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Abstract. A general way to study the extremes of a random variable is to consider the fam-

ily of its Wang distortion risk measures. This class of risk measures encompasses several popular

indicators such as the classical quantile/Value-at-Risk, the Tail-Value-at-Risk and the recently in-

troduced Conditional Tail Moments, among others. A couple of very recent studies have focused

on the estimation of extreme analogues of such quantities. In this paper, we consider trimmed and

winsorised versions of the empirical counterparts of extreme Wang distortion risk measures. We

analyse their asymptotic properties, and we show that we can construct bias-corrected trimmed

or winsorised estimators of extreme Wang distortion risk measures who appear to perform overall

better than their standard empirical counterparts in practice when the underlying distribution has

a very heavy right tail. We also showcase our technique on a set of real fire insurance data.

AMS Subject Classifications: 62G05, 62G30, 62G30, 62G32.

Keywords: asymptotic normality, extreme value statistics, heavy-tailed distribution, trimming,

Wang distortion risk measure, winsorising.

1 Introduction

Early developments of extreme value analysis focused on estimating a quantile at a level so high that

the straightforward empirical quantile estimator could not be expected to be consistent. Motivating

problems include estimating extreme rainfall at a given location (Koutsoyiannis, 2004) or extreme
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daily wind speeds (Beirlant et al., 1996), modeling large forest fires (Alvarado et al., 1998), analysing

extreme log-returns of financial time series (Drees, 2003) and studying extreme risks related to large

losses for an insurance company (Rootzén and Tajvidi, 1997). A large part of practical applications

of extreme value theory can actually be modeled using heavy-tailed distributions, which we shall

focus on in this paper. We say that a distribution is heavy-tailed if its survival function 1 − F ,

where F is the related cumulative distribution function, roughly behaves like a power function

with exponent −1/γ at infinity where the positive parameter γ is the so-called tail index of the

distribution. In such a model, the function 1−F essentially satisfies a homogeneity property and it

therefore becomes possible to use an extrapolation method (Weissman, 1978) to estimate quantiles

at arbitrarily extreme levels, provided an estimate of γ is computed. If future stationarity of the

phenomenon studied is a reasonable assumption then this analysis can be used to draw predictive

conclusions: extreme value analysis has been applied to determine how high the dykes surrounding

the areas below sea level in the Netherlands should be so as to protect these zones from flood risk

in case of extreme storms affecting Northern Europe (de Haan and Ferreira, 2006). It is also used

nowadays by insurance companies operating in Europe so as to determine their own solvency capital

necessary to meet the European Union Solvency II directive requirement that an insurance company

should be able to survive the upcoming calendar year with a probability not less than 0.995.

Of course, the knowledge of a single high quantile is clearly not enough to characterise the behaviour

of a random variable in its right tail, since two distributions may well share a quantile at some

common level although their respective tail behaviours are different. This is why other quantities

such as the Tail Value-at-Risk, Conditional Value-at-Risk or Conditional Tail Moment (see El

Methni et al., 2014) were developed and studied; a common feature of these indicators is that their

computation takes into account the whole right tail of the random variable of interest, with increased

sensitivity to a change in tail behaviour compared to that of quantiles, be it at the population or

at the finite-sample level. These measures are of great value in practice, especially in actuarial

science: for instance, as mentioned in Dowd and Blake (2006), the Tail Value-at-Risk would be

used if one is interested in the average loss after a catastrophic event or to estimate the cover

needed for an excess-of-loss reinsurance treaty. As shown in El Methni and Stupfler (2016), the

aforementioned quantities can actually be written as simple combinations of Wang distortion risk

measures of a power of the variable of interest (abbreviated by Wang DRMs hereafter; see Wang,

1996). Wang DRMs are weighted averages of the quantile function, the weighting scheme being

specified by the so-called distortion function; on the practical side, Wang DRMs can, among others,

be useful to price insurance premiums and derivatives, see e.g. Wang et al. (1997), Wang (2004) and

Fabozzi and Tunaru (2008). The work of El Methni and Stupfler (2016) also provides estimators
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of extreme distortion risk measures. More precisely, they show that a simple and efficient solution

to estimate extreme Wang DRMs when the right tail of the underlying distribution is moderately

heavy is to consider a so-called functional plug-in estimator. Two weaknesses of this study can be

highlighted though. The first problem, a practical one, is that it is a consequence of the results

in the simulation study of El Methni and Stupfler (2016) that finite-sample performance of the

suggested class of estimators decreases sharply in terms of mean squared error as the tail of the

underlying distribution gets heavier. This is due to the propensity of heavier-tail distributions to

generate highly variable top order statistics and, therefore, to increase dramatically the variability

of the estimates. No solution is put forward in El Methni and Stupfler (2016) in order to tackle this

issue. The second problem, which is theoretical, is that their asymptotic results about this class of

estimators are restricted to asymptotic normality and are thus somewhat frustrating in the sense

that they are stated under an integrability condition on the quantile function which is substantially

stronger than the simple existence of the Wang DRM to be estimated. In particular, a consistency

result under the latter condition, in the spirit of the one Jones and Zitikis (2003) obtained for the

estimation of fixed-order Wang DRMs, is not provided in El Methni and Stupfler (2016).

In this paper, we show that robustifying the functional plug-in estimator of El Methni and Stupfler

(2016) by deleting certain top order statistics and/or replacing them by lower order statistics, namely

trimming or winsorising the estimator, enables one to obtain estimators with reduced variability, as

well as to show a consistency result under weaker hypotheses and to retain the asymptotic normality

result under the same technical conditions. Trimming and winsorising have both been (and arguably

still are) the easiest and most intuitive ways to give a statistical technique some degree of robustness

to high-value outliers. A historical account is given in Stigler (1973). Our motivation here is rather

that the integrability condition of El Methni and Stupfler (2016) depends solely on the behaviour

of the quantile function around 1 and becomes more and more stringent as its rate of divergence to

infinity increases. At the sample level, this means that this integrability condition has to be fulfilled

in order to control the highest order statistics. Deleting the most extreme part of the sample or

replacing it by lower (but still high) order statistics can thus be thought of informally as a way to

reduce the difficulty of the problem, both from the theoretical and practical point of view.

To be more specific, we shall essentially consider a Wang DRM of a random variable given that it

lies between two high-level quantiles, instead of assuming that it simply lies above a high threshold

like El Methni and Stupfler (2016) did, and we start by estimating it with its empirical counterpart:

this leads to our trimmed estimator of a Wang DRM. The winsorised estimator, meanwhile, is

obtained by considering the empirical counterpart of a Wang DRM given that the random variable
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lies above a high threshold and is clipped above yet another higher level. By construction, these

two estimators do not depend on some of the highest observations, and therefore can be expected

to suffer from less finite-sample variability than the original estimator of El Methni and Stupfler

(2016). To ensure consistency, the highest level (that is, the trimming/winsorising level) is then

made to increase to 1 faster than the lowest one does as the sample size increases. Both these

estimators can actually be embedded into a common class of estimators, whose consistency and

asymptotic normality we study. A somewhat surprising feature of this technique is that one can

also obtain the consistency of the estimator using the full data above a high level by approximating

it by such robustified estimators whose fraction of deleted data becomes smaller as the sample size

increases; this argument is actually similar in spirit to a proof by Etemadi (1981) of the law of large

numbers for independent copies of an integrable random variable, starting with the case when the

variance is finite and concluding by a truncation argument.

These new estimators, for all their improved properties as far as variability is concerned, should

be expected to suffer from finite-sample bias issues, since they are in fact sample counterparts of

a different quantity than the originally targeted Wang DRM. Our second step is then to devise a

correction method which allows the estimator to be (almost) unbiased in practice, while retaining

its low variability. The gist of the correction step is to note that the newly proposed estimators are

in reality asymptotically equivalent to the Wang DRM to be estimated multiplied by a correction

factor depending on the extremes of the sample only. This makes it possible to estimate the error

made when using the purely trimmed or winsorised estimators and thus to design bias-corrected

versions of them. Of course, while this approach should only be expected to be reasonable if the

threshold above which the Wang DRM is computed may be consistently estimated by its empirical

analogue, extreme Wang DRM estimators can then be obtained afterwards by an extrapolation

technique warranted by the statistical framework.

The outline of our paper is the following. In Section 2, we recall what Wang DRMs are, as well

as a definition of extreme analogues of Wang DRMs presented in El Methni and Stupfler (2016).

Section 3 then considers their estimation, by introducing a two-stage improvement of the functional

plug-in estimator of El Methni and Stupfler (2016), first in the intermediate case and then in the

arbitrarily extreme case. We examine the finite-sample performance of our estimators in Section 4

and our method is applied on a real insurance data set in Section 5. The proofs of our results are

deferred to Appendix A (preliminary results) and Appendix B (main results).
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2 Extreme Wang DRMs

We shall say in all what follows that a function g : [0, 1] → [0, 1] is a distortion function if it is

nondecreasing and right-continuous, with g(0) = 0 and g(1) = 1. Let X be a positive random

variable with cumulative distribution function F . The Wang distortion risk measure (DRM) of X

with distortion function g is (Wang, 1996):

Rg(X) :=

∫ ∞
0

g(1− F (x))dx.

An alternative, easily interpretable expression of Rg(X) is actually available, and we shall exten-

sively use it in what follows. Denote by q the quantile function of X, namely q(α) = inf{x ≥

0 |F (x) ≥ α} for all α ∈ (0, 1). In other words, the function q is the left-continuous inverse of F .

Let moreover m = inf{α ∈ [0, 1] | g(α) > 0} and M = sup{α ∈ [0, 1] | g(α) < 1}, and assume that

F is strictly increasing on V ∩ (0,∞), V an open interval containing [q(1−M), q(1−m)].

Noticing that F (x) = inf{α ∈ (0, 1) | q(α) > x} and thus F is the right-continuous inverse of q, a

classical change-of-variables formula and an integration by parts then entail that Rg(X), provided

it is finite, can be written as

Rg(X) =

∫ 1

0

g(α)dq(1− α) =

∫ 1

0

q(1− α)dg(α).

A Wang DRM is thus a Lebesgue-Stieltjes weighted version of the expectation of the random variable

X, and the weighting scheme is given by the measure dg(·). The above formula is actually true when

g is continuous, with no condition at all on the distribution of X; when g is absolutely continuous,

the weight is given by the Lebesgue derivative g′ of g. Specific examples include

• the quantile (or Value-at-Risk) at level β for g(x) = I{x ≥ 1− β}, with I{·} being the indicator

function, in which case dg(·) is actually the Dirac measure at 1− β;

• the Tail Value-at-Risk TVaR(β) in the worst 100(1−β)% cases, namely the average of all quan-

tiles exceeding the quantile q(β), for g(x) = min(x/(1 − β), 1) and dg(·) being the Lebesgue

measure on [0, 1− β] up to a positive constant.

For more examples of DRMs, see Table 1 in El Methni and Stupfler (2016).

While the family of Wang DRMs of X already gives more information than a finite number of its

quantiles, yet more information may be recovered by considering Wang DRMs of functions of X.

More precisely, if h : (0,∞) → (0,∞) is a strictly increasing, continuously differentiable function

then, under the aforementioned regularity conditions, the Wang DRM of h(X) with distortion
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function g is

Rg(h(X)) =

∫ 1

0

h ◦ q(1− α)dg(α).

Since, when F is continuous, the Conditional Tail Moment (CTM) of order a of X (see El Methni

et al., 2014) is

E(Xa|X > q(β)) =
1

1− β

∫ 1−β

0

[q(1− α)]adα,

we may therefore obtain the CTM of order a by choosing g(x) = min(x/(1− β), 1), β ∈ (0, 1) and

h(x) = xa, with a > 0, as well as any risk measure obtained by combinations of CTMs; we refer

the reader to Table 2 in El Methni and Stupfler (2016) for further examples.

The idea developed in El Methni and Stupfler (2016) in order to obtain Wang DRMs of the extremes

of X is to consider

Rg,β(h(X)) :=

∫ 1

0

h ◦ q(1− (1− β)s)dg(s).

A similar, if slightly different, idea is Yang (2015), while a construction adapted to stop-loss risk

measures is Vandewalle and Beirlant (2006). In the remainder of this paper, we assume that the

quantile function q of X is continuous and strictly increasing in a neighbourhood of infinity; it can

then be shown (see Proposition 1 in El Methni and Stupfler, 2016) that Rg,β(h(X)) is actually, for β

large enough, the Wang DRM Rg of h(Xβ), where Xβ
d
= X|X > q(β). In other words, Rg,β(h(X))

is the Wang DRM of h(X) given that X lies above a (high) level. Using this construction, it is very

easy to recover several extreme parameters such as an extreme quantile/Value-At-Risk, an extreme

Tail-Value-at-Risk or extreme versions of the CTMs.

An important question is then to consider the estimation of such extreme Wang DRMs. An idea

to tackle this problem is that of El Methni and Stupfler (2016): consider a sample of independent

random variables (X1, . . . , Xn) having cumulative distribution function F and (βn) a nondecreasing

sequence of real numbers belonging to (0, 1) which converges to 1. Moreover, denote by F̂n the

empirical cumulative distribution function related to this sample and by q̂n the related empirical

quantile function:

F̂n(x) =
1

n

n∑
i=1

I{Xi ≤ x} and q̂n(α) = inf{t ∈ R | F̂n(t) ≥ α} = Xdnαe,n,

in which X1,n ≤ · · · ≤ Xn,n are the order statistics of the sample (X1, . . . , Xn) and d·e denotes the

ceiling function. A first step is to estimate the Wang DRM Rg,βn
(h(X)) by its empirical, functional

plug-in counterpart:

R̂PL
g,βn

(h(X)) :=

∫ 1

0

h ◦ q̂n(1− (1− βn)s)dg(s) =

∫ 1

0

h(Xdn(1−(1−βn)s)e,n)dg(s).

6



When h is a power function, which is enough to recover all Wang DRMs as well as the class of

Conditional Tail Moments, this estimator, which we shall refer to as the PL estimator hereafter, is

consistent and asymptotically normal when (βn) is an intermediate sequence, namely n(1−βn)→∞

as n→∞, within an extreme value framework we will introduce shortly (see El Methni and Stupfler,

2016). This is a usual and well-understood restriction in extreme value theory: to estimate the

Wang DRM above level q(βn) by an empirical estimator in a consistent fashion, then q(βn) should

be asymptotically within the range of the data, or equivalently, there should be a growing number

of data points above q(βn) to ensure that its empirical estimator Xdnβne,n is relatively consistent.

