. Also, translational velocity and 

acceleration are defined in the earth fixed frame 𝑅0, and 

angular velocity and acceleration are defined in the body 

fixed frame 𝑅1.  

𝜛̇ = 𝐼−1(−𝜛 × 𝐼𝜛 + 𝜏)                                                             (6) 
 

 
Fig. 2.    Simplified diagram of the drone with 8 propellers. 

Regarding the angular dynamics, the angular velocities of the 

drone 𝜛 are transformed into Euler angular speeds 𝜂̇. This 

yields  

(

𝜑̇

𝜃̇
𝛹̇

) = [

1 s𝜑tan𝜃 c𝜑tan𝜃

0 c𝜑 −s𝜑 

0 s𝜑/c𝜃 c𝜑/c𝜃

] (

𝜛𝑥
 𝜛𝑦
 𝜛𝑧

)                                   (7) 

Then, by using equations (1-7) and accepting assumption (3), 

the dynamic model of the vehicle in terms of position 𝜒 and 

rotation 𝜂 is finally written as 

𝜒̈ =   

{
 
 

 
 
c𝛹s𝜃c𝜑 + s𝛹s𝜑

𝑚
𝑢𝑇

s𝛹s𝜃c𝜑 − c𝛹s𝜑

𝑚
𝑢𝑇

−𝑔 +
c𝜃c𝜑

𝑚
𝑢𝑇

                                                         (8) 

𝜂̈ =

{
  
 

  
 𝜃̇𝛹̇ (

𝐼𝑦 − 𝐼𝑧

𝐼𝑥
) +

𝜏𝜑

𝐼𝑥

𝜑̇𝛹̇ (
𝐼𝑧 − 𝐼𝑥
𝐼𝑦

) +
𝜏𝜃
𝐼𝑦

𝜑̇𝜃̇ (
𝐼𝑥 − 𝐼𝑦

𝐼𝑧
) + 

𝜏𝛹
𝐼𝑧

                                                          (9) 

3. NON LINEAR CONTROLLER DESIGN 

3.1 Nonlinear IMC design procedure 

Let us recall, for a linear system, quite briefly the IMC basic 

principle: if the control system, contains partial or complete 

representation of the process to be controlled, then accurate 

control can be achieved. In     Fig. 3, 𝑈(𝑠) is the input of both 

process 𝐺(𝑠) and its model 𝐺̃(𝑠). 𝐷(𝑠) is an unknown 

disturbance acting on the system. The output 𝑌(𝑠) is 

compared with the output of the model 𝑌𝑚(𝑠) , resulting in a 

signal 𝑌̃(𝑠), that is, 

𝑌̃(𝑠) = (𝐺(𝑠) − 𝐺̃(𝑠)) 𝑈(𝑠) + 𝐷(𝑠)                                    (10) 

𝑋1 

𝑌1 



 

 

     

 

Let 𝐶(𝑠) be the inverse of the model 𝐶(𝑠) = 𝐺̃(𝑠)−1, if this 

one is invertible, then the output will perfectly track the 

reference input 𝑌𝑟(𝑠). Nevertheless, this controller needs to 

be multiplied by the so-called IMC-filter. This latter makes 

the resulting controller proper and realizable (for details see 

Morari et al. 1989). 

 
Fig. 3.      IMC basic principle. 

The difference between the process and the model gives rise 

to the poor performance of the closed-loop. Therefore, the 

linear IMC scheme has been extended to a non-linear version 

by different approaches (see for example Economou & 

Morari. 1986; Dong et al. 1998). Moreover, to accomplish 

tracking, the IMC requires the inverse of the process. The 

inversion of nonlinear models is more involved, so that 

problems can be solved using numerical techniques, such as 

the Newton-Raphson method (Economou al. 1986), which is 

too much complex to obtain. So, hereafter, we propose a 

more simple and effective analytical solution. 