The case when n(1− βn)→ λ <∞, corresponding to proper extreme quantiles, is then handled by

the classical extrapolation argument of Weissman (1978).

3 Extreme Wang DRM estimation

3.1 Heavy tails, top order statistics and finite-sample variability

A problem with the use of the PL estimator in practice arises when g is strictly increasing in a

left neighbourhood of 1, which is for instance the case for the Tail-Value-at-Risk, Dual Power and

Proportional Hazard risk measures considered in El Methni and Stupfler (2016). In that case, the

PL estimator takes into account all the data above level Xdnβne,n in the sample; in any sample

where some of the highest order statistics are far from their population counterparts, this will result

in inappropriate estimates. Such situations appear regularly: suppose here that X has a Pareto

distribution with parameter 1/γ, i.e.

∀x ≥ 1, F (x) = 1− x−1/γ so that ∀α ∈ (0, 1), q(α) = (1− α)−γ .

The probability that the sample maximum Xn,n exceeds a multiple of its population counterpart,

namely the quantile q(1− n−1), is then

P(Xn,n > Kq(1− n−1)) = 1−
[
1− P(X > Kq(1− n−1))

]n
= 1−

[
1− K−1/γ

n

]n
≈ 1− exp(−K−1/γ) for large enough n.

This result is, of course, linked to the fact that sample quantiles at extreme levels do not estimate

the corresponding true quantiles consistently; a related point is that, sample-wise, the most extreme

values tend not to give a fair picture of the extremes of the underlying distribution (see e.g. Ghosh

and Resnick, 2010). Carrying on with this example, it follows that in the case γ = 0.49, K = 3,

and n = 1000, the sample maximum is larger than 88.54, which is three times the quantile at level

7



0.999, with probability approximately equal to 0.101. In this sense, approximately 10% of samples

feature at least an unusually high value. Besides, as the above calculation shows, the probability

that a sample features one or several very large values increases as γ increases, i.e. as the tail gets

heavier. The influence of such values on extreme Wang DRM estimates should of course not be

underestimated. In the case of the Tail-Value-at-Risk, obtained for g(s) = s, namely:

TVaR(β) = RId,β(X) =
1

1− β

∫ 1−β

0

q(1− α)dα =
(1− β)−γ

1− γ
,

a quick simulation study showed us that, on 5000 replicates of a sample of 1000 independent random

copies of the aforementioned Pareto distribution conditioned on the fact that the sample maximum

is larger than 88.54, the relative bias of the Tail-Value-at-Risk PL estimator

R̂PL
Id,β(X) =

1

1− β

∫ 1−β

0

q̂n(1− α)dα =
1

n(1− β)

n(1−β)∑
j=1

Xn−j+1,n

at level β = 0.95 is approximately 0.389. In other words, the PL estimator is, on such samples, on

average a little less than 40% higher than it should be. Of course, this could have been expected

since it is straightforward to see that the above PL estimator is adversely affected by high values

of Xn,n (just as the sample mean is). The concern here is rather that problematic cases, through

the apparition of very high values of the sample maximum and more generally of the highest order

statistics, appear more and more frequently as γ increases, even when γ is such that the estimator

R̂PL
Id,β(X) is asymptotically Gaussian (which is the case here for the extreme Tail-Value-at-Risk

estimator since γ = 0.49 < 1/2, see Theorem 2 in El Methni and Stupfler, 2016). This should

therefore mean increased variability of the estimates as γ gets larger and indeed, at the finite-sample

level, MSEs become higher (up to unsustainably high levels) when the tail of X gets heavier, as the

simulation study in El Methni and Stupfler (2016) tends to show. Our first concern is to introduce

estimators which deal with this variability issue.

3.2 First step of improvement: reducing finite-sample variability

A simple idea to tackle the problem highlighted in Section 3.1 is to delete the highest problematic

values altogether, namely to trim the PL estimator, by considering the statistic

R̂Trim
g,βn,tn(h(X)) =

∫ 1

0

h ◦ q̂n(tn − (tn − βn)s)dg(s)

where (tn) is a sequence of trimming levels, i.e. a sequence such that βn < tn ≤ 1. This is the

empirical estimator of

RTrim
g,βn,tn(h(X)) =

∫ 1

0

h ◦ q(tn − (tn − βn)s)dg(s),
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which in many cases is actually the Wang DRM of h(X) given that X lies between q(βn) and q(tn),

as the following result shows.

Proposition 1. Let β ∈ (0, 1) and t ∈ (0, 1] such that t > β. If q is continuous and strictly

increasing on an open interval containing [β, 1) then:

RTrim
g,β,t(h(X)) = Rg(h(XTrim

β,t )) with XTrim
β,t

d
= X|X ∈ [q(β), q(t)].

When ntn and n(tn−βn) are positive integers, which is common in practice (see Sections 4 and 5),

the trimmed estimator R̂Trim
g,βn,tn

(h(X)), which we shall call the Trim-PL estimator, can be conve-

niently rewritten as a generalised L-statistic:

R̂Trim
g,βn,tn(h(X)) =

n(tn−βn)∑
i=1

h(Xntn−i+1,n)

∫ 1

0

I{xi−1,n(βn, tn) ≤ s < xi,n(βn, tn)}dg(s)

+ h(Xnβn,n)

[
g(1)− lim

s→1
s<1

g(s)

]
with xi,n(βn, tn) =

i

n(tn − βn)

=

n(tn−βn)∑
i=1

h(Xntn−i+1,n)

 lim
s→xi,n(βn,tn)
s<xi,n(βn,tn)

g(s)− lim
s→xi−1,n(βn,tn)
s<xi−1,n(βn,tn)

g(s)


+ h(Xnβn,n)

[
1− lim

s→1
s<1

g(s)

]
.

When the function g is moreover continuous on [0, 1], this can be further simplified as

R̂Trim
g,βn,tn(h(X)) = h(Xnβn+1,n) +

n(tn−βn)−1∑
i=1

g

(
i

n(tn − βn)

)
[h(Xntn−i+1,n)− h(Xntn−i,n)].

It should thus be clear at this stage that the Trim-PL estimator R̂Trim
g,βn,tn

(h(X)) is both the empirical

counterpart of RTrim
g,βn,tn

(h(X)) and a trimmed estimator of Rg,βn
(h(X)) in the sense that the top

order statistics Xntn+1,n, . . . , Xn,n are discarded for the estimation. This amounts to a trimming

percentage equal to 100(1 − tn)% in the highest values of the sample. For tn = 1, we recover the

intermediate PL estimator of El Methni and Stupfler (2016).

Although the idea of trimming seems appealing because it is expected to curb the estimator’s

variability, it may not be the best method available in that it effectively reduces the available

sample size. The overall bias of the estimator, meanwhile, would be negatively affected as well,

since despite their high variability, the highest order statistics in the sample are those who carry

the least bias about the extremes of the underlying distribution. One could try reducing the loss of

information that trimming entails by winsorising the estimator R̂PL
g,βn

(h(X)) instead, which amounts

to considering the following so-called Wins-PL estimator:

R̂Wins
g,βn,tn(h(X)) =

∫ 1

0

h ◦ q̂n(min(tn, 1− (1− βn)s))dg(s).

9



When ntn and n(tn − βn) are positive integers it is easy to see that, contrary to the trimmed

estimator, the winsorised estimator replaces the data points Xntn+1,n, . . . , Xn,n by Xntn,n. This

estimator can of course also be written as a generalised L-statistic, viz.

R̂Wins
g,βn,tn(h(X)) = h(Xntn,n)

∫ 1

0

I{0 ≤ s < xn(1−tn),n(βn, 1)}dg(s)

+

n(1−βn)∑
i=n(1−tn)+1

h(Xn−i+1,n)

∫ 1

0

I{xi−1,n(βn, 1) ≤ s < xi,n(βn, 1)}dg(s)

+ h(Xnβn,n)

[
g(1)− lim

s→1
s<1

g(s)

]

=

n(1−βn)∑
i=n(1−tn)+1

h(Xn−i+1,n)

 lim
s→xi,n(βn,1)
s<xi,n(βn,1)

g(s)− lim
s→xi−1,n(βn,1)
s<xi−1,n(βn,1)

g(s)


+ h(Xnβn,n)

[
g(1)− lim

s→1
s<1

g(s)

]
+ h(Xntn,n) lim

s→xn(1−tn),n(βn,1)

s<xn(1−tn),n(βn,1)

g(s).

If g is continuous on [0, 1], this reads:

R̂Wins
g,βn,tn(h(X)) = h(Xnβn+1,n) +

n(1−βn)−1∑
i=n(1−tn)+1

g

(
i

n(1− βn)

)
[h(Xn−i+1,n)− h(Xn−i,n)].

Like the Trim-PL estimator, the Wins-PL estimator is a direct empirical estimator, of the quantity

RWins
g,βn,tn(h(X)) =

∫ 1

0

h ◦ q(min(tn, 1− (1− βn)s))dg(s)

which is actually essentially the Wang DRM of h(X) given that X is larger than q(βn) and clipped

above level q(tn):

Proposition 2. Let β ∈ (0, 1) and t ∈ (0, 1] such that t > β. If q is continuous and strictly

increasing on an open interval containing [β, 1) then:

RWins
g,β,t (h(X)) = Rg(h(XWins

β,t )) with XWins
β,t

d
= XI{q(β) ≤ X < q(t)}+ q(t)I{X ≥ q(t)}.

The focus of our paper is to study the merits of trimming/winsorising in the context of the estimation

of extreme Wang DRMs, both theoretically and at the finite-sample level. While it would be

straightforward to obtain the asymptotic properties of both estimators for fixed orders β and t

through L-statistic techniques (see e.g. Jones and Zitikis, 2003), a difficulty here lies in the fact

that we work with βn ↑ 1. As a consequence, theoretical developments involve knowing the weak

behaviour of the quantile process s 7→ q̂n(s) on [βn, 1]. The crucial tool for our proofs is a corollary

of the powerful distributional approximation stated in Theorem 2.1 of Drees (1998), relating this

tail quantile process to a standard Brownian motion up to a bias term. The relevant framework for
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this result is that of regular variation: a function f is said to be regularly varying at infinity with

index b ∈ R if f is nonnegative on the half-line (0,∞) and for any x > 0, f(tx)/f(t)→ xb as t→∞.

In this paper, the distribution of X is heavy-tailed, namely, 1 − F is regularly varying with index

−1/γ < 0, the parameter γ being the so-called tail index of the cumulative distribution function

F . We shall actually use an equivalent assumption on the left-continuous inverse U of 1/(1 − F ),

defined for y ≥ 1 by U(y) = inf{t ∈ R | 1/(1− F (t)) ≥ y} = q(1− y−1), and called the tail quantile

function. More precisely, our main hypothesis is that the tail quantile function is regularly varying

with index γ and satisfies a second-order condition (see de Haan and Ferreira, 2006):

Condition C2(γ, ρ,A): for any x > 0, we have

lim
t→∞

1

A(t)

(
U(tx)

U(t)
− xγ

)
= xγ

xρ − 1

ρ

with γ > 0, ρ ≤ 0 and A is a Borel measurable function which converges to 0 and has constant sign.

When ρ = 0, the right-hand side is to be read as xγ log x.

In condition C2(γ, ρ,A), the function |A| must be regularly varying at infinity with index ρ (see

Theorem 2.3.3 in de Haan and Ferreira, 2006). Such a condition is classical when studying estimators

of extreme parameters of a heavy-tailed distribution, because it makes it possible, through the

function A, to measure the deviation of the distribution of the random variable of interest from the

Pareto distribution, the latter being the simplest case of a heavy-tailed distribution. The function

A thus typically appears in bias conditions. Most standard examples of heavy-tailed distributions

used in extreme value theory satisfy assumption C2(γ, ρ,A) (see e.g. the examples p.59 in Beirlant

et al., 2004, and pp.61–62 in de Haan and Ferreira, 2006).

Our next step is to highlight that the Trim-PL and Wins-PL estimators are actually part of a

common class of estimators we shall define now. For 0 < β < t ≤ 1, we let F(β, t) be the set of

those nonincreasing Borel measurable functions ψ taking values in [0, 1] such that

ψ(0) = t, ψ(1) = β and ∀s ∈ [0, 1], 0 ≤ 1− (1− β)s− ψ(s) ≤ 1− t.

Let now (ψn) be a sequence of functions such that for all n, ψn ∈ F(βn, tn), and set

Rg,βn
(h(X);ψn) :=

∫ 1

0

h ◦ q ◦ ψn(s)dg(s)

whose empirical counterpart is the estimator

R̂g,βn
(h(X);ψn) =

∫ 1

0

h ◦ q̂n ◦ ψn(s)dg(s) =

∫ 1

0

h(Xdnψn(s)e,n)dg(s).

All estimators in this class only take into account data points among the Xi,n, dnβne ≤ i ≤ dntne,

and can therefore be considered robust with respect to change in the most extreme values in the
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sample when n(1 − tn) ≥ 1. The class of estimators R̂g,βn
(h(X);ψn) is a reasonable, unifying

framework for our purpose: indeed, particular examples of the sequence (ψn) are s 7→ tn−(tn−βn)s

which appears as the argument of the empirical quantile function in the Trim-PL estimator, and

s 7→ min(tn, 1− (1−βn)s) giving rise to the Wins-PL estimator. We stress that these two examples

should really be those coming to mind when reading our asymptotic results below. Finally, the case

ψn(s) = 1− (1−βn)s, corresponding to the original PL estimator of El Methni and Stupfler (2016),

is recovered by setting tn = 1.

At the technical level, because ψn(s) ≈ 1− (1−βn)s in a certain sense when tn is close enough to 1,

we should expect Rg,βn(h(X);ψn) to be close to Rg,βn(h(X)) and therefore, that R̂g,βn(h(X);ψn)

is a consistent estimator of Rg,βn
(h(X)). Our first result below shows that R̂g,βn

(h(X);ψn) is a

relatively consistent and
√
n(1− βn)−asymptotically normal estimator of Rg,βn

(h(X)) when h is

a power function, under suitable conditions on βn and tn.

Theorem 1. Assume that U satisfies condition C2(γ, ρ,A). Assume further that (ψn) is a sequence

of functions such that for all n, ψn ∈ F(βn, tn), with 0 < βn < tn ≤ 1, βn → 1, n(1 − βn) → ∞

and (1− tn)/(1− βn)→ 0.