Consider a class of nonlinear single-input, single-output 

system for 𝑡 ∈ [0,∞) given by:  

(∑𝑥) {
𝑥̇ = ℱ(𝑥) + 𝐺(𝑥)𝑢

𝑦 = ℎ(𝑥)
                                                      (11) 

Where 𝑥 ∈ 𝑅𝑛 is an 𝑛-dimentional state vector, 𝑢 ∈ 𝑅 is a 

scalar input, 𝑦 ∈ 𝑅 is a scalar output, ℱ:𝐷𝑥 ⇢ 𝑅 𝑛  and 

𝐺: 𝐷𝑥 ⇢ 𝑅 𝑛 are 𝑛-dimentional vector functions sufficiently 

smooth on a domain 𝐷𝑥 ⊂ 𝑅 𝑛and  ℎ(𝑥) the output scalar 

function. In the following, the controller design 𝑢, is 

described step by step. Let us define the tracking 

error, 𝑒(𝑡) =  𝑦𝑟(𝑡) − 𝑦(𝑡), as the difference between the 

reference trajectory 𝑦𝑟(𝑡) and the output 𝑦(𝑡). The reference 

trajectories allowed for this study are considered piecewise 

constant. Assuming that the tracking error satisfies a first 

order differential equation 

𝑒̇(t) +
1

𝜇
𝑒(𝑡) = 0                                                                      (12) 

Because the reference trajectory is constant, equation (12) is 

equivalent to 

𝑦(1)(𝑡) =
1

𝜇
𝑒(𝑡) 

So, 

𝑦(𝑖)(𝑡) =
1

𝜇
𝑒(𝑖−1)(𝑡)   𝑖 = 1, … , 𝑛                                          (13) 

And  

𝑦(𝑡) =
1

𝜇
∫ 𝑒(𝜏)𝑑𝜏 + 𝑦0

𝑡

0

 

Where 𝜇 is a positive time tuning parameter providing a 

compromise between performance and robustness.  

Remark 1: When the input is constant, 𝑦(𝑖)(𝑡) may be 

written, in different forms, according to available signals.  

This is explained thereafter. 

Introducing two parameters (𝛼, 𝛽) to equation (13), we get 

𝑦(𝑖)(𝑡) =
𝛼

𝜇
 𝑒(𝑖−1)(t) +

𝛽

𝜇
 ( 𝑦𝑟(𝑡) − 𝑦(𝑡))

(𝑖−1)
 (t), 𝑖 = 1, … , 𝑛 

Then 

𝑦(𝑖)(𝑡) =
𝛼

𝜇
 𝑒(𝑖−1)(t) −

𝛽

𝜇
 𝑦(𝑡)(𝑖−1) (t), 𝑖 = 1,… , 𝑛 

By recurrence, the general form may be written as 

𝑦(𝑖)(𝑡) =∑(−1)𝑘+1
𝛼(𝑘)∏ 𝛽𝑘

𝑗=1 (𝑗−1)

𝜇𝑘
𝑒(𝑖−𝑘)

𝑘=𝑖

𝑘=1

   𝑖 = 1, … , 𝑛   (14) 

(𝛼(𝑘), 𝛽(𝑘)) ∈ 𝑅 × 𝑅 verifying 𝛼(𝑘) + 𝛽(𝑘) = 1,  with 𝛼(𝑖) =

1  and 𝛽(0) = 1  are chosen to select the available signals 

ensuring asymptotic stability. However, the inversion of a 

nonlinear model requires an input-output relationship. For 

this purpose, we use the flatness property of systems.   

A. Flatness properties 

Nonlinear system (11) is called flat if there is a flat output 

variable ς(𝑡), such that, the following statements are satisfied 

(see for instance Nitsche et al. 2007): 

 The flat variable 𝜍(𝑡) can be expressed in terms of the 

state vector  𝑥(𝑡). 

𝜍(𝑡) = Θ(𝑥(𝑡))                                                                          (15) 

 𝑥(𝑡), 𝑢(𝑡)  can be expressed in terms of 𝜍(𝑡) and a finite 

number of its time derivatives. In other words, 

{

𝑥(𝑡) = Υ1 (𝜍(t), 𝜍̇(t), … , ς
(𝑛−1)(t))  

𝑢(𝑡) = Υ2 (𝜍(t), 𝜍̇(t), … , 𝜍
(𝑛)(t)) 

                                                                          

                          (16)

The flat output  𝜍(t)  and its time derivatives describe the 

system dynamics, since their knowledge is sufficient to 

compute all the variables 𝑥(t), 𝑢(𝑡), 𝑦(𝑡) and their time 

derivatives. This allows computing the following differential 

equation,   

𝑦(𝑛)(𝑡) + 𝜌(𝑦, 𝑦(1), … , 𝑦(𝑛−1), 𝑢, 𝑢(1), … , 𝑢(𝑚−1)) 

+𝜗(𝑦, 𝑦(1), … , 𝑦(𝑛−1), 𝑢, 𝑢(1), … , 𝑢(𝑚−1))𝑢(𝑚)(t) = 0      (17) 

which summarizes state-space model (11) where 𝜌 is a 

nonlinear function and 𝜗 is a nonlinear and invertible 

function,  𝑚 ≤ 𝑛 and 𝑟 = 𝑛 −𝑚 denotes the relative degree 

of the system. 

Substituting equations (13) into equation (17) gives 

𝑢(𝑚)(𝑡) = −
1

𝜇
𝑒(𝑛−1)(t)+𝜌(∫ 𝑒,𝑒,𝑒(1),…,𝑒(𝑛−2),𝜇,𝑢,𝑢(1),…,𝑢(𝑚−1)) 

𝜗(∫ 𝑒,𝑒,𝑒(1),…,𝑒(𝑛−2),𝜇,𝑢,𝑢(1),…,𝑢(𝑚−1))
        (18)  

By integration, the control effort 𝑢(𝑡) is computed. In the 

case where 𝑛 = 𝑟 , we obtain 𝑢(𝑡) as 

𝑢(𝑡) = −𝜗−1 (∫𝑒 , 𝑒, 𝑒(1), … , 𝑒(𝑛−2), 𝜇) 

(
1

𝜇
𝑒(𝑛−1)(t) + 𝜌 (∫𝑒 , 𝑒, 𝑒(1), … , 𝑒(𝑛−2), 𝜇))                    (19) 

Remark 2: control law (18) represents the model inverse 

dynamic. It depends on the tracking error and the tuning 

parameter. 

3.2 Feedback linearization design procedure 

Now, recall that (∑𝑥) is called input-state linearizable, if it 

exists: a diffeomorphism Γ: 𝐷𝑥 ⇢ 𝑅 𝑛 such that 𝐷𝜉 = Γ(𝐷𝑥)  

contains the origin, and a change of variables 𝜉 = Γ(𝑥) that 

transforms the system into an equivalent linear one: 

C(s) 

𝐺̃(𝑠) 

𝐺(𝑠) 
𝑌𝑟(𝑠) 

 
𝑈(𝑠)

  

𝑌𝑚(𝑠) 

  
𝑌̃(𝑠) 

  

𝐷(𝑠) 

  + 

  

+ 

  

− 

  

− 

  
+ 

  

+ 

  

𝑌(𝑠) 

  



 

 

     

 

(∑̃𝜉)

{
 
 

 
 

𝜉1̇ = 𝜉2
…

𝜉𝑖̇ = 𝜉𝑖+1
…

𝜉𝑛̇ = 𝑓(𝜉) + 𝑔(𝜉)𝑢
𝑦 = 𝜉1

                                                      (20)

The controller is obtained by two types of nonlinearities 

cancellation . From system (20) we get: 

𝑢(𝑡) = 𝑔(𝜉)−1(−𝑓(𝜉) + 𝑣(𝑡))                                         (21)                             
Where 𝑔(𝜉) is invertible in a domain 𝐷𝜉 . Generally, 𝑣(𝑡), is 

given by:  𝑣(𝑡) = ∑ 𝑘𝑖𝑒
(𝑖−1)𝑖=𝑛

𝑖=1 (𝑡) +  𝑦𝑟
(𝑛)  

The coefficients 𝑘𝑖 are chosen to get the asymptotic stability.  