(i) Pick a distortion function g and a > 0, and assume that for some η > 0, we have∫ 1

0

s−aγ−ηdg(s) <∞.

If furthermore
√
n(1− βn)A((1− βn)−1) = O(1) then:

R̂g,βn(Xa;ψn)

Rg,βn
(Xa)

− 1
P−→ 0.

(ii) Pick distortion functions g1, . . . , gd and a1, . . . , ad > 0, and assume that for some η > 0, we

have

∀j ∈ {1, . . . , d},
∫ 1

0

s−ajγ−1/2−ηdgj(s) <∞ and
√
n(1− tn)

(
1− tn
1− βn

)ε
→ 0

for some ε ∈ (0,min(1/2, η)). If furthermore
√
n(1− βn)A((1− βn)−1)→ λ ∈ R then:

√
n(1− βn)

(
R̂gj ,βn

(Xaj ;ψn)

Rgj ,βn
(Xaj )

− 1

)
1≤j≤d

d−→ N (0, V )

with V being the d× d matrix whose (i, j)−th entry is

Vi,j = aiajγ
2

∫
[0,1]2

min(s, t)s−aiγ−1t−ajγ−1dgi(s)dgj(t)∫ 1

0
s−aiγdgi(s)

∫ 1

0
t−ajγdgj(t)
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A particularly appealing consequence of Theorem 1 is consistency of the estimators R̂g,βn
(Xa;ψn)

under mild conditions. Especially, the integrability condition
∫ 1

0
s−aγ−ηdg(s) < ∞ needed to en-

sure consistency is weaker than the integrability condition
∫ 1

0
s−aγ−1/2−ηdg(s) < ∞ obtained in

El Methni and Stupfler (2016). Broadly speaking, the former condition
∫ 1

0
s−aγ−ηdg(s) < ∞ is

essentially the one required for the existence of the Wang DRM Rg,βn
(Xa) to be estimated, while

the latter is needed to write a weak approximation of our estimator by an integral of a standard

Brownian motion. We may in fact choose tn = 1, for which we get the consistency of the PL

estimator of El Methni and Stupfler (2016), which is not shown therein; let us point out that

the proof of Theorem 1(i) consists of two steps, the first one being to prove that any estimator

R̂g,βn(Xa;ψn) is asymptotically equivalent to another estimator in this class for which we can as-

sume that n(1− tn) ≥ 1, and the second one being to show the consistency of the latter estimator.

In particular, the consistency of proper trimmed/winsorised estimators can be used together with

an approximation argument to obtain the consistency of the estimator using all the data above a

high threshold.

A second property of the estimators R̂g,βn
(Xa;ψn) is that they share the same limiting Gaussian

distribution under the classical bias condition
√
n(1− βn)A((1 − βn)−1) → λ ∈ R and provided

hypothesis
√
n(1− tn)[(1 − tn)/(1 − βn)]ε → 0, relating the order tn to the intermediate level βn,

holds true. This condition implies that tn should converge to 1 quickly enough, or, in other words,

that not too many values should be deleted from the sample for asymptotic unbiasedness to hold.

The necessity of such a condition appears in the earlier works of Csörgo, Csörgo, Horváth and Mason

(1986) and Csörgo, Horváth and Mason (1986) in the context of mean estimation by the trimmed

sample mean: in the former paper, it is shown that discarding a fixed number of order statistics

does not create asymptotic bias, while the latter paper states that this may not be true for more

severe trimmings. It should be noted that our assumption is clearly satisfied for tn = 1− c/n, with

c being a fixed nonnegative integer, corresponding to the case when the c top order statistics are

discarded and the trimming/winsorising percentage across the whole sample is 100c/n%. Finally,

taking tn = 1 in Theorem 1(ii) yields the original asymptotic normality result for the PL estimator

in El Methni and Stupfler (2016).

As noted therein, the integrability conditions of Theorem 1 can be difficult to grasp. They are,

however, determined by the behaviour of g in a neighbourhood of 0, which motivates the introduction

of the classes of functions

Eb[0, 1] :=

{
g : [0, 1]→ R | g continuously differentiable on (0, 1) and lim sup

s↓0
s−b|g′(s)| <∞

}
.

The classes Eb[0, 1], b > −1 can be considered as the spaces of those continuously differentiable
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functions g whose first derivative behaves like a power of s in a neighbourhood of 0. Especially,

any polynomial function belongs to E0[0, 1], and the Proportional Hazard (Wang, 1995) distortion

function g(s) = sα, α ∈ (0, 1) belongs to Eα−1[0, 1]. Our next result sums up what can be said when

g belongs to such a space.

Corollary 1. Assume that U satisfies condition C2(γ, ρ,A). Assume further that (ψn) is a sequence

of functions such that for all n, ψn ∈ F(βn, tn), with 0 < βn < tn ≤ 1, βn → 1, n(1 − βn) → ∞

and (1− tn)/(1− βn)→ 0.

(i) Pick a distortion function g and a > 0. Assume that g belongs to some Eb[0, 1] with b > −1.

If γ < (b+ 1)/a and
√
n(1− βn)A((1− βn)−1) = O(1) then:

R̂g,βn
(Xa;ψn)

Rg,βn
(Xa)

− 1
P−→ 0.

(ii) Pick distortion functions g1, . . . , gd and a1, . . . , ad > 0. Assume there are b1, . . . , bd > −1

such that gj ∈ Ebj [0, 1] for all j ∈ {1, . . . , d}. If γ < (2bj + 1)/(2aj) for all j ∈ {1, . . . , d} and

√
n(1− βn)A((1− βn)−1)→ λ ∈ R and

√
n(1− tn)

(
1− tn
1− βn

)ε
→ 0

for some ε ∈ (0,min(0, b1 − a1γ, . . . , bd − adγ) + 1/2) then:

√
n(1− βn)

(
R̂gj ,βn

(Xaj ;ψn)

Rgj ,βn(Xaj )
− 1

)
1≤j≤d

d−→ N (0, V )

with V as in Theorem 1.

As previously noted, the integrability condition for the asymptotic normality of our class of esti-

mators is that of El Methni and Stupfler (2016), which was already obtained by El Methni et al.

(2014) in the case of the CTM of order a (for which b = 0). In this case, Corollary 1 shows that

the condition γ < 1/a, which is exactly the condition needed to ensure that the CTM of order a

exists, is sufficient to make sure that the estimator R̂g,βn
(Xa;ψn) is consistent. For instance, in

the case a = 1, corresponding to the estimation of the extreme Tail-Value-at-Risk, this condition is

γ < 1, which is exactly the condition required for the existence of a finite mean, instead of the more

restrictive condition γ < 1/2 which would be required for the existence of a finite second moment.

By contrast, El Methni et al. (2014), working in a model with random covariates, always require

γ < 1/(2a) in their asymptotic results. They do, however, only require that a first-order condition

hold instead of second-order condition C2(γ, ρ,A), which is made possible since their CTM estimator

can be written as a sum of independent and identically distributed random variables and is thus

much easier to handle than our generalised L-statistics.
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3.3 Second step of improvement: finite-sample bias correction

Our estimators introduced above have been shown to be asymptotically normal estimators of Wang

DRMs. It should be noted that on finite-sample situations, such estimators can be expected to

carry some (negative) bias, all the more so as the trimming/winsorising order tn increases. An

intuitive justification for this behaviour is that the estimator R̂g,βn(Xa;ψn) is actually the empirical

counterpart of Rg,βn
(Xa;ψn), which is in general different from, and especially less than, the target

DRM Rg,βn
(Xa). For instance, in the case of extreme Tail-Value-at-Risk estimation for the Pareto

distribution with tail index γ, then the Tail-Value-at-Risk of X in the worst 100(1− βn)% cases is

Rg,βn
(X) =

(1− βn)−γ

1− γ
,

see Section 3.1. By contrast, the trimmed Tail-Value-at-Risk given that X lies between levels q(βn)

and q(tn) is obtained for ψn(s) = tn − (tn − βn)s and is

RTrim
g,βn,tn(X) =

∫ 1

0

q(tn − (tn − βn)s)dg(s) =

∫ 1

0

[1− tn + (tn − βn)s]−γds

=
(1− βn)1−γ − (1− tn)1−γ

(1− γ)(tn − βn)
.

Rewriting this as

RTrim
g,βn,tn(X) = Rg,βn

(X)

{
(1− βn)1−γ − (1− tn)1−γ

(1− βn)−γ(tn − βn)

}
results in an expression of RTrim

g,βn,tn
(X) as Rg,βn

(X) multiplied by a correction factor depending

on βn, tn and γ. In the case n = 1000, βn = 0.9, tn = 0.99 and γ = 1/2, namely the top 100

observations are selected and the top 10 observations among them are eliminated, the correction

factor is actually 0.760, i.e. the expected relative bias is −0.240. When the number of observations

removed is halved (tn = 0.995) this factor becomes 0.817 for an expected relative bias of −0.183.

The smallest trimming percentage, tn = 0.999, for removal of the sample maximum only, results in

a correction factor of 0.909, which is still an expected relative bias of −0.091.

To retain the reduction in variability brought by the estimator R̂g,βn
(X;ψn) and at the same

time obtain an estimator with acceptable bias, we design a new estimator based on the previous

calculation. More precisely, in the case of Tail-Value-at-Risk estimation, estimating γ by a consistent

estimator γ̂n and plugging in our previous estimator R̂g,βn
(X;ψn) = R̂Trim

g,βn,tn
(X) in the left-hand

side of the above equality gives the corrected estimator

R̃g,βn
(X;ψn) = R̂g,βn

(X;ψn)

{
(1− βn)1−γ̂n − (1− tn)1−γ̂n

(1− βn)−γ̂n(tn − βn)

}−1

.

Note that the correction factor is in fact{
(1− βn)1−γ̂n − (1− tn)1−γ̂n

(1− βn)−γ̂n(tn − βn)

}−1

=
Rg,βn

(Yγ̂n)

Rg,βn(Yγ̂n ;ψn)
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where Yγ has a Pareto distribution with tail index γ. There is an abundant literature on consistent

estimation of the parameter γ: we refer, among others, to the very popular Hill estimator (Hill,

1975), the Pickands estimator (1975), the maximum likelihood estimator (Smith, 1987 and Drees et

al., 2004) and probability-weighted moment estimators (Hosking et al., 1985, Diebolt et al., 2007).

A comprehensive review is contained in Section 5 of Gomes and Guillou (2015).

Of course, in practice the underlying distribution of X is not known, but in many cases the Pareto

distribution (or a multiple of it) still provides a decent approximation for X in its right tail. It can

thus be expected that in a wide range of situations and for n large enough,

Rg,βn
(Xa) = Rg,βn

(Xa;ψn)
Rg,βn(Xa)

Rg,βn
(Xa;ψn)

≈ Rg,βn
(Xa;ψn)

Rg,βn(Yaγ)

Rg,βn
(Yaγ ;ψn)

.

This motivates our class of corrected estimators:

R̃g,βn
(Xa;ψn) = R̂g,βn

(Xa;ψn)
Rg,βn(Yaγ̂n)

Rg,βn
(Yaγ̂n ;ψn)

= R̂g,βn
(Xa;ψn)

∫ 1

0
[(1− βn)s]−aγ̂ndg(s)∫ 1

0
[1− ψn(s)]−aγ̂ndg(s)

.

This estimator should be seen as the result of a two-stage procedure:

• first, compute an estimator of the target extreme Wang DRM using a trimmed/winsorised

sample, thus reducing variability;

• use what can be found on the tail behaviour of the sample to shift the previous estimate back

to an essentially bias-neutral position.

Note that the correction factor might depend on the top values in the sample, but can only actually

do so through the estimator γ̂n. For instance, the Hill estimator of γ,

γ̂βn
=

1

dn(1− βn)e

dn(1−βn)e∑
i=1

log (Xn−i+1,n)− log
(
Xn−dn(1−βn)e,n

)
,

of which we consider a bias-reduced version in our simulation study below, depends on the top

values only through their logarithms, which sharply reduces their contribution to the variability of

our final estimator.

The next result shows that any member of this new class of corrected estimators shares the asymp-

totic properties of its uncorrected version. Our preference shall thus be driven by finite-sample

considerations.

Theorem 2. Assume that U satisfies condition C2(γ, ρ,A). Assume further that (ψn) is a sequence

of functions such that for all n, ψn ∈ F(βn, tn), with 0 < βn < tn ≤ 1, βn → 1, n(1 − βn) → ∞

and (1− tn)/(1− βn)→ 0.
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(i) Pick a distortion function g and a > 0, and assume that for some η > 0, we have∫ 1

0

s−aγ−ηdg(s) <∞.

If furthermore
√
n(1− βn)A((1 − βn)−1) = O(1) then, provided γ̂n is a consistent estimator

of γ, it holds that:

R̃g,βn
(Xa;ψn)

R̂g,βn(Xa;ψn)
− 1 and therefore

R̃g,βn
(Xa;ψn)

Rg,βn
(Xa)

− 1
P−→ 0.

(ii) Pick distortion functions g1, . . . , gd and a1, . . . , ad > 0, and assume that for some η > 0, we

have

∀j ∈ {1, . . . , d},
∫ 1

0

s−ajγ−1/2−ηdgj(s) <∞ and
√
n(1− tn)

(
1− tn
1− βn

)ε
→ 0

for some ε ∈ (0,min(1/2, η)). If furthermore
√
n(1− βn)A((1 − βn)−1) → λ ∈ R and√

n(1− βn)(γ̂n − γ) = OP(1) then:

∀j ∈ {1, . . . , d},
√
n(1− βn)

(
R̃gj ,βn

(Xaj ;ψn)

R̂gj ,βn
(Xaj ;ψn)

− 1

)
P−→ 0

and therefore √
n(1− βn)

(
R̃gj ,βn

(Xaj ;ψn)

Rgj ,βn
(Xaj )

− 1

)
1≤j≤d

d−→ N (0, V )

with V as in Theorem 1.

It should be noted here that the requirement
√
n(1− βn)(γ̂n−γ) = OP(1) is hardly a restrictive one,

for all the aforementioned tail index estimators satisfy such a property in their respective domains

of validity under second-order condition C2(γ, ρ,A), see Sections 3 and 4 in de Haan and Ferreira

(2006).

As we mentioned at the end of Section 2, the empirical estimators we have developed so far only

work provided βn is an intermediate level, namely n(1 − βn) → ∞. The next part of this paper

focuses on designing an estimator working for arbitrarily extreme levels as well.

3.4 Final step: estimation in the extreme case

We now design a consistent estimator of an arbitrarily extreme risk measure by using an extrapo-

lation property of the tail quantile function U . Let (δn) be a sequence converging to 1 such that

(1 − δn)/(1 − βn) converges to a positive and finite limit, and remark that for any s ∈ (0, 1) and

a > 0 we have:

[q(1− (1− δn)s)]a =

(
1− βn
1− δn

)aγ
[q(1− (1− βn)s)]a(1 + o(1))
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as n → ∞, as a consequence of the regular variation property of U(y) = q(1 − y−1). Integrating

the above relationship with respect to the distortion measure dg yields:

Rg,δn(Xa) =

(
1− βn
1− δn

)aγ
Rg,βn

(Xa)(1 + o(1)),

To put it differently, the extreme risk measure Rg,δn(Xa) is essentially obtained by multiplying the

intermediate risk measure Rg,βn(Xa) by an extrapolation factor depending on the unknown tail

index γ. To estimate the left-hand side, we then suppose that n(1 − δn) → c < ∞, we take a

sequence (βn) such that n(1− βn)→∞ and we define

R̃Wg,δn(Xa;ψn) :=

(
1− βn
1− δn

)aγ̂n
R̃g,βn

(Xa;ψn)

where γ̂n is the consistent estimator of γ appearing in R̃g,βn(Xa;ψn). This is a Weissman-type

estimator of Rg,δn(Xa) (see Weissman, 1978, for the estimation of extreme quantiles). Weissman’s

estimator is actually recovered for a = 1, tn = 1 and g(s) = 0 if s < 1, and the extrapolated PL

estimators of El Methni and Stupfler (2016) are obtained for tn = 1.

Our second main result examines the asymptotic distribution of this class of extrapolated estimators.

Theorem 3. Assume that U satisfies condition C2(γ, ρ,A), with ρ < 0. Assume further that

(ψn) is a sequence of functions such that for all n, ψn ∈ F(βn, tn), with 0 < βn < tn ≤ 1,

βn → 1, n(1 − βn) → ∞ and (1 − tn)/(1 − βn) → 0; let finally a sequence δn → 1 be such that

(1− δn)/(1− βn)→ 0 and log[(1− δn)/(1− βn)]/
√
n(1− βn)→ 0. Pick now distortion functions

g1, . . . , gd and a1, . . . , ad > 0, and assume that for some η > 0, we have

∀j ∈ {1, . . . , d},
∫ 1

0

s−ajγ−1/2−ηdgj(s) <∞ and
√
n(1− tn)

(
1− tn
1− βn

)ε
→ 0

for some ε ∈ (0,min(1/2, η)). If furthermore√
n(1− βn)A((1− βn)−1)→ λ ∈ R and

√
n(1− βn)(γ̂n − γ)

d−→ ξ

then: √
n(1− βn)

log([1− βn]/[1− δn])

(
R̃Wgj ,δn(Xaj ;ψn)

Rgj ,δn(Xaj )
− 1

)
1≤j≤d

d−→


a1ξ

...

adξ

 .

Again, in the case tn = 1, we recover the asymptotic normality result of El Methni and Stupfler

(2016) for the class of extrapolated PL estimators. Our robust extreme risk measure estimators have

therefore the same asymptotic distribution as the original PL estimator, under the same technical

conditions. We can thus conclude that considering trimmed/winsorised estimators results in a

generalisation of the existing theory of estimators of extreme Wang DRMs. Our next section shall

show that this also results in improved finite-sample performance.
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4 Simulation study

We illustrate the finite-sample performance of our estimators on the following simulation study,

where we consider a pair of heavy-tailed distributions and three distortion functions g. The distri-

butions studied are:

• the Fréchet distribution: F (x) = exp(−x−1/γ), x > 0;

• the Burr distribution: F (x) = 1− (1 + x−ρ/γ)1/ρ, x > 0 (here ρ ≤ 0).

These distributions have tail index γ; meanwhile, their respective second-order parameters are −1

and ρ, see e.g. Beirlant et al. (2004). We can therefore get an idea of the influence of the parameters

γ and ρ on the finite-sample behaviour of our estimators using these two distributions. When the

Burr distribution is considered, we shall take ρ ∈ {−1,−5}.

We consider the following distortion functions:

• the Tail-Value-at-Risk (TVaR) function g(x) = x which weights all quantiles equally;

• the Dual Power (DP) function g(x) = 1− (1−x)1/α with α ∈ (0, 1), which gives higher weight

to large quantiles. When c := 1/α is a positive integer, the related DRM is the expectation

of max(X1, . . . , Xc) for independent copies X1, . . . , Xc of X;

• the Proportional Hazard (PH) transform function g(x) = xα with α ∈ (0, 1), which gives

higher weight to large quantiles and is such that g′(s) ↑ ∞ as s ↓ 0. When c := 1/α is a

positive integer, the related DRM is the expectation of a random variable Y whose distribution

is such that X has the same distribution as min(Y1, . . . , Yc) for independent copies Y1, . . . , Yc

of Y . See also Cherny and Madan (2009).

Each risk measure we should estimate, at an extreme level δn, is estimated using the extrapolated

estimator R̃Wg,δn(X;ψn). The following choices of ψn are considered:

• ψn(s) = 1− (1− βn)s, corresponding to the PL estimator;

• ψn(s) = tn − (tn − βn)s, corresponding to the corrected Trim-PL estimator, which we denote

by CTrim-PL;

• ψn(s) = min(tn, 1− (1− βn)s), corresponding to the corrected Wins-PL estimator, which we

denote by CWins-PL.

Because any of the studied estimators uses a preliminary estimation at level βn where (βn) is some

intermediate sequence, we first discuss the choice of this level. As noted numerous times in the
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extreme value literature, this is a crucial step: a value of βn too close to 1 increases the variance

of the estimator dramatically, while a value of βn too far from 1 results in biased estimates. An

overview of possible techniques is given in Section 5.4 of Gomes and Guillou (2014). We choose

here to use a data-driven criterion, based on the search for a stable part of the plot of a tail index

estimator, and similar to that of El Methni and Stupfler (2016); see also Stupfler (2013), Gardes

and Stupfler (2014) and Stupfler (2016) for other implementations. We work with a bias-reduced

version γ̂βn
of the Hill estimator (Hill, 1975) suggested by Caeiro et al. (2005) (see also Gomes et

al., 2016), which we shall also ultimately use to estimate the parameter γ:

γ̂βn
= Hn(dn(1− βn)e)

(
1− B̂

1− ρ̂

(
n

dn(1− βn)e

)−ρ̂)

with Hn(k) =
1

k

k∑
i=1

log (Xn−i+1,n)− log (Xn−k,n) .

Here B̂ is an estimator of the parameter B such that the left-continuous inverse U of 1/(1 − F )

satisfies

U(z) = Czγ
(

1 +
γ

ρ
Bzρ + o(zρ)

)
as z →∞,

and ρ̂ is an estimator of the second-order parameter ρ. In particular, we use the version of γ̂βn

implemented in the function mop of the R package evt0, which is discussed in Gomes et al. (2016).

Our idea is now to detect the last stability region in the plot β 7→ γ̂β . Specifically:

• choose β0 > 0 and a window parameter h1 > 1/n;

• for β0 < β < 1 − h1, let I(β) = [β, β + h1] and compute the standard deviation σ(β) of the

set of estimates {γ̂b, b ∈ I(β)};

• if β 7→ σ(β) is monotonic, let βlm be β0 if it is increasing and 1− h1 if it is decreasing;

• otherwise, denote by βlm the last value of β such that σ(β) is locally minimal and its value is

less than the average value of the function β 7→ σ(β);

• choose β∗ such that γ̂β∗ is the median of {γ̂b, b ∈ I(βlm)}. In particular, our estimate of γ is

γ̂β∗ .

Here we conduct this choice procedure with β0 = 0.5 and h1 = 0.1. Once the parameter βn has been

chosen as β∗, we can compute the extrapolated PL estimator R̃Wg,δn(X|β∗) described in El Methni

and Stupfler (2016). In order to compute the extrapolated CTrim-PL and CWins-PL estimators, we

should also choose the truncation/winsorisation level tn. Similarly to our choice of βn, we introduce

a stability region argument, which this time revolves around these extreme risk measure estimators,
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and which we fully describe for the sake of clarity. Here, we emphasise the dependence of ψ upon

β and t by denoting it ψ(β, t). Our choice procedure for t, given a function ψ and the tuning

parameter β∗, is the following:

• choose t0 > 0 and a window parameter h2 > 1/n;

• for t0 < t < 1 − h2, let J(t) = [t, t + h2] and compute the standard deviation Σ(t) of the set

of estimates {R̃Wg,δn(X;ψn(β∗, θ)), θ ∈ J(t)};

• if t 7→ Σ(t) is monotonic, let tlm be t0 if it is increasing and 1− h2 if it is decreasing;

• otherwise, denote by tlm the last value of t such that σ(t) is locally minimal and its value is

less than the average value of the function t 7→ Σ(t);

• choose t∗ such that R̃Wg,δn(X|ψn(β∗, t∗)) is the median of {R̃Wg,δn(X;ψn(β∗, θ)), θ ∈ J(tlm)}.

In this simulation study, this choice procedure is conducted with t0 = 0.95 and h2 = 0.01.

The idea is now to compare the performance of the PL estimator of El Methni and Stupfler (2016)

to that of the CTrim-PL and CWins-PL estimators, first in the case of moderately heavy tails,

when the PL estimator is known to have reasonable theoretical and finite-sample properties, and

then in the case of very heavy tails, in order to illustrate the advantages of using the proposed

technique. We will in particular show that, compared to the PL estimator which uses all the data

above a high threshold, our corrected trimmed or winsorised estimators resist fairly well to the

presence of heavier tails. It will also be of interest to compare the performance of the CTrim-PL

and CWins-PL estimators, and in particular to assess whether one of them is preferable to the other

in terms of bias: recall that before correction, the trimmed estimator should be expected to have

worse finite-sample performance that the winsorised estimator.

4.1 Case 1: Moderately heavy tails

We first consider the case of moderately heavy tails. More precisely, the parameter γ is chosen

in order to ensure that Theorem 2 applies to the intermediate versions of all our estimators, and

is therefore such that our extrapolated estimators satisfy Theorem 3. This range of values of γ

is considered in El Methni and Stupfler (2016), and it is shown there that the extrapolated PL

estimator performs reasonably well when γ is moderate. We will, however, consider a range of

values of γ containing in particular the highest values of γ for which Theorem 2 applies, in order

to highlight the benefits of using our proposed estimators. The following examples are considered:

• the TVaR and DP(1/3) risk measures. In this case, Theorem 3 applies in the range γ ∈

(0, 1/2). We therefore make γ vary in the interval [0.25, 0.49] for both our tested distributions.
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• the PH(1/2) risk measure. Here, Theorem 3 applies in the range γ ∈ (0, 1/4). We therefore

choose to have γ vary in the interval [0.1, 0.24].

In each case, we carry out our computations on N = 5000 independent samples of n = 1000

independent copies of X. We record relative biases and relative mean squared errors (MSEs):

Bias(R̃Wg,δ) =
1

N

N∑
j=1

R̃Wg,δ(X;ψ∗j )

Rg,δ(X)
− 1 and MSE(R̃Wg,δ) =

1

N

N∑
j=1

(
R̃Wg,δ(X;ψ∗j )

Rg,δ(X)
− 1

)2

,

at δ = 0.999 = 1 − n−1 (here ψ∗j is the chosen function ψ for the j−th sample and for a given

estimator), so as to be able to assess both bias and variability of all the compared techniques.

Our results are reported in Figures 1 and 2. Results for the extreme DP risk measure were quali-

tatively very similar to those obtained for the extreme TVaR and are therefore not reported here;

the same applies to the Burr distribution with ρ = −1 relatively to what we found for the Fréchet

distribution. As regards the estimation of the extreme TVaR, it appears on these examples that

the proposed CTrim-PL and CWins-PL estimators perform slightly worse in terms of bias than the

original PL estimator. This is not surprising: the correction method, based on an approximation

of the upper tails of the underlying distribution by a purely Pareto tail, cannot be expected to

recover all the information the (highly variable) top order statistics carry about the extremes of

the sample. By contrast, our estimators perform better than the standard empirical extreme Wang

DRM estimator in terms of MSE; for values of γ close to but less than 1/2, the improvement is

close to 40%. This, again, was expected, since the aim of trimming/winsorising is to reduce finite-

sample variability. Surprisingly, the CTrim-PL and CWins-PL estimators seem to provide a much

improved technique for the estimation of the extreme PH risk measure, both in terms of bias and

MSE, especially when γ is large. Let us also mention that in all cases, results deteriorate when γ

increases: this is likely a consequence of the fact that, by Theorem 3, the asymptotic distribution of

our estimator is essentially that of γ̂βn − γ, which is a Gaussian distribution with variance propor-

tional to γ2 (see Theorem 3.2 in Caeiro et al., 2005). It should finally be underlined that for smaller

values of γ (e.g. in the case of TVaR estimation, γ = 1/4, corresponding essentially to the existence

of a finite fourth moment) the extrapolated PL, CTrim-PL and CWins-PL estimators have virtually

indistinguishable finite-sample performance. There seems, therefore, to be no loss in efficiency when

using the proposed estimators for small values of γ, while they display a sharply lower variability

for an arguably small potential price in terms of bias when γ is larger. It also appears that on these

examples, for moderately heavy tails, the CTrim-PL and CWins-PL estimators have very similar

finite-sample behaviours, so there is on average no clear advantage in using one of these methods

over the other.
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Figure 1: Extreme TVaR estimation with δ = 0.999, for γ ∈ [0.25, 0.49]. Left panels: relative

bias, right panels: relative MSE. Top: Case of the Fréchet distribution, bottom: case of the Burr

distribution with ρ = −5. Full line: PL estimator, dotted line: CTrim-PL estimator, dashed line:

CWins-PL estimator.
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Figure 2: Extreme PH(1/2) estimation with δ = 0.999, for γ ∈ [0.1, 0.24]. Left panels: relative

bias, right panels: relative MSE. Top: Case of the Fréchet distribution, bottom: case of the Burr

distribution with ρ = −5. Full line: PL estimator, dotted line: CTrim-PL estimator, dashed line:

CWins-PL estimator.
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4.2 Case 2: Very heavy tails

We now consider the case of heavier tails, where Theorem 2 fails to hold. Such cases will allow us

to understand the behaviour of the tested estimators on more challenging situations. Specifically,

we examine the following cases:

• the TVaR and DP(1/3) risk measures, with γ varying in the interval [0.5, 0.75] for both our

tested distributions.