Remark 3: The difference between Nonlinear IMC control 

(19) and feedback linearization one (21) is that 

-  The first one uses the inversion of the system 

dynamics while the second uses the cancellation of 

the nonlinearities implying inversion. 

- As consequence, the feedback linearization can be 

concluded through the NLIMC approach. 

Combining these approaches (Fig. 4), we can write 

𝑢(𝑡) = 𝑔(𝜉)−1(−𝑓(𝜉) +
1

𝜇
𝑒(𝑛−1)(𝑡)  )                               (22)  

 
Fig .4.     Nonlinear IMC-Feedback control. 

 
Notice that this approach is convenient for a large class of 

systems and may be extended to Multi input-Multi output 

(MIMO) systems. Often we don’t have an accurate definition 

about the model (neglected dynamics, uncertainties and 

external disturbances) which make the use of the proposed 

approach particular important. 

4. OCTO-COPTER APPLICATION 

This section shows how the proposed method that we 

described above can be applied to an octo-copter in order to 

determine the controllers. The control structure (Fig. 5) is 

herein based on the decomposition into four sub-systems. 

The first one concerns the altitude control while the second 

one is for the yaw orientation; the others two sub-systems are 

related to the lateral and longitudinal controls. Through the 

control efforts 𝜏𝜃 and 𝜏𝜑, the state 𝑥 and the output 𝑦  are 

controlled  to allow the system to reach their references 𝑥𝑟  

and 𝑦𝑟 respectively while the pitch and the roll angles (𝜑, 𝜃) 

are stabilised about the origin. However, the altitude is 

controlled by 𝑢𝑇  and the yaw angle is controlled by 𝜏𝛹.  

4.1 Altitude control 

We first calculate 𝑢𝑇 for the altitude motion 

𝑧̈ = −𝑔 +
c𝜃c𝜑

𝑚
𝑢𝑇(t)                                                               (23) 

The linearizing control is then written as 

𝑢𝑇(𝑡) =
m

c𝜃c𝜑
(𝑔 + 𝑣𝑧(𝑡))                                                       (24) 

First of all, for comparison, use individually the different 

approaches: 

 Feedback linearization leads to 

𝑢𝑇 =
m

c𝜃c𝜑
(𝑔 + 𝑘2𝑒𝑧(𝑡) + 𝑘1𝑒𝑧̇(𝑡) +  𝑧𝑟

(2)) 

 Nonlinear Feedback- IMC approach, gives 

𝑢𝑇 =
m

c𝜃c𝜑
(𝑔 +∑(−1)𝑘+1

𝛼𝑧(𝑘)∏ 𝛽𝑘
𝑗=1 𝑧(𝑗−1)

𝜇𝑧
𝑘

𝑒𝑧
(2−𝑘)(𝑡) 

𝑘=2

𝑘=1

) 

 Nonlinear IMC approach gives 

𝑢𝑇(𝑡) =

𝑚(∑ (−1)𝑘+1
𝛼𝑧(𝑘)∏ 𝛽𝑘

𝑗=1 𝑧(𝑗−1)

𝜇𝑧
𝑘 𝑒𝑧

(2−𝑘)(𝑡)𝑘=2
𝑘=1 + 𝑔)  

cos (
1
𝜇𝜑
∫ 𝑒𝜑(𝜏)𝑑𝜏 + 𝜑0)
𝑡

0
cos (

1
𝜇𝜃
∫ 𝑒𝜃(𝜏)𝑑𝜏 + 𝜃0)
𝑡

0

 

4.2 Lateral and longitudinal control 

Once 𝑢𝑇 is done, substituting equation (24) into system (8) 

we obtain 

{
𝑥̈(𝑡) = (𝑣𝑧(𝑡) + 𝑔) (c𝛹 tan(𝜃) +

s𝛹s𝜑

 𝑐𝜃𝑐𝜑
 )

𝑦̈(𝑡) = (𝑣𝑧(𝑡) + 𝑔) (s𝛹 tan(𝜃) −
c𝛹s𝜑

 𝑐𝜃𝑐𝜑
 )
                       (25) 

Assumption 4: For a large enough time T, 𝑧  is close to 

𝑧𝑟(𝑣𝑧 → 0). 