• the PH(1/2) risk measure, with γ belonging to the interval [0.25, 0.35].

In those cases, sample MSEs can still be computed but will not converge anymore, because γ is so

large that the relative mean squared error of our estimators at an intermediate level is infinite:

E

(
R̃g,βn

(X;ψn)

Rg,βn(X)
− 1

)2

= +∞.

In order to assess both bias and variability here, we therefore look at two different situations:

(i) In the first one, we generate N = 5000 independent samples of n = 1000 independent copies

of X, and we record relative biases for all estimators.

(ii) In the second one, we generate N = 5000 independent samples of n = 1000 independent copies

of X given that the sample maximum Xn,n exceeds the large value 2Rg,δ(X), with δ = 0.999.

Again, we record relative biases for all estimators.

The idea here is to first use (i) to assess to which extent the correction factor in our estimators

manages to eliminate the bias introduced by the trimming/winsorising scheme, and then to evaluate

the advantages, in terms of variability, of using the proposed techniques in challenging cases using

(ii). It should be mentioned that although the cases examined in (ii) are in some sense atypical,

they are not at all infrequent: for instance, in the case of the Tail-Value-at-Risk for the Fréchet

distribution with parameter γ = 1/2 and δ = 0.999, then Rg,δ(X) ≈ 63.25 and

P(Xn,n > 2Rg,δ(X)) = 1− [P(X ≤ 2Rg,δ(X))]n ≈ 0.0606

with n = 1000. In other words, 6% of samples of size 1000 feature the difficulty considered here,

which we believe makes it well worth studying.

As in the previous section, we carry out our computations on N = 5000 independent samples of

n = 1000 independent copies of X, and we record relative biases at δ = 0.999 = 1− n−1.

Results are reported in Figures 3 and 4, the left panels representing biases recorded in non-

conditioned cases and the right panels representing results in the difficult conditioned cases. As in
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the previous study on moderate tails, results for the extreme DP risk measure (resp. for the Burr

distribution with ρ = −1) were qualitatively very similar to those obtained for the extreme TVaR

(resp. for the Fréchet distribution) and are therefore not reported here. When estimating the ex-

treme TVaR in standard cases, our CTrim-PL and CWins-PL estimators perform very similarly, in

terms of bias, to the original PL estimator. The actual performance of the suggested estimators is

very slightly better in the case of the Fréchet distribution, and slightly worse in the case of the Burr

distribution with ρ = −5. By contrast, a real improvement is found using the suggested methods on

atypical cases: the CTrim-PL and CWins-PL estimators more than halve the bias overall in the case

of the Fréchet distribution, and can reduce it by up to 90% in the case of the Burr distribution with

ρ = −5. As regards extreme PH estimation, the surprising conclusion we reached when discussing

the performance of our estimators with moderately heavy tails is still valid: the CTrim-PL and

CWins-PL estimators appear to provide a bias-reduced technique in this case, all the more so for

larger values of γ. There is again a marked improvement in terms of bias in atypical cases, as the

reductions in bias observed when estimating the extreme TVaR still apply in the case of extreme

PH estimation.

As a conclusion, it appears on these heavier-tailed examples that in general, the CTrim-PL and

CWins-PL have comparable performance to that of the PL estimator in the case of extreme TVaR

and DP estimation, while they provide a significant improvement when estimating the extreme PH

risk measure. In the most difficult cases with respect to the behaviour of the top order statistics in

the sample, these two methods represent overall a great improvement over the PL estimator. We

also highlight that on these examples and similarly to the moderate tails case, the CTrim-PL and

CWins-PL estimators exhibit similar finite-sample behaviours, so that there is no obvious reason

to choose one over the other in general. Which of these estimators should actually be chosen has

to be decided case by case, and we present one example of such a choice in our real data analysis

below.
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Figure 3: Extreme TVaR estimation with δ = 0.999, for γ ∈ [0.5, 0.75]. Left panels: non-conditioned

cases, right panels: conditioned cases. Top: Case of the Fréchet distribution, bottom: case of the

Burr distribution with ρ = −5. Full line: PL estimator, dotted line: CTrim-PL estimator, dashed

line: CWins-PL estimator.

27



0.26 0.28 0.30 0.32 0.34

−
0

.2
5

−
0

.2
0

−
0

.1
5

−
0

.1
0

−
0

.0
5

0
.0

0
0

.0
5

0.26 0.28 0.30 0.32 0.34

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

1
.6

0.26 0.28 0.30 0.32 0.34

−
0

.3
0

−
0

.2
5

−
0

.2
0

−
0

.1
5

−
0

.1
0

−
0

.0
5

0.26 0.28 0.30 0.32 0.34

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Figure 4: Extreme PH(1/2) estimation with δ = 0.999, for γ ∈ [0.25, 0.35]. Left panels: non-

conditioned cases, right panels: conditioned cases. Top: Case of the Fréchet distribution, bottom:

case of the Burr distribution with ρ = −5. Full line: PL estimator, dotted line: CTrim-PL estimator,

dashed line: CWins-PL estimator.
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5 Real data application

We apply here our technique to a real insurance data set. We consider data on n = 1098 commercial

fire losses recorded between 1 January 1995 and 31 December 1996 by the FFSA (an acronym for

the Fédération Française des Sociétés d’Assurance), available from the R package CASdatasets by

prompting data(frecomfire). The data, originally recorded in French francs, is here converted

into euros, and denoted by (X1, . . . , Xn). The analysis of this kind of data set from an extreme

value point of view is useful to insurers, especially in view of the Solvency II directive: in order

to be able to compute their capital requirements so as to survive the upcoming calendar year with

a probability not less than 0.995, insurance companies have to take into account extremely high

losses. It is also crucial for insurance companies to estimate the capital requirement as accurately

as possible: an underestimation of this quantity can threaten the company’s survival, while an

overestimation may, among others, lead to the insurer asking for higher premiums on policies, thus

reducing the company’s competitiveness on the market.

We start by estimating the tail index γ. To this end, we use the procedure outlined in Section 4: the

sample fraction chosen to compute the tail index is then 1−β∗ ≈ 0.120, for an estimate γ̂β∗ ≈ 0.697.

This suggests a very heavy tail, in the sense that γ̂β∗ > 1/2 and therefore the underlying distribution

seems to have an infinite variance. In particular, we know from the simulation study that this may

adversely affect the PL estimator of the extreme TVaR and of the extreme DP risk measure,

and justifies comparing the PL estimates to those obtained using our CTrim-PL and CWins-PL

estimators. Note that we cannot estimate the extreme PH(1/2) risk measure here since this would

require that we estimate γ to be less than 1/2.

We then compute, at the extreme level δ = 0.999 ≈ 1 − n−1, the PL, CTrim-PL and CWins-PL

estimators of the extreme TVaR and DP(1/3) risk measures, using the procedure of Section 4.

Results are summarised in Table 1. It is not clear, from these results, which estimator should be

chosen, especially since we saw in the simulation study that the CTrim-PL and CWins-PL estimators

have essentially identical statistical properties.

Our goal is now to offer some insight into this choice, using the mean excess plot of the n(1−β∗) =

132 data points used in our analysis. The rationale behind the use of the mean excess plot, i.e. the

plot of the function

u 7→
∑n
i=1(Xi − u)I{Xi>u}∑n

i=1 I{Xi>u}

is that its empirical counterpart u 7→ E(X − u|X > u) is linearly increasing when 0 < γ < 1 and X

has a Generalised Pareto distribution (see Davison and Smith, 1990). Therefore, since X can be,
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above a high level u, approximated by a Generalised Pareto distribution (see e.g. equation (3.1.2)

p.65 in de Haan and Ferreira, 2006), the extremes of the data set should be indicated by a roughly

linear part at the right of the mean excess plot. This plot can be tricky to use though: apart from

the choice of the lower threshold u above which the mean excess function is computed (which is

here chosen to be Xnβ∗,n), it has been observed that the mean excess function has very often a

non-linear behaviour at the right end of the mean excess plot (see Ghosh and Resnick, 2010). This

is again because the top order statistics in the sample suffer from a very high variability, and as a

consequence the mean excess function is, in its right end, averaging over just a few high-variance

values. In other words, the intermediate, roughly linear part of the plot indicates which ones among

the top data points can be trusted from the points of view of both bias and variability, and the

unstable part at the right end of the mean excess plot represents those highly variable values that

may be cut from the analysis using the CTrim-PL and CWins-PL estimators.

We then plot on Figure 5 copies of the mean excess plot above the value u = Xnβ∗,n where the

values cut from the analysis by the CTrim-PL and CWins-PL estimators are highlighted. We also

represent there the least squares line related to the data points kept for the analysis. It can be seen

on these plots that there is indeed an unstable part at the right end of the plot, which suggests

to use either the CTrim-PL or CWins-PL estimator in order to gain some stability. The linear

adjustment for the selected data points is also reasonable in all cases. We would argue though that

the CTrim-PL estimator is too conservative in the sense that the number of data points it discards

is high: in the DP case in particular, the estimator trims 37 top order statistics, which is 29% of

the available data above the selected threshold Xnβ∗,n. The CWins-PL estimator discards much

less data points (less than half of what the CTrim-PL estimator discards, see also Table 1), and

therefore does not have to compensate for the loss of information this entails as much as the CTrim-

PL has to, while the linear adjustment of the least squares line is still perfectly acceptable. We

would thus argue that the CWins-PL estimator is preferable here, both for extreme TVaR and DP

risk measure estimation. The estimates it yields are appreciably lower (roughly 10% less) than the

standard PL estimates, and this makes us think that the extreme TVaR and DP risk measure are

actually overestimated by the PL estimator. Our conclusion is that, using the CWins-PL estimator,

we estimate the average loss in the worst 0.1% of cases to be 208.5 million euros, and the average

value of the maximal loss recorded after three extreme fires (i.e. each belonging to the worst 0.1%

of fires) to be 404.5 million euros.
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Figure 5: Mean excess plots for the French commercial fire losses data set. Top: the mean excess plot

of the top n(1−β∗) = 132 data points, where data points excluded from the TVaR estimation when

using the CTrim-PL and CWins-PL estimators are highlighted using red triangles; left: CTrim-PL

estimator, right: CWins-PL estimator. Bottom: the mean excess plot of the top n(1 − β∗) = 132

data points, where data points excluded from the DP(1/3) estimation when using the CTrim-PL

and CWins-PL estimators are highlighted using blue squares; left: CTrim-PL estimator, right:

CWins-PL estimator. In all four cases the straight line is the least squares line for the set of black

data points.
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Estimator Order t∗
Number of top

Estimate (in euros)
order statistics cut

PL N/A N/A 225,122,925

TVaR estimation CTrim-PL 0.9736 29 219,814,856

CWins-PL 0.9909 10 208,538,799

PL N/A N/A 459,285,394

DP(1/3) estimation CTrim-PL 0.9663 37 452,920,888

CWins-PL 0.9863 15 404,498,511

Table 1: French commercial fire losses data set: estimating some risk measures in the case δ = 0.999.

Appendix

We collect here the proofs of our main and auxiliary results. In all what follows, let Fa be the

cdf of Xa and Ua(x) := [U(x)]a denote the left-continuous inverse of 1/(1 − Fa). It is crucial for

our purpose to note that by Lemma 1 in El Methni and Stupfler (2016), Ua satisfies condition

C2(aγ, ρ, aA). As a consequence, Theorem 2.3.9 in de Haan and Ferreira (2006) states that one may

find a Borel measurable function Ba, asymptotically equivalent to aA and having constant sign,

such that for any δ, ε > 0, there is t0 > 0 such that for t, tx ≥ t0:∣∣∣∣ 1

Ba(t)

(
Ua(tx)

Ua(t)
− xaγ

)
− xaγ x

ρ − 1

ρ

∣∣∣∣ ≤ εxaγ+ρ max(xη, x−η). (1)

Appendix A: Preliminary results and their proofs

The first preliminary result is a technical lemma on some integrals, which we shall use frequently

in our proofs.

Lemma 1. Let g be a distortion function. Assume that f is a Borel measurable regularly varying

function with index b ∈ R and w is a continuous and bounded function on (0, 1]. If for some η > 0:∫ 1

0

s−b−ηdg(s) <∞,

then for any δ ∈ R such that δ < η and any sequence of Borel measurable positive functions (ϕn)

such that

∀s ∈ [0, 1], s ≤ ϕn(s) ≤ 1 and ϕn(s)→ s as n→∞,

we have, provided k = k(n)→∞ and k/n→ 0:∫ 1

0

f(n/kϕn(s))

f(n/k)
[ϕn(s)]−δw(ϕn(s))dg(s)→

∫ 1

0

s−b−δw(s)dg(s).
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Proof of Lemma 1. Pick δ < η and define ε := (η − δ)/2 > 0, so that δ + ε < η. Notice that

the function f1 : y 7→ y−b−εf(y) is regularly varying with index −ε < 0. By a uniform convergence

result for regularly varying functions (see e.g. Theorem 1.5.2 in Bingham et al., 1987):

rn := sup
0<s≤1

[ϕn(s)]b+ε
∣∣∣∣f(n/kϕn(s))

f(n/k)
− [ϕn(s)]−b

∣∣∣∣ ≤ sup
0<s≤1

sb+ε
∣∣∣∣f(n/ks)

f(n/k)
− s−b

∣∣∣∣
= sup

t≥1

∣∣∣∣f1(tn/k)

f1(n/k)
− t−ε

∣∣∣∣→ 0.

Thus, if C is an upper bound for |w| on (0, 1]:∣∣∣∣∫ 1

0

f(n/kϕn(s))

f(n/k)
[ϕn(s)]−δw(ϕn(s))dg(s)−

∫ 1

0

[ϕn(s)]−b−δw(ϕn(s))dg(s)

∣∣∣∣
≤ rn

∫ 1

0

[ϕn(s)]−b−δ−εw(ϕn(s))dg(s) ≤ rn
∫ 1

0

C max(s−b−δ−ε, 1)dg(s)→ 0. (2)

Besides

∀s ∈ (0, 1], [ϕn(s)]−b−δw(ϕn(s)) ≤ C max(s−b−δ, 1)

and the right-hand side defines an integrable function with respect to the measure dg(·), so that by

the dominated convergence theorem:∣∣∣∣∫ 1

0

[ϕn(s)]−b−δw(ϕn(s))dg(s)−
∫ 1

0

s−b−δw(s)dg(s)

∣∣∣∣→ 0. (3)

Combining (2) and (3) completes the proof.

The second lemma collects an inequality we shall use in the proof of Lemma 3 below.

Lemma 2. Pick α > 0 and x, y > 0 such that x ≤ y. Then there is a positive constant Cα such

that

0 ≤ yα − xα ≤ Cαyα−1(y − x).

Proof of Lemma 2. When α ≥ 1, the result is a consequence of the mean value theorem:

yα − xα ≤ sup
t∈[x,y]

{αtα−1}(y − x) = αyα−1(y − x).

In the case α < 1, then for any positive integer m we have by multiplying by conjugates:

yα − xα =
(
y2mα − x2mα

)/m−1∏
p=0

[
x2pα + y2pα

]
≤
(
y2mα − x2mα

)/m−1∏
p=0

y2pα

so that

yα − xα ≤ y−(2m−1)α
(
y2mα − x2mα

)
.

Let then m be so large that 2mα ≥ 1 and use once again the mean value theorem to get

yα − xα ≤ 2mαy−(2m−1)αy2mα−1(y − x) = 2mαyα−1(y − x)

which is the result.
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In all what follows, we let βn → 1 and tn → 1 be such that n(1−βn)→∞ and (1−tn)/(1−βn)→ 0.

Let (ψn) be a sequence of functions such that for all n, ψn ∈ F(βn, tn) and (ϕn) be the sequence of

functions defined as

ϕn(s) =
1− ψn(s)

1− βn
.

It is straightforward to show, using

ψ(0) = t, ψ(1) = β and ∀s ∈ [0, 1], 0 ≤ 1− (1− β)s− ψ(s) ≤ 1− t,

that

∀s ∈ [0, 1], s ≤ ϕn(s) ≤ min

(
1, s+

1− tn
1− βn

)
and thus ϕn(s)→ s as n→∞. (4)

The third lemma essentially shows that the full extreme Wang DRM Rg,βn
, obtained for tn = 1, is

equivalent to its modified version

Rg,βn(Xa;ψn) :=

∫ 1

0

[q ◦ ψn(s)]adg(s)

and gives a bound for the remainder.

Lemma 3. Let g be a distortion function on [0, 1], a > 0 and (ψn) be a sequence of functions such

that ψn ∈ F(βn, tn) for all n.

(i) If U is regularly varying with index γ > 0 and there is η > 0 such that∫ 1

0

s−aγ−ηdg(s) <∞

then we have that:
Rg,βn

(Xa;ψn)

Ua([1− βn]−1)
=

∫ 1

0

s−aγdg(s)(1 + o(1)).

(ii) If furthermore condition C2(γ, ρ,A) is satisfied and
√
n(1− βn)A((1− βn)−1) → λ ∈ R then

provided ∫ 1

0

s−aγ−1/2−ηdg(s) <∞

for some η > 0, we have that for any ε ∈ (0,min(1/2, η)):

Rg,βn
(Xa;ψn)

Ua([1− βn]−1)
=

∫ 1

0

s−aγdg(s) +
aλ√

n(1− βn)

∫ 1

0

s−ρ − 1

ρ
s−aγdg(s)

+ O

([
1− tn
1− βn

]1/2+ε
)

+ o

(
1√

n(1− βn)

)
.

Proof of Lemma 3. Let k = n(1− βn) so that k →∞, k/n→ 0 and ϕn can be rewritten as

ϕn(s) =
n

k
(1− ψn(s)).
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The first statement is proven by using (4) and applying Lemma 1:

Rg,βn
(Xa;ψn)

Ua([1− βn]−1)
=

∫ 1

0

Ua(n/kϕn(s))

Ua(n/k)
dg(s) =

∫ 1

0

s−aγdg(s)(1 + o(1)). (5)

To show the second statement, use (1) and (5) together to get:

Rg,βn
(Xa;ψn)

Ua([1− βn]−1)
−

∫ 1

0

(
1 +Ba([1− βn]−1)

[ϕn(s)]−ρ − 1

ρ

)
[ϕn(s)]−aγdg(s)

= o

(
Ba([1− βn]−1)

∫ 1

0

[ϕn(s)]−aγ−ρ−ηdg(s)

)
.

Lemma 1 with f = w = 1 entails

Rg,βn(Xa;ψn)

Ua([1− βn]−1)
=

∫ 1

0

[ϕn(s)]−aγdg(s) +
aλ√

n(1− βn)

∫ 1

0

s−ρ − 1

ρ
s−aγdg(s) + o

(
1√

n(1− βn)

)
.

(6)

We focus on the first integral on the right-hand side of this equality. Write∣∣∣∣∫ 1

0

[ϕn(s)]−aγdg(s)−
∫ 1

0

s−aγdg(s)

∣∣∣∣ ≤ ∫ 1

0

([ϕn(s)]aγ − saγ) [ϕn(s)]−aγs−aγdg(s).

By Lemma 2, there is a positive constant C such that

∀s ∈ (0, 1), [ϕn(s)]aγ − saγ ≤ C[ϕn(s)]aγ−1(ϕn(s)− s).

Consequently, ∣∣∣∣∫ 1

0

[ϕn(s)]−aγdg(s)−
∫ 1

0

s−aγdg(s)

∣∣∣∣ ≤ C ∫ 1

0

ϕn(s)− s
ϕn(s)

s−aγdg(s).

Finally, pick ε ∈ (0,min(1/2, η)) and notice that since

0 ≤ ϕn(s)− s
ϕn(s)

≤ 1 and 0 ≤ ϕn(s)− s ≤ 1− tn
1− βn

,

we have:

∀s ∈ [0, 1],
ϕn(s)− s
ϕn(s)

≤
[
ϕn(s)− s
ϕn(s)

]1/2+ε

≤
(

1− tn
1− βn

)1/2+ε

[ϕn(s)]−1/2−ε.

Therefore∣∣∣∣∫ 1

0

[ϕn(s)]−aγdg(s)−
∫ 1

0

s−aγdg(s)

∣∣∣∣ ≤ C

(
1− tn
1− βn

)1/2+ε ∫ 1

0

s−aγ [ϕn(s)]−1/2−εdg(s)

= O

([
1− tn
1− βn

]1/2+ε
)

(7)

by the dominated convergence theorem. Combining (6) and (7) completes the proof.
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The fourth lemma is the key element for the proof of our main result. It shows first that the study

of the consistency of any empirical counterpart

R̂g,βn(Xa;ψn) =

∫ 1

0

[q̂n ◦ ψn(s)]adg(s) =

∫ 1

0

Xa
n−bn(1−ψn(s))c,ndg(s)

of Rg,βn
(Xa;ψn) reduces to that of a proper trimmed/Winsorised estimator, and it then examines

the asymptotic behaviour of some weighted integrals of the empirical modified tail quantile process

s 7→ Xn−bn(1−ψn(s))c,n. For this result, define k1 = ntn and k = n(1− βn).

Lemma 4. Assume that condition C2(γ, ρ,A) is satisfied. Let (ψn) be a sequence of functions such

that ψn ∈ F(βn, tn) for all n and

ϕn(s) =
1− ψn(s)

1− βn
=
n

k
(1− ψn(s)).

(i) Let a > 0 and g be a distortion function. Assume that for some η > 0:∫ 1

0

s−aγ−ηdg(s) <∞.

Then there is a sequence of functions (Ψn) with Ψn ∈ F(min(tn, 1− 1/n), βn) for all n and:

R̂g,βn
(Xa;ψn)

Ua(n/k)
=
R̂g,βn

(Xa; Ψn)

Ua(n/k)
+ oP(1).

(ii) Let further f be a Borel measurable regularly varying function with index b ≤ aγ. Pick

δ ∈ (0, aγ − b+ η), and set

In(f, g, a, δ) :=

∫ 1

0

f(n/kϕn(s))

f(n/k)

(
Xa
n−bkϕn(s)c,n

Ua(n/k)
− [ϕn(s)]−aγ

)
[ϕn(s)]aγ−δdg(s).

If n− k1 ≥ 1 and
√
kA(n/k) = O(1) then In(f, g, a, δ)

P−→ 0.

(iii) Let now a1, . . . , ad > 0, f1, . . . , fd be Borel measurable regularly varying functions with respec-

tive indices bj ≤ ajγ and g1, . . . , gd be distortion functions. Assume that for some η > 0:

∀j ∈ {1, . . . , d},
∫ 1

0

s−ajγ−1/2−ηdgj(s) <∞.

Pick δ1, . . . , δd ∈ R such that δj ∈ (0, ajγ − bj + η). If
√
kA(n/k)→ λ ∈ R then

(
√
kIn(fj , gj , aj , δj))1≤j≤d

d−→ N (λC,Σ)

with C being the column vector with j−th entry

Cj = aj

∫ 1

0

s−ρ − 1

ρ
s−bj−δjdgj(s)

and Σ being the d× d matrix with (i, j)−th entry

Σi,j = aiajγ
2

∫
[0,1]2

min(s, t)s−bi−δi−1t−bj−δj−1dgi(s)dgj(t).

36



Proof of Lemma 4. We start by the proof of (i). If tn ≤ 1 − 1/n, one can take Ψn = ψn and

there is nothing to show. If tn > 1− 1/n, define Ψn(s) = min(ψn(s), 1− 1/n) and set

∆n =
R̂g,βn(Xa;ψn)− R̂g,βn(Xa; Ψn)

Ua(n/k)
=

1

Ua(n/k)

∫ 1

0

(Xa
n−bn(1−ψn(s))c,n−X

a
n−bn(1−Ψn(s))c,n)dg(s).

For any n, Ψn(s) is clearly Borel measurable, nonincreasing and takes its values in [0, 1]. Moreover

∀s ∈ [0, 1], ψn(s) ≤ 1− (1− βn)s

⇒ ∀s ∈ [0, 1], Ψn(s) = min(ψn(s), 1− 1/n) ≤ 1− (1− βn)s. (8)

Finally, if t′n = 1− 1/n, then t′n ≤ tn which entails

∀s ∈ [0, 1], 1− (1− βn)s− (1− t′n) ≤ 1− (1− βn)s− (1− tn) ≤ ψn(s).

Moreover:

∀s ∈ [0, 1], 1− (1− βn)s− (1− t′n) ≤ t′n = 1− 1/n.

These last two chains of inequalities show that

∀s ∈ [0, 1], 1− (1− βn)s− (1− t′n) ≤ Ψn(s). (9)

Combining (8) and (9), we get Ψn ∈ F(t′n, βn) = F(min(tn, 1− 1/n), βn). Let now

∀s ∈ [0, 1], θn(s) =
n

k
(1−Ψn(s)) = max(ϕn(s), 1/k)

so that

∆n =
1

Ua(n/k)

∫ 1

0

(Xa
n−bkϕn(s)c,n −X

a
n−bkθn(s)c,n)dg(s).

Because ks ≤ kϕn(s) we clearly have

∆n ≤ 1

Ua(n/k)

∫ 1

0

(Xa
n−bksc,n −X

a
n−bkθn(s)c,n)dg(s)

=
1

Ua(n/k)

∫ 1

0

(Xa
n−bkmax(s,1/2k)c,n −X

a
n−bkθn(s)c,n)dg(s).

Set finally µn(s) = max(s, 1/2k); it is then enough to show that

1

Ua(n/k)

∫ 1

0

(Xa
n−bkµn(s)c,n −X

a
n−bkθn(s)c,n)dg(s)

P−→ 0. (10)

The pivotal idea is to apply Theorem 2.4.8 in de Haan and Ferreira (2006): we may find a Borel

measurable function Ba which has constant sign and is asymptotically equivalent to aA at infinity

such that

saγ+1/2+η

∣∣∣∣√k(Xa
n−bksc,n

Ua(n/k)
− s−aγ

)
− aγs−aγ−1Wn(s)−

√
kBa(n/k)s−aγ

s−ρ − 1

ρ

∣∣∣∣ P−→ 0 (11)

37



uniformly in s ∈ (0, 1], where Wn is an appropriate sequence of standard Brownian motions, or

equivalently

Xa
n−bksc,n

Ua(n/k)
= s−aγ

(
1 +

1√
k
aγs−1Wn(s) +Ba(n/k)

s−ρ − 1

ρ
+

1√
k
s−1/2−η oP(1)

)
with the oP(1) being uniform in s ∈ (0, 1]. Replacing n − bksc by first n − bkµn(s)c and then

n− bkθn(s)c, this yields

Xa
n−bkµn(s)c,n

Ua(n/k)
= [µn(s)]−aγ

(
1 +

1√
k
aγ[µn(s)]−1Wn(µn(s)) +Ba(n/k)

[µn(s)]−ρ − 1

ρ

)
+

1√
k

[µn(s)]−aγ−1/2−η oP(1) (12)

and

Xa
n−bkθn(s)c,n

Ua(n/k)
= [θn(s)]−aγ

(
1 +

1√
k
aγ[θn(s)]−1Wn(θn(s)) +Ba(n/k)

[θn(s)]−ρ − 1

ρ

)
+

1√
k

[θn(s)]−aγ−1/2−η oP(1). (13)

We first work on the remainder terms. We have

1√
k

[µn(s)]−aγ−1/2−η =
[max(1/2k, s)]−1/2

√
k

[max(1/2k, s)]−aγ−η ≤ [1/2k]−1/2

√
k

s−aγ−η

≤ s−aγ−η ×O(1)

where the O(1) is uniform in s ∈ [0, 1]. Thus

1√
k

∫ 1

0

[µn(s)]−aγ−1/2−ηdg(s) = O(1). (14)

A similar result holds with µn(s) replaced by θn(s) since

∀s ∈ [0, 1], θn(s) = max(ϕn(s), 1/k) ≥ max(s, 1/k) ≥ max(s, 1/2k) = µn(s).

Now

|[µn(s)]−α − [θn(s)]−α| = ([θn(s)]α − [µn(s)]α)[µn(s)]−α[θn(s)]−α.