Using assumptions 3- 4, system (25) is reduced to  

{
𝑥̈(𝑡) = 𝑔(𝜃c𝛹 + 𝜑s𝛹)
𝑦̈(𝑡) = 𝑔(𝜃s𝛹 − 𝜑c𝛹)

 
 

                                                          (26) 

This system is equivalent to  

(
𝑥̈
𝑦̈
) = ℛ (

𝜃
𝜑
)                                                                              (27)  

Where ℛ = 𝑔 (
c𝛹 s𝛹
s𝛹 −c𝛹

) = 𝑔ℛ̀ with ℛ̀ an element of the 

special orthogonal group 𝑆𝑂(2). 

Accepting that (
𝑥̈̅
𝑦̈̅
) = ℛ−1 (

𝑥̈
𝑦̈
) , a simplified system is 

obtained 

(
𝑥̈̅
𝑦̈̅
) = (

𝜃
𝜑
)                                                                                  (28) 

Using system (9), we note 

𝜏̅(𝑡) = (
𝑢2̅̅ ̅
𝑢3̅̅ ̅
) =

{
 
 

 
 𝜃̇𝛹̇ (

𝐼𝑦 − 𝐼𝑧

𝐼𝑥
) +

𝜏𝜑

𝐼𝑥

𝜑̇𝛹̇ (
𝐼𝑧 − 𝐼𝑥
𝐼𝑦

) +
𝜏𝜃
𝐼𝑦

  

Finally 

{
 

 
𝑥̈̅ = 𝜃
𝜃̈ = 𝑢3̅̅ ̅

𝑦̈̅ = 𝜑
𝜑̈ = 𝑢2̅̅ ̅

                                                                                    (29) 

Choosing the state vector as (𝑥1, 𝑥2, 𝑥3, 𝑥4)
𝑇 = (𝑥̅, 𝑥̇̅, 𝜃, 𝜃̇)

𝑇
, 

𝑥̅ as an output and 𝑒𝑥̅ = 𝑥̅𝑟 − 𝑥̅ as the tracking error between 

the state 𝑥̅  and its reference trajectory 𝑥̅𝑟 , we obtain for the 

subsystem, formed by the two first equations of system (29)  

{

𝑥̇1 = 𝑥2
𝑥̇2 = 𝑥3
𝑥̇3 = 𝑥4
𝑥̇4 = 𝑢̅3

                                                                                  (30) 

 As performed for the altitude motion, the Feedback-IMC 

approach gives  

𝑢̅3(𝑡) = 𝑥̅(4)(𝑡) 

Plant  
Controller 

 

∑ 

𝑦𝑟     

  

𝑢(𝑡)     

  

𝑦(𝑡)     

  1

𝜇

𝑑(𝑛−1)

𝑑𝑡𝑛−1
 

+     

  

−     

  

Feedback linearization     

  

𝑒(𝑡)    

  



 

 

     

 

Using equation (14)  

𝑢̅3(𝑡) = ∑(−1)𝑘+1
𝛼𝑥̅(𝑘)∏ 𝛽𝑘

𝑗=1 𝑥̅(𝑗−1)

𝜇𝑥̅
𝑘 𝑒𝑥̅

(4−𝑘)

𝑘=4

𝑘=1

(𝑡)  

We proceed in a similar way, so that 

𝑢̅2(𝑡) = ∑(−1)𝑘+1
𝛼𝑦̅(𝑘)∏ 𝛽𝑘

𝑗=1 𝑦̅(𝑗−1)