A consequence of this inequality is, by Lemma 2,

|[µn(s)]−α − [θn(s)]−α| ≤ Cα[θn(s)]−1(θn(s)− µn(s))[µn(s)]−α

= Cα

(
1− µn(s)

θn(s)

)
[µn(s)]−α (15)

for any s ∈ (0, 1] and α > 0, where Cα is a positive constant. Since ϕn(s) → s pointwise on [0, 1]

and

1− µn(s)

θn(s)
=

max(ϕn(s), 1/k)−max(s, 1/2k)

max(ϕn(s), 1/k)
≤ 1, (16)
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the function on the left-hand side of (15) converges pointwise to 0 on (0, 1] and is bounded by a

multiple of s−α on this interval. Thus∫ 1

0

([µn(s)]−aγ−η − [θn(s)]−aγ−η)dg(s)→ 0 (17)

by the dominated convergence theorem. We shall now show that

1√
k

∫ 1

0

{
[µn(s)]−aγ−1W (µn(s))dg(s)− [θn(s)]−aγ−1W (θn(s))

}
dg(s)

P−→ 0. (18)

Because the Wn are all standard Brownian motions, we may replace Wn by a standard Brownian

motion W to show this weak convergence. For any s ∈ [0, 1]:∣∣[µn(s)]−aγ−1W (µn(s))− [θn(s)]−aγ−1W (θn(s))
∣∣

≤
∣∣[µn(s)]−aγ−1 − [θn(s)]−aγ−1

∣∣ |W (µn(s))|+ [θn(s)]−aγ−1 |Wn(µn(s))−W (θn(s))| .

The first term on the right-hand side is controlled using (15), the inequality µn(s) ≥ 1/2k and the

fact that, by the law of the iterated logarithm, s−1/2+ηW (s) is uniformly stochastically bounded

on (0, 1]: ∣∣[µn(s)]−aγ−1 − [θn(s)]−aγ−1
∣∣ |W (µn(s))|

≤ [µn(s)]−1/2

(
1− µn(s)

θn(s)

){
[µn(s)]−1/2+η|W (µn(s))|

}
[µn(s)]−aγ−η O(1)

≤
√
k

(
1− µn(s)

θn(s)

)
[µn(s)]−aγ−η OP(1) (19)

where the OP(1) term is uniform in s ∈ (0, 1]. To control the second term, note that n − k1 =

n(1− tn) ≤ 1 and thus

ks ≤ kθn(s) = max(kϕn(s), 1) ≤ kϕn(s) + 1 ≤ ks+ (n− k1 + 1) ≤ ks+ 2.

This entails

0 ≤ θn(s)− µn(s) ≤
(
s+

2

k

)
− s ≤ 2

k
.

Combine this last inequality with the inequality θn(s) ≥ µn(s) ≥ 1/2k and the (1 − η)/2−local

Hölder continuity of the standard Brownian motion, which translates to Hölder continuity on the

compact interval [0, 1]:

[θn(s)]−aγ−1 |W (µn(s))−W (θn(s))| ≤ [θn(s)]−aγ−1|µn(s)− θn(s)|(1−η)/2 OP(1)

= k(1−η)/2[θn(s)]−aγ−η OP(1) (20)

where again the OP(1) term is uniform in s ∈ (0, 1]. Combining (19) and (20) entails∣∣[µn(s)]−aγ−1W (µn(s))− [θn(s)]−aγ−1W (θn(s))
∣∣

≤
[√

k

(
1− µn(s)

θn(s)

)
[µn(s)]−aγ−η + k(1−η)/2[θn(s)]−aγ−η

]
OP(1).
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By (16), the sequence of functions 1 − µn/θn converges pointwise to 0 on (0, 1); use then (16)

and (21) together with the dominated convergence theorem to obtain (18). Finally, recall that

Ba(n/k) = OP(1/
√
k) so that

Ba(n/k)

∫ 1

0

[µn(s)]−aγ
[µn(s)]−ρ − 1

ρ
dg(s)→ 0 (21)

by the dominated convergence theorem again, with an analogue result for µn replaced by θn. Com-

bining (12), (13), (14), (17), (18) and (21) completes the proof of (10) and thus of the first statement.

We proceed with the proof of point (ii). Let ε′ ∈ (0, 1/2) be such that δ + 2ε′ < η. From Lemma 1

in El Methni and Stupfler (2016), Ua satisfies condition C2(aγ, ρ, aA). By (12) with η replaced by

ε′,

In(f, g, a, δ) = ζn + ξn + oP

(
1√
k

∫ 1

0

f(n/kϕn(s))

f(n/k)
[ϕn(s)]−1/2−δ−ε′dg(s)

)
with ζn = aγ

1√
k

∫ 1

0

f(n/kϕn(s))

f(n/k)
[ϕn(s)]−1−δWn(ϕn(s))dg(s)

and ξn = Ba(n/k)

∫ 1

0

f(n/kϕn(s))

f(n/k)

[ϕn(s)]−ρ − 1

ρ
[ϕn(s)]−δdg(s).

The remainder term is controlled in the following way: notice that ϕn(s) ≥ ϕn(0) = (n−k1)/k ≥ 1/k

and thus, by Lemma 1:∫ 1

0

f(n/kϕn(s))

f(n/k)
[ϕn(s)]−1/2−δ−ε′dg(s) ≤ k1/2−ε′

∫ 1

0

f(n/kϕn(s))

f(n/k)
[ϕn(s)]−δ−2ε′dg(s)

= O
(
k1/2−ε′

)
(22)

which leads to

In(f, g, a, δ) = ζn + ξn + oP(1). (23)

Recall now that for any n, Wn
d
= W where W is a standard Brownian motion, and the random

process W has continuous sample paths and s−1/2+ε′W (s)→ 0 almost surely as s→ 0. Thus

ζn = oP

(
1√
k

∫ 1

0

f(n/kϕn(s))

f(n/k)
[ϕn(s)]−1/2−δ−ε′dg(s)

)
= oP(1) (24)

by (22). Finally, because

|ξn| ≤
1

|ρ|
|Ba(n/k)|

∫ 1

0

f(n/kϕn(s))

f(n/k)
[ϕn(s)]−δdg(s)

we obtain, using the bound
√
kA(n/k) = O(1) and the fact that Ba is asymptotically equivalent to

aA:

ξn ≤ O

(
1√
k

∫ 1

0

f(n/kϕn(s))

f(n/k)
[ϕn(s)]−δ−ε

′
dg(s)

)
= o(1) (25)

by Lemma 1. Combining (23), (24) and (25) completes the proof of the second statement.
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The proof of (iii) is actually that of Lemma 3 in El Methni and Stupfler (2016) up to slight changes

essentially due to s having to be replaced by ϕn(s) throughout, which can be handled by using

Lemma 1. We omit it for the sake of brevity.

Lemma 5. Let g be a distortion function on [0, 1], a > 0, (ψn) be a sequence of functions such that

ψn ∈ F(βn, tn) for all n and

ϕn(s) =
1− ψn(s)

1− βn
.

(i) If γ̂n is a consistent estimator of γ and there is η > 0 such that∫ 1

0

s−aγ−ηdg(s) <∞

then we have that: ∫ 1

0
[ϕn(s)]−aγ̂ndg(s)∫ 1

0
s−aγdg(s)

P−→ 1.

(ii) If furthermore γ̂n is a
√
n(1− βn)−consistent estimator of γ, then we have that:∫ 1

0
[ϕn(s)]−aγ̂ndg(s)∫ 1

0
[ϕn(s)]−aγdg(s)

= 1− a(γ̂n − γ)

∫ 1

0
s−aγ log(1/s)dg(s)∫ 1

0
s−aγdg(s)

+ oP

(
1√

n(1− βn)

)
.

Proof of Lemma 5. To prove the first assertion, note that ϕn(s) → s pointwise on [0, 1] and

[ϕn(s)]−aγ−η ≤ s−aγ−η, so that by the dominated convergence theorem,∫ 1

0

[ϕn(s)]−aγ̂ndg(s) =

∫ 1

0

[ϕn(s)]−a(γ̂n−γ)

[
ϕn(s)

s

]−aγ
s−aγdg(s)

P−→
∫ 1

0

s−aγdg(s).

For the second result, set κ(x) = ex − 1− x and notice that∫ 1

0
[ϕn(s)]−aj γ̂ndgj(s)∫ 1

0
[ϕn(s)]−ajγdgj(s)

= 1− aj(γ̂n − γ)

∫ 1

0
[ϕn(s)]−ajγ log(ϕn(s))dgj(s)∫ 1

0
[ϕn(s)]−ajγdgj(s)

+

∫ 1

0
[ϕn(s)]−ajγκ(−aj(γ̂n − γ) log(ϕn(s))dgj(s)∫ 1

0
[ϕn(s)]−ajγdgj(s)

.

A Taylor inequality for the exponential function at order 2 gives |κ(x)| ≤ x2e|x|/2 and thus∣∣∣∣∫ 1

0

[ϕn(s)]−ajγκ(−aj(γ̂n − γ) log(ϕn(s)))dgj(s)

∣∣∣∣
≤

a2
j

2
(γ̂n − γ)2

∫ 1

0

[ϕn(s)]−ajγ log2(ϕn(s))[ϕn(s)]−aj |γ̂n−γ|dgj(s)

≤
a2
j

2
(γ̂n − γ)2

∫ 1

0

s−ajγ log2(1/s)s−aj |γ̂n−γ|dgj(s)

Since
∫ 1

0
s−ajγ−ηdgj(s) <∞, it follows by the

√
n(1− βn)−consistency of γ̂n that∣∣∣∣∫ 1

0

[ϕn(s)]−ajγκ(−aj(γ̂n − γ) log(ϕn(s)))dgj(s)

∣∣∣∣ = oP

(
1√

n(1− βn)

)
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and thus∫ 1

0
[ϕn(s)]−aj γ̂ndgj(s)∫ 1

0
[ϕn(s)]−ajγdgj(s)

= 1− aj(γ̂n − γ)

∫ 1

0
[ϕn(s)]−ajγ log(ϕn(s))dgj(s)∫ 1

0
[ϕn(s)]−ajγdgj(s)

+ oP

(
1√

n(1− βn)

)
.

Since ϕn(s)→ s pointwise on [0, 1] and

|[ϕn(s)]−ajγ | ≤ s−ajγ−η and |[ϕn(s)]−ajγ log(ϕn(s))| ≤ s−ajγ log(1/s) ≤ s−ajγ−η

where both right-hand sides are integrable with respect to the measures dgj , we conclude by the

dominated convergence theorem that∫ 1

0
[ϕn(s)]−aj γ̂ndgj(s)∫ 1

0
[ϕn(s)]−ajγdgj(s)

= 1− aj(γ̂n − γ)

∫ 1

0
s−ajγ log(1/s)dgj(s)∫ 1

0
s−ajγdgj(s)

+ oP

(
1√

n(1− βn)

)
.

This is the desired result.

Appendix B: Proofs of the main results

Proof of Proposition 1. By definition:

RTrim
g,β,t(h(X)) =

∫ 1

0

h ◦ q(t− (t− β)s)dg(s). (26)

It follows from the condition on q that the function F is necessarily continuous on an open interval

containing [q(β),∞). The cdf of X given X ∈ [q(β), q(t)] is then

Fβ,t(x) := P(X ≤ x|X ∈ [q(β), q(t)]) =


0 if x < q(β),

F (x)− β
t− β

if x ∈ [q(β), q(t)],

1 if x > q(t).

The related quantile function is defined by

∀α ∈ (0, 1), qβ,t(α) := inf{x ∈ R |Fβ,t(x) ≥ α} = inf{x ∈ R |F (x) ≥ β + (t− β)α}

= q(β + (t− β)α)

and thus

Rg(h(XTrim
β,t )) =

∫ 1

0

h ◦ qβ,t(1− s)dg(s) =

∫ 1

0

h ◦ q(t− (t− β)s)dg(s). (27)

Combining (26) and (27) completes the proof.

Proof of Proposition 2. We have:

RWins
g,β,t (h(X)) =

∫ 1

0

h ◦ q(min(t, 1− (1− β)s)dg(s). (28)
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The function F is continuous and increasing on an open interval containing [q(β),∞), so that the

cdf of XWins
β,t is

Gβ,t(x) :=


0 if x < q(β),

F (x)− β
1− β

if x ∈ [q(β), q(t)),

1 if x ≥ q(t).

The related quantile function is defined by

∀α ∈ (0, 1), Qβ,t(α) := inf{x ∈ R |Gβ,t(x) ≥ α}.

When α < (t− β)/(1− β), this is

Qβ,t(α) = inf{x ∈ R |F (x) ≥ β + (1− β)α} = q(β + (1− β)α),

and if α ≥ (t− β)/(1− β) then, since

lim
x→q(t)
x<q(t)

Gβ,t(x) =
t− β
1− β

and Gβ,t(q(t)) = 1

we must have Qβ,t(α) = q(t). It follows that Qβ,t(α) = q(min(t, β + (1− β)α)) and therefore

Rg(h(XWins
β,t )) =

∫ 1

0

h ◦Qβ,t(1− s)dg(s) =

∫ 1

0

h ◦ q(min(t, 1− (1− β)s))dg(s). (29)

Combining (28) and (29) completes the proof.

Proof of Theorem 1. We start by proving (i). We have the equality

R̂g,βn
(Xa;ψn) =

∫ 1

0

Xa
n−bn(1−ψn(s))c,n dg(s).

By Lemmas 3 (i) and 4 (i),

R̂g,βn(Xa;ψn)

Rg,βn
(Xa)

=
R̂g,βn

(Xa; Ψn)

Rg,βn
(Xa; Ψn)

(1 + oP(1))

with Ψn(s) = min(ψn(s), 1− 1/n), and thus it is enough to tackle the case when n(1− tn) ≥ 1. By

Lemma 3 (i) again, it suffices to prove that:

R̂g,βn(Xa;ψn)−Rg,βn(Xa;ψn)

Ua([1− βn]−1)

P−→ 0.