𝜇𝑦̅
𝑘 𝑒𝑦̅

(4−𝑘)(𝑡)

𝑘=4

𝑘=1

 

Finally, 

𝜏𝜑(t) = 𝐼𝑥 (−𝜃̇𝛹̇ (
𝐼𝑦 − 𝐼𝑧
𝐼𝑥

) +∑(−1)𝑘+1
𝛼𝑦̅(𝑘)∏ 𝛽𝑘

𝑗=1 𝑦̅(𝑗−1)

𝜇𝑦̅
𝑘

𝑒𝑦̅
(4−𝑘)

𝑘=4

𝑘=1

(𝑡 )) 

𝜏𝜃(t) = 𝐼𝑦 (−𝜑̇𝛹̇ (
𝐼𝑧 − 𝐼𝑥
𝐼𝑦

) +∑(−1)𝑘+1
𝛼𝑥̅(𝑘)∏ 𝛽𝑘

𝑗=1 𝑥̅(𝑗−1)

𝜇𝑥̅
𝑘

𝑒𝑥̅
(4−𝑘)(𝑡)

𝑘=4

𝑘=1

) 

4.3 Yaw control 

Feedback-IMC approach gives 

𝜏𝛹(𝑡) = 𝐼𝑧 (∑(−1)𝑘+1
𝛼𝛹(𝑘)∏ 𝛽𝑘

𝑗=1 𝛹(𝑗−1)

𝜇𝛹
𝑘 𝑒𝛹

(2−𝑘) (𝑡)

𝑘=2

𝑘=1

− 𝜑̇𝜃̇ (
𝐼𝑥 − 𝐼𝑦
𝐼𝑧

)) 

𝜇𝑥̅, 𝜇𝑦̅ , 𝜇𝑧, 𝜇𝛹 denote tuning positive parameters. The 

asymptotic stability of the closed loop system is trivially 

proved provided that 𝛽𝑧1 = −𝜇𝑧
2, 𝛼𝑧1 = 1 + 𝜇𝑍

2, 𝛽𝛹1 = −𝜇𝛹
2  

and 𝛼𝛹1 = 1 + 𝜇𝛹
2 for the altitude and the yaw controls while 

the lateral and the longitudinal motions asymptotic stability is 

ensured by taking care that the characteristic equation 

𝑃(𝑋) = 𝑋4 +∑ (−1)𝑘+1
𝛼𝑥̅(𝑘)∏ 𝛽𝑘

𝑗=1 𝑥̅(𝑗−1)

𝜇𝑥̅
𝑘 𝑋(4−𝑘)𝑘=4

𝑘=1  has the 

roots in the left-half complex plane. 

 
Fig. 5.     Octo-Rotor control architecture. 

5. EXPERIMENTAL RESULTS 

A. Numerical simulation 

We created a simulation environment in order to test and 

view the comparison of the results for the different 

controllers. Solving differential equations was made by 

Euler's method with sampling time of 0.01 seconds using the 

UAV parameters. The available system signals are 𝜒, 𝜒̇ and 𝜂 

with (𝜇𝑥̅, 𝜇𝑦̅, 𝜇𝑧 , 𝜇𝛹) = (0.05, 0.05 ,0.1, 0.4). 

As a first attempt, for the stationary flight, we take the 

altitude motion for a set point of 30 m. In Fig. 6, one may 

observe that, the system time response using the new 

proposed controller is faster than that using the feedback 

linearization controller alone. 

Using a small sampling time, the main approach designed 

initially for constant trajectories, is extended to other 

trajectories types of class 𝐶∞. Therefore, in this second test, 

we consider helix reference trajectories. The Octo-Rotor 

starts from the origin. The controllers have to stabilize its 

attitude and to reach the circular helix reference trajectory, 

which has radius of 10 meters (see Fig. 7).  

 
Fig. 6.      Response for altitude motion in stationary flight. 

 
Fig. 7.      Circular 3D trajectory.  

In Fig. 7, the trajectory tracking results, using the Nonlinear 

IMC-Feedback, show that, the output rapidly converges to the 

desired trajectory. The results are obviously improved, 

compared with those obtained with the feedback linearization 

alone. 

B. Gazebo flight simulator results 

The control laws have been implemented in the Gazebo 

simulator. The simulator takes into consideration all the 

vehicle components as the payload, the dynamics of actuators 

and the response of sensors. Fig. 8 presents a helix trajectory 

which has radius of 5 meters until 1.8 meters of altitude with 

(𝜇𝑥̅, 𝜇𝑦̅, 𝜇𝑧 , 𝜇𝛹) = (1.7, 1.7 , 0.9, 0.4). 

 
Fig. 8.      Circular 3D trajectory on gazebo simulator. 

In general, using numerical simulations tools, the obtained 

results are quite different when testing them on a more 

realistic simulators. However, in the present work, the 

obtained results are satisfactory, which demonstrate the 

robustness of our approach (see Fig. 8). 

C. Real test implementation 

To reveal the feasibility of our study, we have tested our 

control algorithms on a commercially AR. Drone Quadrotor, 

available in our laboratory. In this real test, a square 

trajectory of 1 meter is desired when the altitude is of 0.7 

meters (see Fig. 9-10). 
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Fig. 9.     Real test results of lateral and longitudinal motions. 

 
Fig. 10.     3D square trajectory real results. 

 

The flight vehicle operates in an environment where the 

execution of the trajectory can be affected by atmospheric 

turbulence. Futheremore, some parameters of the vehicle are 

not well defined, or stained with uncertainties (such as 

aerodynamic coefficients). In this case, now, let us check the 

effectiveness of the control laws and their level of robustness 

when the system is subject to external disturbances. By 

introducing a disturbance term, system (11) may be written as 

(∑𝑥̃) {
𝑥̇ = ℱ(𝑥) + 𝐺(𝑥)(𝑢 + 𝛿(𝑥, 𝑡))

𝑦 = ℎ(𝑥)
                                  (31) 

Where 𝛿(𝑥, 𝑡): 𝐷 × [0,∞) → 𝑅 is piece wise continuous, 

locally Lipchitz and considered as bounded by  𝛿(𝑥, 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . The 

disturbance term 𝐺(𝑥)𝛿(𝑥, 𝑡) may represent for instance: 

modelling errors, neglected dynamics or external 

disturbances. In the following example, we have applied 

instantaneous disturbances (3 N during the time interval [5, 

8] seconds) on the altitude (see Fig. 11). 

 
Fig. 11.      System time response (instantaneous 

disturbances). 

One may observe in Fig. 11 that the system reaches its 

reference trajectory when the disturbance is vanishing (after 

the eighth second). This explains the disturbance rejection 

capability of the proposed controller. However, using the 

feedback linearization, the system becomes unstable when 

the disturbance amplitude increases and goes over 22 N. 

Exactly, in the same condition, the system is still stable using 

the IMC-Feedback based one (Fig. 12). 

 
Fig. 12.    3D tracking using Nonlinear IMC-Feedback 

(Persistent disturbances of 23N). 

 

6. CONCLUSION 

A Square-Shaped Octo-Rotor model was described. Its 

modelling was simplified in order to elaborate simple control 

laws for a purpose of implementation. To this end, a control 

approach, based on a combined IMC and Feedback 

linearization, was proposed. Numerical simulations were 

performed in order to test the effectiveness of the designed 

control system. The performance of the designed approach 

was demonstrated in multiple test scenarios through a 

software simulator and confirmed with real tests. As matter 

of fact, one may guess that the proposed methodology turns 

out to simultaneously use the advantages of the Feedback 

linearization and the IMC controllers, i. e., as expected from 

the first one, the Octo-Rotor follows the desired trajectory 

with precise manner by choosing appropriate control 

parameters while from the second one, the disturbances are 

rejected and a good level of robustness is ensured.  
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