Define k = n(1− βn), notice that k/n→ 0 and write

R̂g,βn
(Xa;ψn)−Rg,βn

(Xa;ψn)

Ua([1− βn]−1)
= ζn(a, g) + ξn(a, g) (30)

with ζn(a, g) =

∫ 1

0

Ua(n/kϕn(s))

Ua(n/k)

(
Xa
n−bkϕn(s)c,n

Ua(n/k)
− [ϕn(s)]−aγ

)
[ϕn(s)]aγdg(s)

and ξn(a, g) =

∫ 1

0

Ua(n/kϕn(s))

Ua(n/k)

Xa
n−bkϕn(s)c,n

Ua(n/k)

(
Ua(n/k)

Ua(n/kϕn(s))
− [ϕn(s)]aγ

)
dg(s)

where ϕn(s) =
n

k
(1− ψn(s)). (31)
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By Lemma 4 (ii), ζn(a, g) = oP(1). We control ξn(a, g) by Proposition B.1.10 in de Haan and

Ferreira (2006): since ϕn(s) ∈ [s, 1], we have for any δ ∈ (0, η) and n large enough,

|ξn(a, g)| ≤ δ

∫ 1

0

Ua(n/kϕn(s))

Ua(n/k)

(
Xa
n−bkϕn(s)c,n

Ua(n/k)
− [ϕn(s)]−aγ

)
[ϕn(s)]aγ−δdg(s)

+ δ

∫ 1

0

Ua(n/kϕn(s))

Ua(n/k)
[ϕn(s)]−δdg(s).

The first-term on the right-hand side is controlled by Lemma 4 (ii), while the second integral

converges to a finite positive constant by Lemma 1. Since δ can be taken arbitrarily small, we get

ξn(a, g) = oP(1) and the proof is complete.

We now turn to the proof of the second statement. By Lemma 3 (ii),

√
n(1− βn)

(
Rgj ,βn

(Xaj ;ψn)

Rgj ,βn
(Xaj )

− 1

)
= o(1) + O

(√
n(1− tn)

[
1− tn
1− βn

]δ)
= o(1)

and thus it is enough to show the convergence

√
n(1− βn)

(
R̂gj ,βn(Xaj ;ψn)

Rgj ,βn
(Xaj ;ψn)

− 1

)
1≤j≤d

d−→ N (0, V )

or equivalently, by Lemma 3 (i),

√
n(1− βn)

(
R̂gj ,βn

(Xaj ;ψn)−Rgj ,βn
(Xaj ;ψn)

Uaj ([1− βn]−1)

)
1≤j≤d

d−→ N (0,M) (32)

where M is the d× d matrix with (i, j)−th entry

Mi,j = aiajγ
2

∫
[0,1]2

min(s, t)s−aiγ−1t−ajγ−1dgi(s)dgj(t).

To this end, we use equation (30):

√
n(1− βn)

R̂gj ,βn(Xaj ;ψn)−Rgj ,βn(Xaj ;ψn)

Uaj ([1− βn]−1)
=
√
kζn(aj , gj) +

√
kξn(aj , gj).

By Lemma 4 (iii): (√
kζj,n(aj , gj)

)
1≤j≤n

d−→ N (λC,M) (33)

where C is the column vector whose j−th entry is

Cj = aj

∫ 1

0

s−ρ − 1

ρ
s−ajγdgj(s).

To examine the convergence of ξj,n, we note that according to (1), there exist Borel measurable func-

tions Ba1 , . . . , Bad , respectively asymptotically equivalent to a1A1, . . . , adAd and having constant

sign, such that for any ε > 0:

∀s ∈ (0, 1],

∣∣∣∣ 1

Baj (n/ks)

(
Uaj (n/k)

Uaj (n/ks)
− sajγ

)
− sajγ s

ρ − 1

ρ

∣∣∣∣ ≤ εsajγ+ρ−ε (34)

44



for n sufficiently large. Replacing s by ϕn(s) makes us consider the following decomposition of ξj,n:

ξj,n(aj , gj) = ξ
(1)
j,n(aj , gj) + ξ

(2)
j,n(aj , gj) (35)

with

ξ
(1)
j,n(aj , gj) =

∫ 1

0

Uaj (n/kϕn(s))

Uaj (n/k)
Baj (n/kϕn(s))

X
aj
n−bkϕn(s)c,n

Uaj (n/k)
[ϕn(s)]ajγ

[ϕn(s)]ρ − 1

ρ
dgj(s),

|ξ(2)
j,n(aj , gj)| ≤ ε

∫ 1

0

Uaj (n/kϕn(s))

Uaj (n/k)
|Baj (n/kϕn(s))|

X
aj
n−bkϕn(s)c,n

Uaj (n/k)
[ϕn(s)]ajγ+ρ−εdgj(s).

Here the bound on ξ
(2)
j,n(aj , gj) holds for any ε ∈ (0, η) when n is large enough. Writing

X
aj
n−bkϕn(s)c,n

Uaj (n/k)
[ϕn(s)]ajγ = 1 +

(
X
aj
n−bkϕn(s)c,n

Uaj (n/k)
− [ϕn(s)]−ajγ

)
[ϕn(s)]ajγ ,

we get by Lemma 4 (iii):

ξ
(1)
j,n(aj , gj) =

∫ 1

0

Uaj (n/kϕn(s))

Uaj (n/k)
Baj (n/kϕn(s))

[ϕn(s)]ρ − 1

ρ
dgj(s) + OP

(
Uaj (n/k)Baj (n/k)

√
k

)
.

Applying Lemma 1 to the regularly varying functions t 7→ Uaj (t)|Baj (t)| and t 7→ t−ρUaj (t)|Baj (t)|,

which have respective regular variation indices ajγ + ρ and ajγ, we get

√
kξ

(1)
j,n(aj , gj) =

√
kBaj (n/k)

∫ 1

0

s−ajγ
1− s−ρ

ρ
dgj(s) + oP(1)

= −ajλ
∫ 1

0

s−ajγ
s−ρ − 1

ρ
dgj(s) + oP(1) = −λCj + oP(1) (36)

since Baj is equivalent to ajA. Besides, the ideas used to control ξ
(1)
j,n(aj , gj) yield for n large enough:∣∣∣√kξ(2)

j,n(aj , gj)
∣∣∣ ≤ εaj |λ|∫ 1

0

s−ajγ−εdgj(s) + oP(1) ≤ εaj |λ|
∫ 1

0

s−ajγ−ηdgj(s) + oP(1)

which, since ε is arbitrary, entails ∣∣∣√kξ(2)
j,n(aj , gj)

∣∣∣ = oP(1). (37)

Combining (35), (36) and (37) entails(√
kξj,n(aj , gj)

)
1≤j≤d

P−→ −λC. (38)

Combine finally (30), (33) and (38) to obtain (32): the proof is complete.

Proof of Theorem 2. The first assertion is a direct consequence of Theorem 1(i) and of Lemma 5(i).

To show the second result, write

R̃gj ,βn
(Xaj ;ψn)

R̂gj ,βn
(Xaj ;ψn)

=

∫ 1

0
s−ajγds∫ 1

0
[ϕn(s)]−ajγds

×
∫ 1

0
[ϕn(s)]−ajγds∫ 1

0
[ϕn(s)]−aj γ̂nds

×
∫ 1

0
s−aj γ̂nds∫ 1

0
s−ajγds

.
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We first work with the first factor on the right-hand side. Writing∫ 1

0
s−ajγds∫ 1

0
[ϕn(s)]−ajγds

=

∫ 1

0
[(1− βn)s]−ajγds

[(1− βn)s]−aγ
[(1− βn)s]−aγ∫ 1

0
[(1− βn)ϕn(s)]−ajγds

=
Rgj ,βn

(Y aj )

[(1− βn)]−ajγ
[(1− βn)]−ajγ

Rgj ,βn(Y aj ;ψn)

where Y has a Pareto distribution with tail index γ, and applying Lemma 3(ii) twice, we obtain∫ 1

0
s−ajγds∫ 1

0
[ϕn(s)]−ajγds

= 1 + o

(
1√

n(1− βn)

)
.

To control the second and third terms, we apply Lemma 5(ii) to each term successively to get∫ 1

0
[ϕn(s)]−ajγds∫ 1

0
[ϕn(s)]−aj γ̂nds

×
∫ 1

0
s−aj γ̂nds∫ 1

0
s−ajγds

= 1 + oP

(
1√

n(1− βn)

)
.

Combining these two results entails

R̃gj ,βn(Xaj ;ψn)

R̂gj ,βn(Xaj ;ψn)
= 1 + oP

(
1√

n(1− βn)

)
.

Apply Theorem 1(ii) to complete the proof.

Proof of Theorem 3. We start by writing:

R̃Wg,δn(Xa;ψn)

Rg,δn(Xa)
=

(
1− βn
1− δn

)a(γ̂n−γ)
R̃g,βn

(Xa;ψn)

Rg,βn(Xa)
× Rg,βn

(Xa)

Rg,δn(Xa)

(
1− βn
1− δn

)aγ
(39)

which is the basic step for our proof. Taking logarithms and applying Lemma 4 of El Methni and

Stupfler (2016) with Y = Xaj , we get

log

(
R̃Wgj ,δn(Xaj ;ψn)

Rgj ,δn(Xaj )

)
= aj(γ̂n− γ) log

(
1− βn
1− δn

)
+ log

(
R̃gj ,βn

(Xaj ;ψn)

Rgj ,βn(Xaj )

)
+ O

(
1√

n(1− βn)

)
.

A use of Theorem 2(ii), together with the delta-method, entails

log

(
R̃Wgj ,δn(Xaj ;ψn)

Rgj ,δn(Xaj )

)
= aj(γ̂n − γ) log

(
1− βn
1− δn

)
+ OP

(
1√

n(1− βn)

)
.

The hypothesis on γ̂n and a Taylor expansion of the exponential function now make it clear that√
n(1− βn)

log([1− βn]/[1− δn])

(
R̃Wgj ,δn(Xaj ;ψn)

Rgj ,δn(Xaj )
− 1

)
= ajξ(1 + oP(1))

which completes the proof.
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Csörgő, S., Horváth, L., Mason, D.M. (1986). What portion of the sample makes a partial sum

asymptotically stable or normal? Probab. Th. Rel. Fields 72, 1–16.

Davison, A.C., Smith, R.L. (1990). Models for exceedances over high thresholds. J. R. Stat. Soc.

Ser. B 52, 393–442.

Diebolt, J., Guillou, A., Rached, I. (2007). Approximation of the distribution of excesses through a

generalized probability-weighted moments method. J. Statist. Plann. Inference 137(3), 841–857.

Dowd, K., Blake, D. (2006). After VaR: the theory, estimation, and insurance applications of

quantile-based risk measures. Journal of Risk and Insurance 73(2), 193–228.

Drees, H. (1998). On smooth statistical tail functionals. Scand. J. Statist. 25(1), 187–210.

Drees, H. (2003). Extreme quantile estimation for dependent data, with applications to finance.

Bernoulli 9(1), 617–657.

Drees, H., Ferreira, A., de Haan, L. (2004). On maximum likelihood estimation of the extreme

value index. Ann. Appl. Probab. 14(3), 1179–1201.

El Methni, J., Gardes, L., Girard, S. (2014). Nonparametric estimation of extreme risks from

conditional heavy-tailed distributions. Scand. J. Stat. 41(4), 988–1012.

47



El Methni, J., Stupfler, G. (2016). Extreme versions of Wang risk measures and their estimation

for heavy-tailed distributions, to appear in Stat. Sinica. DOI: 10.5705/ss.202015.0460

Etemadi, N. (1981). An elementary proof of the strong law of large numbers. Z. Wahrschein-

lichkeitstheorie verw. Gebiete 55, 119–122.

Fabozzi, F., Tunaru, R. (2008). Pricing models for real estate derivatives, working paper.

Gardes, L., Stupfler, G. (2014). Estimation of the conditional tail index using a smoothed local Hill

estimator. Extremes 17(1), 45–75.

Ghosh, S., Resnick, S. (2010). A discussion on mean excess plots. Stoch. Proc. Appl. 120(8),

1492–1517.

Gomes, M.I., Brilhante, M.F., Pestana, D. (2016). New reduced-bias estimators of a positive

extreme value index. Comm. Statist. Simulation Comput., 45(3), 833–862.

Gomes, M.I., Guillou, A. (2015). Extreme value theory and statistics of univariate extremes: a

review. Int. Stat. Rev., 83(2), 263–292.

de Haan, L., Ferreira, A. (2006). Extreme value theory: an introduction. Springer, New York.

Hill, B.M. (1975). A simple general approach to inference about the tail of a distribution. Ann.

Statist. 3, 1163–1174.

Hosking, J.R.M., Wallis, J.R., Wood, E.F. (1985). Estimation of the generalized extreme-value

distribution by the method of probability-weighted moments. Technometrics 27, 251–261.

Jones, B.L., Zitikis, R. (2003). Empirical estimation of risk measures and related quantities. North

American Actuarial Journal 7(4), 44–54.

Koutsoyiannis, D. (2004). Statistics of extremes and estimation of extreme rainfall: II. Empirical

investigation of long rainfall records. Hydrological Sciences Journal 49(4), 591–610.

Pickands, J. (1975). Statistical inference using extreme order statistics. Ann. Statist. 3(1), 119–

131.

Rootzén, H., Tajvidi, N. (1997). Extreme value statistics and wind storm losses: a case study.

Scand. Actuar. J. 1, 70–94.

Smith, R.L. (1987). Estimating tails of probability distributions. Ann. Statist. 15, 1174–1207.

Stigler, S.M. (1973). Simon Newcomb, Percy Daniell, and the history of robust estimation 1885-

1920. J. Amer. Statist. Assoc. 68, 872–879.

Stupfler, G. (2013). A moment estimator for the conditional extreme-value index. Electron. J.

Stat. 7, 2298–2343.

48



Stupfler, G. (2016). Estimating the conditional extreme-value index under random right-censoring.

J. Multivariate Anal. 144, 1–24.

Vandewalle, B., Beirlant, J. (2006). On univariate extreme value statistics and the estimation of

reinsurance premiums. Insurance Math. Econom. 38, 441–459.

Wang, S. (1995). Insurance pricing and increased limits ratemaking by proportional hazards trans-

forms. Insurance: Math. Econom. 17(1), 43–54.

Wang, S.S. (1996). Premium calculation by transforming the layer premium density. ASTIN Bull.

26, 71–92.

Wang, S. (2004). CAT bond pricing using probability transforms. Geneva Papers, special issue on

insurance and the state of the art in CAT bond pricing 278, 19–29.

Wang, S., Young, V., Panjer, H. (1997). Axiomatic characterization of insurance prices. Insurance:

Math. Econom. 21, 173–183.

Weissman, I. (1978). Estimation of parameters and large quantiles based on the k largest observa-

tions. J. Amer. Statist. Assoc. 73, 812–815.

Yang, F. (2015). First- and second-order asymptotics for the tail distortion risk measure of extreme

risks. Comm. Statist. Theory Methods 44(3), 520–532.

49


